弧弦圆心角练习题
圆心角、弧、弦的关系-北京习题集-教师版
圆心角、弧、弦的关系(北京习题集)(教师版)一.选择题(共5小题)1.(2017秋•北京期末)如图, 圆心角25AOB ∠=︒,将AB 旋转n ︒得到CD ,则COD ∠等于( )A .25︒B .25n ︒+︒C .50︒D .50n ︒+︒2.(2017秋•海淀区校级期中)如图, 在55⨯正方形网格中, 一条圆弧经过A 、B 、C 三点, 那么AC 所对的圆心角的大小是( )A .60︒B .75︒C .80︒D .90︒3.(2016秋•大兴区期末)如图,A ,B ,C 是O 上三个点,2AOB BOC ∠=∠,则下列说法中正确的是( )A .OBA OCA ∠=∠B .四边形OABC 内接于O C .2AB BC =D .90OBA BOC ∠+∠=︒4.(2016•海淀区校级模拟)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15︒的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( )A .56-箱B .67-箱C .78-箱D .89-箱5.(2015•通州区二模)如图,O 中,如果2AB AC =,那么( )A .AB AC =B .2AB AC =C .2AB AC <D .2AB AC >二.填空题(共6小题)6.(2019秋•西城区校级期中)已知弦AB 的长等于O 的半径,弦AB 所对的圆周角是 度.7.(2017秋•西城区期末)如图,O 的半径等于4,如果弦AB 所对的圆心角等于120︒,那么圆心O 到弦AB 的距离等于 .8.(2008秋•怀柔区期末)如图,AC 是O 的直径,AB AC =,AB 交O 于E ,BC 交O 于D ,44A ∠=︒,则DE 的度数是 度.9.(2009秋•海淀区期中)一条弦AB 将O 分成两条弧,其中一条弧是另一条弧的4倍,则弦AB 所对的圆心角的度数是 度.10.(2007•海淀区校级自主招生)如图,AB 是O 的直径,BC ,CD ,DA 是O 的弦, 且BC CD DA ==,则BCD ∠= .11.(2016秋•西城区期中)如图,CD 是O 的直径,点A 是半圆上的三等分点,B 是弧AD 的中点,P 点为直线CD 上的一个动点,当4CD =时,AP BP +的最小值为 .三.解答题(共4小题)12.(2019秋•海淀区期末)如图,在O 中,AC CB =,CD OA ⊥于点D ,CE OB ⊥于点E . (1)求证:CD CE =;(2)若120AOB ∠=︒,2OA =,求四边形DOEC 的面积.13.(2019秋•西城区校级期中)ABC ∆的三个顶点在O 上,AD BC ⊥,D 为垂足,E 是BC 的中点,求证:12∠=∠(提示:可以延长AO 交O 于F ,连接)BF .14.(2019秋•西城区校级期中)如图,以ABCD 的顶点A 为圆心,AB 为半径作A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于G ,判断弧EF 和弧FG 是否相等,并说明理由.15.(2018秋•海淀区校级月考)问题呈现: 阿基米德折弦定理: 如图 1 ,AB 和BC 是O 的两条弦 (即 折线ABC 是圆的一条折弦) ,BC AB >,M 是ABC 的中点, 则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点, 即CD AB BD =+. 下面是运用“截长法”证明CD AB BD =+的部分证明过程 .证明: 如图 2 ,在CB 上截取CG AB =,连接MA ,MB ,MC 和MG .M 是ABC 的中点,MA MC ∴=⋯⋯请按照上面的证明思路, 写出该证明的剩余部分; 实践应用:(1) 如图 3 ,已知ABC ∆内接于O ,BC AB AC >>,D 是ACB 的中点, 依据阿基米德折弦定理可得图中某三条线段的等量关系为 .(2) 如图 4 ,已知等腰ABC ∆内接于O ,AB AC =,D 为AB 上一点, 连接DB ,45ACD ∠=︒,AE CD ⊥于点E ,BDC ∆的周长为422+,2BC =,请求出AC 的长 .圆心角、弧、弦的关系(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2017秋•北京期末)如图, 圆心角25AOB ∠=︒,将AB 旋转n ︒得到CD ,则COD ∠等于( )A .25︒B .25n ︒+︒C .50︒D .50n ︒+︒【分析】根据旋转的性质得到AB CD =,根据圆心角、 弧、 弦的关系定理解答 . 【解答】解:将AB 旋转n ︒得到CD ,∴AB CD =,25COD AOB ∴∠=∠=︒, 故选:A .【点评】本题考查的是旋转变换的性质、 圆心角、 弧、 弦的关系, 在同圆或等圆中, 如果两个圆心角、 两条弧、 两条弦中有一组量相等, 那么它们所对应的其余各组量都分别相等 . 2.(2017秋•海淀区校级期中)如图, 在55⨯正方形网格中, 一条圆弧经过A 、B 、C 三点, 那么AC 所对的圆心角的大小是( )A .60︒B .75︒C .80︒D .90︒【分析】根据垂径定理的推论: 弦的垂直平分线必过圆心, 分别作AB ,BC 的垂直平分线即可得到圆心, 进而解答即可 .【解答】解: 作AB 的垂直平分线, 作BC 的垂直平分线, 如图,它们都经过Q ,所以点Q 为这条圆弧所在圆的圆心 . 连接AQ ,CQ , 在APQ ∆与CQN ∆中AP QN APQ QNC PQ CN =⎧⎪∠=∠⎨⎪=⎩, ()APQ CQN SAS ∴∆≅∆,AQP CQN ∴∠=∠,PAQ CQN ∠=∠ 90AQP PAQ ∠+∠=︒, 90AQP CQN ∴∠+∠=︒, 90AQC ∴∠=︒,即AC 所对的圆心角的大小是90︒, 故选:D .【点评】本题考查了垂径定理的推论: 弦的垂直平分线必过圆心 . 这也常用来确定圆心的方法 .3.(2016秋•大兴区期末)如图,A ,B ,C 是O 上三个点,2AOB BOC ∠=∠,则下列说法中正确的是( )A .OBA OCA ∠=∠B .四边形OABC 内接于O C .2AB BC =D .90OBA BOC ∠+∠=︒【分析】过O 作OD AB ⊥于D 交O 于E ,由垂径定理得到AE BE =,于是得到AE BE BC ==,推出AE BE BC ==,根据三角形的三边关系得到2BC AB >,故C 错误;根据三角形内角和得到1(180)902OBA AOB BOC ∠=︒-∠=︒-∠,13(180)9022OCA AOC BOC ∠=︒-∠=︒-∠,推出OBA OCA ∠≠∠,故A 错误;由点A ,B ,C 在O 上,而点O 在圆心,得到四边形OABC 不内接于O ,故B 错误;根据余角的性质得到90OBA BOC ∠+∠=︒,故D 正确; 【解答】解:过O 作OD AB ⊥于D 交O 于E , 则AE BE =,AE BE ∴=,12AOE BOE AOB ∠=∠=∠,2AOB BOC ∠=∠, AOE BOE BOC ∴∠=∠=∠,∴AE BE BC ==,AE BE BC ∴==, 2BC AB ∴>,故C 错误; OA OB OC ==,1(180)902OBA AOB BOC ∴∠=︒-∠=︒-∠,13(180)9022OCA AOC BOC ∠=︒-∠=︒-∠,OBA OCA ∴∠≠∠,故A 错误;点A ,B ,C 在O 上,而点O 在圆心,∴四边形OABC 不内接于O ,故B 错误;12BOE BOC AOB ∠=∠=∠,90BOE OBA ∠+∠=︒,90OBA BOC ∴∠+∠=︒,故D 正确;故选:D .【点评】本题考查了圆心角,弧,弦的关系,垂径定理,三角形的三边关系,正确的作出辅助线是解题的关键. 4.(2016•海淀区校级模拟)如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15︒的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( )A .56-箱B .67-箱C .78-箱D .89-箱【分析】设需要x 箱马赛克片,由题意:3603412515x ⨯=,解方程即可. 【解答】解:设需要x 箱马赛克片.由题意:3603412515x ⨯=, 6.5x ∴≈.∴需要马赛克片67-箱.故选:B .【点评】本题考查圆心角、弧弦之间的关系,一元一次方程等知识,解题的关键是学会设未知数列方程解决问题,属于中考常考题型.5.(2015•通州区二模)如图,O 中,如果2AB AC =,那么( )A .AB AC =B .2AB AC =C .2AB AC <D .2AB AC >【分析】取弧AB 的中点D ,连接AD ,DB ,由已知条件可知AD BD AC ==,在ADB ∆中由三角形的三边关系可知AD BD AB +>,即2AC AB >,问题得解. 【解答】解:取弧AB 的中点D ,连接AD ,DB , 2AB AC =,AD BD AC ∴==,在ADB ∆中由三角形的三边关系可知AD BD AB +>, 2AC AB ∴>,即2AB AC <, 故选:C .【点评】本题考查了圆心角、弧、弦的关系以及三角形三边关系定理:三角形两边之和大于第三边,题目设计新颖,是一道不错的中考题. 二.填空题(共6小题)6.(2019秋•西城区校级期中)已知弦AB 的长等于O 的半径,弦AB 所对的圆周角是 30或150 度. 【分析】在圆中,由半径和弦组成的三角形是等腰三角形,又因为AB 的长等于半径,所以由弦和半径组成的三角形是等边三角形,根据等边三角形的性质,弦所对的圆心角为60︒,所以弦所对的圆周角为30︒或150︒.【解答】解:如图示,AB OA OB ==, OAB ∴∆是等边三角形, 60AOB ∴∠=︒, 30ACB ∴∠=︒, 150ADB ∴∠=︒.故弦AB 所对的圆周角是 30或150度. 故答案为:30或150.【点评】本题极易漏解,需注意圆中的一条弦对着两个圆周角,它们是互补关系.7.(2017秋•西城区期末)如图,O 的半径等于4,如果弦AB 所对的圆心角等于120︒,那么圆心O 到弦AB 的距离等于 2 .【分析】由圆心角120AOB ∠=︒,可得AOB ∆是等腰三角形,又由OC AB ⊥,再利用含30︒角的直角三角形的性质,可求得OC 的长.【解答】解:如图,圆心角120AOB ∠=︒,OA OB =,OAB ∴∆是等腰三角形, OC AB ⊥,90ACO ∴∠=︒,30A ∠=︒,122OC OA ∴==.故答案为:2【点评】此题考查了垂径定理、含30︒角的直角三角形的性质.注意根据题意作出图形是关键.8.(2008秋•怀柔区期末)如图,AC 是O 的直径,AB AC =,AB 交O 于E ,BC 交O 于D ,44A ∠=︒,则DE的度数是 44 度.【分析】通过A ∠的度数,可求出底角ABC ∠.又通过90AEC ∠=︒,求出ECB ∠.而DE 的度数是ECB ∠的两倍. 【解答】解:AB AC =,44A ∠=︒(18044)268ABC ∴∠=︒-︒÷=︒又AC 是O 的直径90AEC ∴∠=︒906822ECD ∴∠=︒-︒=︒∴DE 的度数为44︒.故填44︒.【点评】掌握等腰三角形的性质,三角形的内角和定理,直径所对的圆周角是直角,弧的度数等于它所对的圆周角度数的两倍.9.(2009秋•海淀区期中)一条弦AB 将O 分成两条弧,其中一条弧是另一条弧的4倍,则弦AB 所对的圆心角的度数是 72 度.【分析】根据题意知,弦AB 将圆周分成了5等分,而弦AB 所对的圆心角占了其中的15,由此可求出此圆心角的度数.【解答】解:由于弦AB 将O 分成了1:4两段弧, AB ∴所对的圆心角1360725AOB ∠=⨯︒=︒.【点评】此题主要考查了圆心角、弧的关系.10.(2007•海淀区校级自主招生)如图,AB 是O 的直径,BC ,CD ,DA 是O 的弦, 且BC CD DA ==,则BCD ∠= 120︒ .【分析】由已知可得, 弦BC 、CD 、DA 三等分半圆, 从而不难求得BCD ∠的度数 . 【解答】解: 连接OC 、OD ,BC CD DA ==,∴AD DC CB ==,∴弦BC 、CD 、DA 三等分半圆,∴弦BC 和CD 和DA 对的圆心角均为60︒, 1(18060)1202BCD ∴∠=︒+︒=︒. 故答案是:120︒.【点评】本题利用了弧、 弦与圆心角的关系求解, 注意半圆对的圆心角为180︒.11.(2016秋•西城区期中)如图,CD 是O 的直径,点A 是半圆上的三等分点,B 是弧AD 的中点,P 点为直线CD上的一个动点,当4CD =时,AP BP +的最小值为 22 .【分析】本题是要在CD 上找一点P ,使PA PB +的值最小,设A '是A 关于CD 的对称点,连接A B ',与CD 的交点即为点P .此时PA PB A B +='是最小值,可证△OA B '是等腰直角三角形,从而得出结果.【解答】解:作点A 关于CD 的对称点A ',连接A B ',交CD 于点P ,则PA PB +最小,连接OA ',AA '.点A 与A '关于CD 对称,点A 是半圆上的一个三等分点,60AOD AOD ∴∠'=∠=︒,PA PA =',点B 是弧AD 的中点,30BOD ∴∠=︒,90AOB AOD BOD ∴∠'=∠'+∠=︒,又2OA OA ='=,22A B ∴'=.22PA PB PA PB A B ∴+='+='=故答案为:2【点评】此题主要考查了轴对称最短线段问题以及垂径定理和勾股定理等知识,正确确定P 点的位置是解题的关键,确定点P 的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.三.解答题(共4小题)12.(2019秋•海淀区期末)如图,在O 中,AC CB =,CD OA ⊥于点D ,CE OB ⊥于点E .(1)求证:CD CE =;(2)若120AOB ∠=︒,2OA =,求四边形DOEC 的面积.【分析】(1)连接OC ,根据圆心角、弧、弦的关系定理得到AOC BOC ∠=∠,根据角平分线的性质定理证明结论;(2)根据直角三角形的性质求出OD ,根据勾股定理求出CD ,根据三角形的面积公式计算,得到答案.【解答】(1)证明:连接OC ,AC BC =,AOC BOC ∴∠=∠,又CD OA ⊥,CE OB ⊥,CD CE ∴=;(2)解:120AOB ∠=︒,60AOC BOC ∴∠=∠=︒,90CDO ∠=︒,30OCD ∴∠=︒,112OD OC ∴==, 2222213CD OC OD ∴=--OCD ∴∆的面积132OD CD =⨯⨯= 同理可得,OCE ∆的面积132OD CD =⨯⨯= ∴四边形DOEC 的面积333=【点评】本题考查的是圆心角、弧、弦的关系定理、勾股定理、直角三角形的性质,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.13.(2019秋•西城区校级期中)ABC∠=∠⊥,D为垂足,E是BC的中点,求证:12∆的三个顶点在O上,AD BC(提示:可以延长AO交O于F,连接)BF.【分析】连接OE,利用垂径定理可得OE BCOE AD,然后即可证明.⊥,可得//⊥,再利用AD BC【解答】证明:连接OE,E是BC的中点,∴弧BE=弧EC,∴⊥,OE BC⊥,AD BC∴,OE AD//∴∠=∠,OEA EADOE OA=,∴∠=∠,OAE OEA∴∠=∠.12【点评】此题主要考查学生对三角形内角和定理和圆心角、弧、弦的关系等知识点的理解和掌握,此题难度不大,关键是作好辅助线.14.(2019秋•西城区校级期中)如图,以ABCD 的顶点A 为圆心,AB 为半径作A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于G ,判断弧EF 和弧FG 是否相等,并说明理由.【分析】要证明EF FG =,则要证明DAE GAD ∠=∠,由AB AE =,得出ABE AEB ∠=∠,由平行四边形的性质得出B GAF ∠=∠,FAE AEB ∠=∠,GAF FAE ∠=∠,由圆心角、弧、弦的关系定理得出EF FG =.【解答】解:EF FG =,理由:连接AE .AB AE ∴=,B AEB ∴∠=∠,四边形ABCD 是平行四边形,//AD BC ∴,B GAF ∴∠=∠,FAE AEB ∠=∠,GAF FAE ∴∠=∠,∴EF FG =.【点评】本题考查了平行四边形性质,平行线性质,圆心角、弧、弦的关系定理等知识点的应用,关键是求出DAE GAD ∠=∠,题目比较典型,难度不大.15.(2018秋•海淀区校级月考)问题呈现: 阿基米德折弦定理: 如图 1 ,AB 和BC 是O 的两条弦 (即 折线ABC 是圆的一条折弦) ,BC AB >,M 是ABC 的中点, 则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点, 即CD AB BD =+. 下面是运用“截长法”证明CD AB BD =+的部分证明过程 .证明: 如图 2 ,在CB 上截取CG AB =,连接MA ,MB ,MC 和MG . M 是ABC 的中点,MA MC ∴=⋯⋯请按照上面的证明思路, 写出该证明的剩余部分;实践应用:(1) 如图 3 ,已知ABC ∆内接于O ,BC AB AC >>,D 是ACB 的中点, 依据阿基米德折弦定理可得图中某三条线段的等量关系为 BE CE AC =+ .(2) 如图 4 ,已知等腰ABC ∆内接于O ,AB AC =,D 为AB 上一点, 连接DB ,45ACD ∠=︒,AE CD ⊥于点E ,BDC ∆的周长为422+,2BC =,请求出AC 的长 .【分析】首先证明()MBA MGC SAS ∆≅∆,进而得出MB MG =,再利用等腰三角形的性质得出BD GD =,即可得出答案;(1) 直接根据阿基米德折弦定理得出结论;(2) 根据阿基米德折弦定理得出CE BD DE =+,进而求出CE ,最后用勾股定理即可得出结论 .【解答】证明: 如图 2 ,在CB 上截取CG AB =,连接MA ,MB ,MC 和MG , M 是ABC 的中点,MA MC ∴=.在MBA ∆和MGC ∆中,BA GC A C MA MC =⎧⎪∠=∠⎨⎪=⎩,()MBA MGC SAS ∴∆≅∆,MB MG ∴=,又MD BC ⊥,BD GD ∴=,DC GC GD AB BD ∴=+=+;实践应用(1) 如图 3 ,依据阿基米德折弦定理可得:BE CE AC =+;故答案为:BE CE AC =+;(2)AB AC =,A ∴是BAC 的中点,AE CD ⊥,根据阿基米德折弦定理得,CE BD DE =+,BCD ∆的周长为422+,422BD CD BC ∴++=+,2422BD DE CE BC CE BC ∴+++=+=+,2BC =,22CE ∴=,在Rt ACE ∆中,45ACD ∠=︒,22AE CE ∴==,4AC ∴=.【点评】此题是圆的综合题, 考查了全等三角形的判定与性质以及等腰三角形的性质,理解和应用阿基米德折弦定理是解题关键 .。
2020年人教版九年级数学上册24.1.3《弧、弦、圆心角》同步练习 学生版
别交 BC,CD 于点 E,M,下列结论:①DM=CM;② AE=AD.其中正确的结论有 (填序号).
