simulink实例——超实用

合集下载

matlab simulink案例

matlab simulink案例

matlab simulink案例1. 电机传动系统模拟在这个案例中,我们将使用Simulink来模拟一个简单的电机传动系统。

我们将建立一个由电机、负载和控制器组成的系统,并使用Simulink来模拟系统的动态行为。

通过调整输入信号和控制器参数,我们可以观察系统的响应,并优化控制器的性能。

2. PID控制器设计在这个案例中,我们将使用Simulink来设计一个PID控制器,并将其应用于一个简单的控制系统。

我们将建立一个由传感器、控制器和执行器组成的系统,并使用Simulink来模拟系统的动态行为。

通过调整PID控制器的参数,我们可以观察系统的响应,并优化控制器的性能。

3. 机器人路径规划在这个案例中,我们将使用Simulink来进行机器人的路径规划。

我们将建立一个由传感器、路径规划器和执行器组成的系统,并使用Simulink来模拟机器人在不同环境中的路径规划行为。

通过调整路径规划器的算法和参数,我们可以优化机器人的路径规划性能。

4. 电力系统稳定性分析在这个案例中,我们将使用Simulink来进行电力系统的稳定性分析。

我们将建立一个由发电机、负载和传输线路组成的电力系统,并使用Simulink来模拟系统的动态行为。

通过调整系统的参数和控制策略,我们可以评估系统的稳定性,并优化系统的运行性能。

5. 汽车动力学模拟在这个案例中,我们将使用Simulink来进行汽车的动力学模拟。

我们将建立一个由车辆、发动机和传动系统组成的模型,并使用Simulink来模拟车辆在不同驾驶条件下的动力学行为。

通过调整车辆参数和控制策略,我们可以评估车辆的性能,并优化驾驶体验。

6. 无人机飞行控制在这个案例中,我们将使用Simulink来进行无人机的飞行控制。

我们将建立一个由无人机、传感器和控制器组成的系统,并使用Simulink来模拟无人机在不同飞行任务下的控制行为。

通过调整控制器的参数和飞行任务的要求,我们可以优化无人机的飞行性能。

simulink建模实例

simulink建模实例

simulink建模实例Simulink是一种功能强大的工具,用于建立和模拟各种系统的动态行为。

它可以帮助工程师和科学家更好地理解和分析系统的行为,并进行系统设计和优化。

下面我将通过一个实例来展示Simulink的应用。

假设我们要建立一个控制系统,用于控制一个小型机器人的移动。

该机器人有两个驱动轮,我们希望能够通过Simulink来设计一个控制器,使机器人能够按照预定的路径移动。

我们需要建立一个系统模型,包括机器人本身、传感器和执行器。

在Simulink中,我们可以使用各种模块来表示这些组件,并使用连线连接它们。

例如,我们可以使用“转向模块”来表示机器人的转向系统,使用“速度模块”来表示机器人的速度控制系统。

接下来,我们需要定义机器人的运动路径。

在Simulink中,我们可以使用“路径生成器”模块来定义路径。

通过调整路径生成器的参数,我们可以创建各种形状的路径,例如直线、曲线等。

然后,我们需要设计一个控制器,将路径信息转换为机器人的运动指令。

在Simulink中,我们可以使用“控制器模块”来实现这一功能。

该模块可以根据路径信息和机器人的当前位置,计算出机器人应该采取的行动,例如转向角度和速度。

我们需要将控制指令发送给机器人的执行器,以实现机器人的移动。

在Simulink中,我们可以使用“执行器模块”来模拟执行器的行为。

该模块可以将控制指令转换为实际的电压或力矩信号,驱动机器人的驱动轮进行运动。

通过上述步骤,我们就建立了一个完整的机器人控制系统模型。

我们可以在Simulink中进行仿真,观察机器人在不同路径和控制策略下的运动行为。

通过调整模型中各个组件的参数,我们可以进行系统性能的优化和改进。

Simulink是一个强大的工具,可以帮助我们建立和模拟各种系统的动态行为。

通过Simulink,我们可以更好地理解和分析系统的行为,并进行系统设计和优化。

在实际工程中,Simulink的应用广泛,并在控制系统、信号处理等领域发挥着重要作用。

simulink例子

simulink例子

simulink例子Simulink是MATLAB的一个附加组件,主要用于对动态系统进行模拟和仿真。

以下是一个简单的Simulink示例,描述了一个简单的控制系统:假设我们有一个火车过桥的问题,其中有两根铁轨,一根用于火车顺时针行走,另一根用于火车逆时针行走。

在铁轨的某一点上有一座桥,但是桥的宽度不足以容纳两根铁轨。

因此,当火车通过这座桥时,我们需要控制哪一辆火车可以在特定的时间内通过桥。

为了解决这个问题,我们在桥的两端各放置了一个信号灯。

如果西边的信号灯是绿色的,那么允许一辆从西边驶来的火车进入桥上;如果信号灯是红色的,那么该方向驶来的火车必须等待。

东边的信号灯以同样的方式控制东边驶来的火车。

在Simulink中,我们可以使用模块来表示火车、信号灯和控制器等元素。

