人教新课标版数学高二-数学选修1-2模块综合检测(A)

合集下载

高中数学(人教版选修1-2)模块综合检测模块综合检测(一~二) Word版含答案

高中数学(人教版选修1-2)模块综合检测模块综合检测(一~二) Word版含答案

模块综合检测(一)(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分).(新课标全国卷Ⅱ)设复数,在复平面内的对应点关于虚轴对称,=+,则=()..-.--.-+解析:选由题意可知=-+,所以=(+)·(-+)=-=-..下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是().梯形.三角形.平行四边形.矩形解析:选只有平行四边形与平行六面体较为接近..实数的结构图如图所示,其中三个方格中的内容分别为().有理数、零、整数.有理数、整数、零.零、有理数、整数.整数、有理数、零解析:选由实数的包含关系知正确..已知数列,+,++,+++,…,则数列的第项是().+++…+.-++…+-.-++…+.-++…+-解析:选利用归纳推理可知,第项中第一个数为-,且第项中有项,次数连续,故第项为-++…+-..下列推理正确的是().如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖.因为>,>,所以->-.若,均为正实数,则+≥· ).若为正实数,<,则+=-+≤-=-解析:选中推理形式错误,故错;中,关系不确定,故错;中,正负不确定,故错..已知复数=+,=-.若为实数,则实数的值为().-.-解析:选===.∵为实数,∴+=,∴=-..观察下列等式:(+)=×(+)(+)=××(+)(+)(+)=×××…照此规律,第个等式为().(+)(+)…(+)=×××…×(-).(+)(+)…(+++)=×××…×(-).(+)(+)…(+)=×××…×(+).(+)(+)…(++)=+×××…×(-)解析:选观察规律,等号左侧为(+)(+)…(+),等号右侧分两部分,一部分是,另一部分是××…×(-)..观察下列各式:===,…,则的末四位数字为()....解析:选∵===,===,…,∴(∈,且≥)的末四位数字呈周期性变化,且最小正周期为.记(∈,且≥)的末四位数为(),则( )=(×+)=(),∴与的末四位数相同,均为 ..(重庆高考)执行如图所示的程序框图,则输出的的值是()。

高二数学人教A版选修1-2试题和答案

高二数学人教A版选修1-2试题和答案

模块综合测评(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知复数z1=2+i,z2=1+3i,则复数z=在复平面内所对应的点位于() 第二象限A.第一象限B.第二象限C.第三象限D.第四象限第四象限解析:复数z=i, z对应的点的坐标为位于第四象限.答案:D 2.等于() A. B.C. D.1 解析:∵i, ∴.答案:B 3.下列说法错误的是() 球的体积与它的半径具有相关关系A.球的体积与它的半径具有相关关系B.计算误差、测量误差都将影响到残差的大小计算误差、测量误差都将影响到残差的大小C.在回归分析中R2的值越接近于1,说明拟合效果越好说明拟合效果越好D.在独立性检验中,K2的观测值k越大,说明确定两个分类变量有关系的把握越大说明确定两个分类变量有关系的把握越大 解析:A中球的体积与球的半径是函数关系,不是相关关系.B,C,D都正确.答案:A 4.在△ABC中,=a,=b,且a·b>0,则△ABC是() 锐角三角形A.锐角三角形B.直角三角形直角三角形C.钝角三角形钝角三角形D.等腰直角三角形等腰直角三角形cos(ππ-∠ABC)>0, 解析:由于a·b>0,即|a||b|cos(即cos∠ABC<0.又∵0<∠ABC<π, ∴∠ABC是钝角.∴△ABC是钝角三角形.答案:C 5.设回归方程=7-3x,当变量x增加两个单位时() 个单位A.y平均增加3个单位B.y平均减少3个单位个单位C.y平均增加6个单位个单位D.y平均减少6个单位个单位解析:由回归方程可知,y与x是负相关,x每增加2个单位,y平均减少6个单位.答案:D 6.在如图所示的程序框图中,输入a=,b=,则输出c=() A. B.C.1D.0 故输出c=|tan 解析:由程序框图知,当输入a=,b=时,tan a=-,tan b=-,则tan a>tan b.故输出a|=.答案:A 7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为() A.10B.14 C.13D.100 解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为=91,故第100个数为14答案:B 8.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体S-ABC 的体积为V,则r=() A.B.C.D.解析:设四面体S-ABC的内切球球心为O,那么由V S-ABC=V O-ABC+V O-SAB+V O-SAC+V O-SBC, 即V=S1r+S2r+S3r+S4r, 可得r=.答案:C 9.等于() A.2i B.-1+i C.1+i D.-1 解析:∵=i, ∴=i2014=(i2)1007=-1.答案:D 10.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β其中正确命题的序号是() ②④A.①③B.②④C.①④D.②③②③解析:由α∥β,m⊂α,n⊂β⇒m∥n或m,n异面, ∴②错;由m∥n,m∥α⇒n∥α或n⊂α, ∴③错.故选C.答案:C 11.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不等于() A.f(1)+2f(1)+…+nf(1) B.fC.n(n+1) D.n(n+1)f(1) 解析:由f(x+y)=f(x)+f(y)且f(1)=2,知f(2)=f(1)+f(1)=2f(1),f(3)=f(2)+f(1)=3f(1),…,f(n)=nf(1), ∴f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1)=n(n+1).答案:D 12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件,在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为() A.15B.16C.17D.18 解析:方法一:若AB之间不相互调动, 则A调出10件给D,B调出5件给C,C再调出1件给D,即可满足调动要求,此时共调动的件次n=10+5+1=16; 若AB之间相互调动,则B调动4件给C,调动1件给A,A调动11件给D,此时共调动的件次n=4+1+11=16.所以最少调动的件次为16,故应选B. 方法二:设A调动x件给D(0≤x≤10),则调动了(10-x)件给B,从B调动了5+10-x=(15-x)件给C,C调动出了15-x-4=(11-x)件给D,由此满足调动需求,此时调动件次n=x+(10-x)+(15-x)+(11-x)=36-2x,当且仅当x=10时,n取得最小值16,故应选B.答案:B 二、填空题(本大题共4小题,每小题4分,共16分) 13.已知复数z=(m∈R,i是虚数单位)是纯虚数,则m的值是的值是 .解析:z=, ∴=0,且≠0.∴m=-1答案:-1 14.按如图所示的程序框图运算,若输入x=8,则输出k=.解析:输入x=8时,k=0, 第一次循环,x=2×8+1=17,k=1,x<115; 第二次循环,x=2×17+1=35,k=2,x<115; 第三次循环,x=2×35+1=71,k=3,x<115; 第四次循环,x=2×71+1=143,k=4,x>115, 输出x=143,k=4.答案:4 15.观察下列式子1+,1+,1+,…,则可归纳出则可归纳出 .解析:根据三个式子的规律特点进行归纳可知,1++…+(n∈N*).答案:1++…+(n∈N*) 16.已知x,y取值如下表:x0 1 4 5 6 8 y 1.3 1.8 5.6 6.1 7.4 9.3 从所得的数点图分析可知,y 与x 线性相关,且=0.95x+,则的值为的值为 . 解析:×(0+1+4+5+6+8)=4, ×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25, 又=0.95x+必过样本中心点(),即(4,5.25),于是有5.25=0.95×4+a ,解得a=1.45.答案:1.45 三、解答题(本大题共6小题,共74分) 17.(12分)调查某桑场采桑员和患桑毛虫皮炎病的情况,结果如下表:采桑采桑 不采桑不采桑 总计总计患者人数患者人数 18 12 健康人数健康人数 5 78 总计总计利用独立性检验估计“患桑毛虫皮炎病与采桑”是否有关,并求出认为两者有关系犯错误的概率是多少. (注:K 2=,其中n=a+b+c+d.P (K 2≥k ) 0.005 0.001 k7.879 10.828 ) 解:因为a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113, 所以K 2的观测值k==≈39.6>10.828.所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系,认为两者有关系会犯错误的概率是0.1%.18.(12分)已知x 2-(3-2i)x-6i =0,i 为虚数单位. (1)若x ∈R ,求x 的值; (2)若x ∈C ,求x 的值.分析:(1)利用复数相等的充要条件可直接求解;(2)中要求x 的值,就应先设出x 的代数形式再利用复数相等的充要条件求解. 解:(1)当x ∈R 时,由已知方程, 得(x 2-3x )+(2x-6)i =0, 则解得x=3.(2)当x∈C时,设x=a+b i(a,b∈R),将其代入已知方程, 整理,得(a2-b2-3a-2b)+(2ab-3b+2a-6)i=0.则解得故x=-2i或x=3.19.(12分)已知△ABC的三边长为a,b,c,且其中任意两边长均不相等.若成等差数列.(1)比较的大小,并证明你的结论; (2)求证角B不可能是钝角.(1)解:大小关系为.证明如下: 要证,只需证∵a,b,c>0,∴只需证b2<ac.∵成等差数列, ∴≥2.∴b2≤ac.又△ABC的任意两边长均不相等,即a,b,c任意两数不相等,∴b 2<ac成立故所得大小关系正确,即.(2)证明:假设角B是钝角,则cos B<0, 而cos B=>0.这与cos B<0矛盾,故假设不成立, 即角B不可能是钝角.20.(12分)已知f(x)=,且f(1)=log162,f(-2)=1.(1)求函数f(x)的表达式; (2)已知数列{x n}的项满足x n=[1-f(1)]·(1)]·[1[1-f(2)]·…·[1-f(n)],试求x1,x2,x3,x4; (3)猜想{x n}的通项.解:(1)把f(1)=log162=,f(-2)=1代入f(x)=,得整理,得解得所以f(x)=(x≠-1).(2)x1=1-f(1)=1-, x2=, x3=, x4=(3)由(2),得x1=,x2=,x3=,x4=,可变形为,…,从而可归纳出{x n}的通项x n=.21.(12分)某市公交车票价按下列规则定价:(1)5公里以内(包括5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知相邻两个公共汽车站之间相距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x公里所用的票价,画出程序框图.解:依题意得,某人坐车x公里所用的票价y=程序框图如下: 22.(14分)设△ABC的两个内角A,B所对的边分别为a,b,复数z1=a+b i,z2=cos A+icos B,若复数z1·z2为纯虚数,试判断△ABC的形状,并说明理由.解:△ABC为等腰三角形或直角三角形.理由:∵z1=a+b i,z2=cos A+icos B, ∴z1z2=(a cos A-b cos B)+i(a cos B+b cos A).又∵z1z2为纯虚数, ∴由①及正弦定理, 得sin A cos A=sin B cos B, 即sin 2A=sin 2B.∵A,B为△ABC的内角, ∴0<2A<2π,0<2B<2π,且2A+2B<2π∴2A=2B或2A=π-2B, 即A=B或A+B=, 也就是A=B或C=.由②及正弦定理,得sin A cos B+sin B cos A≠0, 即sin(A+B)≠0∵A,B是△ABC的内角, ∴0<A+B<π.∴sin(A+B)≠0成立.综上所述,知A=B或C=.∴△ABC为等腰三角形或直角三角形.。