;③⊙O 的直径为 2;④
23.如图,在⊙O 中,AB=DC,∠AOB=50°,则∠COD= .
24.如图,已知 AB、CD 是⊙O 中的两条直径,且∠AOC=50°,过点 A 作 AE∥CD 交⊙O 于点 E,则 的度数为 .
B.BE=CD
C.AC=BD
D.BE=AD
12.如图,圆心角∠AOB=25°,将 AB 旋转 n°得到 CD,则∠COD 等于( )
A.25°
B.25°+n°
C.50°
D.50°+n°
13.如图,⊙O 的半径为 1,动点 P 从点 A 处沿圆周以每秒 45°圆心角的速度逆时针匀速 运动,即第 1 秒点 P 位于如图所示的位置,第 2 秒中 P 点位于点 C 的位置,……,则第 2018 秒点 P 所在位置的坐标为( )
下列结论:①OE=OF;②AC=CD=DB;③CD∥AB;④ = ,其中正确的有( )
A.4 个
B.3 个
C.2 个
D.1 个
二.填空题
16.如图,AB,CD 是⊙O 的直径,弦 CE∥AB,弧 CE 的度数为 40°,∠AOC 的度
数 .
17.⊙O 的半径为 5,弦 AB 与弦 CD 相等,且 AB⊥CD 于 H,若 OH=3 ,则线段 BH 长 为 . 18.如图,C 为弧 AB 的中点,CN⊥OB 于 N,CD⊥OA 于 M,CD=4cm,则 CN= cm.
A.40°
B.45°
C.55°
D.80°
4.如图,BC 为半圆 O 的直径,A、D 为半圆上的两点,若 A 为半圆弧 ADC=( )
弧、弦、圆心角 练习题
24.1.3 弧、弦、圆心角练习题一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么所对的圆心角的大小是()A.60°B.75°C.80°D.90°2.如图,四边形ABCD内接于直径为6的⊙O,AB=AC,E是弦AC和直径BD的交点,ED=,则弦AC的长为()A.2B.3C.2D.23.已知点O,C在直线m的同一侧,作⊙O交m于点A,B.连结AC,BC,OA,OB,若点C在⊙O外,∠AOB=110°,则∠C的角度可能是()A.50°B.55°C.60°D.65°4.如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AC=2,BD=2,则⊙O的半径为()A.B.C.D.5.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2021秒时点P的纵坐标为()A.﹣1B.0C.1D.6.下列叙述正确的是()A.平分弦的直径必垂直于弦B.同圆或等圆中,相等的弦所对的弧也相等C.相等的圆心角所对的弧相等D.相等的弧所对的弦相等7.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连结AB,AD,若AD=1,则R的值为()A.B.C.1D.二.填空题8.如图,已知AB是⊙O的直径,AB=20,弦CD与AB相交于点E,∠AEC=30°,,则的值为.9.如图,在△ABC中,∠ACB=90°,∠B=35°,以C为圆心、CA为半径的圆交AB于点D,交BC于点E.求弧AD所对的圆心角的度数.10.如图,已知AB、CD是⊙O的直径,,∠AOE=32°,那么∠COE的度数为度.11.如图,在半径为6的⊙O中,劣弧的度数是120°,则弦AB的长是.三.解答题12.如图,⊙O的半径OA为50mm,弦AB的长50mm.(1)求∠OAB的度数;(2)求点O到AB的距离.13.如图,MB,MD是⊙O的两条弦,点A,C分别在弧MB,弧MD上,且AB=CD,点M是弧AC的中点.(1)求证:MB=MD;(2)过O作OE⊥MB于E,OE=1,⊙O的半径是2,求MD的长.14.如图,在⊙O中,=(1)若∠C=75°,求∠A的度数;(2)若AB=13,BC=10,求⊙O的半径.。
(完整版)圆心角,弧,弦,弦心距之间的关系定理知识点及练习,推荐文档
CD 的弦心距 OF=_______cm,弦 CD 的长为________cm。
7、 已知⊙O 的半径为 5cm,过⊙O 内一已知点 P 的最短的弦长为 8cm,则 OP=_______。
8‘已知 A、B、C 为⊙O 上三点,若 AB 、 BC 、 CA 度数之比为 1:2:3,则
∠AOB=_______,∠BOC=________,∠COA=________。
(I)连过弧中点的半径;(II)连等弧对的弦;(III)作等弧所对的圆心角。
例: 如图,CD为⊙O的弦, AC BD ,OA、OB交CD于F、E。
求证:OE=OF
证法一:连结 OC、OD
OC OD, C D
AC BD , COA BOD(等弧所对的圆心角相等) COF DOE OE OF
∠BOC 的度数。
3、如图 3,C 是⊙O 直径 AB 上一点,过点 C 作弦 DE,使 CD=CO,使 AD 的度数 40°,
AOB 100 , OBC 55 , OEC =
度.
2、如图 4,已知 AB 是⊙ O 的直径,C、D 是⊙ O 上的两点, D 130 ,则 BAC 的度数是
.
3、如图 5,AB 是半圆 O 的直径,E 是 BC 的中点,OE 交弦 BC 于点 D,已知 BC=8cm,DE=2cm,则
AD 的长为
A. 40 B. 50 C. 70 D. 80
8、如图 3,AB 为⊙O 的直径,C、D 是⊙O 上的两点, BAC 20 , AD CD ,则
∠DAC 的度数是( )
A. 70° D
B. 45° C
C. 35°
D. 30°
A
O
B
如图 3 二、填空题
初三数学圆心角试题
初三数学圆心角试题1.如图,AB是⊙O的直径,弦CD与AB交于点E,的度数是72°,∠BCD=68°,则∠AED的度数为.【答案】58°【解析】先根据AB是⊙O的直径,的度数是72°得出的度数,由圆心角、弧、弦的关系可求出∠ABC的度数,根据三角形内角和定理可求出∠CEB的度数,再根据对顶角相等即可得出结论.解:∵AB是⊙O的直径,的度数是72°,∴=180°﹣72°=108°,∴∠ABC==×108°=54°,∵∠BCD=68°,∴∠CEB=180°﹣∠BCD﹣∠ABC=180°﹣68°﹣54°=58°.故答案为:58°.点评:本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.2.如图,AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD= .【答案】120°【解析】由已知可得,弦BC、CD、DA三等分半圆,从而不难求得∠BCD的度数.解:连接OC、OD,∵BC=CD=DA,∴==,∴弦BC、CD、DA三等分半圆,∴弦BC和CD和DA对的圆心角均为60°,∴∠BCD=(180°+60°)=120°.故答案是:120°.点评:本题利用了弧、弦与圆心角的关系求解,注意半圆对的圆心角为180°.3.如图,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是 cm.【答案】5【解析】作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,再根据M是半圆AB的一个三等分点,N是半圆AB的一个六等分点可求出∠MON′的值,再由勾股定理即可求出MN′的长.解:作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,∵M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,∴∠MOB==60°,∠BON′==30°,∴∠MON′=90°,∵AB=10cm,∴OM=ON′=5cm,∴MN′===5cm,即MP+NP的最小值是cm.故答案为:5.点评:本题考查的是最短路线问题及圆心角、弧、弦的关系,根据M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,求出∠MON′=90°是解答此题的关键.4.(2006•昭阳区二模)如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x、y都是整数,则这样的点共有个.【答案】12个【解析】因为P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,根据题意,x2+y2=25,若x、y都是整数,其实质就是求方程的整数解.解:∵P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,即圆周上的任意一点到原点的距离为5,由题意得:=5,即x2+y2=25,又∵x、y都是整数,∴方程的整数解分别是:x=0,y=5;x=3,y=4;x=4,y=3;x=5,y=0;x=﹣3,y=4;x=﹣4,y=3;x=﹣5,y=0;x=﹣3,y=﹣4;x=﹣4,y=﹣3;x=0,y=﹣5;x=3,y=﹣4;x=4,y=﹣3.共12对,所以点的坐标有12个.分别是:(0,5);(3,4);(4,3);(5,0);(﹣3,4);(﹣4,3);(﹣5,0);(﹣3,﹣4);(﹣4,﹣3);(0,﹣5);(3,﹣4);(4,﹣3).点评:本题结合圆和直角三角形的知识,考查了二元二次方程的整数解和点的坐标问题.5.如下图,弦CD、FE的延长线交于圆外点P,割线PAB经过圆心,请你结合现有图形,添加一个适当的条件:,使结论∠1=∠2能成立.【答案】△COP≌△EOP【解析】本题答案有多种,根据三角形全等原理可填AC=AE或BD=BF,也可根据在“同圆或等圆中,同弧或等弧所对的弦相等”和三角形全等原理,填CD=FE或弧CD与弧EF相等.解:使∠1=∠2能成立,则应有△COP≌△EOP,或△PDB≌△PFB,故可添加AC=AE或BD=BF当AC=AE时,根据圆周角定理知,∠AOC=∠AOE,∵OC=OE,PO=PO,∴△COP≌△EOP,∴∠1=∠2.点评:本题答案不唯一,根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半求解.6.下列结论正确的是()A.长度相等的两条弧是等弧B.同一条弦所对的两条弧一定是等弧C.相等的圆心角所对的弧相等D.等弧所对的圆心角相等【答案】D【解析】A、只有长度相等的两条弧不一定能重合,所以不是等弧;B、直径、弦的定义进行分析;C、根据圆心角、弧、弦的关系进行分析;D、根据圆心角、弧、弦的关系进行分析.解:A、在同圆或等圆中,能够完全重合的两段弧为等弧,不但长度相等,弯曲程度也要相同,故本选项错误;B、同一条弦所对的两条弧不一定是等弧,除非这条弦为直径,故本选项错误;C、同圆或等圆中相等的圆心角所对的弧相等,故本选项错误;D、等弧所对的圆心角相等,故本选项正确.故选D.点评:此题考查了圆心角、弧、弦的关系;解题时要注意圆心角、弧、弦的关系是在同圆或等圆中才能成立.7.下列命题中,正确的个数是()①直径是圆中最长的弦;②平分弦的直径垂直于弦;③相等的圆周角所对的弧相等;④圆心角等于圆周角的2倍;⑤圆的内接平行四边形是矩形.A.2个B.3个C.4个D.5个【答案】A【解析】根据圆心角、弧、弦的关系对各选项进行逐一解答即可.解:①符合圆周角定理,故本小题正确;②当两条直径相交时互相平分但不一定互相平分但不一定垂直,应为平分弦(不是直径)的直径垂直于弦,故本小题错误;③在同圆或等圆中,相等的圆周角所对的弧相等,故本小题错误;④在同圆或等圆中,同弧或等弧所对的圆心角等于圆周角的2倍,故本小题错误;⑤符合圆内接四边形的性质,故本小题正确.故选A.点评:本题考查的是圆心角、弧、弦的关系,解答此类题目时一定要注意此定理使用的条件,即在同圆或等圆中,这是此类题目的易错点.8.下列说法正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆C.相等的圆心角所对弦相等D.直径为圆中最长的弦【答案】D【解析】画出反例图形即可判断A、C;根据当三点在同一直线上时,过三点不能做一个圆,即可判断B,根据弦和直径的定义即可判断D.解:A、如图,AB为弦时,直径CD和AB不垂直,故本选项错误;B、不在同一条直线上三点确定一个圆,当三点在同一直线上时,过三点不能做一个圆,故本选项错误;C、如图,∠AOB=∠COD,但弦AB≠弦CD,故本选项错误;D、直径是圆中最长的弦,故本选项错误.故选D.点评:本题考查了确定圆的条件,圆的认识,垂径定理,圆心角、弧、弦之间的关系等知识点的运用,主要考查学生的辨析能力.9.如图,在⊙O中,=,∠AOB=122°,则∠AOC的度数为()A.122°B.120°C.61°D.58°【答案】A【解析】直接根据圆心角、弧、弦的关系求解.解:∵,=,∴∠∠AOB=∠AOC=122°.故选A.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.10.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为()A.B.1C.D.a【答案】B【解析】此题可通过证△EAC≌△OAB,得AE=OA,从而求出EA的长;△EAC和△OAB中,已知的条件只有AB=AC;由AB=BD,得=,可得∠AED=∠AOB;四边形ABDE内角于⊙O,则∠EAB+∠D=180°,即∠EAC=180°﹣60°﹣∠D=120°﹣∠D;而∠ECA=180°﹣∠ACB﹣∠BCD=120°﹣∠BCD,上述两个式子中,由BD=AB=BC,易证得∠D=∠BCD,则∠ECA=∠EAC,即△EAC、△OAB都是等腰三角形,而两个等腰三角形的顶角相等,且底边AC=AB,易证得两个三角形全等,由此得解.解:∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°;∵AB=BD,∴,∴∠AED=∠AOB;∵BC=AB=BD,∴∠D=∠BCD;∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°;又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形;在等腰△EAC和等腰△OAB中,∠AEC=∠AOB,∵AC=AB,∴△EAC≌△OAB;∴AE=OA=1.故选B.点评:此题考查了圆心角、弧、弦的关系,等边三角形的性质,圆内接四边形的性质,全等三角形的判定和性质等知识,综合性强,难度较大;能够发现并证得△EAC≌△OAB是解答此题的关键.。