例如,我们可以使用一个“Source”模块来表示火车的行驶,使用“Logic”模块来表示信号灯的状态,使用“Sink”模块来表示火车的输出等。

具体来说,我们可以按照以下步骤来建立这个控制系统的Simulink模型:1. 打开Simulink,并创建一个新的模型。

2. 在模型中添加一个“Sine Wave”模块作为火车的源,设置其频率和幅度等参数。

3. 添加一个“Logic Switch”模块作为信号灯的状态转换器,设置其输入和输出等参数。

4. 添加一个“Scope”模块作为输出显示,设置其采样时间和显示范围等参数。

5. 使用线连接各个模块的输入和输出端口,形成完整的控制系统模型。

6. 设置模型的仿真时间、步长等参数,并运行仿真。

7. 查看仿真结果,包括信号灯的状态和火车的输出等。

以上是一个简单的Simulink示例,用于描述一个控制系统的模拟和仿真。

Simulink具有丰富的模块库和强大的仿真功能,可以用于研究和设计各种动态系统。

simulink仿真pid案例

simulink仿真pid案例

simulink仿真pid案例摘要:I.引言- 介绍Simulink软件和PID控制器II.PID控制器原理- PID控制器的基本原理和组成部分- PID控制器在工程中的应用III.Simulink仿真PID案例- 建立PID控制器模型- 设定参数并进行仿真- 分析仿真结果IV.结论- 总结Simulink仿真PID案例的重要性和应用价值正文:I.引言Simulink是一款由MathWorks公司开发的用于模拟和仿真的软件,它可以用于各种领域,如控制系统、信号处理、通信等。

PID控制器是控制系统中常用的一种控制器,它具有结构简单、可靠性高等特点,被广泛应用于工业控制中。

本文将通过一个具体的Simulink仿真PID案例,介绍如何使用Simulink进行PID控制器的仿真。

II.PID控制器原理PID控制器是一种比例-积分-微分(Proportional-Integral-Derivative)控制器,它通过计算控制误差的比例、积分和微分值,得到控制器的输出。

PID控制器由比例单元、积分单元和微分单元三部分组成,其中比例单元用于放大控制误差,积分单元用于消除系统的稳态误差,微分单元用于预测控制误差的变化趋势。

PID控制器在工程中有着广泛的应用,如温度控制、流量控制、位置控制等。

通过调整PID控制器的参数,可以实现对系统的稳定性和响应速度的调节。

III.Simulink仿真PID案例为了演示如何使用Simulink进行PID控制器的仿真,我们建立一个简单的PID控制器模型。

首先,打开Simulink软件,从工具栏中选择“新建模型”,创建一个新的模型。

接下来,从Simulink库中添加以下模块:一个输入模块(用于接收控制信号)、一个比例单元模块、一个积分单元模块和一个微分单元模块。

然后,将这四个模块按照PID控制器的结构连接起来,形成一个完整的PID控制器模型。

在建立好PID控制器模型后,我们需要设定一些参数,如比例系数、积分时间和微分时间等。

simulink实例

simulink实例

simulink实例Simulink是MATLAB软件中的一个重要模块,用于进行系统级建模、仿真和分析。

它提供了一个图形化的环境,使得用户可以轻松地设计和调试各种控制系统、信号处理系统和通信系统等。

Simulink的强大功能使得它成为了工程师和科研人员进行系统开发和研究的首选工具之一。

Simulink的核心是图模型,用户可以在图模型中添加各种模块来构建系统。

这些模块代表了不同的功能和行为,例如传感器、执行器、控制器等。

用户只需将这些模块连接起来,并设置其参数,即可完成系统的建模过程。

与传统的编程方法相比,Simulink的图形化界面使得系统建模更加直观和易于理解。

Simulink中的模块库包含了各种功能模块,用户可以根据需要选择合适的模块进行系统设计。

例如,在控制系统设计中,可以使用PID控制器模块来实现闭环控制;在信号处理系统中,可以使用滤波器模块来进行信号滤波。

这些模块已经经过验证和优化,用户只需选择合适的模块并进行参数设置,就能够快速构建系统。

Simulink还提供了丰富的仿真功能,用户可以通过仿真来验证系统的性能和功能。

在仿真过程中,用户可以输入不同的信号和参数,观察系统的输出结果,并对系统进行调整和优化。

仿真结果可以以图形、数据等形式展示,帮助用户全面了解系统的行为和性能。

除了建模和仿真,Simulink还支持代码生成和硬件连接。

用户可以通过Simulink将系统设计转化为可执行的代码,并将其部署到硬件平台上。

这样,用户不仅可以在仿真环境中验证系统的功能,还可以在实际硬件上进行测试和应用。

Simulink不仅适用于各种工程领域,也可以应用于教育和研究领域。

在教育方面,Simulink可以帮助学生更好地理解和应用控制系统、信号处理系统等知识;在研究方面,Simulink可以提供一个高效且灵活的开发平台,帮助研究人员进行系统建模和算法开发。