高中数学人教A版高二选修1-2创新应用模块综合检测 含解析

高中数学人教A版高二选修1-2创新应用模块综合检测 含解析

高中数学人教A 版高二选修1-2创新应用模块综合检测 含解析模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i2.已知复数z 1=2+i ,z 2=1+3i ,则复数z =z 1z 2在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a >b ”,应假设( ) A .a >b B .a <b C .a =b D .a ≤b4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为( )A .②①③B .③①②C .①②③D .②③①5.若P =a +a +7,Q =a +3+a +4,a ≥0,则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定6.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在如图所示的程序框图中,输入a =11π6,b =5π3,则输出c =( )A.33B. 3 C .1 D .0 8.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为( ) A .10 B .14 C .13 D .1009.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +ax n ≥n +1,则a 的值为( )A .2nB .n 2C .22(n-1)D .n n10.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2类比得到复数z 的性质|z 2|=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R )有两个不同实数根的条件是b 2-4ac >0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根的条件是b 2-4ac >0;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④11.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎣⎡⎦⎤n (n +1)2C .n (n +1)D .n (n +1)f (1)12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A ,B ,C ,D 四个维修点某种配件各50件,在使用前发现需将A ,B ,C ,D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( )A .15B .16C .17D .18二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知复数z =m +i1+i (m ∈R ,i 是虚数单位)是纯虚数,则m 的值是________.14.已知x ,y 的取值如表:由表格中数据的散点图分析,y 与x 线性相关,且回归方程为y =0.95x +a ,则a =________.15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.16.观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明证明过程或演算步骤) 17.(本小题10分)已知复数z 满足|z |=2,z 2的虚部为2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平方内对应的点分别为A ,B ,C ,求△ABC 的面积.18.(本小题12分)小流域综合治理可以有三个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土.生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种,地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.用结构图把“小流域综合治理”的措施与功能表示出来.19.(本小题12分)为研究大气污染与人的呼吸系统疾病是否无关,对重污染地区和轻污染地区作跟踪调查,得如下数据:20.(本小题12分)求证:对于任意的正实数a ,b ,c ,31a +1b +1c ≤a +b +c 3(当且仅当a =b =c 时取等号).21.(本小题12分)已知f (x )=bx +1(ax +1)2⎝⎛⎭⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1. (1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =[1-f (1)]·[1-f (2)]·…·[1-f (n )],试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项.22.(本小题12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?答案1.解析:选C 因为(z -1)i =1+i ,所以z =1+ii+1=2-i.2.解析:选D 复数z =z 1z 2=2+i 1+3i =(2+i )(1-3i )(1+3i )(1-3i )=12-12i ,z 对应的点的坐标为⎝⎛⎭⎫12,-12位于第四象限. 3.解析:选D 因为“a >b ”的反面就是“a <b 或a =b ”,所以选D. 4.解析:选D 由“三段论”的推理形式可知D 正确.5.解析:选C P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, 由于a 2+7a <a 2+7a +12, 所以2a 2+7a <2a 2+7a +12, 从而P 2<Q 2,即P <Q .6.解析:选B 由题可知若x 0=x ,y 0=y ,由回归直线的性质可知(x 0,y 0)满足回归方程y ^=b ^x +a ^,但满足回归方程y ^=b ^x +a ^的除(x ,y )外,可能还有其他样本点.7.解析:选A 由程序框图知,当输入a =11π6,b =5π3时,tan a =-33,tan b =-3,则tan a >tan b .故输出c =|tan a |=33. 8.解析:选B 由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为13(1+13)2=91,故第100个数为14.9.解析:选D 由归纳推理,知a =n n .10.解析:选C 因为复数z 中,|z |2为实数,z 2不一定为实数,所以|z |2≠z 2,故②错;当方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根时,应设出复数根的表达式,利用复数相等的条件列关系式,故③错.11.解析:选D 由f (x +y )=f (x )+f (y )且f (1)=2,知f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1),∴f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1)=n (n +1).12.解析:选B 法一:若AB 之间不相互调动,则A 调出10件给D ,B 调出5件给C ,C 再调出1件给D ,即可满足调动要求,此时共调动的件次n =10+5+1=16;若AB 之间相互调动,则B 调动4件给C ,调动1件给A ,A 调动11件给D ,此时共调动的件次n =4+1+11=16.所以最少调动的件次为16,故应选B.法二:设A 调动x 件给D (0≤x ≤10),则调动了(10-x )件给B ,从B 调动了5+10-x =(15-x )件给C ,C 调动出了15-x -4=(11-x )件给D ,由此满足调动需求,此时调动件次n =x +(10-x )+(15-x )+(11-x )=36-2x ,当且仅当x =10时,n 取得最小值16.13.解析:z = m +i 1+i =(m +i )(1-i )2=m +12+(1-m )i2,∴m +12=0,且1-m2≠0. ∴m =-1. 答案:-114.解析:因为(x ,y )必在直线y ^=0.95x +a 上,又x =0+1+3+44=2,y =2.2+4.3+4.8+6.74=92,所以92=0.95×2+a ,所以a =2.6.答案:2.6 15.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 24=S 21+S 22+S 23.答案:S 24=S 21+S 22+S 2316.解析:通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).答案:43n (n +1)17.解:(1)设z =a +b i(a ,b ∈R ),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2abi , 所以2ab =2.所以a =b =1或a =b =-1, 即z =-1+i 或z =-1-i .(2)当z =1+i 时,z 2=(1+i )=2i ,z -z 2-1-i ,所以点A (1,1),B (0,2),C (1,-1),所以S △ABC =12|AC |×1=12×2×1=1; 当z =-1-i 时,z 2=(-1-i )2=2i ,z -z 2=-1-3i. 所以点A (-1,-1),B (0,2),C (-1,-3), 所以S △ABC =12|AC |×1=12×2×1=1.即△ABC 的面积为1. 18.解:19.解:假设H 0:大气污染与人的呼吸系统疾病无关. 由公式得k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500≈72.636.因为72.636>10.828,所以拒绝H 0,即我们在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关. 20.证明:对于任意正实数a ,b ,c , 要证31a +1b +1c ≤a +b +c 3成立,只需证9≤(a +b +c )⎝⎛⎭⎫1a +1b +1c , 即证9≤3+a b +a c +b a +b c +c a +c b ,即证6≤⎝⎛⎭⎫a b +b a +⎝⎛⎭⎫a c +c a +⎝⎛⎭⎫b c +c b (*) 因为对于任意正实数a ,b ,c , 有a b +b a≥2a b ·ba=2, 同理a c +c a ≥2,b c +cb≥2,所以不等式(*)成立,且要使(*)的等号成立必须b a =a b 且c a =a c 且b c =c b .即当且仅当a =b =c 时等号成立.21.解:(1)把f (1)=log 162=14,f (-2)=1代入f (x )=bx +1(ax +1)2,得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,整理,得⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1, 解得⎩⎪⎨⎪⎧a =1,b =0,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=34×⎝⎛⎭⎫1-19=23, x 3=23×⎝⎛⎭⎫1-116=58, x 4=58×⎝⎛⎭⎫1-125=35, (3)由(2),得x 1=34,x 2=23,x 3=58,x 4=35,可变形为34,46,58,610,…,从而可归纳出{x n }的通项x n =n +22(n +1).22.解:(1)设事件A 表示“选取的2组数据恰好是不相邻2天的数据”,则A 表示“选取的数据恰好是相邻2天的数据”.基本事件总数为10,事件A 包含的基本事件数为4. 所以P (A )=410=25,所以P (A )=1-P (A )=35.(2)x =12,y =27,∑i =13x i y i =977,∑i =13x 2i =434,所以b ^=∑i =13x i y i -3x -y-∑i =13x 2i -3x -2=977-3×12×27434-3×122=2.5,a ^=y -b ^x -=27-2.5×12=-3, 所以y ^=2.5x -3.(3)由(2)知:当x =10时,y ^=22,误差不超过2颗; 当x =8时,y ^=17,误差不超过2颗. 故所求得的线性回归方程是可靠的.。