弧弦圆心角练习题
弧弦圆心角练习题弧、弦、圆心角的关系同步练习一、填空题:1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的度数是________.DCBAO(1) (2) (3)2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB是⊙O的直径, BC BD,∠A=25°,则∠BOD的度数为________.6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30°, 则点O 到CD 的距离OE=______.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°D DCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°1.同圆中两弦长分别为x 1和x 2它们所对的圆心角相等,那么( )A .x 1 >x 2B .x 1 <x 2 C. x 1 =x 2 D .不能确定2.下列说法正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等;④经过圆心的每一条直线都是圆的对称轴A .1个B .2个C .3个D .4个3.在⊙O 中同弦所对的圆周角( )A .相等B .互补C .相等或互补D .以上都不对4.如图所示,如果的⊙O 半径为2弦AB= AB 的距离OE 为( )A. 1 B .12D 5.如图所示,⊙O 的半径为5,弧AB 所对的圆心角为120°,则弦AB 的长为( )A .3B .2C . 8 D. 6.如图所示,正方形ABCD 内接于⊙O 中,P 是弧AD 上任意一点,则∠ABP+∠DCP 等于( ) A .90° B 。
初三数学弧弦圆心角的练习题
初三数学弧弦圆心角的练习题1. 圆心角是90°的扇形的圆的周长为12π cm,求该扇形的面积。
解析:假设扇形的半径为r cm,则圆心角为90°的弧长为r cm。
根据圆的周长公式,可得:2πr = 12π解得:r = 6 cm扇形的面积为:(1/4)πr² = (1/4)π(6)² = 9π cm²2. 若圆心角为30°,则它所对的弧的度数是多少?解析:圆心角度数与所对弧度数相等,因此该圆心角所对的弧的度数是30°。
3. 在圆上,直径AB的长度为12 cm,弦CD的长度为8 cm。
求圆心角ACB的度数。
解析:对于圆上的任意一个圆心角,其所对的弦长是固定的。
设弦长CD = 8 cm,直径AB = 12 cm。
由于直径等于两个弦加起来的长度,可得:12 cm = 8 cm + CE解得:CE = 4 cm由于圆心角ACB所对的弦CD等于1/2的直径AB,所以CE = 1/2 AB。
因此,圆心角ACB所对的弦CD是直径AB的1/2,即圆心角ACB 的度数为180°的1/2,即90°。
4. 在圆上,弦AC的度数为60°,则对应的圆心角ABC的度数是多少?解析:对于圆上的任意一个圆心角,其度数等于所对的弦的度数的2倍。
因此,圆心角ABC的度数为60°的2倍,即120°。
5. 在圆上,弦DE的度数等于圆心角DFE的度数的4倍,并且圆心角DFE的度数比弦DE多30°。
求弦DE所对的圆心角的度数。
解析:设圆心角DFE的度数为x°。
根据题意可得:弦DE的度数 = 圆心角DFE的度数的4倍 = 4x°圆心角DFE的度数 = 弦DE的度数 + 30° = 4x° + 30°根据圆心角与所对弦的关系,可得:弦DE所对的圆心角的度数 = 圆心角DFE的度数的2倍 = 2(4x° + 30°) = 8x° + 60°综上所述,弦DE所对的圆心角的度数为8x° + 60°。
24.1.3_弧、弦和圆心角
等圆中,相等的圆心角所对的弦的弦心距相等.
例题讲解
例1.如图,在⊙O中,AB=AC ,∠ACB=60° A (1)求证: ∠AOB=∠BOC=∠AOC
⌒ ⌒ 证明:∵ AB=AC ∴AB=AC, △ABC是等 腰三角形.
⌒ ⌒
O B C
又∠ACB=60°,
∴△ABC是等边三角形
∴ ∠AOB=∠BOC=∠AOC.
⌒ ⌒ ⌒ BC=CD=DE ,∠COD=35°, 1.如图,AB是⊙O的直径,
基础训练
求∠AOE的度数. ⌒ ⌒ ⌒ 解: ∵ BC=CD=DE
E D C A
BOC=COD=DOE=35
AOE 180 3 35
B
想一想
下面的说法正确吗?为什么?
如图,因为 AOB AOB 根据圆心角、弧、弦的 关系定理可知: ⌒ ⌒ AB AB
A
O
B
同圆或等圆
A
B
试一试
如图,AB、CD是⊙O的两条弦。
(1)如果AB=CD,那么
⌒ 那么 (2)如果⌒ AB=CD,
, 那么 , 。
,
。
E A
B
O
D F
重合.
⌒ ⌒ 因此,AB与A′B′重合,AB与A′B′重合. ⌒ ⌒ = AB A ' B '. A′B′ AB
定理
这样,我们就得到下面的定理:
在同圆或等圆中,相等的圆心角所对的弧 相等,所对的弦也相等.
同样,还可以得到: 在同圆或等圆中,如果两条弧相等, 相等 , 所对 那么它们所对的圆心角_____ 的弦________ 相等 ; 在同圆或等圆中,如果两条弦相等, 相等 ,所对 那么他们所对的圆心角______ 相等 的弧_________ . 同圆或等圆中, 两个圆心角、两 条弧、两条弦中 有一组量相等, 它们所对应的其 余各组量也相 等.
专题27 弧弦圆心角的关系-中考数学二轮复习之难点突破+热点解题方法
专题27 弧弦圆心角的关系一、单选题1.下列命题中是真命题的是()A.1的平方根是1B.等弦所对的圆周角相等C.等腰三角形的高、角平分线、中线重合D.两条直线被第三条直线所截,内错角不一定相等【答案】D【分析】由平方根的含义判断,A由圆的弧,弦,圆心角,圆周角的关系判断,B由等腰三角形的性质判断,C由内错角的含义判断,D从而可得答案.【详解】解:1的平方根是 ,故A不符合题意;等弦所对的圆周角不一定相等,故B不符合题意;等腰三角形的底边上的高、顶角的角平分线、底边上的中线互相重合,故C不符合题意;两条直线被第三条直线所截,内错角不一定相等,真命题,故D符合题意;故选:.D【点睛】本题考查的是真假命题的判断,同时考查了内错角的含义,平方根的含义,等腰三角形的性质,弧,弦,圆心角,圆周角的关系,圆周角定理,掌握以上知识是解题的关键.2.如图,AB是⊙O的直径,C、D是ACB上的三等分点,则⊙A+⊙D=()A.120°B.95°C.105°D.150°【答案】A【分析】根据圆周角定理和圆心角、弦、弧的关系求得⊙ACB=90°,⊙BOD=60°,⊙A=60°,再根据OB=OD证得⊙BOD为等边三角形,则有⊙D=60°,即可求解.【详解】解:⊙C、D是ACB上的三等分点,⊙AC CD BD==,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙BOD=60°,⊙A=60°,⊙OB=OD,⊙⊙OBD为等边三角形,⊙⊙D=60°,⊙⊙A+⊙D=120°,故选:A.【点睛】本题考查圆周角定理,圆心角、弦、弧的关系,等边三角形的判定与性质,熟练掌握相关知识的运用是解答的关键.3.如果在两个圆中有两条相等的弦,那么()A.这两条弦所对的圆心角相等B.这两条弦所对的弧相等C.这两条弦都被与它垂直的半径平分D.这两条弦所对的弦心距相等【答案】C【分析】在同圆或等圆中,两条相等的弦所对的圆心角相等,弧相等,据此解答.【详解】解:A. 在同圆或等圆中,两条相等的弦所对的圆心角相等,故A 错误;B. 在同圆或等圆中,两条相等的弦所对弧相等,故B 错误;C. 如果在两个圆中有两条相等的弦,这两条弦都被与它垂直的半径平分,故C 正确;D. 如果在两个圆中有两条相等的弦,这两条弦所对的弦心距不一定相等,故D 错误.【点睛】本题考查圆心角、弧、弦的关系及垂径定理,是重要考点,难度较易,掌握相关知识是解题关键. 4.如图,A B C D 、、、是O 上的点,180AOD BOC ∠+∠=︒.若2,6AD BC ==,则BOC ∆的面积为( )A .3B .6C .9D .12【答案】A【分析】 作出辅助线延长BO 交O 于点E ,连接CE ,由此构建圆心角AOD COE ∠=∠,根据圆周角与弧长和弦长的关系得到2AD CE ==,再据此求出BEC △的面积,经由OB OE =即可求出BCE 的面积.【详解】解:如图延长BO 交O 于点E ,连接CE ,⊙B O E 、、三点共线⊙180COE BOC ∠+∠=︒,90BCE ∠=︒,⊙CE BC ⊥,⊙180AOD BOC ∠+∠=︒,⊙AOD COE ∠=∠,⊙AD CE =,⊙2AD CE ==,⊙6BC =, ⊙1162622S BC CE ==⨯⨯=△BCE , ⊙OB OE =, ⊙116322S S ==⨯=△BOC △BEC . 故选A.【点睛】 本题主要考查圆心角所对弧、弦的关系,圆周角定理,关键在于作出OB 的延长线OE ,来构造出圆心角相等,以此来解决问题.5.如图,AB 是O 的直径,,C D 是ACB 上的三等分点,且1sin 2ABC ∠=,则A D ∠+∠等于 ( )A .120°B .95°C .105°D .150°【答案】A【分析】 由圆心角、弦、弧的关系及圆周角定理可得⊙ACB=90°,⊙BOD=60°,⊙A=60°,通过证明⊙OBD 为等边三角形,即可求⊙D=60°,进而可求解;【详解】⊙ C 、D 是ACB 上的三等分点,⊙ AC CD BD == ,⊙ AB 是圆的直径,⊙ ⊙ACB=90°,⊙BOD=60°,⊙A=60°,⊙OB=OD ,⊙⊙OBD 为等边三角形,⊙⊙D=60°,⊙⊙A+⊙D=120°,故选:A .【点睛】本题主要考查了圆心角、弦、弧的关系,等边三角形的判定与性质,圆周角定理等知识点的综合运用; 6.如图,正五边形ABCDE 内接于O ,点P 为DE 上一点(点P 与点D ,点E 不重合),连接PC ,PD ,DG PC ⊥,垂足为G ,则PDG ∠等于( )A .72°B .54°C .36°D .64°【答案】B【分析】 根据正五边形ABCDE 内接于O ,可得COD ∠,再根据同弧所对的圆周角和圆心角的关系,可得CPD ∠,再根据三角形内角和定理即可得PDG ∠.【详解】解:⊙正五边形ABCDE 内接于O , ⊙360725COD ︒∠==︒ ⊙CPD ∠与COD ∠所对的弧相同 ⊙1362CPD COD ∠=∠=︒⊙PDG ∠=180903654︒-︒-︒=︒故选:B .【点睛】本题主要考查了圆内接正多边形的性质及同弧所对的圆周角和圆心角的性质,解题的关键是求出CD 所对的圆心角.7.如图,AB 为⊙O 直径,CD 为弦,AB⊙CD 于E ,连接CO ,AD ,⊙BAD =25°,下列结论中正确的有( ) ⊙CE =OE ;⊙⊙C =40°;⊙ACD =ADC ;⊙AD =2OEA .⊙⊙B .⊙⊙C .⊙⊙⊙D .⊙⊙⊙⊙【答案】B【分析】根据圆周角定理,垂径定理,圆心角、弧、弦的关系以及直角三角形边的关系进行判断即可.【详解】解:⊙AB 为⊙O 直径,CD 为弦,AB⊙CD 于E ,⊙CE=DE ,BC BD =,ACB ADB =,⊙⊙BOC=2⊙A=40°,ACB BC ADB BC +=+,即ADC ADC =,故⊙正确;⊙⊙OEC=90°,⊙BOC=40°,⊙⊙C=50°,故⊙正确;⊙⊙C≠⊙BOC ,⊙CE≠OE ,故⊙错误;作OP⊙CD ,交AD 于P ,⊙AB⊙CD ,⊙AE <AD ,⊙AOP=90°,⊙OA <PA ,OE <PD ,⊙PA+PD >OA+OE⊙OE <OA ,⊙AD >2OE ,故⊙错误;故选:B .【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握性质定理是解题的关键. 8.如图,AB 是⊙O 的直径,点P 是O 上一个动点(点P 不与点A ,B 重合),在点P 运动的过程中,有如下四个结论:⊙至少存在一点P ,使得PA AB >;⊙若2PB PA =,则2PB PA =;⊙PAB ∠不是直角;⊙2POB OPA ∠=∠.上述结论中,所有正确结论的序号是( )A .⊙⊙B .⊙⊙C .⊙⊙⊙D .⊙⊙⊙【答案】B【分析】 根据圆的直径的性质,直径是圆中最长的弦,直径所对的圆周角是90°,弧,弦,圆心角的关系,以及圆的半径相等,即可得出.