Simulink是一个功能强大且易于使用的系统级建模和仿真工具。

simulink仿真简单实例

simulink仿真简单实例

simulink仿真简单实例
一、模拟环境
1、MATLAB/Simulink 设计环境:
在MATLAB中开发Simulink模型,仿真模拟系统,开发系统塑造都可以在这个环境下进行。

2、LabVIEW 设计环境:
LabVIEW允许你以基于可视化技术的开发环境(VI)来创建测试,模拟,监控系统,以及自动化系统的可视化界面。

二、仿真实例
1、基于MATLAB/Simulink的仿真实例:
(1)传统的PID控制器
这是一个利用PID控制器控制速度的例子。

首先,建立一个简单的Simulink模型,包括PID控制器、电机和反馈器件。

之后,你可以调整PID参数,以提高系统的控制能力。

(2)智能控制
这是一个基于智能控制算法的实例。

通过使用神经网络,试图根据输入自动调整PID参数,使系统具有更强的控制能力。

2、基于LabVIEW的仿真实例:
(1)叉车仿真
这是一个使用LabVIEW来模拟电动叉车运行过程的实例。

你可以模拟叉车的启动过程,叉车行驶过程,并开发出任意的叉车控制算法。

(2)汽车仿真
这是一个使用LabVIEW进行汽车模拟的实例。

你可以模拟汽车的动力性能,并开发出任意类型的汽车控制算法,如路径规划算法,自动驾驶算法等。

lms simulink 实例

lms simulink 实例

lms simulink 实例LMS(Least Mean Squares)算法是一种自适应滤波算法,它能够根据输入信号的统计特性对信号进行滤波和预测。

在Simulink中,我们可以使用LMS算法模块来实现对信号的自适应滤波。

LMS算法的基本原理是通过对滤波器的权值进行调整来使预测信号与期望信号之间的误差最小化。

LMS算法的核心思想是通过不断调整滤波器的权值来逼近信号的预测值。

在每一个时刻,通过比较预测信号与期望信号之间的误差来计算出滤波器的权值调整量,并更新滤波器的权值。

通过不断迭代,可以达到对信号的自适应滤波效果。

在Simulink中,LMS算法模块可以通过直接调用已经封装好的模块来进行实现。

在使用LMS算法模块之前,首先需要确定LMS算法的参数,包括滤波器的长度、步长以及迭代次数等。

在模块中,滤波器的权值会根据输入信号和期望信号的误差进行实时调整。

为了更好地理解LMS算法的实现,我们可以通过一个简单的实例来说明。

假设我们要对一个包含噪声的信号进行滤波处理,以提取出信号的有效信息。

我们可以使用LMS算法模块来实现自适应滤波。

首先,在Simulink中搭建一个LMS算法模块,并设置滤波器的长度以及步长等参数。

然后,将输入信号和期望信号分别连接到LMS算法模块的输入端口。

在模块中,LMS算法会根据输入信号和期望信号之间的误差来自适应地调整滤波器的权值。

接着,我们可以生成一个包含噪声的信号作为输入信号,并生成一个干净的信号作为期望信号。

将这两个信号连接到LMS算法模块,开始进行滤波处理。

在模块的输出端口可以获取到滤波后的信号。

最后,我们可以通过比较滤波后的信号与期望信号之间的差异来评估LMS算法的滤波效果。

如果滤波效果不理想,可以根据实际需求调整LMS算法的参数,例如增加滤波器的长度或者调整步长等。

通过这个简单的实例,我们可以看到LMS算法在Simulink中的实现过程。

通过调整LMS算法的参数,我们可以根据实际应用需求来进行信号的自适应滤波和预测。

simulink实例

simulink实例

simulink实例Simulink是一种广泛应用于工程领域的仿真软件,它可以用于建模、仿真和分析各种动态系统。

本文将以Simulink实例为背景,介绍Simulink的基本原理和应用。

我们来了解一下Simulink的基本概念。

Simulink是MATLAB的一个扩展工具箱,它提供了一个图形化界面,使用户可以通过拖拽和连接不同的模块来构建系统模型。

这个模型可以包含各种元件,如输入、输出、传感器、执行器、控制器等,以及它们之间的连接关系。

Simulink还提供了丰富的库函数,用户可以根据需要选择合适的模块进行建模。

Simulink的工作原理是基于连续时间和离散时间的仿真。

用户可以选择不同的仿真器来模拟系统的动态行为。

在连续时间仿真中,系统的输入和输出是连续的信号,可以使用微分方程描述系统的行为。

而在离散时间仿真中,系统的输入和输出是离散的信号,在不同的时间步长上进行更新。

Simulink提供了多种仿真器,包括固定步长和变步长的仿真器,以及混合仿真器,可以根据系统的特性选择合适的仿真方法。

接下来,我们将通过一个简单的示例来介绍Simulink的应用。

假设我们要建立一个飞机的自动驾驶系统,其中包括高度控制、速度控制和航向控制三个子系统。

首先,我们需要定义输入信号,如目标高度、目标速度和目标航向。

然后,我们可以使用PID控制器来计算控制信号,根据当前状态和目标状态进行调整。

最后,将控制信号传递给执行器,实现对飞机的控制。

在Simulink中,我们可以使用不同的模块来实现这些功能。