人教版试题试卷选修1模块综合检测题A 测试 1

人教版试题试卷选修1模块综合检测题A 测试 1

模块综合测试题检测A一、选择题:(25个题,每题2分)1.下列说法不正确的是A.果胶的存在会影响出汁率,还会使果汁浑浊B.果胶可被果胶酶分解成半乳糖醛酸C.果胶是多糖类化合物D.果胶酶只是一种酶2.有一灌用用葡萄糖液培养的酵母菌,由于混入氧气,酵母菌就有了两种呼吸类型.假使全部酵母菌都在分解葡萄糖,且两种呼吸消耗葡萄糖的速度相等.当灌内产生的CO2与酒精的mol 数之比为2:1时,有多少酵母菌在进行有氧呼吸A.1/2B.1/3C.1/4D.1/53.在消毒不彻底的密封肉类罐头中,肉毒杆菌能够迅速繁殖并产生大量的毒素,肉毒杆菌的代谢类型为A.自养需氧型B.自养厌氧型C.异养需氧型D.异养厌氧型4.研究认为,用固定化酶技术处理污染物是很有前途的。

如将从大肠杆菌得到的磷酸三酯酶固定到尼龙膜上制成制剂,可用于降解残留在土壤中的有机磷农药,与用微生物降解相比,其作用不需要适宜的A.温度 B.pH C.水分D.营养5.发酵工程的第一个重要工作是选择优良的单一纯种。

消灭杂菌,获得纯种的方法包括A.根据微生物对碳源需要的差别,使用含不同碳源的培养基B.根据微生物缺乏生长因子的种类,在培养基中增减不同的生长因子C.根据微生物遗传组成的差异,在培养基中加入不同比例的核酸D.根据微生物对抗菌素敏感性的差异,在培养基中加入不同的抗菌素6.所有细菌都具有的特征是A.都是异养生物B.仅在有水条件下繁殖C.仅在有氧条件下生长D.生存温度都超过80℃7.下面关于植物细胞工程的叙述,正确的是()A.叶肉细胞脱分化后可形成无定形状态的薄壁细胞B.叶肉细胞经再分化过程可形成愈伤组织C.融合植物叶肉细胞时,应先去掉细胞膜D.植物体的任何一个体细胞经离体培养都能表现出全能性8.下列关于细胞工程的叙述中,错误的是()A.植物细胞融合必须先制备原生质体B.试管婴儿技术包括人工授精和胚胎移植两方面C.经细胞核移植培育出的新个体只具有一个亲本的遗传性状D.用于培养的植物器官或组织属于外植体9.人工种子是指植物离体培养中产生的胚状体,包裹在含有养分和具有保护功能的物质中,并在适宜的条件下能够发芽出苗的颗粒体。