【详解】⊙因为直径是圆中最长的弦,故⊙错误,⊙若2=则PB<2PA ,故⊙错误,PB PA⊙ 因为直径所对的圆周角是90°,⊙APB=90°,所以⊙PAB不可能是90°,故⊙正确,⊙ 连接PA,PO,如图⊙⊙POB=⊙PAO+⊙APO又⊙PAO=⊙APO⊙⊙POB=2⊙OPA故⊙正确,故选:B.【点睛】本题考查了与圆有关的性质,圆的直径的性质,直径是圆中最长的弦,直径所对的圆周角是90°,弧,弦,圆心角的关系,以及圆的半径相等,解题的关键是掌握圆的有关的性质,直径,半径,圆周角,圆心角,弧,等知识是解题的关键.9.下列说法错误的是()A.等弧所对的弦相等B.圆的内接平行四边形是矩形C.90︒的圆周角所对的弦是直径D.平分一条弦的直径也垂直于该弦【答案】D【分析】根据圆的性质逐项判断即可.【详解】A.等弧所对的弦相等,故A正确,不符合题意.B.根据圆的内接四边形对角互补和平行四边形邻角互补,即可知圆的内接平行四边形是矩形.故B正确,不符合题意.C.90︒的圆周角所对的弦是直径,故C正确,不符合题意.D.平分一条弦(非直径)的直径也垂直于该弦.故D错误,符合题意.故选:D.【点睛】本题考查圆周角定理,垂径定理,圆心角、弧、弦的关系以及圆内接平行四边形的性质.熟练掌握这些知识是判断此题的关键.10.下列判断正确的个数有()⊙平分弦的直径垂直于弦;⊙圆内接平行四边形是菱形;⊙一条弧所对的圆周角等于它所对的圆心角的一半;⊙如果两条弦相等,那么他们所对的圆周角相等.A.1个B.2个C.3个D.4个【答案】A【分析】根据垂径定理可对⊙进行判断;根据圆内接四边形的性质及矩形的判定定理可对⊙进行判断;根据圆周角定理可对⊙进行判断;根据弧、弦、圆心角的关系可对⊙进行判断;综上即可得答案.【详解】平分弦(非直径)的直径垂直于弦;故⊙错误;⊙四边形内接于圆,⊙四边形的对角互补,⊙四边形是平行四边形,⊙对角相等,⊙四边形的四个内角都是直角,⊙四边形是矩形,故⊙错误,一条弧所对的圆周角等于它所对的圆心角的一半,故⊙正确,在同圆或等圆中,如果两条弦相等,那么他们所对的圆周心相等,故⊙错误,综上所述:正确的判断为⊙,共1个,故选:A.【点睛】本题考查垂径定理、圆周角定理、圆内接四边形的性质、矩形的判定及弧、弦、圆心角的关系,平分弦(非直径)的直径垂直于弦;并且平分弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;圆的内接四边形对角互补;在同圆或等圆中,如果两条弦相等,那么他们所对的圆周心相等;熟练掌握相关定理及性质是解题关键.11.下列命题:⊙垂直于弦的直径平分弦,并且平分弦所对的两条弧;⊙在同圆或等圆中相等的圆心角所对的弧相等;⊙在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等;⊙圆内接四边形的对角互补.其中正确的命题共有()A.4个B.3个C.2个D.1个【答案】A【分析】根据垂径定理、圆心角、弧、弦的关系、圆内接四边形的性质判断.【详解】解:⊙垂直于弦的直径平分弦,并且平分弦所对的两条弧,本小题说法是真命题;⊙在同圆或等圆中相等的圆心角所对的弧相等,本小题说法是真命题;⊙在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等,本小题说法是真命题;⊙圆内接四边形的对角互补,本小题说法是真命题;故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.下列说法中,正确的是()A.等弦所对的弧相等B.在同圆或等圆中,相等的弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据弦、弧与圆心角的关系逐一判断即可.【详解】A、等弦所对应的弧可以相等也可以互补构成新圆,故此选项不符合题意;B、在同圆或等圆中,等弧所对应的弦相等,故此选项正确;C、同圆或等圆中,圆心角相等所对应的弦相等,故此选项不符合题意;D、同圆或等圆中,弦相等,所对的圆心角相等或互补,如果不等的圆,那么弦相等不一定能确定所对圆心角的大小,故此选项不符合题意;故选B【点睛】本题考查弦、弧与圆心角的关系,此类试题难度不大,关键是掌握弦和圆心角等一些基本知识,容易混淆. 13.如图,线段AB 是⊙的直径,弦CD⊙AB ,⊙CAB =20°,则⊙BOD 等于( )A .30°B .70°C .40°D .20°【答案】C【分析】由线段AB 是O 的直径, 弦CD AB ⊥,根据垂径定理可得BC BD =,然后由圆周角定理,即可求得答案 .【详解】解:连接OC ,线段AB 是O 的直径, 弦CD AB ⊥,∴BC BD =,222040BOD BOC CAB ∴∠=∠=∠=⨯︒=︒.故选:C .【点睛】本题考查垂径定理、圆周角定理,掌握圆的基本性质定理是解题的关键.14.如图,AB 是半圆的直径,点D 是弧AC 的中点,⊙ABC =50°,则⊙BCD =( )A .105°B .110°C .115°D .120°【答案】C【分析】 连接AC ,然后根据圆内接四边形的性质,可以得到⊙ADC 的度数,再根据点D 是弧AC 的中点,可以得到⊙DCA 的度数,直径所对的圆周角是90°,从而可以求得⊙BCD 的度数.【详解】解:连接AC ,⊙⊙ABC =50°,四边形ABCD 是圆内接四边形,⊙⊙ADC =130°,⊙点D 是弧AC 的中点,⊙CD =AC ,⊙⊙DCA =⊙DAC =25°,⊙AB 是直径,⊙⊙BCA =90°,⊙⊙BCD =⊙BCA+⊙DCA =115°,故选:C .【点睛】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答. 15.如图,BD 是O 的直径,点A ,C 在O 上,AB AD =,AC 交BD 于点G .若126COD ∠=︒.则AGB ∠的度数为( )A .99︒B .108︒C .110︒D .117︒ 【答案】B【分析】先根据圆周角定理得到⊙BAD 90=︒,再根据等弧所对的弦相等,得到AB AD =,⊙ABD 45=︒,最后根据同弧所对的圆周角等于圆心角的一半,得到⊙CAD=63︒,⊙BAG=27︒,即可求解.【详解】解:⊙BD 是O 的直径⊙⊙BAD 90=︒⊙AB AD =⊙AB AD =⊙⊙ABD 45=︒⊙126COD ∠=︒ ⊙⊙1CAD 632COD =∠=︒ ⊙⊙BAG 906327=︒-︒=︒⊙⊙AGB 1802745108=︒-︒-︒=︒故选:B .【点睛】此题主要考查圆周角定理和弧、弦及圆周角之间的关系,熟练掌握圆周角定理和三者之间的关系是解题关键.16.如图,O 中,AB AC =,70ABC ∠=︒.则BOC ∠的度数为( )A.100°B.90°C.80°D.70°【答案】C【分析】首先根据弧、弦、圆心角的关系得到AB=AC,再根据等腰三角形的性质可得⊙A的度数,然后根据圆周角定理可得⊙BOC=2⊙A,进而可得答案.【详解】解:⊙AB AC,⊙AB=AC,⊙⊙ABC=⊙ACB=70°,⊙⊙A=180°-70°×2=40°,⊙圆O是⊙ABC的外接圆,⊙⊙BOC=2⊙A=40°×2=80°,故选C.【点睛】此题主要考查了弧、弦、圆心角的关系、圆周角定理、等腰三角形的性质,熟练掌握等腰三角形的性质,由圆周角定理得出结果是解决问题的关键.17.下列命题中真命题是()A.平分弦的半径垂直于弦B.垂直平分弦的直线必经过圆心C.相等的圆心角所对的弦相等D.经过半径一端且垂直于这条半径的直线是圆的切线【答案】B【分析】根据垂径定理,圆心角、弧、弦的关系定理,切线的判定定理判断即可.【详解】A.平分弦(不是直径)的半径垂直于弦,本选项说法是假命题;B.垂直平分弦的直线必经过圆心,本选项说法是真命题;C.在同圆或等圆中,相等的圆心角所对的弦相等,本选项说法是假命题;D.经过半径外端且垂直于这条半径的直线是圆的切线,本选项说法是假命题;故选:B.【点睛】本题主要考查了圆中相关命题正误的判断,熟练掌握垂径定理,圆心角、弦、弧的关系定理,切线的判定定理等知识是解决本题的关键.18.下列命题:⊙长度相等的弧是等弧;⊙任意三点确定一个圆;⊙相等的圆心角所对的弦相等;⊙平分弦的直径垂直于弦,并且平分弦所对的两条弧;其中真命题共有( )A.0个B.1个C.2个D.3个【答案】A【分析】由等弧的概念判断⊙,根据不在一条直线上的三点确定一个圆,可判断⊙;根据圆心角、弧、弦的关系判断⊙,根据垂径定理判断⊙.【详解】⊙同圆或等圆中,能够互相重合的弧是等弧,故⊙是假命题;⊙不在一条直线上的三点确定一个圆,若三点共线,则不能确定圆,故⊙是假命题;⊙同圆或等圆中,相等的圆心角所对的弦相等,故⊙是假命题;⊙圆两条直径互相平分,但不垂直,故⊙是假命题;所以真命题共有0个,故选A.【点睛】本题考查圆中的相关概念,熟记基本概念才能准确判断命题真假.19.在两个圆中有两条相等的弦,则下列说法正确的是()A.这两条弦所对的弦心距相等B.这两条弦所对的圆心角相等C.这两条弦所对的弧相等D.这两条弦都被垂直于弦的半径平分【答案】D【分析】在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等,但在不同圆中则应另当别论.【详解】A. 这两条弦所对的弦心距不一定相等,原说法错误,故本选项错误;B. 这两条弦所对的圆心角不一定相等,原说法错误,故本选项错误;C. 这两条弦所对的弧不一定相等,原说法错误,故本选项错误;D. 这两条弦都被垂直于弦的半径平分(垂径定理),原说法正确,故本选项正确;故选D.【点睛】此题考查圆心角、弧、弦的关系,垂径定理,解题关键在于掌握其性质定理 .20.已知⊙O的半径为5,弦AB=6⊙P是AB上任意一点,点C是劣弧AB的中点,若⊙POC为直角三角形,则PB的长度()A.1B.5C.1或5D.2或4【答案】C【分析】由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若⊙POC 为直角三角形,只能是⊙OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【详解】⊙点C是劣弧AB的中点,⊙OC垂直平分AB⊙⊙DA=DB=3⊙4=⊙若⊙POC为直角三角形,只能是⊙OPC=90°⊙则⊙POD⊙⊙CPD⊙⊙PD CD OD PD=⊙⊙PD2=4×1=4⊙⊙PD=2⊙⊙PB=3⊙2=1⊙根据对称性得,当P在OC的左侧时,PB=3+2=5⊙⊙PB的长度为1或5.故选C⊙【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.21.如图,AB是⊙O的弦,OA⊙OC是⊙O的半径,AC BC⊙⊙BAO=37°,则⊙AOC的度数是()度.A.74B.106C.117D.127【答案】D【分析】连接OB,进而得出⊙AOB的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得⊙AOC 的度数.【详解】连接OB⊙⊙OA=OB⊙⊙BAO=37°⊙⊙⊙AOB=180°-2×37°=106°⊙⊙=AC BC⊙⊙⊙AOC=⊙BOC=3601062︒-︒⊙127°⊙故选D⊙【点睛】此题考查了圆周角定理.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.22.如图,已知AB和CD是⊙O的两条等弦.OM⊙AB⊙ON⊙CD,垂足分别为点M⊙N⊙BA⊙DC的延长线交于点P,联结OP.下列四个说法中:⊙AB CD=⊙⊙OM=ON⊙⊙P A=PC⊙⊙⊙BPO=⊙DPO,正确的个数是()A.1B.2C.3D.4【答案】D【解析】如图连接OB⊙OD⊙⊙AB=CD⊙⊙AB=CD,故⊙正确⊙OM⊙AB⊙ON⊙CD⊙⊙AM=MB⊙CN=ND⊙⊙BM=DN⊙⊙OB=OD⊙⊙Rt⊙OMB⊙Rt⊙OND⊙⊙OM=ON,故⊙正确,⊙OP=OP⊙⊙Rt⊙OPM⊙Rt⊙OPN⊙⊙PM=PN⊙⊙OPB=⊙OPD,故⊙正确,⊙AM=CN⊙⊙PA=PC,故⊙正确,故选D⊙23.下列说法中,结论错误的是(⊙A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B【分析】利用圆的有关定义进行判断后利用排除法即可得到正确的答案;【详解】A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选B.【点睛】本题考查了圆的认识,了解圆中有关的定义及性质是解答本题的关键.二、填空题24.如图,正八边形ABCDEFGH内接于⊙O,点P是GH上的任意一点,则⊙CPE的度数为____.【答案】45︒.【分析】连接OD,OC,OE,利用正八边形的中心角的定义,计算圆心角⊙COE,根据圆心角与圆周角的关系定理计算即可.【详解】连接OD,OC,OE,⊙八边形ABCDEFGH是正八边形,⊙⊙COD=⊙DOE=3608︒=45°,⊙⊙COE=45°+45°=90°,⊙⊙CPE=12⊙COE=45°.⊙⊙⊙⊙⊙45°⊙【点睛】本题考查了正多边形的中心角,圆心角与圆周角关系定理,连接半径,构造中心角是解题的关键.25.如图,已知⊙O的半径为3,弦AB、CD所对的圆心角分别是⊙AOB、⊙COD,若⊙AOB与⊙COD互补,弦CD=4,则弦AB的长为_____.【答案】【分析】作直径AE ,连接BE ,如图,利用等角的补角相等得到⊙BOE =⊙COD ,则根据圆心角、弧、弦的关系得到BE =CD =4,接着利用圆周角定理得到⊙ABE =90°,然后利用勾股定理计算AB 的长.