例如,使用输入输出模块来定义输入信号和输出信号,使用PID控制器模块来计算控制信号,使用执行器模块来实现对飞机的控制。

通过适当的连接和参数设置,我们可以构建一个完整的飞机自动驾驶系统模型。

一旦模型建立完成,我们就可以进行仿真实验了。

在仿真之前,我们需要设置仿真参数,如仿真时间、步长等。

然后,点击仿真按钮,Simulink会按照设定的参数开始仿真,模拟飞机自动驾驶系统的行为。

matlab中Simulink实例

matlab中Simulink实例

先打开Simulink的界面,在Source模块中选信号源,然后在连续模块中选择各种传输算子,再在Sinks中选择显示装置即可组成一个基本的仿真图了。

保存设置参数,运行打开示波器即可看到结果
Math模块打开的样子
Sinks模块打开的样子
简单的原理图
打开示波器,在设置选项下的Number of axes下可以设置输入的信号数
传递参数设置的界面
仿真参数设置的界面
运行结果示波器的截图,示波器的图像显示如果位置不合适,可以单击右键用autoscale调整,示波器的图像可以直观的看出电压参量的变化趋势,而Display显示的则是它的数值
没事多组合一些图形练习一下,调用不同的模块,可以加快对Simulink模块的熟悉,有助于早日掌握Simulink,同时多看一下help文件也是挺有好处的,有不懂的可以在Matlab中文论坛中问一下,应该可以得到满意解答的。

lms simulink 实例

lms simulink 实例

lms simulink 实例LMS Simulink是一种功能强大的工具,用于进行系统建模和仿真。

在本文中,我们将通过一个实例来展示Simulink的应用。

请注意,本文将以人类的视角进行写作,以增强阅读体验。

标题:使用LMS Simulink进行电机控制系统建模与仿真简介:电机控制是现代工业中常见的应用之一,它在许多领域中发挥着重要作用。

为了实现电机的精确控制,需要进行系统建模和仿真。

本文将介绍如何使用LMS Simulink来实现电机控制系统的建模和仿真。

1. 建立电机模型我们需要建立电机的数学模型。

在Simulink中,可以使用不同的模块来表示电机的各个组件,如电感、电阻、转子等。

通过将这些模块连接在一起,可以构建出完整的电机模型。

2. 设计控制算法接下来,我们需要设计控制算法,以实现对电机的精确控制。

在Simulink中,可以使用不同的控制模块来实现PID控制、模糊控制等算法。

通过将这些控制模块与电机模型连接在一起,可以实现电机的闭环控制。

3. 仿真与分析完成模型的建立和控制算法的设计后,我们可以进行仿真和分析。

在Simulink中,可以设置仿真参数,如仿真时间、输入信号等。

通过运行仿真,可以获取电机系统在不同条件下的响应,并进行性能评估和优化。

4. 结果与讨论根据仿真结果,我们可以对电机控制系统的性能进行评估和分析。

通过调整控制算法的参数,可以优化系统的响应速度、稳定性等指标。

同时,还可以通过仿真结果来验证模型的准确性和可靠性。

结论:本文介绍了使用LMS Simulink进行电机控制系统建模和仿真的基本步骤。

通过建立电机模型、设计控制算法、进行仿真和分析,可以实现对电机的精确控制。

Simulink提供了丰富的模块和功能,使得系统建模和仿真变得更加简单和高效。

希望本文能够对读者理解和应用Simulink具有一定的帮助。

以上是关于使用LMS Simulink进行电机控制系统建模与仿真的文章创作。

Simulink汽车仿真实例

Simulink汽车仿真实例
案例结论:通过仿真验证了汽车ABS防抱死刹车系统的有效性,为实际应用提供了理论支持
案例背景:介绍案例的背景信息,如汽车型号、仿真目的等 模型建立:详细描述如何使用Simulink建立汽车故障诊断与预测模型 仿真结果:展示仿真结果,并分析其与实际故障的符合程度 结论:总结案例的优点与不足,提出改进建议
汇报人:XX
Simulink汽车仿真广泛应用于汽车行业的 研究、开发、测试和验证等领域。
目的:模拟汽 车系统的动态 行为和性能, 以便更好地理 解、预测和优
化系统设计
意义:提高设 计效率,降低 开发成本,缩 短开发周期, 减少试验次数 和风险,提高 产品质量和可
靠性
建立模型:根据 汽车系统原理, 建立数学模型
人工智能和机器学习在仿真中的应用:AI和机器学习技术将为仿真提供新的方法和思路,进一 步提高仿真的智能化水平。
深度学习算法在车辆控制 中的应用
强化学习在自动驾驶系统 中的应用
神经网络在车辆动力学模 拟中的应用
机器学习在仿真结果分析 和优化中的应用
发展前景:随着技术的不断进步,仿真 技术在汽车行业的应用将越来越广泛, 为汽车设计、研发和生产带来更多可能 性。
制算法。
添加标题
应用领域:广泛应用 于汽车、航空、工业 自动化等领域,用于 设计、优化和验证各
种控制系统。
添加标题
优势:易于使用,支 持模块化设计,可扩 展性强,能够提高控 制算法的设计效率和
仿真精度。
Simulink支持多 种第三方插件和 扩展模块,可扩 展仿真功能和模 型库
这些插件和模块 可提供额外的算 法、模型和工具, 以支持更广泛的 汽车系统仿真
建立各部件数学模 型:利用 Simulink进行建 模,考虑各部件的 动态特性和参数