人教A版高二数学选修1-2综合测试题带答案解析2套.doc

人教A版高二数学选修1-2综合测试题带答案解析2套.doc

最新人教A版高二数学选修1-2综合测试题带答案解析2套模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给岀的四个选项中,只冇一项是符合题目要求的・)1.设i为虚数单位,则复数(1+址=()A.0 B・ 2C. 2iD. 2 + 2i【解析】(1 + i)2 = 1 + 2i + i2 = 2i.【答案】C2•根据二分法求方程?-2=0的根得到的程序框图町称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图・【答案】B3.利用独立性检测来考查两个分类变量X, 丫是否冇关系,当随机变量K?的值()A.越大,“X与丫有关系”成立的可能性越大B.越大,“X与丫有关系”成立的可能性越小C.越小,“X与丫有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K?的意义可知,K?越大,说明X与y有关系的可能性越大.【答案】A4.用反证法证明命题“a, bGN,如果必可被5整除”,那么d, b至少冇一个能被5 整除.则假设的内容是()A.a, b都能被5整除B.ci, b都不能被5整除C・a不能被5整除D. a, b右一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”石攵应假设“Q力都不能被5整除”.【答案】B5.有一段演绎推理是这样的“有些右理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断・此题的推理不符合上述特征,故选C.【答案】C6.设i是虚数单位,如果复数尖的实部与虚部相等,那么实数Q的值为()1 1A3 B・一亍C・3 D・—3【解析】貯二2— 1 ;(° + 2)1,由题意知2— 1二Q +2 ,解得Q =3.【答案】C7.在两个变量的回归分析中,作散点图是为了()A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型•【答案】C8.给出下而类比推理:①“若2a<2b9贝lj a<b v类比推出“若a2<b29贝lj a<b";②“(a + b)c=Qc+bc(cHO)” 类比推出“厲也=E+°(cHO)” ;C C C③“a, bWR,若a—b = O,则a=b”类比推出“a, b^C,若a~b=O f贝a=b v;④“°, /)GR,若Q —b>0,贝类比推岀"ci, bWC,若a~b>O f则a>b(C为复数其中结论正确的个数为()【解析】 第一次循环S=2 , /; = 2 ,第二次循环S=6Z H = 3 ,第三次循环S = 2 ,n = 4f 弟四次循环S - 18 , n = 5 ,弟五次循环5 = 14 , A ? = 6 ,弟7X 次循环S 二78 , /? = 7 ,需满足S2K , 此时输出//= 7 ,所以18VKW78 ,所以整数K 的最大值为7&【答案】C10. 已知 Q1=3, Q2 = 6, A a n+2=a n+\—a n ,则的3 为( ) B. —3C- 6[角军析] Q1 = 3 , Q2 = 6 ,幺3 = Q2 ・ Q ] = 3 ,幺4 = 03 ・ ^2 二・ 3 , ^5 = ^4 ・ ^3 = ~ 6 , <26 = ^5■ 04 = ■ 3 ,= 3 卩= 07 ■= 6观察可知仏}是周期为6的周期数列,故的3 = 03 = 3.A. 1B. 2C. 3D. 4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B. 【答案】B9. 执行如图1所示的程序框图,若输出的〃 =7,则输入的整数K 的最大值是()A. 18B. 50 C- 78D. 306A. 311.下列推理合理的是()A.fix)是增函数,则f (x)>0B・因为ci>b(a, bWR),贝U+2i>6+2i(i是虚数单位)C.g ”是锐角AMC的两个内角,贝ijsiz>cos"D.%是三角形/EC的内角,若cos/f>0,则此三角形为锐角三角形【解析】A不正确,若/(工)是增函数,则f (x)^0 ;B不正确・复数不能比较大小;C7C正确,•/«+/?> 2 ,兀、a > 2 - sin a > cos “ ; D 不正确,只有cos A> 0 , cos B> 0 , cos C> 0 ,才能说明此三角形为锐角三角形・【答案】C12.有人收集了春节期间平均气温X与某取暖商品销售额尹的有关数据如下表:A A根据以上数据,用线性冋归的方法,求得销售额y与平均气温X之间线性冋归方^.y=bxA A+a的系数-2.4,则预测平均气温为一8°C时该商品销售额为()A. 34.6万元B. 35.6万元C. 36.6万元D. 37.6万元-.,- —_2-3-5_6【角牛析】x = 彳=■ 4 ,—20 + 23 + 27 + 30y = 4 =25”所以这组数据的样本中心点是(・4,25)・A因为b 二-2.4 ,把样本中心点代入线性回归方程得>15.4 ,所以线性回归方程为彳二-2.4X+15.4.当x =・8时,y = 346故选A.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上・)13. ___________________________________________________________ 已知复数z=m2( 1 + i)—m(m + i)(mR),若z是实数,则加的值为_____________________________ ・【解析1 z二〃,+加2).加2 . 〃打二(加2 . m y x ,m - m = 0 ,・•・加=0或1.【答案】0或114.心理学家分析发现视觉和空间想彖能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校屮按分层抽样的方法抽取50名同学(男30女20),给所有同学儿何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)几何题代数题总计男同学22830女同学81220总计302050根拯上述数据,推断视觉和空间想象能力与性别有关系,则这种推断犯错误的概率不超过 .附表:P 艮2k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828【解析】由列联表计算疋的观测值50X(22X 12 - 8X8)2〜5.556 >5.02430X20X20X30・•・推断犯错误的概率不超过0.025.【答案】0.02515.二维空间屮圆的一维测度(周长)/=2血,二维测度(面积)S=十,观察发现s,=1;三维空间小球的二维测度(表面积)S=4兀三维测度(体积)7=兑/,观察发现厂=S.则四维空间屮“超球”的四维测度W=2nr\猜想其三维测度V= _______________ .【解析】由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论•“超球”的三维测度是四维测度的导函数,即V=旷二(2兀/)' =8兀尸3.【答案】如彳16.已知等差数列{如中,右5十常•+20/十2事•+30,贝恠等比数列©}中, 会有类似的结论【解析】 由寺比数列的性质可知/ b\hyo - /?2^29 =…=伤]/?20 /"Q®ibi2・・・b20 =先如仇…加).【答案】 1守如1伤2・・・仇0 =彳躺血…加)三、解答题(木大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤•)l+i ・ 4i + 4 + 2 + 4i 7 + i z=3+4i =3+4i z・・・|z| =18.(木小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学 习部•请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19・(本小题满分12分)给岀如下列联表:由以上数拯判断高血压与患心肌病之间在多大程度上有关系?(参考数据:卩(疋26.635) = 0.010, P (^2>7.879) = 0.005) 【解】 由列联表中数据可得110X (20X50 ・ 10X30)2k = ------- ------------------- —^7 48630X80X50X60又卩(疋26.635)二 0.010 ,17. (本小题满分 10分)设(l —4i)(l+i) + 2+4i3+4i,求|z|.【解】所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系・20.(本小题满分12分)已知非零实数a, b, c构成公差不为0的等差数列,求证:十,丄不能构成等差数列.【证明】假设+ /1, +能构成等差数列,则| = ~ + |,因此b(a + c) = lac.而由于a , h , c构成等差数列,且公差,可得2b = a^c f:.(a + c)2 = 4ac ,即(a - c)1 2 3 = 0 ,于是得a-b-c ,这与a ,h ,c构成公差不为0的等差数列矛盾・故假设不成立,即+不能构成等差数列・21.(本小题满分12分)已知a2 + b2=i f x2+y2=i f求证:分别用综合法、分析法证明).【证明】综合法:•・・2axW/+x2,2/?yW Z)2+b ,・・・ 2(ax + + b2) + (x2 +/)・又•.•/ + 护=1 , x2 = 1 ,/. 2(ax + by)W2 , ax + byW 1.分析法:要证ax + byW 1成立,只要证1・(ax +切20 ,只要证2 - 2ax - 2by$0 ,又•・• / + 护二1 t x1 +y2= I ,・°・只要证cr + A2 + x2 +y2 ・2ax - 2byM0 ,即证(a - x)2 + (b - y)2^0 ,显然成立・22.(木小题满分12分)某班5名学生的数学和物理成绩如下表:1 画出散点图;2 求物理成绩y对数学成绩x的冋归直线方程;3 —名学生的数学成绩是96,试预测他的物理成绩.附:回归直线的斜率和截距的最小二乘法估计公式分别为:n ____»少厂〃兀yf=lAA ------------ A ______h=, a= y ~b x .■7x 2/=1【解】(1)散点图如图,~0.625・A —— A .a= y ・ bx ^67.8 ・ 0.625X73.2 = 22.05.所以y 对x 的回归直线方程是Aj^ = 0.625x +22.05.⑶当x = 96 ,贝I© = 0.625X96+ 22.05 = 82 r 即可以预测他的物理成绩是82分・模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有9080 • 70 • 60 ■ • •50l.~~-_-_-_«__一55 60 65 70 75 80 85 90 x(2)7 二*X(88 + 76 + 73 + 66 + 63) = 73.2 , 7 =|x (78 + 65 + 71 + 64 + 61) = 67.8.5为効= 88X78+ 76X65 + 73X71 +66X64 + 63X61 =25 054. /=!= 882 + 762 + 732 + 662 + 632 = 27 174.z=l5》>閃・5x y A /=!所以b 二一; ------- fx?-5x 2 /=125 054 ・ 5X73.2X67.8=~27 174 - 5X73.22一项是符合题目要求的.)1.冇下列关系:①人的年龄与他(她)拥冇的财富之间的关系;②曲线上的点与该点的坐 标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面宜径与 高度Z 间的关系.其中有和关关系的是()A.①②③C.②③B.①② D.①③④【解析】 曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确・其余 均为相关关系・【答案】DZ2・若z —4 + 3i,则恻—( )A. 1B ・一1cMi r 十5】D Mu5 51【解析】・.・z = 4 + 3i ,・•・ z =4 ・ 3i , |z| = ^/42 + 32 = 5 , z4・ 3i 4 3. •・|z| 5 5 51-【答案】D3. 有一段演绎推理:直线平行于平面,则平行于平面内所有直线;已知直线庆平面°, 直线QU 平而直线b 〃平而6(,则直线b 〃直线Q.这个结论显然是错误的,这是因为( )A.大前提错误C.推理形式错误B.小前提错误 D.非以上错误【解析】 大前提错误,直线平行于平面,未必平行于平面内的所有直线・ 【答案】A4. 如图1所示的知识结构图为什么结构()A.树形 C.对称性【解析】 由题图可知结构图为树形结构・ 【答案】A5. 执行如图2所示的程序框图,若输入的〃的值为8,则输出的s 的值为() (开始)/綸人聽/*图2 A. 4 B ・ 8 C- 10【解析】 初始值 \ n = S f i = 2 , k = \ , s = \ } z<A7 /5=1X(1X2) = 2 9 z = 2 + 2 = 4 , k=1 + 1=2 ; i < n , 5 = ^X(2X4) = 4 r 24 + 2 = 6 , Z: = 2 + 1 = 3 ; i < n , 5 = |x (4X6) = 8 r i 6 + 2 = 8 ,^=3+1=4;/ = /?,退出循环・故输出的s 的值为&【答案】B6. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是B.环形 D.左右形D. 12图1k=k+]1=2,5=i=i+2AAAy = 1.23x+4 By = 1.23x+5 C.J=1.23x+0.08D.J=0.08x+1.23【解析】 由题意可设回归直线方程为;=1.23x + d ,又样本点的中心(4,5)在回归直线上, 故 5 二 1.23X4 + ^ ,即 ° 二 0.08 , 故回归直线的方程为尹=1.23% + 0.08. 【答案】C7. 设的三边长分别为a, b, g N4BC 的面积为S,内切圆半径为r,则r=类比这个结论可知:四而体S-ABC 的四个而的而积分别为Si ,S2, S3, S4,内切球半径为7?, 四面体S-ABC 的体积为兀则/?=(V A ---SI+S2+S3+S4【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割37• R = ------------------S1+S2+S3 + S,【答案】c8. 已知数列仇}的前n 项和S”=/・d 〃(Q2),而°] = 1,通过计算。

高中数学 模块综合检测(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

高中数学 模块综合检测(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

模块综合检测(二)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.设z =10i3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i解析:选D ∵z =10i 3+i =10i(3-i)(3+i)(3-i)=1+3i ,∴=1-3i.2.以下说法,正确的个数为( )①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理. ②农谚“瑞雪兆丰年”是通过归纳推理得到的.③由平面几何中圆的一些性质,推测出球的某些性质,这是运用的类比推理. ④个位是5的整数是5的倍数,2 375的个位是5,因此2 375是5的倍数,这是运用的演绎推理.A .0B .2C .3D .4解析:选C ①人的身高与脚长的关系:身高=脚印长×6.876(中国人),是通过统计数据用线性回归的思想方法得到的,故不是类比推理,所以错误.②农谚“瑞雪兆丰年”是人们在长期的生产生活实践中提炼出来的,所以是用的归纳推理,故正确.③由球的定义可知,球与圆具有很多类似的性质,故由平面几何中圆的一些性质,推测出球的某些性质是运用的类比推理是正确的.④这是运用的演绎推理的三段论.大前提是“个位是5的整数是5的倍数”,小前提是“2 375的个位是5”,结论为“2 375是5的倍数”,所以正确.故选C.3.观察下图中图形的规律,在其右下角的空格内画上合适的图形为( )解析:选A 表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.4.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”,其中“大前提”和“小前提”分别是( )A .①②B .①③C.②③ D.②①解析:选A 解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人一定坚强不屈).故选A.5.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( ) A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.6.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”类比推出:“a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出:“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”类比推出:“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”类比推出:“若z∈C,则|z|<1⇒-1<z<1”.其中类比结论正确的个数是( )A.1 B.2 C.3 D.4解析:选B ①②正确,③④错误,因为③④中虚数不能比较大小.7.执行如图所示的程序框图,则输出s的值为( )A.10 B.17C.19 D.36解析:选C 执行程序:k=2,s=0;s=2,k=3;s=5,k=5;s=10,k=9;s=19,k=17,此时不满足条件k<10,终止循环,输出结果为s=19.选C.8.p=ab+cd,q=ma+nc·bm+dn(m,n,a,b,c,d均为正数),则p,q的大小为( )A .p ≥qB .p ≤qC .p >qD .不确定解析:选B q =ab +mad n +nbcm+cd ≥ab +2abcd +cd =ab +cd =p .9.下图所示的是“概率”知识的( )A .流程图B .结构图C .程序框图D .直方图解析:选B 这是关于“概率”知识的结构图.10.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如下的2×2列联表:喜爱打篮球不喜爱打篮球总计 男生 20 5 25 女生 10 15 25 总计302050.( )附参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )P (K 2>k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.78910.828C .0.005D .0.001解析:选C 由2×2列联表可得,K 2的估计值k =50×(20×15-10×5)230×20×25×25=253≈8.333>7.789,所以在犯错误的概率不超过0.005的前提下,认为“喜爱打篮球与性别有关”.二、填空题(本大题共4小题,每小题5分,共20分)11.设a =3+22,b =2+7,则a ,b 的大小关系为________________.解析:a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然,6<7.∴a <b .答案:a <b12.复数z =i 1+i (其中i 为虚数单位)的虚部是________.解析:化简得z =i 1+i =i(1-i)(1+i)(1-i)=12+12i ,则虚部为12.答案:1213.根据如图所示的框图,对大于2的整数N ,输出的数列的通项公式是________(填序号).①a n =2n ②a n =2(n -1) ③a n =2n④a n =2n -1解析:由程序框图可知:a 1=2×1=2,a 2=2×2=4,a 3=2×4=8,a 4=2×8=16,归纳可得:a n =2n.答案:③14.(福建高考)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0 有且只有一个正确,则100a +10b +c 等于________.解析:可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201.答案:201三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z1·z2是实数,求z2.解:(z1-2)(1+i)=1-i⇒z1=2-i.设z2=a+2i,a∈R,则z1·z2=(2-i)(a+2i)=(2a+2)+(4-a)i.∵z1·z2∈R,∴a=4.∴z2=4+2i.16.(本小题满分12分)某大学远程教育学院网上学习流程如下:(1)学生凭录取通知书到当地远程教育中心报到,交费注册,领取上学习注册码.(2)网上选课,课程学习,完成网上平时作业,获得平时作业成绩.(3)预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图.解:某大学远程教育学院网上学习流程如下:17.(本小题满分12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下面的2×2列联表:主食蔬菜主食肉类总计50岁以下50岁以上(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.解:(1)2×2列联表如下:(2)因为K 2的观测值k =12×18×20×10=10>6.635,所以在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”. 18.(本小题满分14分)为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?解:根据题目所给的数据得到如下列联表:k =361×(138×52-73×98)2236×125×211×150≈1.871×10-4.因为1.871×10-4<2.706,所以据目前的数据不能认为学生选报文、理科与对外语的兴趣有关,即可以认为学生选报文、理科与对外语的兴趣无关.。