【详解】解:作直径AE ,连接BE ,如图,⊙⊙AOB +⊙COD =180°,⊙AOB +⊙BOE =180°,⊙⊙BOE =⊙COD ,⊙BE =CD =4,⊙AE 为直径,⊙⊙ABE =90°,在Rt⊙ABE 中,AB =故答案为:【点睛】本题主要考查圆的基本性质,解题的关键是应用圆的性质和勾股定理解决问题.26.如图,BAC 是O 的内接三角形,BC 为直径,AD 平分BAC ∠,连接BD 、CD ,若65ACB ∠=︒,则ABD ∠的度数为_________.【答案】70︒【分析】由BC 为直径,可得⊙BAC=⊙BDC=90°由AD 平分BAC ∠,可证BD=DC ,可得⊙DBC=⊙DCB=45°,65ACB ∠=︒,可求⊙ABC=90°-⊙ACB=25°,可求⊙ABD=⊙ABC+⊙DBC=70°即可.【详解】解:⊙BAC 是O 的内接三角形,BC 为直径,⊙⊙BAC=⊙BDC=90°⊙AD 平分BAC ∠,⊙⊙BAD=⊙CAD ,⊙BD DC =,⊙BD=DC ,⊙⊙DBC=⊙DCB=45°,⊙65ACB ∠=︒,⊙⊙ABC=90°-⊙ACB=90°-65°=25°,⊙⊙ABD=⊙ABC+⊙DBC=25°+45°=70°.故答案为:70°.【点睛】本题考查圆的性质,直径所对圆周角性质,角平分线性质,直角三角形性质,掌握圆的性质,直径所对圆周角性质,角平分线性质,直角三角形性质是解题关键.27.如图,若12∠=∠,那么AB 与BC __________相等(填“一定”、“一定不”、“不一定”).【答案】一定【分析】根据圆心角、弧、弦关系定理进行解答即可.【详解】解:⊙⊙1=⊙2,⊙AB=AC,⊙AB=BC,故答案为:一定.【点睛】本题考查的是圆心角,熟知在同圆和等圆中,相等的弦所对的弧相等是解答此题的关键.28.如图,AB为O的直径,2AC BC=,M为BC的中点,过M作//MN OC交AB于N,连接BM,则BMN∠的度数为__________.【答案】45°【分析】连接OM.根据弧与圆心角的度数求得⊙BOC的度数,然后利用M为BC的中点,求得⊙MOB=⊙COM=30°,结合平行线的性质和等腰三角形的性质求得⊙MNB,⊙B,即可解决问题.【详解】解:连接OM.⊙AB是直径,2AC BC=,⊙⊙BOC=13×180°=60°,⊙M为BC的中点,⊙BM CM=⊙⊙MOB=⊙COM=30°,⊙OM=OB,⊙⊙B=⊙OMB=12(180°-30°)=75°,⊙OC⊙MN,⊙⊙MNB=⊙COB=60°,⊙⊙BMN=180°-⊙BNM-⊙NBM=180°-60°-75°=45°,故答案为:45°.【点睛】本题考查圆周角定理,平行线的性质,三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.29.如图,在⊙O中,若弧AB=BC=CD,则AC与2CD的大小关系是:AC ________2CD.(填“>”,“<”或“=”)【答案】<【分析】利用圆心角、弧、弦的关系得到AB=BC=CD,然后根据三角形三边的关系可得到AC与2CD之间的关系.【详解】解:连接AB、BC,如图,⊙AB BC CD==,⊙AB=BC=CD,⊙AB+BC>AC,⊙2CD>AC,即AC<2CD.故答案为:<.【点睛】本题考查了在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.30.如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.【答案】120【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS 定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题.【详解】连接OA ,OB ,作OH⊙AC ,OM⊙AB ,如下图所示:因为等边三角形ABC ,OH⊙AC ,OM⊙AB ,由垂径定理得:AH=AM ,又因为OA=OA ,故⊙OAH ≅⊙OAM (HL ).⊙⊙OAH=⊙OAM .又⊙OA=OB,AD=EB,⊙⊙OAB=⊙OBA=⊙OAD,⊙⊙ODA ≅⊙OEB (SAS ),⊙⊙DOA=⊙EOB,⊙⊙DOE=⊙DOA+⊙AOE=⊙AOE+⊙EOB=⊙AOB .又⊙⊙C=60°以及同弧AB ,⊙⊙AOB=⊙DOE=120°.故本题答案为:120.【点睛】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握. 31.如图,已知AB 是半圆O 的直径,6AB =,点C ,D 在半圆上,OC AB ⊥,2BD CD =,点P 是OC 上的一个动点,则BP DP +的最小值为_______.【答案】【分析】 如图,连接AD ,P A ,OD .先证明P A =PB ,再根据PD +PB =PD +P A ≥AD ,求出AD 即可解决问题.【详解】解:如图,连接AD ,P A ,OD .⊙OC ⊙AB ,OA =OB ,⊙P A =PB ,⊙COB =90°,⊙BD =2CD ,⊙⊙DOB 23=⨯90°=60°, ⊙OD =OB ,⊙⊙OBD 是等边三角形,⊙⊙ABD =60°⊙AB 是直径,⊙⊙ADB =90°,⊙AD =AB •cos⊙ABD =,⊙PB +PD =P A +PD ≥AD ,⊙PD +PB⊙PD +PB 的最小值为,故答案为:【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系,三角函数等知识,根据OC 为AB 的垂直平分线得到AD 为BP DP +的最小值是解题的关键.32.如图,在扇形BOC 中,60,BOC OD ∠=︒平分BOC ∠交弧BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为__________.【答案】.3π【分析】 如图,先作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,再分别求解,AD CD 的长即可得到答案.【详解】解:C 阴影=,CE DE CD ++∴ C 阴影最短,则CE DE +最短,如图,作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,则,CE AE =,CE DE AE DE AD ∴+=+=此时E 点满足CE DE +最短,60,COB AOB OD ∠=∠=︒平分,CB30,90,DOB DOA ∴∠=︒∠=︒2,OB OA OD ===AD ∴==而CD 的长为:302,1803ππ⨯=∴ C 阴影最短为.3π故答案为:.3π【点睛】本题考查的是利用轴对称求最短周长,同时考查了圆的基本性质,扇形弧长的计算,勾股定理的应用,掌握以上知识是解题的关键.三、解答题33.如图,OA 、OB 、OC 是⊙O 的三条半径,弧AC 等于弧BC ,D 、E 分别是OA 、OB 的中点,CD 与CE 相等吗?为什么?【答案】相等,理由见解析【分析】根据弧与圆心角的关系,可得⊙AOC=⊙BOC ,又由D 、E 分别是半径OA 、OB 的中点,可得OD=OE ,利用SAS 判定⊙DOC⊙⊙EOC ,继而证得结论.【详解】解:CD=CE ,理由如下:⊙弧AC 和弧BC 相等,⊙⊙AOC=⊙BOC ,又⊙OA=OB ,D 、E 分别是OA 、OB 的中点,⊙OD=OE ,在⊙DOC 和⊙EOC 中,OD OE AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,⊙⊙DOC⊙⊙EOC (SAS ),⊙CD=CE .【点睛】本题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键. 34.已知⊙O 的直径为10,点A ,点B ,点C 在⊙O 上,⊙CAB 的平分线交⊙O 于点D .(⊙)如图⊙,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(⊙)如图⊙,若⊙CAB=60°,求BD的长.【答案】(⊙)求AC=8,BD=CD=;(⊙)BD=5【分析】(⊙)利用圆周角定理可以判定⊙CAB和⊙DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知⊙DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=;(⊙)如图⊙,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知⊙OBD是等边三角形,则BD=OB=OD=5.【详解】解:(⊙)如图⊙,⊙BC是⊙O的直径,⊙⊙CAB=⊙BDC=90°.⊙在直角⊙CAB中,BC=10,AB=6,⊙由勾股定理得到:AC8=⊙AD平分⊙CAB,⊙CD BD=,⊙CD=BD.在直角⊙BDC中,BC=10,CD2+BD2=BC2,⊙易求BD=CD=(⊙)如图⊙,连接OB,OD.⊙AD平分⊙CAB,且⊙CAB=60°,⊙⊙DAB=12⊙CAB=30°,⊙⊙DOB=2⊙DAB=60°.又⊙OB=OD,⊙⊙OBD是等边三角形,⊙BD=OB=OD.⊙⊙O的直径为10,则OB=5,⊙BD=5.【点睛】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得⊙OBD 是等边三角形.35.阿基米德(Archimedes ,公元前287年~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯A1-Biruni (973年~1050年)的译文中保存了阿基米德折弦定理的内容,前苏联在1964年根据A1-Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图⊙,已知AB 和BC 是O 的两条弦(即折线ABC 是O 的一条折弦),,BC AB M >是ABC 的中点.那么从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD AB BD =+. 下面是运用“截长法”证明CD AB BD =+的部分证明思路:证明:如图⊙,在CB 上截取CG AB =,连接,MA MB ,…………(定理证明)按照上面的思路,写出剩余部分的证明过程.(问题解决)如图⊙,等边ABC ∆内接于,3,O AB D =为AC 上一点,45ACD ∠=︒.求BDC ∆的周长.【答案】【定理证明】:见解析;【问题解决】:BDC ∆的周长为3+【分析】(1)首先证明⊙MBA⊙⊙MGC (SAS ),进而得出MB=MG ,再利用等腰三角形的性质得出BD=GD ,即可得出答案;(2)首先证明⊙ABF⊙ACD (SAS ),进而得出AF=AD ,以及CD+DE=BE ,进而求出DE 的长即可得出答案.【详解】解:(1)如图⊙,连接,MC MG .可得A C ∠=∠.由M 是ABC 的中点,可求得MA MC =.CG AB =,MBA MGC ∴∆≅∆.MB MG ∴=.MD BC ⊥,BD GD ∴=.CG GD AB BD ∴+=+.即CD AB BD =+.(2)如图⊙,作AE BD ⊥.由AB AC =,可得AB AC =.由阿基米德折弦定理,可得BE ED DC =+.由于45,3ACD ABD AB ∠=∠=︒=,所以,在Rt ABE ∆中,可求得BE =故BDC ∆的周长为3+.【点睛】此题主要考查了全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.36.如图,已知AB 是⊙O 的弦,半径OC 、OD 与AB 分别交于点E 、F ,且AE BF =.求证:AC BD =.【答案】见解析【分析】取AB 中点G ,联结OG 并延长与⊙O 交于H ,利用圆心角、弧、弦之间的关系得到AH BH =,再根据AE BF =及垂径定理求解即可;。
人教版九年级上册数学作业课件 第二十四章 圆的有关性质 弧弦圆心角
知识点一 圆心角的定义及其计算 1.下列图形中的角是圆心角的是( B )
2.若⊙O的弦AB等于半径,则AB所对的圆心角的度数 是( B ) A.30° B.60° C.90° D.120°
知识点二 弧、弦、圆心角之间的关系 3.在同圆或等圆中,下列说法错误的是( A ) A.相等弦所对的弧相等 B.相等弦所对的圆心角相等 C.相等圆心角所对的弧相等 D.相等圆心角所对的弦相等
B. BC 1 AC
3
D.不能确定
12.如图,半径为5的⊙A中,弦BC、ED所对的圆心角 分别是∠BAC、∠EAD.已知DE=6,∠BAC+∠EAD=
180°,则圆心A到弦BC的距离为 3 .
13.(2021-2022·南昌期中)如图,以▱ABCD的顶点A 为圆心,AB为半径作圆,分别交AD,BC于点E,F, 延长BA交⊙A于G. (1)求证:GE EF ;
4.如图,在⊙O中,点C是 AB 的中点,∠A=50°, 则∠BOC的度数为( A ) A.40° B.45° C.50° D.60°
5.如图,正五边形ABCDE的五个顶点都在⊙O上, 则∠AOD= 144° .
6.如图,在⊙O中,AB AC . (1)若AB=2,则AC的长为 2 ; (2)若∠A=40°,则∠ABC= 70 °; (3)若D是 AB 的中点,则AB < 2BD(填“> ” “ < ”或“=”).
(2)AM=BN. 证明: ∵∠COA=∠BOF,OC=OF=OA=OB, ∴∠A=∠OCA=∠BFO=∠B. ∵CD∥EF,∴∠AMC=∠ANE. 又∵∠BNF=∠ANE,∴∠AMC=∠BNF.