simulink离散仿真简单实例

simulink离散仿真简单实例

simulink离散仿真简单实例Simulink是MATLAB的一个工具箱,它提供了一个图形化界面,用于建立和模拟动态系统。

它使用块图的形式表示系统,其中每个块代表系统中的一个组件或功能单元。

这些块可以通过线连接在一起,以表示信号的流动。

通过配置块的参数和连接,可以建立一个完整的系统模型。

在Simulink中进行离散仿真时,时间被划分为离散的步长,系统在每个步长内的行为被模拟。

离散仿真可以用于分析系统在不同时间点的行为,例如系统的稳定性、响应时间等。

接下来,我们将通过一个简单的实例来展示Simulink离散仿真的过程。

假设我们要建立一个简单的温度控制系统,系统包括一个温度传感器、一个控制器和一个加热器。

温度传感器用于测量当前环境温度,控制器根据测量值调整加热器的功率。

在Simulink中创建一个新的模型。

在模型中,我们将使用三个块来表示系统的各个组件:一个输入块用于表示环境温度的输入信号,一个控制器块用于调整加热器的功率,一个输出块用于表示系统的输出信号。

接下来,我们需要配置每个块的参数和连接它们。

输入块可以配置为生成一个随机的环境温度信号,控制器块可以配置为根据测量值输出一个控制信号,输出块可以配置为显示系统的输出信号。

通过连接输入块、控制器块和输出块,我们可以建立一个完整的系统模型。

在配置完模型后,我们可以设置仿真参数。

例如,我们可以设置仿真的时间范围、步长等参数。

然后,我们可以运行仿真并观察系统的行为。

通过仿真结果,我们可以分析系统的稳定性、响应时间等性能指标。

通过这个简单的实例,我们可以看到Simulink离散仿真的基本过程。

首先,我们建立一个系统模型,然后配置各个组件的参数和连接它们。

最后,我们设置仿真参数并运行仿真来分析系统的行为。

Simulink离散仿真可以应用于各种实际问题的建模和分析。

例如,它可以用于分析控制系统的性能、优化电路设计、评估通信系统的可靠性等。

通过Simulink离散仿真,我们可以更好地理解和改善系统的行为。

【2018最新】simulink范例-实用word文档 (22页)

【2018最新】simulink范例-实用word文档 (22页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==simulink范例篇一:matlab-SIMULINK仿真实例二并联杆数控螺旋面钻头尖刃磨机的机构仿真一、仿真原理图1二并联杆数控螺旋面钻头尖刃磨机床示意图图2 二并联杆数控螺旋面钻头尖刃磨机床刃磨原理图重要假设条件:1、二并联杆数控螺旋面钻头尖刃磨机床是通过两组并联杆(2,a和3,b)保证动平台4只在空间中做水平运动,而没有翻转运动。

每一组并联杆是由空间相互平行的4根杆件组成,由于组内各杆件受力相同,所以将其简化成平面机构如图2。

构件a,b是保证动平台4只做水平运动的辅助平行杆,所以可以假设将机构中杆件a,b省略,而动平台4只做水平移动,没有翻转运动,也就是4相对于地面的夹角θ4恒等于0。