高中数学人教a版高二选修1-2模块综合测评1

高中数学人教a版高二选修1-2模块综合测评1

模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为()A.i B.-iC.1D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值()【导学号:19220070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b 至少有一个能被5整除.则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i是虚数单位,则复数2i1-i在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】2i1-i=2i(1+i)(1-i)(1+i)=2(i-1)2=-1+i,由复数的几何意义知-1+i在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.(2016·深圳高二检测)在两个变量的回归分析中,作散点图是为了()A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;②“(a+b)c=ac+bc(c≠0)”类比推出“a+bc=ac+bc(c≠0)”;③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.其中结论正确的个数为()A .1B .2C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B. 【答案】 B9.(2015·全国卷Ⅰ)执行如图1的程序框图,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01; 运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01;运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ) A .3 B .-3 C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·青岛高二检测)下列推理合理的是( ) A .f (x )是增函数,则f ′(x )>0B .因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4,所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:19220071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即b a +b =1858,dc +d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{b n}中,会有类似的结论________.【解析】由等比数列的性质可知,b1b30=b2b29=…=b11b20,∴10b11b12 (20)30b1b2 (30)【答案】10b11b12 (20)30b1b2…b30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(2016·哈三中模拟)设z=(1-4i)(1+i)+2+4i3+4i,求|z|.【解】z=1+i-4i+4+2+4i3+4i=7+i3+4i,∴|z|=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得 k =110×(20×50-10×30)230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系.20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不能构成等差数列.【导学号:19220072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c ,因此b (a +c )=2ac . 而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c 不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y -∑i =1n x 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2, y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174.所以b ^=∑i =15x i y i -5x -y -∑i =15x 2i -5x-2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y -b ^x -≈67.8-0.625×73.2=22.05.所以y对x的回归直线方程是y^=0.625x+22.05.(3)x=96,则y^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。

人教新课标版数学高二-选修1-2模块综合检测卷

人教新课标版数学高二-选修1-2模块综合检测卷

数学·选修1-2(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于自变量x和因变量y,当x取值一定时,y的取值带有一定的随机性,x,y间这种非确定的关系叫做()A.函数关系B.线形关系C.相关关系D.回归关系答案:C2.下列是关于出生男婴与女婴调查的2×2列联表,那么表中m,n的值分别是()A.58,60 B.答案:D3.△ABC三个顶点对应的复数分别是z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的() A.内心B.重心C.垂心D.外心答案:D4.用反证法证明命题“若整系数方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个偶数”时,下列假设正确的是() A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数 答案:B5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪2cos x ,1,1,cos x 的图象的一条对称轴方程是( )A .x =π2B .x =π3C .x =π4D .x =π6解析:依题意得:f (x )=2cos 2x -1=cos 2x ,∴选A. 答案:A6.复数(a 2-a )+(|a -1|-1)i(a ∈R)不是纯虚数,则有( ) A .a ≠0 B .a ≠0且a ≠1 C .a ≠1 D .a ≠0且a ≠2 答案:C7.在“由于任何数的平方都是非负数,所以(2i)2≥0”这一推理中,产生错误的原因是( )A .推理的形式不符合三段论的要求B .大前提错误C .小前提错误D .推理的结果错误解析:大前提错误,应为“任何实数的平方都是非负数”.故选B.答案:B8.如图(1)、(2),它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为( )A.(1)n3≥1 000?(2)n3<1 000?B.(1)n3≤1 000?(2)n3≥1 000?C.(1)n3<1 000?(2)n3≥1 000?D.(1)n3<1 000?(2)n3<1 000?答案:C9.有一堆形状、大小相同的珠子,其中只有一粒重量比其他的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C. 27 D. 30答案:C10.如下面两图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1.若把它推广到长方体ABCD-A1B1C1D1中,对角线BD1与棱AB,BB1,BC所成的角分别为α,β,γ,则相应的命题形式()A.cos2α+cos2β+cos2γ=1 B.sin2α+sin2β+sin2γ=1C.cos2α+cos2β+cos2γ=2 D.sin2α+sin2β+sin2γ=2答案:A二、填空题(本大题共4小题,每小题5分,共20分;将正确答案填在题中的横线上)11.设复数z=1+i,ω=z-2|z|-4,则ω=_______________.答案:-3-22+i12.数列{an}中,a1=2,an+1=an3an+1(n∈N*),依次计算a2,a3,a4,然后归纳、猜想an=_______________.答案:26n-513.为解决四个村庄用电问题,政府投资在已建电厂与四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图(距离单位:km),则能把电力输送到这四个村庄的输电线路最短总长度应该是________.解析:要使电厂与四个村庄相连,则需四条线路,注意最短的四条线路能使电厂与四个村庄相连,∴4+5+5.5+6=20.5 km.答案:20.5 km14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图一组蜂巢的截面图中,第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数,则f(4)=______,f(n)=______.解析:f (4)=4+5+6+7+6+5+4=37,f (n )=n +(n +1)+…+(2n -1)+…+(n +1)+n =2×n [n +(2n -1)]2-(2n -1)=3n 2-3n +1.答案:37 3n 2-3n +1三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(12分)计算(1)(1+2i )2+3(1-i )2+i ;(2)1-3i (3+i )2.解析:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i =i (2-i )5=15+25i ; (2)1-3i(3+i )2=(3+i )(-i )(3+i )2=-i3+i=(-i )(3-i )4=-14-34i.16.(12分)某班主任对全班50名学生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多 总计喜欢玩电脑游戏 18 9 27 不喜欢玩电脑游戏8 15 23 总计262450是否相关.解析:根据公式计算,K 2的观测值k =50(18×15-8×9)226×24×27×23≈5.059,∵5.059>5.024,∴约有97.5%的把握认为喜欢玩电脑游戏和认为作业量的多少有关.17.(14分)某人早晨起床后泡茶的过程可用流程图表示为:这种安排方式耗时多少分钟?还可以有其他的安排方法吗?试用流程图表示你准备采用的方式,并计算按你的方式耗时多少分钟.解析:按照题中流程图的安排,总耗时数为2+15+3+2+1=23(min).由于洗茶杯、取放茶叶可在烧开水时进行,故工作流程图也可以这样安排:18.(14分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.求证:(1)AB∥平面PCD.(2)BC⊥平面PAC.证明:(1)∵AB∥DC,且AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD.(2)在直角梯形ABCD中,过C作CE⊥AB于点E(如图),则四边形ADCE为矩形.∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,∴CE=BE=1,CB= 2.∴AD=CE=1,则AC=AD2+DC2= 2.∴AC2+BC2=AB2,∴BC⊥AC.又∵PA⊥平面ABCD.∴PA⊥BC.又∵PA∩AC=A,∴BC⊥平面PAC.19.(14分)在关于人体脂肪含量y(百分比)和年龄x(岁)关系的研究中,得到如下一组数据:年龄(x)232739414550脂肪含量(y)9.517.821.225.927.528.2(1)画出散点图,判断x与y是否具有相关关系;(2)通过计算可知b^=0.651 2,â=-2.737 9,请写出y对x的回归直线方程,并计算出23岁和50岁的残差.解析:(1)涉及两个变量,年龄与脂肪含量.因此选取年龄为自变量x,脂肪含量为因变量y.散点图如图所示,从图中可以看出x与y具有相关关系.(2)y对x的回归直线方程为y^=0.651 2x-2.737 9.当x=23 时,y^=12.239 7,y-y^=9.5-12.239 7=-2.739 7.当x =50 时,y ^=29.822 1,y -y ^=28.2-29.822 1=-1.622 1. 所以23岁和50岁的残差分别为-2.739 7和-1.622 1.20.(14分)设数列{}a n 的首项a 1=a ≠14,且a n +1=⎩⎪⎨⎪⎧ 12a n ,n 为偶数,a n +14,n 为奇数.记b n =a 2n -1-14,n =1,2,3,…. (1)求a 2,a 3,a 4,a 5;(2)判断数列{}b n 是否为等比数列,并证明你的判断.解析:(1)a 2=a 1+14=a +14,a 3=12a 2=12a +18, a 4=a 3+14=12a +38,a 5=12a 4=14a +316. (2)由(1)可得 b 1=a 1-14=a -14,b 2=a 3-14=12⎝ ⎛⎭⎪⎫a -14,b 3=a 5-14=14⎝ ⎛⎭⎪⎫a -14. 猜想:{}b n 是公比为12的等比数列. 证明如下:因为 b n +1=a 2n +1-14=12 a 2n -14=12⎝ ⎛⎭⎪⎫a 2n -1-14=12b n (n ∈N *),又 a ≠14, 所以 b 1=a -14≠0. 所以数列{}b n 是首项为a -14,公比为12的等比数列.。