A B,
在△AMC和△BNF中,AMC BNF,
九上 圆心角 知识点+例题+练习 5种题型 (分类全面)
知识点、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所,所对的弦相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
题型1:圆心角性质和推论例1、如图,在△ABC中,∠A=70°,☉O截△ABC的三边所得的弦长相等,则∠BOC的度数为题型2:圆心角性质和推论与综合证明例1、如图,点O在∠MPN 的平分线上,☉O 分别交P N、PM 于点A、B 和点C、D.求证:∠PCO=∠NAO.E D C B A O 题型 1:圆周角性质的综合应用例 1、将量角器按如图所示的方式放置在三角形纸板上,使顶点 C 在半圆上, 点 A 、B 的读数分别为 100°、150°,则∠ACB 的大小为 度.例 2 、如图,量角器的直径与直角三角板 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 3 度的速度旋转,CP 与量角器 的半圆弧交于点 E ,第 24 秒,点 E 在量角器上对应的读数是 °.例3.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.例4、如图,AD 是∆ABC 的高,AE 是∆ABC 的外接圆的直径.试说明弧BE=弧CFDF例5、已知:如图,P 是∠AOB 的角平分线OC 上的一点,⊙P 与OA 相交于E ,F 点,与OB 相交于G ,H 点,试确定线段EF 与GH 之间的大小关系,并证明你的结论.例6、已知:⊙O 的半径OA =1,弦AB 、AC 的长分别为2,3,求∠BAC 的度数.例7、已知:如图,为的直径,交于点,交于点.(1)求的度数;(2)求证:.AB O ⊙AB AC BC =,O ⊙D AC O ⊙45E BAC ∠=,°EBC ∠BD CD =,BF与AD 例8、已知:如图,BC是⊙O的直径,AD⊥BC,垂足为D,BA AF 交于E,•求证:AE=BE.例9.已知:如图,∠AOB=90°,C、D是AB的三等分点,AB分别交OC、•OD•于点E、F.求证:AE=BF=CD.题型2:圆中截长补短证线段间数量关系例 1、如图,△ABC 是等边三角形,D 是 B C 上任一点,请判断 BD、CD 和DA 间的关系.题型5:90O的圆周角所对的弦是直径应用例1、下列格点图中都给出了圆,只用直尺就能确定圆心的是( )A B C D例 2 、如图,A、B、E、C 四点都在圆O上,AD 是△ABC 的高,∠EAB=∠DAC,问:AE 是⊙O 的直径吗?为什么?。
弧弦圆心角练习题
弧弦圆心角练习题弧弦圆心角是几何学中一个重要的概念。
在解决与圆相关问题时,我们经常需要计算出弧上的角度。
为了帮助大家更好地理解和应用弧弦圆心角,本文将提供一些练习题,并附上详细解答。
练习题一:在一个半径为8厘米的圆中,弧AB的长度是4.5厘米。
请计算弧AB对应的圆心角的大小。
解答一:首先根据弧长与圆的关系,计算出圆周的长度:圆周长= 2πr = 2 × 3.14 × 8 ≈ 50.24厘米然后根据弧长与圆周的比例,求得弧AB对应的圆心角的大小:设弧AB对应的圆心角为x度,那么有:4.5 / 50.24 = x / 360通过解方程,可以求得x ≈ 40.50度所以,弧AB对应的圆心角的大小约为40.50度。
练习题二:在一个半径为10厘米的圆中,弦CD的长度为12厘米。
请计算圆心角ACD的大小。
解答二:首先根据弦长与圆的关系,计算出弦CD所对应的弧的长度:弧CD = 2 × 10 × sin(ACD / 2)根据正弦定理,我们可以得到:sin(ACD / 2) = (CD / 2) / 10 = 6 / 10 = 0.6通过查表或计算器,可以得知ACD / 2的正弦值为0.6对应的角度为36.87度。
然后将角度乘以2,得到圆心角ACD的大小:ACD ≈ 36.87 × 2 ≈ 73.74度所以,圆心角ACD的大小约为73.74度。
练习题三:在一个半径为5厘米的圆中,圆心角为60度。
请计算相应弧的长度。
解答三:首先根据圆心角的定义,我们知道该角所对应的弧的长度等于圆周长乘以圆心角的比例:弧长 = 圆周长 × (圆心角 / 360)根据公式可以计算出所求的弧长:弧长= 2πr × (60 / 360) = 2 × 3.14 × 5 × (60 / 360) ≈ 5.24厘米所以,相应的弧长约为5.24厘米。
九年级数学上册《弧、弦、圆心角》练习题含答案
九年级数学上册《弧、弦、圆心角》练习题复习巩固1.下列说法中正确的是( ) A .等弦所对的弧相等 B .等弧所对的弦相等 C .圆心角相等,所对的弦相等 D .弦相等,所对的圆心角相等 2.在O 中,圆心角∠AOB =80°,圆心角∠COD =40°,那么下列说法中正确的是( )A .2AB CD = B .2AB CD >C .2AB CD < D .AB =2CD3.如图,C ,D 为半圆上的三等分点,则下列说法正确的有( )①AD =CD =BC②∠AOD =∠DOC =∠BOC ③AD =CD =OC④△AOD 沿OD 翻折与△C OD 重合A .1个B .2个C .3个D .4个 4.若O 内一条弦把圆周分为3∶1的两段弧,且O 的半径为R ,那么这条弦的长为( )A .RB .2RC .2RD .3R5.如图,O 是∠EPF 的平分线上的一点,以点O 为圆心的圆与该角的两边所在直线分别交于点A ,B 和C ,D ,则AB 与CD 的关系是( )A .AB =CD B .AB >CDC .AB <CD D .无法确定 6.如图,AB ,CD 是O 的弦,且AB =CD ,OE ⊥AB ,OF ⊥CD ,那么__________.(写出一个正确的结论即可)7.如图,在O 中,AB AC =,∠B =50°,则∠A =__________.8.如图,AB 是O 的直径,AC ,CD ,DE ,EF ,FB 都是O 的弦,且AC =CD =DE =EF =FB ,则∠AOC =__________,∠COF =__________.9.如图,已知O 中的弦AB =CD ,求证:AD =BC .能力提升10.已知O 中,劣弧2AB CD =,则弦AB 与CD 的关系是( )A.AB=2CD B.AB>2CDC.AB<2CD D.无法确定11.如图,AB,CD是O的直径,若弦DE∥AB,则弦AC与AE的大小关系为__________.12.如图,在O中弦AB=AC,AD是O的直径,试判断弦BD与CD是否相等,并说明理由.13.如图,在ABCD中,以A为圆心,以AB为半径作圆交A D于点F,交BC于点=.G,BA的延长线交A于点E,求证:EF FC14.如图,AB,CD是O的弦,OC,OD分别交AB于点E,F,且OE=OF,请你=吗?请加以说明.来猜想一下,AC BD参考答案复习巩固1.B 2.A 3.D4.C ∵弦AB 把圆周分为3∶1的两段弧,∴弦AB 所对的圆心角∠AOB =14×360°=90°.∵O A =OB ,∴△AOB 是等腰直角三角形. ∴AB =2AO =2R . 5.A6.答案不唯一,如:AB CD =,OE =OF 等. 7.80° ∵AB AC =,∴AB =AC .∴∠B =∠C =50°. ∴∠A =180°-50°-50°=80°. 8.36° 108°9.证明:∵AB =CD ,∴AB CD =∴AB BD CD BD -=-.∴AD BC =,即AD =BC .能力提升10.C 如图,2AB CD =,取AB 的中点M ,连接AM ,BM ,则AM BM CD ==.所以弦AM =BM =CD . 在△ABM 中,AM +BM >AB , 所以2CD >AB . 11.AC =AE 连接OE .∵DE ∥AB ,∴∠D =∠DOB ,∠DEO =∠EOA . ∵OD =OE ,∴∠DEO =∠D .∴∠DOB =∠EOA . 又∵∠DOB =∠AOC , ∴∠EOA =∠AOC .∴AC =AE .12.解:BD 与CD 相等.理由如下: 方法一:∵AB =AC , ∴AB AC =.∵ABD ACD =, ∴BD CD =.∴BD =CD . 方法二:如图,连接OB ,OC . ∵AB AC =,∴∠AOB =∠AOC . ∴∠BOD =∠COD .∴BD =CD . 13.证明:如图,连接AG ,∵在ABCD 中,AD ∥BC ,∴∠GAF =∠AGB ,∠B =∠EAF . 又在A 中,AB =AG ,∴∠AGB =∠B . ∴∠GAF =∠EAF . ∴EF FG =. 14.解:AC BD =.理由如下:如图,过点O 作OH ⊥AB 于点H .在△AOB 中,因为OA =OB ,HO ⊥AB , 所以∠AOH =∠BOH .在△EOF 中,因为OE =OF ,OH ⊥AB , 所以∠EOH =∠FOH .所以∠AOE =∠BOF .根据在同一个圆中,如果圆心角相等,那么它所对的弧相等,可得AC BD .。
人教版数学九年级上学期课时练习-弧、弦、圆心角(巩固篇)(人教版)
专题24.9 弧、弦、圆心角(巩固篇)(专项练习)一、单选题类型一、圆心角概念1.已知下列命题:①长度相等的两条弧所对的圆心角相等. ①直径是圆的最长的弦,也是圆的对称轴. ①平分弦的直径垂直于这条弦.①在同圆或等圆中,相等的弦所对的圆周角相等. 其中错误命题的个数为( ) A .1个B .2个C .3个D .4个2.已知①ABC 内接于①O ,若①AOB =120°,则①C 的度数是( ) A .60°B .120°C .60°或120°D .30°或150°3.如图, AB 为①O 的直径,弦CD ①AB 于点E ,连接AC ,OC ,OD ,若①A =20°,则①COD 的度数为( )A .40°B .60°C .80°D .100°类型二、圆心角与它所对弧的度数4.如图,已知△ABC 是圆O 的内接三角形,AB =AC ,①ACB =65°,点C 是弧BD 的中点,连接CD ,则①ACD 的度数是( )A .12°B .15°C .18°D .20°5.如图,扇形AOB 中,90AOB ∠=︒,半径6,OA C =是AB 的中点,//CD OA ,交AB 于点D ,则CD 的长为( )A.2B C.2D.66.如图,已知O的半径为5,弦AB,CD所对的圆心角分别是AOB∠,COD∠∠,若AOB AB=,则弦CD的长为()与COD∠互补,弦8A.6B.8C.D.5类型三、用弧、弦、圆心角关系求解⊥于点7.如图,在以AB为直径的①O中,点C为圆上的一点,2=,弦CD ABBC ACE,弦AF交CE于点H,交BC于点G,若点H是AG的中点,则CBF∠的度数为()A.18°B.21°C.22.5°D.30°8.如图,在①O中,AB是①O的直径,AB=10,AC=CD=DB,点E是点D关于AB 的对称点,M是AB上的一动点,下列结论:①①BOE=30°;①①DOB=2①CED;①DM①CE;①CM+DM的最小值是10,上述结论中正确的个数是()A .1B .2C .3D .49.如图,①O 的半径为9cm ,AB 是弦,OC ①AB 于点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,则AB 的长为( )A .B .C .D .类型四、用弧、弦、圆心角关系证明10.有一直径为AB 的圆,且圆上有C 、D 、E 、F 四点,其位置如图所示.若6AC =,8AD =,5AE =,9AF =,10AB =,则下列弧长关系何者正确?( )A .AC AD AB +=,AE AF AB += B .AC AD AB +=,AE AF AB +≠ C .AC AD AB +≠,AE AF AB +=D .AC AD AB +≠,AE AF AB +≠11.在锐角ABC 中,60ACB ∠=︒,①BAC 、①ABC 的角平分线AD 、BE 交于点M ,则下列结论中错误的是( )A .120AMB ∠=︒ B .ME MD =C .AE BD AB += D .点M 关于AC 的对称点一定在ABC 的外接圆上 12.如图,AB 、CD 分别是①O 的直径,连接BC 、BD ,如果弦DE AB ∥,且①CDE =62°,则下列结论错误的是( )A .CB ①BD B .①CBA =31°C .AC AE =D .BD =DE二、填空题类型一、圆心角概念13.在①O 中,AB 是直径,AB =2,C 是AB 上一点,D 、E 分别是AC 、BC 的中点,M 是弦DE 的中点,则CM 的取值范围是__________________.14.把一个圆分成4个扇形,它们分别占整个圆的10%,20%,30%,40%,那么这四个扇形的圆心角分别是_______.15.已知点A 、B 、C 、D 在圆O 上,且FD 切圆O 于点D ,OE CD ⊥于点E ,对于下列说法:①圆上AbB 是优弧;①圆上AbD 是优弧;①线段AC 是弦;①CAD ∠和ADF ∠都是圆周角;①COA ∠是圆心角,其中正确的说法是________.类型二、圆心角与它所对弧的度数16.如图,在以AB 为直径的半圆中,AD =EB ,CD①AB ,EF①AB ,CD=CF=1,则以AC 和BC 的长为两根的一元二次方程是________.17.已知半径为2的①O 中,弦AC=2,弦AD =①AOD =________,①COD =_________.18.如图,AB 是O 的直径,弦,CD AB ⊥连接CO 并延长交O 于点,E 连接BD 交CE于点,F 若32,DBE ∠=︒则DFE ∠的度数是________________.类型三、用弧、弦、圆心角关系求解19.如图,点A 、B 、C 、D 均在O 上,若65AOD ∠=︒,AO DC ∥,则①B 的度数为______.20.如图,点A 、B 、C 、D 、E 都是圆O 上的点,AC AE =,①B =116°,则①D 的度数为______度.21.如图,①O 的直径AB 过CD 的中点A ,若①C =30°,AB 、CD 交于点E ,连接AC 、BD ,则AEBE=________________.类型四、用弧、弦、圆心角关系证明22.如图,AB、CE是圆O的直径,且AB=4,弧BD=弧CD=弧AC,点M是AB上一动点,下列结论:正确的数是___(写出所有正确结论的序号)①BOD;①①CED=12①DM①CE;①CM+DM的最小值为4;①设OM为x,则S△OMC.23.在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧______;所对的弦__________, 所对弦的弦心距____________.24.如图,AB是①O的直径,CD是弦,若①ABC=63°,则①D的度数是__.三、解答题25.如图是半径为2的圆,(1)在其中画两个不重叠的扇形AOB和扇形BOC,使扇形AOB的圆心角为120度,扇形BOC的圆心角为90度,(2)求第三个扇形AOC的面积.26.如图,AB是①O的一条弦,OD①AB,垂足为C,交①O于点D,点E在①O上.(1)若①AOD=52°,求①DEB的度数;(2)若AB=24,CD=8,求①O的半径长.27.阅读与应用请阅读下列材料,完成相应的任务:托勒密是“地心说”的集大成者,著名的天文学家、地理学家、占星学家和光学家.后人从托勒密的书中发现一个命题:圆内接四边形对边乘积的和等于对角线的乘积.下面是对这个命题的证明过程.如图1,四边形ABCD内接于O.⋅+⋅=⋅.求证:AB DC AD BC AC BD∠=∠交BD于点E.证明:如图2,作BAE CAD①AD AD =,①ABE ACD ∠=∠.(依据) ①ABE ACD ∽△△.①AB BEAC CD=.AB DC AC BE ⋅=⋅. …①ABC AED ∽△△. ①AC BCAD ED=.①AD BC AC ED ⋅=⋅. ①AB DC AC BE ⋅=⋅,①()AB DC AD BC AC BE AC ED AC BE ED AC BD ⋅+⋅=⋅+⋅=+=⋅. ①AB DC AD BC AC BD ⋅+⋅=⋅. 任务:(1)证明过程中的“依据”是______; (2)补全证明过程;(3)如图3,O 的内接五边形ABCDE 的边长都为2,求对角线BD 的长.28.如图,在①O 中,弦AB ,CD 互相垂直,垂足为M ,F 是BD 上的一点,且BF BC =,AF分别与CD,BD相交于点E,N,连接FD,MN.(1)求证:DE=DF;(2)若①O的半径为8,①BAF=22.5°,求线段MN的长.参考答案1.D【分析】根据圆心角定理、直径的性质、垂径定理、圆周角定理逐个判断即可.解:等弧所对的圆心角相等,但长度相等的两条弧不一定是等弧,则命题①错误直径是圆的最长的弦,但不是圆的对称轴,圆的对称轴是直径所在直线,则命题①错误平分弦(非直径)的直径垂直于这条弦,则命题①错误在同圆或等圆中,相等的弦所对的圆周角相等或互补,则命题①错误综上,错误命题的个数为4个故选:D.【点拨】本题考查了圆心角定理、直径的性质、垂径定理、圆周角定理,熟记各定理是解题关键.2.C【分析】根据圆周角定理可以得出同弧所对的圆周角等于圆心角的一半,此时分两种情况进一步分析讨论即可.解:①当点C与线段AB位于圆心的两侧时,①C=12①AOB=60°;①当点C与线段AB位于同侧时,与上一种情况所得的度数互补;即此时的①C=120°.故选:C.【点拨】本题主要考查了圆周角定理的应用,熟练掌握相关概念是解题关键.3.C【分析】利用圆周角与圆心角的关系得出①COB=40°,再根据垂径定理进一步可得出①DOB=①COB,最后即可得出答案.