2、直线电机的次子有两个(1和5)但是在加工过程中并不是两者同时运动,所以假设5与导轨固联。

3、假设机床在工作过程中动平台4只受到树直向上的恒力作用,且作用在其中心位置。

基于以上假设机床平面结构示意图如图3。

图3二并联杆数控螺旋面钻头尖刃磨机床简化机构平面结构示意图二、建立仿真方程C2=cos(θ2) S2=sin(θ2) C3=cos(θ3) 一)力方程(分别对各个杆件进行受力分析)对动平台4:受力分析如图4S3=sin(θ3)对并联杆2:受力分析如图5图4动平台4的受力分析图5并联杆2的受力分析对直线电机滑块1:受力分析如图6图6直线电机滑块1的受力分析对并联杆3:受力分析如图7图7并联杆3的受力分析二)闭环矢量运动方程(矢量图如图8)图8 闭环矢量图矢量方程为:R1+R2=R3+R4将上述矢量方程分解为x和y方向,并分别对方程两边对时间t求两次导数得:r1_dot_dot+r2*α2*S2+r2*w2^2*C2=r3*α3*S3+r3*w3^2*C3 (12)r2*α2*C2-r2*w2^2*S2=r3*α3*C3-r3*w3^2*S3(13)三)质心加速度的矢量方程矢量关系:Ac3=Rc3_dot_dotAc4=R3_dot_dot+ Rc4_dot_dotAc2=R3_dot_dot+ R4_dot_dot+ Rc2_dot_dot (_dot_dot表示对时间求两次导数)将上述三个矢量方程分别分解为x和y 方向,则它们等效为以下六个方程;Ac3x=-rc3*w3^2*C3-rc3*α3*S3 (14) Ac3y=-rc3*w3^2*S3+rc3*α3*C3 (15)Ac4x=-r3*w3^2*C3-r3*α3*S3 (16) Ac4y=-r3*w3^2*S3+r3*α3*C3 (17)Ac2x=-r3*w3^2*C3-r3*α3*S3-rc2*w2^2*C2-rc2*α2*S2(18) Ac2y=-r3*w3^2*S3+r3*α3*C3-rc2*w2^2*S2+rc2*α2*C2 (19) 力未知量为:F12x,F12y,F24x,F24y,F43x,F43y,F13x,F13y,Fy,Fm 引入的加速度有:α2,α3,r1_dot_dot,Ac3x,Ac3y,Ac4x,Ac4y,Ac2x,Ac2y三、系统方程的组装将所有19个方程组装成矩阵形式01000?1?10100?0?rc2?S2rc2?C2?rc2?S2?rc2?C200?01010?0?000101?0010?1?0?100000?10000?0?000010??000001?000r3?C3r3?S3?0?000000?00000?0?000000?00000?0?000000??000000?00000?0??00000?0 000000000000000000000000000100101000010000000000000000?I201X00000r2?S2r2?C20000000000?I3?r3?S3?r3?C3r3?S3r3?C3rc3?S3rc3?C3r3?S3r3?C3 000000?m1000010000000m201X0000000001000000??m201X0?00000??000?m40?0000?m4??00000?00000??00000?0m3000??00m300??00000?00000??00000?00000???10000?01000??00?100??00010??0000?1??00000rc2?S201X0rc2?C201X0000000000000 0000?F12x??0?????0?F12y????F24x???0????。

matlabsimulink例题

matlabsimulink例题

matlabsimulink例题
当涉及到MATLAB Simulink的例题时,通常会涉及到控制系统、信号处理、通信系统等方面的建模和仿真。

下面我将以一个简单的
控制系统示例为例来说明。

假设我们要设计一个简单的PID控制器来控制一个直流电机的
转速。

首先,我们需要建立直流电机的数学模型,包括电机的转动
惯量、电磁转矩等参数。

然后,我们可以在Simulink中建立一个模型,包括输入端(期望转速)、控制器、电机模型和反馈回路。


们可以使用PID控制器模块来实现控制器部分,并将其参数进行调
整以达到期望的性能指标。

在Simulink中,我们可以使用Scope模块来实时监测电机的转
速响应,也可以使用Step模块来输入期望转速信号。

通过仿真我们
可以观察到实际转速与期望转速的差异,并根据需要对PID控制器
参数进行调整,直到达到满意的控制效果。

此外,Simulink还可以用于建模和仿真其他类型的系统,比如
通信系统、信号处理系统等。

例如,我们可以建立一个简单的调制
解调模型来演示数字通信系统的工作原理,或者建立一个滤波器模
型来演示信号处理系统的频率响应。

总之,MATLAB Simulink提供了一个强大的工具来进行系统建模和仿真,可以帮助工程师和研究人员快速有效地验证他们的设计和算法。

希望这个简单的例子可以帮助你更好地理解MATLAB Simulink的应用。

simulink仿真pid案例

simulink仿真pid案例

simulink仿真pid案例(实用版)目录一、Simulink 简介二、PID 控制器原理三、Simulink 中 PID 控制器的搭建四、Simulink 中 PID 控制器的仿真步骤五、总结正文一、Simulink 简介Simulink 是 MATLAB 中的一个仿真环境,可以用来模拟和分析动态系统。

通过 Simulink,用户可以构建、模拟和测试控制系统,以及进行模型验证和优化。

在 Simulink 中,用户可以通过搭建图形化的模块来描述系统,然后进行仿真和分析。

二、PID 控制器原理PID 控制器是一种常用的闭环控制器,用于控制系统的稳定性和精度。

PID 控制器包括三个部分:比例(P)、积分(I)和微分(D)控制器。

比例控制器根据系统误差的大小来调整控制量;积分控制器根据系统误差的积分来调整控制量,以消除稳态误差;微分控制器根据系统误差的变化速率来调整控制量,以改善系统的动态性能。