高中数学模块测试新人教版A版选修1-2

高中数学模块测试新人教版A版选修1-2

体育部
21. (2) y = 3.2 x + 3.6 ( 3) x = 5 时,
y = 19.6 (十万) = 196 (万)
答:估计 2005 年该城市人口 总数为 196 万人。
宣传部
生活部
学习部
-6-
③ 而 y = 2 x 是指数函数。
2 x 是增函数;
A 、①
B、②
C、①②
D、③
-1-
一、选择题答案 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二、填空题(共 4 小题,每小题 5 分,共 20 分)
11.若 a 1 , a 2 , a 3 , a4 R ,有以下不等式成立:
2分
所以 a b 0
3分
又 a b x 2 1 2 x 2 x 2 2x 1 ( x 1)2 0
5分
这与假设所得结论矛盾,故假设不成立
所以 a , b 中至少有一个不少于 0
6分
18.( 8 分)解:
( 1)当 m 2 1 0 ,即 m 1时,
2分
-5-
复数 z (m 2 2m 3) ( m 2 1)i 是实数;
4分
而 a 2 b 2 2ab 显然成立
5分
所以 2(a 2 b 2 ) (a b) 2 成立
6分
证法二:因为 2( a 2 b2 ) (a b) 2
2分
2a 2 2b2 ( a 2 2ab b 2 )
a 2 b 2 2ab
(a b)2 0
5分
所以 2( a 2 b2 ) (a b) 2
6分
17.( 6 分)证明:假设 a, b 中没有一个不少于 0,即 a 0 , b 0

高中数学 模块综合质量测评 新人教A版选修1-2(2021年整理)

高中数学 模块综合质量测评 新人教A版选修1-2(2021年整理)

2016-2017学年高中数学模块综合质量测评新人教A版选修1-22016-2017学年高中数学模块综合质量测评新人教A版选修1-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学模块综合质量测评新人教A版选修1-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学模块综合质量测评新人教A版选修1-2的全部内容。

1模块综合质量测评一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数i(2-i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:利用复数乘法的运算法则及复数的几何意义求解.∵z=i(2-i)=2i-i2=1+2i,∴复数z在复平面内的对应点为(1,2),在第一象限.答案: A2.设有一个回归方程错误!=6-6。

5x,变量x每增加一个单位时,变量错误!平均( )A.增加6。

5个单位B.增加6个单位C.减少6.5个单位D.减少6个单位解析:错误!=6-6。

5x的斜率为-6.5,故x每增加一个单位,错误!就减少6。

5个单位.答案:C3.下列框图中,可作为流程图的是( )解析: 流程图具有动态特征,只有答案C符合.2答案:C4.下列推理正确的是()A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B.因为a>b,a>c,所以a-b>a-cC.若a,b均为正实数,则lg a+lg b≥错误!D.若a为正实数,ab<0,则错误!+错误!=-错误!≤-2 错误!=-2解析:A中推理形式错误,故A错;B中b,c关系不确定,故B错;C中lg a,lg b正负不确定,故C错.答案: D5.设z1,z2是复数,则下列命题中的假命题是( )A.若|z1-z2|=0,则错误!1=错误!2B.若z1=错误!2,则错误!1=z2C.若|z1|=|z2|,则z1·错误!1=z2·错误!2D.若|z1|=|z2|,则z错误!=z错误!解析:结合复数的模、共轭复数及复数的运算等判断求解.A,|z1-z2|=0⇒z1-z2=0⇒z1=z2⇒z1=z2,真命题;B,z1=z2⇒错误!1=错误!2=z2,真命题;C,|z1|=|z2|⇒|z1|2=|z2|2⇒z1·错误!1=z2·错误!2,真命题;D,当|z1|=|z2|时,可取z1=1,z2=i,显然z错误!=1,z错误!=-1,即z错误!≠z错误!,假命题.答案:D36.已知数列{a n}满足a n+1=a n-a n-1(n≥2,且n∈N),a1=a,a2=b,记S n=a1+a2+…+a n,则下列选项中正确的是( ) A.a100=-a,S100=2b-a B.a100=-b,S100=2b-aC.a100=-b,S100=b-a D.a100=-a,S100=b-a解析: a3=a2-a1=b-a,S3=a1+a2+a3=2b;a4=a3-a2=-a,S4=S3+a4=2b-a;a5=a4-a3=-b,S5=S4+a5=b-a;a6=a5-a4=a-b,S6=S5+a6=0;a7=a6-a5=a,S7=S6+a7=a.通过观察可知a n,S n都是6项一重复,所以由归纳推理得a100=a4=-a,S100=S4=2b-a,故选A.答案:A7.三点(3,10),(7,20),(11,24)的线性回归方程是( )A.y,∧=5-17x B.错误!=-5。

高中数学选修1-2(人教A 版)综合测试题及参考答案

高中数学选修1-2(人教A 版)综合测试题及参考答案

高中数学选修1-2(人教A 版)综合测试题一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.独立性检验,适用于检查______变量之间的关系 ( )A.线性B.非线性C.解释与预报D.分类2.样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y ˆˆˆ+=的关系( )A.在直线上B.在直线左上方C. 在直线右下方D.在直线外 3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32+、i 23+、i 32--,则D点对应的复数是 ( )A.i 32+-B.i 23--C.i 32-D.i 23-4.在复数集C内分解因式5422+-x x 等于( )A.)31)(31(i x i x --+-B.)322)(322(i x i x --+-^C.)1)(1(2i x i x --+-D.)1)(1(2i x i x -+++5.已知数列 ,11,22,5,2,则52是这个数列的 ( ) A.第6项 B.第7项 C.第19项 D.第11项6.用数学归纳法证明)5,(22≥∈>*n N n n n成立时,第二步归纳假设正确写法是( ) A.假设k n =时命题成立 B.假设)(*∈=N k k n 时命题成立 C.假设)5(≥=n k n 时命题成立 D.假设)5(>=n k n 时命题成立 7.2020)1()1(i i --+的值为 ()A.0B.1024C.1024-D.10241- 8.确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2k 的观测值k 必须( ) A.大于828.10 B.小于829.7 C.小于635.6 D.大于706.2 、 9.已知复数z满足||z z -=,则z的实部()A.不小于0B.不大于0C.大于0D.小于0 10.下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关。