解:①①A=20°,①①COB=2①A=40°,①CD①AB,OC=OD,①①DOB=①COB=40°,①①COD=①DOB+①COB=80°.故选:C.【点拨】本题主要考查了圆周角、圆心角与垂径定理的综合运用,熟练掌握相关概念是解题关键.4.B【分析】如图,连接AO,BO,CO,DO,由等腰三角形的性质可求①ABC=①ACB=65°,①BAC =50°,由圆周角定理可求①AOC=2①ABC=130°,①BOC=2①BAC=100°,可求①AOD=30°,即可求解.解:如图,连接AO,BO,CO,DO,①AB=AC,①ACB=65°,①①ABC=①ACB=65°,①①BAC=50°,①①AOC=2①ABC=130°,①BOC=2①BAC=100°,①点C是弧BD的中点,①BC CD,①①BOC=①COD=100°,①①AOD=30°,①①AOD=2①ACD,①①ACD=15°,故选:B.【点拨】本题主要考查了圆周角定理,熟练掌握圆周角、圆心角、弧的关系是解题的关键.5.D【分析】连接OC,延长CD交OB于点E,如图,易得①AOB、①COE、①BDE都是等腰直角三角形,然后根据等腰直角三角形的性质求出CE与DE的长,从而可得答案.解:连接OC,延长CD交OB于点E,如图,①90∠=︒,C是AB的中点,AOB①①COE=45°,①//∠=︒,AOBCD OA,90①CE①OB,①①OCE=①COE=45°,==6①BE=OB-OE=6-,①OA=OB,90AOB∠=︒,①①ABO=45°,①①BDE=①ABO=45°,①EB=ED=6--=.①CD=CE-DE=(66故选:D.【点拨】本题考查了圆心角和弧的关系、等腰直角三角形的判定和性质等知识,属于常考题型,熟练掌握等腰直角三角形的判定和性质是解此题的关键.6.A【分析】延长AO交①O于点E,连接BE,由①AOB+①BOE=①AOB+①COD知①BOE=①COD,据此可得BE=CD,在Rt①ABE中利用勾股定理求解可得.解:如图,延长AO交①O于点E,连接BE,则①AOB+①BOE=180°,又①①AOB+①COD=180°,①①BOE=①COD,①BE=CD,①AE为①O的直径,则AE=10,①①ABE=90°,;故选择:A.【点拨】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.7.D【分析】由圆周角定理可求①ACB=90°,由弧的关系得出角的关系,进而可求①ABC=30°,①CAB=60°,由直角三角形的性质可求①CAH=①ACE=30°,即可求解.解:①AB是直径,①①ACB=90°,①①ABC+①CAB=90°,①2=,BC AC①①CAB=2①ABC,①①ABC=30°,①CAB=60°,①CD①AB,①①AEC=90°,①①ACE=30°,①点H是AG的中点,①ACB=90°,①AH=CH=HG,①①CAH=①ACE=30°,①①CAF=①CBF,①①CBF=30°,故选:D.【点拨】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出①CAB 的度数是本题的关键.8.B【分析】根据AC=CD=DB和点E是点D关于AB的对称点,求出①DOB=①COD=①BOE=60°,求出①CED,即可判断①①;根据圆周角定理求出当M和A重合时①MDE=60°即可判断①;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断①.解:①AC=CD=DB,点E是点D关于AB的对称点,①BD=BE,①①DOB=①BOE=①COD=13×180°=60°,①①错误;①CED=12①COD=12×60°=30°=12①DOB,即①DOB=2①CED;①①正确;①BE的度数是60°,①AE的度数是120°,①只有当M和A重合时,①MDE=60°,①①CED=30°,①只有M和A重合时,DM①CE,①①错误;作C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM 的值最短,等于DF长,连接CD,①AC=CD=DB=AF,并且弧的度数都是60°,①①D=12×120°=60°,①CFD=12×60°=30°,①①FCD=180°-60°-30°=90°,①DF是①O的直径,即DF=AB=10,①CM+DM的最小值是10,①①正确;综上所述,正确的个数是2个.故选:B.【点拨】本题考查了圆周角定理,轴对称-最短问题等知识点,能灵活运用圆周角定理求出各个角的度数和求出M的位置是解此题的关键.9.D【分析】圆周角定理;翻折变换(折叠问题);勾股定理;垂径定理;圆心角、弧、弦的关系;连接OA,求出OC,根据勾股定理求出AC,可得结论.解:连接OA,①将劣弧AB沿弦AB折叠交于OC的中点D,①OC23=r=6(cm),OC①AB,①AC=CB=cm),①AB=2AC=cm),故选:D.【点拨】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是学会添加常用辅助线,构造直角三角形解决问题.10.B【分析】连接BD ,BF ,先求解6AC BD ==, 可得AC BD =,AC AD AB +=,再求解19,BF可得AE BF ≠, AE AF AB +≠,从而可得答案.解:连接BD ,BF ,AB 直径,10AB =,8AD =,90,6ADB BD ∴∠=︒=,6AC =,AC BD ∴=,∴AC BD =,∴AC AD AB +=,AB 直径,10AB =,9AF =,90,AFB BF ∴∠=︒=5AE =,∴AE BF ≠,∴AE AF AB +≠,所以B 符合题意,故选:B .【点拨】本题主要考查了圆中弧、弦的关系和直径所对的圆周角是直角,熟练掌握相关定理是解答本题的关键.11.D【分析】利用三角形内角和定理以及角平分线的定义求出①MAB +①MBA =60°,推出①AMB =120°,可判断A ,证明C ,E ,M ,D 四点共圆,利用圆周角定理可判断B ;在AB 上取一点T ,使得AT =AE ,利用全等三角形的性质证明BD =BT ,可判断C ;无法判断M 与①ABC 互补,可判断D.解:如图,①①ACB=60°,①①CAB+①CBA=120°,①AD,BE分别是①CAB,①CBA的角平分线,①①MAB+①MBA=12(①CAB+①CBA)=60°,①①AMB=180°-(①MAB+①MBA)=120°,故A符合题意,①①EMD=①AMB=120°,①①EMD+①ECD=180°,①C,E,M,D四点共圆,①①MCE=①MCD,① EM DM,①EM=DM,故B符合题意,四边形CEMD是O的内接四边形,60,AME ACB BMD在AB上取一点T,使得AT=AE,在①AME和①AMT中,AE ATMAE MAT AM AM,①①AME①①AMT(SAS),①①AME=①AMT=60°,EM=MT,①①BMD=①BMT=60°,MT=MD,在①BMD和①BMT中,MD MTBMD BMT BM BM,①①BMD①①BMT,①BD=BT,①AB=AT+TB=AE+BD,故C符合题意,①M,M'关于AC对称,①M=①AMC,①11802AMC CAB ACB11801802ABC=90°+12①ABC,①M与①ABC不一定互补,①点M'不一定在①ABC的外接圆上,故D不符合题意,故选D.【点拨】本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.D【分析】根据直径所对的圆周角是直角,即可判断A,根据圆周角定理可判断B选项,根据圆周角与弧的关系可判断C,根据CDE CDB∠≠∠判断D选项.解:①AB、CD分别是①O的直径,90CBD∴∠=︒,①CB①BD,故A选项正确,如图,连接BE,DE AB∥,且①CDE=62°,62BOD CDE∴∠=∠=︒,1312BCD BOD ∴∠=∠=︒, OC OB =,31CBO BCO ∴∠=∠=︒,62AOC ∴∠=︒,62CBE CDE ∠=∠=︒,31ABC ABE ∴∠=∠=︒,∴AC AE =,故B ,C 选项正确,31,90BCD CBD ∠=︒∠=︒,59BDC ∴∠=︒,62CDE ∠=︒,CDE CDB ∴∠≠∠,∴BD ≠DE ,故D 选项不正确,故选D .【点拨】本题考查了圆周角定理,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.13.1CM 【分析】如图,连接OD 、OC 、OE ,先计算出①DOC +①COE =90°,则可判断①ODE 为等腰直角三角形,所以DE OD 则OM =12DE 由C 点在弧DE 上,则0≤①COM <45°,根据三角形的性质,①COM 越大,CM 越长,当O 、M 、C 共线时CM 最小,C 在点A 或点B 时CM 最长,即OC -OM ≤CM <ME ;解:如图,连接OD 、OC ,①AB 为直径,①①AOC+①BOC=180°,①D、E分别是AC、BC的中点,①①AOD=①COD,①COE=①BOE,①①DOC+①COE=1(①AOC+①BOC)=90°,2①①ODE为等腰直角三角形,OD①DE①M是弦DE的中点,DE①OM=12①C点在弧DE上,①0≤①COM<45°,①OMC中,OM,OC的长度确定,①①COM越大,CM越长,①O、C、M共线时CM最小,C在点A或点B时CM最长;①CM≥1﹣,2当C点在A点或B点时,CM①CM的取值范围是1≤CM.【点拨】本题考查了圆心角的概念,三角形的三边关系;根据三角形的性质判断CM的长度是解题关键.14.36°,72°,108°,144°【分析】根据扇形所占的百分比乘以360°进行解答即可.解:四个扇形的圆心角分别是360°×10%=36°;360°×20%=72°;360°×30%=108°;360°×40%=144°.故答案为36°,72°,108°,144°.【点拨】考查了扇形圆心角的度数问题,注意周角的度数是360°.15.①①①①【分析】根据优弧的定义,弦的定义,圆周角的定义,圆心角的定义逐项分析判断即可解:AbB ,AbD 都是大于半圆的弧,故①①正确,,A C 在圆上,则线段AC 是弦;故①正确;,,C A D 都在圆上,∴CAD ∠是圆周角而F 点不在圆上,则ADF ∠不是圆周角故①不正确;O 是圆心,,C A 在圆上∴COA ∠是圆心角故①正确故正确的有:①①①①故答案为:①①①①【点拨】本题考查了优弧的定义,弦的定义,圆周角的定义,圆心角的定义,理解定义是解题的关键.优弧是大于半圆的弧,任意圆上两点的连线是弦,顶点在圆上,并且两边都和圆相交的角叫做圆周角,顶点在圆心,并且两边都和圆相交的角叫做圆心角.16.0152=+-x x【分析】连接OD ,OE ,因为AD =EB ,根据等弧所对的圆心角相等可得①DOC=①EOF ,因为CD①AB ,EF①AB ,所以①DCO=①EFO=90°,又因为DO==EO ,所以Rt①DOC①Rt①EOF ,所以CO=OF=12,在Rt①DOC 中,,所以,,BC=AB -,所以以AC 和BC 的长为两根的一元二次方程是(x )(x )=0,整理,得0152=+-x x . 解:连接OE ,OD ,①AD =EB ,①①DOC=①EOF ,①CD①AB ,EF①AB ,①①DCO=①EFO=90°,又①DO=EO ,①Rt①DOC①Rt①EOF , ①CO=OF=12,①在Rt①DOC 中,,AC=AO -,BC=AB - =,①以AC 和BC 的长为两根的一元二次方程是(x )(x )=0,整理,得0152=+-x x .故答案为:x 2.【点拨】本题考查圆心角定理及其推论,全等三角形的判定与性质以及根与系数的关系.此题属于开放题,注意数形结合与方程思想的应用.17. 90° 150°或30°【分析】如图,在①AOD 中,根据勾股定理的逆定理即可求出①AOD 的度数;连接OC ,易得△AOC 是等边三角形,从而可得∠AOC =60°,进一步利用角的和差即可求出①COD 的度数.解:如图,在①AOD 中,∵2222228OA OD +=+=,(228AD ==,①222OA OD AD +=,∴①AOD =90°;连接OC ,∵OA =OC =AC =2,∴△AOC 是等边三角形,∴∠AOC =60°.∴∠COD =∠AOC +∠AOD =60°+90°=150°或∠COD =∠AOD ﹣∠AOC =90°-60°=30°.故答案为:90°;150°或30°.【点拨】本题考查了圆心角、勾股定理的逆定理、等边三角形的判定与性质以及分类的数学思想,依照题意画出图形、熟练掌握相关知识是解题的关键.18.93【分析】根据圆周角定理的推论,得①DCE=32°,由CD AB⊥结合三角形外角的性质,得①BOC 的度数,从而得①BDC的度数,进而即可求解.解:①①DCE和①DBE是同弧所对的圆周角,①①DCE=①DBE=32°,①CD AB⊥,①①BOC=90°+①DCE=90°+32°=122°,①①BDC=12①BOC=12×122°=61°,①DFE∠=①DCE+①BDC=32°+61°=93°.故答案是:93°.【点拨】本题主要考查圆周角定理及其推论,三角形外角的性质,掌握“同弧或等弧所对的圆周角相等”,“同弧或等弧所对的圆周角等于圆心角的一半”,是解题的关键.19.57.5°【分析】根据平行线的性质得出①ODC=①AOD=65°,根据等腰三角形的性质和三角形内角和定理求出①ODA=①OAD=12(180°-①AOD)=57.5°,求出①ADC的度数,根据圆内接四边形的性质得出①B+①ADC=180°,再求出答案即可.解:连接AD,①①AOD=68°,AO①DC,①①ODC=①AOD=65°,①①AOD=65°,OA=OD,①①ODA=①OAD=1(180°-①AOD)=57.5°,2①①ADC=①ODA+①ODC=57.5°+65°=122.5°,①四边形ABCD是①O的内接四边形,①①B+①ADC=180°,①①B=57.5°,故答案为:57.5°.【点拨】本题考查了圆内接四边形的性质,圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质等知识点,能求出①ADC的度数是解此题的关键.20.128【分析】连接AD.首先证明①ADC=①ADE,再利用圆内接四边形的性质求出①ADC即可解决问题.解:连接AD.①AC AE,①①ADC=①ADE,①①B+①ADC=180°,①①ADC=180°-116°=64°,①①CDE=2×64°=128°,故选:128.【点拨】本题考查圆心角,弧,弦的关系,圆周角定理,圆内接四边形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.1 3【分析】根据已知条件得出①DCA=①DBA=30°,设DE=EC=x,由在直角三角形中,30°所对的直角边等于斜边的一半可以得出AE和BE的长,然后代入要求的式子进行计算即可得出答案.解:①①O的直径AB过CD的中点A,①AC=AD,①DE=EC,①AB是①O的直径,①①BED=①CEA=90°,①①C=30°,①①DCA=①DBA=30°,设DE=EC=x,①①C=30°,①AE,①①DBA=30°,①BE,①AEBE13;故答案为:13.【点拨】本题主要考查了圆心角、弧、弦的关系以及圆周角定理,掌握在直角三角形中,30°所对的直角边等于斜边的一半是解题的关键.22.①①【分析】①由BD CD =,可得①COD =①BOD ,据此根据圆周角定理即可得结论;①由点M 是直径AB 上一动点,而CE 的位置是确定的,因此DM ①CE 不一定成立,可得结论;①由题意可得点D 和点E 关于AB 对称,因此CM +DM 的最小值是在点M 和点O 重合时取到,即CE 的长;①过点C 作CN ①AO 于点N ,利用解直角三角形可求得CN ,利用三角形面积公式求解即可.解:①BD CD =,COD BOD ∴∠=∠,12CED COD ∠=∠, 12CED BOD ∴∠=∠,故①正确; ①点M 是直径AB 上一动点,而CE 确定,∴DM ①CE 不一定成立,故①错误;①BD CD AC ==,60BOE AOC COD BOD ∠=∠=∠=∠=∴︒,①CED =30°,∴DE ①AB ,∴点D 和点E 关于AB 对称,∴CM +DM 的最小值是在点M 和点O 重合时取到,即CE 的长,AB =4,∴CE =AB =4,故①正确;①连接AC ,BD CD AC ==,∴①COA =60°,则①AOC 为等边三角形,边长为2,过点C 作CN ①AO 于N ,则sin 602CN OC =⋅︒==,在①COM 中,以OM 为底,OM 边上的高为CN ,1122COM S OM CN x ∴=⋅==△,故①错误; 综上,①①正确,故答案为:①①.【点拨】本题考查了圆周角定理,最小值问题,等边三角形判定和性质,三角形面积等知识,解题的关键是灵活运用所学知识解决问题.23. 越长 越长 越短【分析】根据圆心角定理解答即可.解:在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧越长,所对的弦越长,所对弦的弦心距越短.故答案为越长;越长;越短.【点拨】本题考查了圆心角定理及其推理,解此题的关键在于熟练掌握其知识点. 24.27°【分析】根据题意易得①ACB =90°,然后根据圆的性质及直角三角形的两个锐角互余可求解. 解:①AB 是①O 的直径,①①ACB =90°,①①A =90°﹣①ABC =90°﹣63°=27°,①①D =①A =27°.故答案为27°.【点拨】本题主要考查圆的基本性质,熟练掌握圆的性质是解题的关键.25.