三、Simulink 中 PID 控制器的搭建在 Simulink 中,用户可以通过搭建模块来实现 PID 控制器。

首先,需要创建一个 PID 控制器模块,这可以通过 Simulink 中的“Continuous”或“Discrete”子库中的“PID”模块来完成。

然后,需要将 PID 控制器模块与其他模块(如输入、输出和被控对象模块)连接起来,以形成一个完整的控制系统模型。

四、Simulink 中 PID 控制器的仿真步骤在 Simulink 中,进行 PID 控制器仿真的步骤如下:1.打开 Simulink,创建一个新的模型。

2.在 Simulink 库中选择“Continuous”或“Discrete”子库,然后将“PID”模块拖拽到仿真界面中。

3.创建被控对象模块,例如使用“Transfer Function”模块来描述一个二阶线性时不变系统。

4.将被控对象模块与 PID 控制器模块相连接,同时设置好各个模块的参数。

二分法 simulink 案例

二分法 simulink 案例

二分法 simulink 案例
在Simulink中,二分法可以用于解决一些非线性方程的求解问题。

下面是一个简单的例子:
假设我们要解的方程是 f(x) = x^3 - x - 1 = 0,我们可以使用二分法来寻找这个方程的根。

步骤如下:
1. 首先,在Simulink的库浏览器中找到并打开“Continuous”库,然后拖动“Gain”模块到模型中。

2. 在“Gain”模块的参数设置中,将“Gain”设置为-1,表示我们要对输入信号进行负反馈。

3. 接下来,我们需要添加一个比较模块来比较f(x)和0。

在库浏览器中找到并打开“Logic and Bit Operations”库,然后拖动“Relay”模块到模型中。

4. 右键点击“Relay”模块,选择“Mask Subsystem”,然后在新打开的窗口中添加一个“Gain”模块和一个“Scope”模块。

5. 将“Gain”模块的“Gain”设置为1,表示我们要对输入信号进行正反馈。

将“Scope”模块的“Sample time”设置为-1,表示该模块会一直输出信号。

6. 连接好模块后,运行模型。

观察Scope模块的输出,可以看到随着时间的推移,输出信号逐渐接近于0,最终会稳定在0处。

这个例子中,我们使用了二分法来逼近方程的根。

具体来说,我们选择两个初始点a和b,然后反复将区间[a, b]分成两半,取中间点c,如果f(c)与0的符号相同,则说明根在[a, c]之间,否则根在[c, b]之间。

不断重复这个过程,最终可以找到方程的根。

Simulink应用示例(讲稿采用)

Simulink应用示例(讲稿采用)

2012.9.23
Advanced选项卡一般 很少用得到。
2012.9.23
变压器参数设置说明:
变压器的电阻为
变压器的电抗为
2 PU N 135 1102 RT s 2 103 4.08 SN 20000 2 U s % U N 10.5 1102 XT 63.53 100 S N 100 20
2012.9.23
Simulink解决方案
整体方案
2012.9.23
这个滤波模块非 有不可!
2012.9.23
锁死上升段!
下降过程中,即使实际电流已经比设定得下 限值低了,out1端也会输出0,以保证此时 QF的控制端为0,QF仍然处于分断状态。
2012.9.23
2012.9.23
2012.9.23
2012.9.23
反应时差
从逻辑上正式判 明短路已经发生
短路发生时刻
2012.9.23
RMS信号滤波后
比较点下限 460A
比较点上限 520A
RMS信号滤波前
从逻辑上正式判明 短路已经发生
过下限比较点时,Breaker 的com控制端输入信号保持 了正确的输入值0.
2012.9.23
稳态潮流计算结果
2012.9.23
Simulink解决方案
2012.9.23
2012.9.23
2012.9.23
RL r1 L 0.17 50 8.5 X L x1 L 0.4 50 20 XL 20 LL 0.064 H 2 f 314
2012.9.23

1 11.43
的情况
2012.9.23
2012.9.23

Simulink应用举例

Simulink应用举例

Simulink应用举例
全波整流电路如下所示:
首先分析电路的工作过程,输入电压u1为120V/50Hz的交流电,经过变压器T1降压后流入由D1、D4,D2、D3组成的整流桥中,将交流电整流成为直流电。

与负载串联的电感,与负载并联的电容构成LC滤波电路,对整流后的信号进行滤波。

最后在负载R上输出。

根据电路图添加仿真模型,并进行参数设置。

输入为交流电源,在其属性中设置其幅值
为120,频率为50Hz;设置变压器模块
T1中的变压比10:1;
二极管属性设置中需要依据实际器件情况
设置其导通阻值和阻断阻值,特别注意4
个二极管的参数需要设定一致。

a,k分别代表二极管的阳极
和阴极。

m表示二极管的测量口,把m与scope示波器相连接就可以观测二极管电压、电流等工作状态。

观测波形
示波器上分别显示了负载和二极管的电压波形。

需要指出,simulink常用于理论或算法的验证或是系统可行性的分析等方面。

由于模型是依据数学方程建立的,而数学方程的成立是有一定前
置条件的,因此模型并不完全准确。

而且软件无法对设备之间的电磁干扰以及电源里的干扰等因素进行仿真,故仿真结果与实际有一定偏差。

三、小结
THANK YOU。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
33

Simulink仿真实例
2
34

Simulink仿真实例
2
35

2
2

Simulink仿真实例
2
3

Simulink仿真实例
例题2,力-质量系统,要拉动一个箱子 (拉力f=1N),箱子质量为M(1kg),箱子与地 面存在摩擦力[(b=0.4N(/m/s)],其大小与车 子的速度成正比。
2
4