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题

模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。

【优化方案】高二下学期数学(人教版选修1-2)模块综合检测 Word版含答案

【优化方案】高二下学期数学(人教版选修1-2)模块综合检测 Word版含答案

(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·高考课标全国卷Ⅰ)(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i解析:选D.(1+i )3(1-i )2=2i (1+i )-2i=-1-i.2.如图,在复平面内,OP →对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )A .1-iB .1-2iC .-1-iD .-i解析:选D.要求P 0对应的复数,根据题意,只需知道OP 0→,而OP 0→=OO 0→+O 0P 0→,从而可求P 0对应的复数. ∵O 0P 0→=OP →,OO 0→对应的复数是-1, ∴P 0对应的复数, 即OP 0→对应的复数是-1+(1-i)=-i.3.已知某车间加工零件的个数x 与所花费时间y (h)之间的回归直线方程为y ^=0.01x +0.5,则加工600个零件大约需要( ) A .6.5 h B .5.5 h C .3.5 h D .0.5 h解析:选A.y ^=0.01×600+0.5=6.5.故选A.4.由数列1,10,100,1 000,…,猜测该数列的第n 项可能是( )A .10nB .10n -1C .10n +1 D .11n解析:选B.由1,10,100,1 000,…得a n =10n -1,则第n 项为10n -1.5.下列函数中,对于函数y =f (x )定义域内的任意x ,y ,都有f (x +y )=f (x )f ⎝⎛⎭⎫π2-y +f ⎝⎛⎭⎫π2-x f (y )成立的是( ) A .f (x )=sin x B .f (x )=cos x C .f (x )=tan x D .f (x )=ax +b (a ≠0) 解析:选A.由两角和的正弦公式可知A 正确; 对于B 中的函数f (x )=cos x ,当x =y =π4时,f (x +y )=cos π2=0,而f (x )f ⎝⎛⎭⎫π2-y +f ⎝⎛⎭⎫π2-x f (y )=cos π4cos π4+cos π4cos π4=1,即等式不成立;同理可以举出反例说明C ,D 选项错误. 6.(2014·四川高考卷)执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3解析:选C.当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,由线性规划的图解法知,目标函数S =2x +y 的最大值为2, 否则,S 的值为1.所以输出的S 的最大值为2.7.若α,β是两个不同的平面,下列四个条件:①存在一条直线a ,a ⊥α,a ⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α;④存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α.其中是α∥β的充分条件的有( ) A .4个 B .3个 C .2个 D .1个 解析:选C.①是;②α,β也有可能相交,所以不是; ③α,β也有可能相交,所以不是; ④根据异面直线的性质可知④是, 所以是α∥β的充分条件的有2个. 8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”;②“(a +b )c =ac +bc (c ≠0)”类比推出“a +b c =a c +bc(c ≠0)”;③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b ”. 其中结论正确的个数为( ) A .1 B .2 C .3 D .4 解析:选B.①显然是错误的; 因为复数不能比较大小,所以④也是错误的,②③正确,故选B. 9.若列联表如下:则K 2的观测值k 约为(A .1.49 7B .1.64C .1.59 7D .1.71 解析:选A.由题意利用独立性检验的公式得 k =55(15×8-12×20)235×20×27×28≈1.49 7.10.已知在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论: ①2 014∉[3]; ②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中,正确结论的个数为( ) A .1 B .2 C .3 D .4解析:选C.因为2 014=402×5+4,所以2 014∉[3],①正确.-2=-1×5+3,-2∈[3],所以②不正确.③因为整数集中的数被5除的余数可以且只可以分成五类,所以③正确.整数a ,b 属于同一“类”,因为整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”,故④正确.所以正确的结论有3个.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.(2014·高考上海卷)复数z =1+2i ,其中i 是虚数单位,则(z +1z )·z =__________.解析:∵z =1+2i , ∴z =1-2i ,∴(z +1z)z =⎝⎛⎭⎫1+2i +11-2i (1-2i) =(1+2i)(1-2i)+1-2i1-2i=1-4i 2+1 =2+4=6. 答案:6 12.(2014·高考课标全国卷Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为____________.解析:由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市. 答案:A 13.(2014·杭州高二检测)无穷数列1,2,2,3,3,3,4,4,4,4,5,…的首项是1,随后两项都是2,接下来3项都是3,再接下来4项都是4,…,以此类推,记该数列为{a n },若a n -1=20,a n =21,则n =________.解析:将1,2,2,3,3,3,4,4,4,4,5,…分组成{1},{2,2},{3,3,3},{4,4,4,4},{5,…},…. 第1组有1个数,第2组有2个数,以此类推…显然a n -1=20在第20组,a n =21在第21组.易知,前20组共(1+20)2×20=210个数,所以,n =211.答案:211 14.(2014·盐城测试)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制了对照表:由表中数据得回归直线方程y =b x +a 中b =-2,预测当气温为-4 ℃时,用电量的度数约为________.解析:x =10,y =40, 回归方程过样本中心点(x ,y ),∴40=-2×10+a ^, ∴a ^=60. ∴y ^=-2x +60. 令x =-4, ∴y ^=(-2)×(-4)+60=68. 答案:6815.观察如图所示的散点图,下列说法中正确的为________(填序号).①x ,y 是负相关关系;②在该相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y =bx +a 拟合时的相关指数为R 22,则R 21>R 22;③x 、y 之间不能建立线性回归方程.解析:①显然正确;由散点图知,用y =c 1e c 2x 拟合的效果比用y =bx +a 拟合的效果要好,则②正确;x ,y 之间能建立线性回归方程,只不过预报精度不高,故③不正确. 答案:①②三、解答题(本大题6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤) 16.(本小题满分12分)已知关于复数z 的方程z 2-(a +i)z -(i +2)=0(a ∈R ). (1)若此方程有实数解,求a 的值;(2)用反证法证明:对任意的实数a ,原方程不可能有纯虚根. 解:(1)设z =x 0∈R , 代入方程得x 20-(a +i)x 0-(i +2)=0,即(x 20-ax 0-2)+(-x 0-1)i =0,∴⎩⎪⎨⎪⎧x 20-ax 0-2=0,-x 0-1=0, 解得⎩⎪⎨⎪⎧x 0=-1,a =1,∴a =1.(2)证明:假设方程有纯虚根z =b i(b ∈R 且b ≠0), 则有(b i)2-(a +i)·b i -(i +2)=0,整理得(-b 2+b -2)+(-ab -1)i =0,∴⎩⎪⎨⎪⎧ -b 2+b -2=0-ab -1=0⇒⎩⎪⎨⎪⎧b 2-b +2=0,①ab +1=0,② ∵方程①中Δ=-7<0, ∴方程组无解.即不存在实数b 使方程①成立.∴假设不成立,从而原方程不可能有纯虚根.17.(本小题满分12分)设a ,b ∈(0,+∞)且a +b =3求证: 1+a +1+b ≤10. 证明:法一:(综合法)∵a ,b ∈(0,+∞)且a +b =3, ∴()1+a +1+b 2=2+(a +b )+2(1+a )(1+b ) =5+2(1+a )(1+b )≤5+(1+a +1+b )=10, ∴1+a +1+b ≤10. 法二:(分析法)因为a >0,b >0且a +b =3, ∴要证:1+a +1+b ≤10, 只要证:()1+a +1+b 2≤10, 即证2+a +b +2(1+a )(1+b )≤10, 即证2(1+a )(1+b )≤5, 只需证4(1+a )(1+b )≤25, 即证4(1+a +b +ab )≤25, 只需证4ab ≤9,即证ab ≤94,∵ab ≤⎝⎛⎭⎫a +b 22=94,∴1+a +1+b ≤10, 当且仅当a =b 时等号成立. 18.(本小题满分12分)(2014·临沂高二检测)数学建模过程的流程图如图所示,根据这个流程图,说明数学建模的过程.解:数学建模的过程:根据实际情境提出问题,从而建立数学模型得出数学结果,然后检验是否合乎实际,若合乎实际,则为可用结果,若不合乎实际,则进行修改后重新提出问题. 19.(本小题满分13分)在一段时间内,分5次测得某种商品的价格x (万元)和需求量y (t)之间的一组数据为:已知∑i =15x i y i =62,∑i =15x 2i =16.6.(1)画出散点图;(2)求出y 对x 的线性回归方程;(3)如价格定为1.9万元,预测需求量大约是多少? 解:(1)散点图如图所示.(2)因为x =15×9=1.8,y =15×37=7.4,∑i =15x i y i =62,∑i =15x 2i =16.6,所以b ^=∑i =15x i y i -5x y ∑i =15x 2i -5x2=62-5×1.8×7.416.6-5×1.82=-11.5,所以a ^=y -b ^x =7.4+11.5×1.8=28.1, 故y 对x 的线性回归方程为y ^=28.1-11.5x . (3)y ^=28.1-11.5×1.9=6.25(t).所以价格定为1.9万元时,需求量大约是6.25t.20.(本小题满分13分)为了调查40岁以上的人患胃病是否与生活规律有关,对某地540名40根据以上数据,能否在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与生活规律有关系?解:根据公式得K 2的观测值 k =540×(200×60-260×20)280×460×220×320≈9.638>6.635,因此,在犯错误的概率不超过0.01的前提下,认为40岁以上的人患胃病与生活规律有关. 21.(本小题满分13分)设{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10. (1)求{a n }的通项公式;(2)设{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .解:(1)设{a n }的公差为d (d >0),则⎩⎪⎨⎪⎧a 1=2,a 1+2d =(a 1+d )2-10, 解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=2,d =-4,(舍去) 所以a n =2+(n -1)×2=2n .(2)∵y =4sin 2πx =4×1-cos2πx2=-2cos2πx +2,其最小正周期为2π2π=1,故{b n }的首项为1; 因为公比为3,从而b n =3n -1,所以a n -b n =2n -3n -1.故S n =(2-30)+(4-31)+…+(2n -3n -1) =(2+2n )n 2-1-3n 1-3=n 2+n +12-12·3n.。