(1)作图见分析;(2)53π 试题分析:(1)根据扇形定义及题目要求画出即可;(2)根据扇形的面积公式S=2360n rπ计算即可.解:(1)如图所示:(2)①①AOB=120°,①BOC=90°,①①AOC=150°,故S扇形AOC=2150253603ππ⨯⨯=.26.(1)26;(2)13【分析】(1)连接OB,结合OD①AB,根据垂径定理,推导得①AOD;再根据圆心角、圆周角的性质,即可得到答案;(2)结合题意,根据垂径定理性质,计算得AC;再结合OD①AB,通过勾股定理即可计算得①O的半径.解:(1)连接OB①⊥OD AB①AD BD=①52AOC BOD∠=∠=①12DEB BOD ∠=∠①26DEB∠=(2)①⊥OD AB①112412 22AC AB==⨯=设OA x =,则8OC x =-在Rt ACO 中,()222128x x =+-①13x =①O 的半径长为13.【点拨】本题考查了圆的知识;解题的关键是熟练掌握垂径定理、圆心角、圆周角、勾股定理的性质,从而完成求解.27.(1)同弧所对的圆周角相等;(2)见分析;1;【分析】(1)根据同弧所对的圆周角相等可得ABE ACD ∠=∠;(2)由BAE CAD ∠=∠可得BAC EAD ∠=∠,再由ACB ADE ∠=∠可得ABC AED ∽△△; (3)连接AD ,BE ,由2AB BC CD DE EA =====可得AB BC CD DE BA ====,进而BE AD BD ==,BE =AD =BD ,再由AB DE AE BD BE AD ⋅+⋅=⋅解方程即可;(1)解:①同弧所对的圆周角相等,AD AD =,①ABE ACD ∠=∠;故答案为:同弧所对的圆周角相等;(2)解:①BAE CAD ∠=∠,①BAE EAC CAD EAC ∠+∠=∠+∠,①BAC EAD ∠=∠,①AB AB =,①ACB ADE ∠=∠;(3)解:如图,连接AD ,BE ,①2AB BC CD DE EA =====,①AB BC CD DE BA ====,①AB AE AE ED CD CB +=+=+,①BE AD BD ==,①BE =AD =BD ,①四边形ABDE 是O 的内接四边形,①AB DE AE BD BE AD ⋅+⋅=⋅,①2AB DE EA ===,①2222BD BD ⨯+=,解得:1BD =或1BD =,①对角线BD 1;【点拨】本题考查了圆内接多边形,圆心角、弧、弦关系,相似三角形的判定和性质,一元二次方程等知识;掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解题关键.28.(1)见分析(2)【分析】(1)根据AB CD ⊥得,90AME DMB ∠=∠=︒,根据等弧或同弧所对的圆周角相等可得BDC BAF ∠=∠,DBA DFA ∠=∠,根据等角的余角相等可得AEM DBM ∠=∠,进而可得DFA DEF ∠=∠,根据等角对等边即可得证;(2)连接,,,OF OC CF AC ,根据①BAF =22.5°,证明COF 是直角三角形,勾股定理求得CF ,进而证明MN 是ECF △的中位线,即可求解.解:(1)BF BC =,BDC BAF ∴∠=∠,AB CD ⊥,90AME DMB ∴∠=∠=︒,90,90BAF AEM CDB DBM ∴∠+∠=︒∠+∠=︒,AEM DBM ∴∠=∠,AD AD =,DBA DFA ∴∠=∠,AEM DEN ∠=∠,DFA DEF ∴∠=∠,DE DF ∴=;(2)如图,连接,,,OF OC CF AC ,BF BC =,22.5CDB BDF BAF ∠=∠=∠=∴︒, 45CDF CDB BDF ∴∠=∠+∠=︒, CF CF =,290COF CDF ∴∠=∠=︒,在Rt COF △中,CF == 由(1)得,DE DF =,DEF ∴是等腰三角形, CDB BDF ∠=∠,EN FN ∴=,N ∴是EF 的中点,BF BC =,BAF BAC ∴∠=∠,AB CD ⊥,AM EC ∴⊥,EM MC ∴= ,∴12MN CF == 【点拨】本题考查了圆周角定理,同弧所对的圆周角相等,等腰三角形的性质与判定,勾股定理,三角形中位线的性质与判定,掌握以上知识是解题的关键.。
Q9 第9讲 弧、弦、角的关系(学生卷)【B4版】
第九讲弧、弦、角的关系本课是在学习了圆的半径、直径的基础上,对圆的弦、弧、圆心角等概念以及圆的对称性进行研究,用推理论证的方法研究圆周角与圆心角关系。
它在与圆有关推理、论证和计算中应用广泛,是本章重点内容之一。
★〓知识纵横〓★一、圆心角、弧、弦、弦心距之间的关系1、圆的旋转不变性:把圆绕着圆心旋转角度,都与原来的图形重合,我们把这种性质称为圆的。
则圆是以圆心为对称中心的中心对称图形。
2、圆心角:顶点在的角。
3、弦心距:从圆心到的距离叫作弦心距,弦心距可以说成是圆心到弦的垂线段的长度。
4、圆心角、弧、弦、弦心距之间的关系(即四量定理):在中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个、、或中有一组量相等,那么它们所对应的其余各组量都分别相等.5、1的弧:把顶点在圆心的周角等分成360份时,每1份的圆心角是1的角;把整个圆也被分成360份,我们把每一份这样的弧叫作的弧。
6、圆心角度数定理:圆心角的度数和它所对的弧的度数。
二、圆周角及其相关定理1、圆周角:顶点在圆上,两边和圆相交的角叫圆周角。
注意:圆周角必须具备两个特征:①顶点在圆周上;②角的两边都和圆相交。
如图:2、圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半。
圆周角定理的证明:(添加以圆周角的顶点为端点的直径为辅助线分类讨论)因为在⊙O中,同一弧所对的圆周角和圆心角的位置关系有三种情况:(1)心在圆周角的“一边上”(如图⑴)(2)圆心在圆周角的“内部”(如图⑵)(3)圆心在圆周角的“外部”(如图⑶)3、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等;推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。
★〓考点例题指导〓★考点一:圆心角、弧、弦、弦心距之间的关系的基本理解【例1】判断题:(1)相等的圆心角所对弦相等()(2)相等的弦所对的弧相等()(3)相等弦的弦心距相等()(4)同圆或等圆中,两弦相等,所对弧也相等 ( )【例2】如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠= 。
圆弧练习题
圆弧练习题一、选择题1. 圆心角为60°的弧所对的弦长是半径的多少倍?A. 1B. √3C. 2D. 32. 如果一个圆的半径为5cm,那么圆心角为45°的弧长是多少?A. 5π cmB. 2.5π cmC. 10π cmD. 7.5π cm3. 一个扇形的半径为6cm,圆心角为120°,这个扇形的面积是多少?A. 18π cm²B. 12π cm²C. 24π cm²D. 36π cm²二、填空题4. 已知扇形的弧长为10π cm,半径为5 cm,求扇形的圆心角大小,圆心角为______。
5. 如果一个圆的圆心角为150°,半径为10 cm,那么这个圆心角所对的弦长为______。
6. 一个扇形的面积为50π cm²,半径为10 cm,求这个扇形的圆心角,圆心角为______。
三、简答题7. 描述如何利用圆规和直尺绘制一个圆心角为30°的弧。
8. 解释圆心角、弧长、弦长和扇形面积之间的关系。
9. 给定一个半径为7 cm的圆,圆心角为90°,求出这个圆心角所对的扇形的面积和弧长。
四、计算题10. 一个圆的半径为8 cm,圆心角为60°,求出这个圆心角所对的扇形的弧长和面积。
11. 已知一个扇形的半径为12 cm,圆心角为40°,求出这个扇形的弧长和面积。
12. 一个圆的半径为15 cm,圆心角为120°,求出这个圆心角所对的弦长。
五、应用题13. 在一个半径为20 cm的圆形花坛周围,每隔5 cm种植一棵树,问最多可以种植多少棵树?14. 一个圆的半径为25 cm,如果在这个圆上画一个圆心角为30°的扇形,这个扇形的弧长和面积分别是多少?15. 一个圆环的内圆半径为5 cm,外圆半径为10 cm,求出这个圆环的面积。
六、证明题16. 证明:在一个圆中,如果两个弧所对的圆心角相等,则这两个弧的长度也相等。
弧、圆心角、扇形的认识 小学数学 练习题
一、选择题1. 下面图形中,涂色部分不是扇形的是()。
C.D.A.B.2. 以圆的为弧的扇形的圆心角是()。
A.120°B.90°C.60°D.30°3. 下面图形中的角是45°圆心角的是()。
A.B.C.D.4. 钟面上,9:30分针与时针所夹的角是()。
A.直角B.锐角C.钝角D.平角5. 下图中的阴影部分各占整个图形的()。
A.,B.,C.,D.,二、填空题6. 一条弧和经过这条弧两端的两条( )所围成的图形叫做扇形。
以半圆为弧的扇形的圆心角是( )度。
7. 一个扇形的圆心角是180°,它的面积是所在圆面积的( )。
8. 下图是直径6cm的圆。
其中阴影扇形的半径是( )厘米,圆心角是( )度,弧AB长( ) cm。
9. 如果黄瓜种植面积占总种植面积的40%,在扇形统计图上,表示黄瓜种植面积的扇形圆心角的度数是( )。
10. 同一个圆中,扇形的大小决定于( )的大小。
三、解答题11. 如图,在时钟的表盘上任意作9个120°的扇形,使得每一个扇形都恰好覆盖4个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到3个扇形,恰好覆盖整个表盘上的数。
并举一个反例说明,作8个扇形将不能保证上述结论成立。
12. 如图分别以长方形、平行四边形、梯形的四个顶点为圆心,画半径为1厘米的圆。
求每个图形中阴影部分的面积。
(取3.14)(1)笑笑直接写出:3.14×12=3.14(平方厘米),求出了每个图形中阴影部分的面积都是3.14平方厘米。
(2)你能理解笑笑的做法吗?并用学过的数学知识解释她这样算的道理。
(3)请你计算下面左图中阴影部分的面积、右图中阴影部分的周长。
(4)反思:解决这些问题你有什么感悟?写出来分享给大家。
13. 画一个直径为3厘米的圆,标出圆心、半径,并求出这个圆中圆心角是120°的扇形弧长。
14. 按要求作图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弧、弦、圆心角的关系同步练习
一、填空题:
1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的
度数是________.
D
C
B
A
O
(1) (2) (3)
2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中
有_________对全等三角形;________对相似比不等于1的相似三角形.
3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.
4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度
.
B
A
A
(4) (5) (6)
5.如图5,AB是⊙O的直径,BC BD
,∠A=25°,则∠BOD的度数为________.
6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.
二、选择题:
7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )
A.50°
B.100°
C.130°
D.200°
D D
C
B
A
(7) (8) (9) (10)
8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,
相等的角有( )
A.2对
B.3对
C.4对
D.5对
9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°
11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°
12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°
1.同圆中两弦长分别为x 1和x 2它们所对的圆心角相等,那么( )
A .x 1 >x 2
B .x 1 <x 2 C. x 1 =x 2 D .不能确定
2.下列说法正确的有( )
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等;④经过圆心的每一条直线都是圆的对称轴
A .1个
B .2个
C .3个
D .4个
3.在⊙O 中同弦所对的圆周角( )
A .相等
B .互补
C .相等或互补
D .以上都不对
4.如图所示,如果的⊙O 半径为2
弦AB= AB 的距离OE 为( )
A
. 1 B . C .
1
2
D 5.如图所示,⊙O 的半径为5,弧AB 所对的圆心角为120°,则弦AB 的长为( ) A .
B C .
8 D . 6.如图所示,正方形ABCD 内接于⊙O 中,P 是弧AD 上任意一点,则∠ABP+∠DCP 等于( ) A .90° B 。
45 ° C 。
60° D 。
30°
第 6 题图
第 5 题图
第 4 题图
一、填空题
7.一条弦恰好等于圆的半径,则这条弦所对的圆心角为________
8.如图所示,已知AB 、CD 是⊙O 的两条直径,弦DE ∥AB , ∠DOE=70°则∠BOD=___________
9.如图所示,在△ABC 中,∠ACB=90°,∠B=25°,以C 为圆心,CA 为半径的圆交AB 于点D ,则∠ACD=___________
第 9 题图
第 8 题图
B
B
10.D 、C 是以AB 为直径的半圆弧上两点,若弧BC 所对的圆周角为25°弧AD 所对的圆周角为35°,则弧DC 所对的圆周角为_____ 度
11.如图所示,在⊙O 中,A 、B 、C 三点在圆上,且∠CBD=60,那么∠AOC=__________ 12.如图所示,CD 是圆的直径,O 是圆心,E 是圆上一点且
∠EOD=45°,A 是DC 延长线上一点,AE 交圆于B ,如果AB=OC ,则∠EAD= ____________
第12题图
第11题图
D
三、解答题:
13.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长
.
B
A
5、如图,已知AB和DE是⊙O的两条弦,且AB∥DE,C为弧DE上一点,弧CD=弧BD,连结AC 交DE于P,连结OP。
(1)求证:弧AC=弧DE;(2)求证:OP平分∠APD.
6、如图,已知AB为⊙O的直径,D、C为⊙O上两点,弧AD=弧DC,连结AC。
过点D作DE⊥OB
于E。
求证:DE=
2
1
AC
B
7、如图,已知四边形ABCD的顶点都在⊙O上,AB∥DC,弧AB+
AB=4,DC=6。
(1)求证:弧AD=弧BC;(2)求四边形ABCD的面积。
15.如图所示,△ABC为圆内接三角形,AB>AC,∠A的平分线AD交圆于D,作DE⊥AB于E,DF⊥AC于F,求证:BE=CF
B
16.如图所示,在△ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°
(1)求证△BDE是等边三角形;
(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
答案:
1.120°
2.3 1
3.160°
4.44°
5.50°
6.
7.A
8.C
9.B 10.C 11.B 12.C
13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.
14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.
∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2
.
15.连接BD,则∴AB是直径,∴∠ADB=90°.
∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CD PB AB
=.
在Rt△PBD中,cos∠BPD=PD CD
PB AB
==
3
4
,
设PD=3x,PB=4x,
则
=,
∴tan∠BPD=BD
PD
==.
16.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,
∴BC BD
=,∴∠COB= ∠DOB.
∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.
(2)∠CP′D+∠COB=180°.
理由如下:连接P′P,
则∠P′CD=∠P′PD,∠P′PC=∠P′DC.
D
∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.
∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,
从而∠CP′D+∠COB=180°.
17.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不
大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.
18.。