Simulink仿真实例
其运动方程式为
f bx Mx
拉力作用时间为2s,建构的模型为
南京航空航天大学
基于MATLAB/SIMULINK的系 统建模与仿真
任课教师:刘燕斌 二○一零年三月
1
Simulink仿真实例
例题1,使用Simulink创建系统,求解非 线性微分方程 (3x 2x2 )x 4x 4x.其初始 值为 x(0) 0, x(0) 2,绘制函数的波形.
创建仿真系统为
自由下落的物体满足牛顿运动定 律:F=ma.假设绳子的弹性系数为k, 它的拉伸影响系统的动力响应,如果 定义人站在桥上时绳索下端的初始位 置为0位置,x为拉伸位置,那么用b(x) 表示绳子的张力。
2
13

Simulink仿真实例
kx, x 0
b(x)
0, x 0
设m为物体的质量,g是重力加速度, a1,a2是空气阻尼系数,系统方程可以 表示为
2
26

Simulink仿真实例
2
27

Simulink仿真实例
例题8,建立一个积分器,输入为1,初 始条件为-50,如果输出超过20,则重置为100。
2
28

Simulink仿真实例
2
29

Simulink仿真实例
2
30

Simulink仿真实例
2
31

Simulink仿真实例
例题9,重置弹力球。一个弹力球以 15m/s的速度从距水平设置10m的高度抛向空 中,球的弹力为0.8,当球到达球面时,重新 设置其初始速度为0.8x,x是重置时刻球的速 度,即积分器的状态。
mx mg b( x) a1 x a2 xx
2
14

Simulink仿真实例
在MATLAB中建立这个方程的Simulink模 型,这里需要使用两个积分器。
2
15

Simulink仿真实例
一旦x和它的导数已经搭好,就可以使用 一个增益模块表示空气阻力比例系数,使用 Function模块表示空气阻力中的非线性部分。
2
19

Simulink仿真实例
仿真曲线为
2
20

Simulink仿真实例
假设未伸长时绳索的端部距地面为50m, 为了得到更真实的曲线,将50减去输出位置
2
21

Simulink仿真实例
仿真曲线为
可以看到,眺跃者已经撞到了地上。
2
22

Simulink仿真实例
例题6,通过例题5的仿真,可以看 到,跳跃者的身体碰到了地面上!现在 想选择一个安全的绳索,编写一个脚本 文件尝试不同的弹性常数,以保证90千 克重的身体安全的最小弹性常数值。
球的抛物线运动满足下列公式
v v0 gt, v0 15m / s
h v 0.5gt 2 , h0 10m
2
32

Simulink仿真实例
其中, v 为球的速度, v0为球的初始速
度, g 为重力加速度, h 为球从起始位置开 始的高度, h0为球的初始高度,即球距地面 的高度,因此球距地面的实际高度为h h0 。
2
10

Simulink仿真实例
单摆系统的运动方程式为
mg sin bL mL
选取b=0.03,g=9.8,L=0.8,m=0.3,所构 建的模型
2
11

Simulink仿真实例
2
12

Simulink仿真实例
例题5:蹦极跳系统:当你系着弹力 绳从桥上跳下来时,会发生什么?这里, 以蹦极跳作为一个连续系统的例子。
2
7
基Simulink仿真Fra bibliotek例运动方程式为
Mx kx bx 0
构建的模型为
2
8

Simulink仿真实例
因有阻尼器存在,故箱子最终会停止运 动。
2
9

Simulink仿真实例
例题4,下图所示简单的单摆系统,假 设杆的长度为L,且质量不计,钢球的质量为 m.单摆的运动可以以线性的微分方程式来 近似,但事实上系统的行为是非线性的,而 且存在粘滞阻尼,假设粘滞阻尼系数为 bkg/ms-1.
2
16

Simulink仿真实例
b(x)是通过门槛为0的x条件式确定的, 可以使用一个Switch模块来实现判断条件。
2
17

Simulink仿真实例
最终系统Simulink模型方块图为
2
18

Simulink仿真实例
仿真过程中,设绳索长度-30m,起始速 度为0;物体质量为90kg,g为9.8m/s2,弹性 系数k为20,a1和a2均为1.
首先在例1模型中添加一个output模
块,并将模型文件保存为bungee_cmd,
然后建立一个脚本文件试验不同的k值,
当地面的距离为正时停止仿真。
2
23

Simulink仿真实例
2
24

Simulink仿真实例
2
25

Simulink仿真实例
例题7,模型和模块的属性中包含回调函 数。下图是蹦极跳的模型方块图,当运行这 个模型时,并不需要设置参数,这是因为蹦 极模型文件中先执行回调函数。
2
5

Simulink仿真实例
因有摩擦力存在,箱子最终将会停止前 进。
2
6

Simulink仿真实例
例题3,力-弹簧-阻尼系统,假设箱子与地面无 摩擦存在,箱子质量为M(1kg),箱子与墙壁间有线 性弹簧(k=1N/m)与阻尼器(b=0.3N/ms-1)。阻尼器主 要用来吸收系统的能量,吸收系统的能量转变成热 能而消耗掉。现将箱子拉离静止状态2cm后放开, 试求箱子的运动轨迹。
相关文档
最新文档