高二数学 模块综合检测 新人教A版选修1-2

高二数学   模块综合检测 新人教A版选修1-2

模块综合检测一、选择题(本大题共10小题,每小题5分,共50分)1.复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B z =i·(1+i)=-1+i ,在复平面上对应点的坐标为(-1,1),其在第二象限.2.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵轴上的截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反D .a 与r 的符号相反解析:选A 因为b >0时,两变量正相关,此时r >0;b <0时,两变量负相关,此时r <0,所以选A.3.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是( ) A .三角形B .梯形C .平行四边形D .矩形解析:选C 只有平行四边形与平行六面体较为接近.4.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( )A .a k+a k +1+…+a 2kB .a k -1+a k +…+a 2k -1C .ak -1+a k +…+a 2kD .ak -1+a k+…+a2k -2解析:选D 利用归纳推理可知,第k 项中第一个数为a k -1,且第k 项中有k 项,次数连续,故第k 项为ak -1+a k +…+a2k -2.5.实数系的结构图如图所示,其中1,2,3三个方格中的内容分别为( )A .有理数、零、整数B .有理数、整数、零C .零、有理数、整数D .整数、有理数、零解析:选B 由实数系的包含关系知B 正确.6.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( ) A.83 B.32 C .-83D .-32解析:选D z 1z 2=m +2i 3-4i =m +2i 3+4i3-4i 3+4i=3m -8+6+4m i32+42.∵z 1z 2为实数,∴6+4m =0,∴m =-32. 7.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( ) A .f (x )B .-f (x )C .g (x )D .-g (x )解析:选D 由给出的例子可以归纳推理得出:若函数f (x )是偶函数,则它的导函数是奇函数,因为定义在R 上的函数f (x )满足f (-x )=f (x ),即函数f (x )是偶函数,所以它的导函数是奇函数,即有g (-x )=-g (x ).8.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析:选D ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4.记5n(n ∈Z ,且n ≥5)的末四位数为f (n ),则f (2 011)=f (501×4+7)=f (7), ∴52 011与57的末四位数相同,均为8 125.9.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5,故选C. 10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程为y ^=0.67x +54.9.现发现表中有一个数据模糊不清,经推断可知该数据为( )零件数x (个) 10 2030 40 50 加工时间y (min)62758189A .70B 解析:选B 依题意得,x -=15×(10+20+30+40+50)=30.由于直线y ^=0.67x +54.9必过点(x -,y -),于是有y -=0.67×30+54.9=75,因此表中的模糊数据是75×5-(62+75+81+89)=68.二、填空题(本大题共4小题,每小题5分,共20分) 11.复数z =-3+i2+i的共轭复数为________.解析:z =-3+i 2+i =-3+i2-i 2+i 2-i =-5+5i 5=-1+i ,所以z -=-1-i.答案:-1-i 12.图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图2有体积关系:V P -A ′B ′C ′V P -ABC=________.解析:把平面中三角形的知识类比到空间三棱锥中,得V P -A ′B ′C ′V P -ABC =PA ′·PB ′·PC ′PA ·PB ·PC. 答案:PA ′·PB ′·PC ′PA ·PB ·PC13.读下面的流程图,当输入的值为-5时,输出的结果是________.解析:①A =-5<0,②A =-5+2=-3<0,③A =-3+2=-1<0,④A =-1+2=1>0,⑤A =2×1=2.答案:214.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +1三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤.) 15.(本小题满分12分)小流域综合治理可以有3个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土;生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种、地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.试画出小流域综合治理开发模式的结构图.解:根据题意,3个措施为结构图的第一层,每个措施中具体的实现方式为结构图的第二层,每个措施实施所要达到的治理功能为结构图的第三层,各类功能所体现的具体内容为结构图的第四层.小流域综合治理开发模式的结构图如图所示.16.(本小题满分12分)某商品在销售过程中投入的销售时间x 与销售额y 的统计数据如下表:销售时间x (月) 1 2 3 4 5 销售额y (万元)0.40.50.60.60.4用线性回归分析的方法预测该商品6月份的销售额.(参考公式:b =∑ni =1x i -x-y i -y-∑ni =1x i -x-2,a =y --b x -,其中x -,y -表示样本平均值)解:由已知数据可得x -=1+2+3+4+55=3,y -=0.4+0.5+0.6+0.6+0.45=0.5,所以∑5i =1(x i -x -)(y i -y -)=(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)=0.1,∑5i =1(x i -x -)2=(-2)2+(-1)2+02+12+22=10,于是b =0.01,a =y --b x -=0.47.故y ^=0.01x +0.47令x =6,得y ^=0.53.即该商品6月份的销售额约为0.53万元.17.(本小题满分12分)先解答(1),再通过结构类比解答(2):(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ;(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f x1-f x ,试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x 1-tan x ,即tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f x +a1-f x +a =1+1+fx 1-f x 1-1+fx 1-f x=-1f x , 所以f (x +4a )=f [(x +2a )+2a ] =-1fx +2a=f (x ).所以f (x )是以4a 为周期的周期函数.18.(本小题满分14分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02) [30.02,30.06) [30.06,30.10)[30.10,30.14) 频数 12638618292614分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02) [30.02,30.06) [30.06,30.10) [30.10,30.14) 频数297185159766218(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面2×2列联表,并问能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?甲厂 乙厂 总计 优质品 非优质品 总计附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.05 0.01 k 03.8416.635解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)甲厂 乙厂 总计 优质品 360 320 680 非优质品 140 180 320 总计5005001 000K 2的观测值k =2500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.。

高中数学选修1-2综合测试题(人教A版)

高中数学选修1-2综合测试题(人教A版)

A .输出m ;交换m 和n 的值B .交换m 和n 的值;输出 mC .输出n ;交换m 和n 的值D .交换m 和n 的值;输出n7.按照图1――图3的规律,第10个图中圆点的个数为( )个.A . 40B . 36C . 44D . 52&已知二次函数 f (x ) =ax bx c 的导数为f'(x ) , f '(0) 0,对于任意实数 x 都有、选择题:1 .下列命题正确的是( ) A .虚数分正虚数和负虚数 B .实数集与复数集的交集为实数集 c .实数集与虚数集的交集是 {0}2 .下列各式中,最小值等于 2的是( D .纯虚数集与虚数集的并集为复数 ) 2 x y x +5 尺 1 x x A .B. --------------- C . tan D . 2 2 y x x 2 4 tan 寸 1 3.已知三次函数 f (x ) = -x 3- (4m v 1)x 2+ (15m -2n v 7)x + 2 在 x € ( —a, )是增函数,3 则m 的取值范围是( ) A . n <2 或 n >4 B . — 4<n < — 2 C . 2<n <4 D .以上皆不正确 4. 函数f x 的定义域为 a,b ,导函数「x 在a,b 内的图像如图所示, 则函数f x 在a, b 内有极小值点 A . 1个 B . 2个 C . 3个 D . 4个5. 下面对相关系数r 描述正确的是() A . r 0表明两个变量负相关 B . r 1表明两个变量正相关C . r 只能大于零D . | r |越接近于0,两个变量相关关系越弱 6.下面的程序框图的作用是输出两数中的较大者,则①②处分别为( )f(x) _0」 f ⑴的最小值为 f'(0) A . 3 B 5 C .2 D 3 2 2 9.下表为某班 5位同学身高x (单位: cm )与体重 y (单位 kg ) 的数据, 若两个量间的回归直线方程为 y=1.16x ・a ,则a 的值为( ) A . -121.04 B . 123.2 C . 21 D . -45.1216. 若x,厂 R 且满足x 3^2,则3x 27y 1的最小值是1 ]2 117. 若a 0,贝y a " . a ■: —2的最大值为 __________________a V a三、解答题: 10.用反证法证明命题:“ a,b,c,d R , a b =1, c d =1,且 ac bd 1,则 a,b,c,d 中至少有一个负数”时的假设为( A . a, b,c,d 中至少有一个正数 B . a, b, c, d 全为正数 C . a,b, c,d 全都大于等于 0 D . a,b,c,d 中至多有一个负数 二、填空题: 11.关于x 的4- i = 0的实数解为 12. 用支付宝在淘宝网购物有以下几步: ②淘宝网站收到买家的收货确认信息, 无问题,在网上确认收货;④买家登录淘宝网挑选商品; 司发货给买家. 13. 将正整数 ①买家选好商品,点击购买按钮,并付款到支付宝; 将支付宝里的货款付给卖家; ③买家收到货物,检验 ⑤卖家收到购买信息,通过物流公 他们正确的顺序依次为 _________ 1,2,3,……按照如图的规律排列,则100应在第列. 7 8 9 1015141314.已知函数 3f (x ) =x ax 在R 上有两个极值点,则实数 a 的取值范围是15.若 a b 0,则 a 1b(a 「b) 的最小值是 ______________218.复数z = 1 -i a -3a 2 i ( a R),(1 )若Z=z,求|z|; (2)若在复平面内复数z对应的点在第一象限,求a的范围.19.证明不等式:*一y (其中x, y皆为正数).y x320.设函数f(x)=x -6x 5,x R.(1 )求f (x)的单调区间和极值;(2)若关于x的方程f(x) =a有3个不同实根,求实数a的取值范围.(3)已知当* (1「:)时,f(x) _k(x-1)恒成立,求实数k的取值范围21.已知x =1是函数f (x) =mx3_3(m亠1)x2亠nx亠1的一个极值点,其中m, n三R, m:::0(1)求m与n的关系式;(2)求f (x)的单调区间;(3)当x •[」,1],函数y二f (x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围。

人教版数学选修1-2人教版数学选修1-2模块综合检测

人教版数学选修1-2人教版数学选修1-2模块综合检测

得 z = = =3-4i.4.如图,在复平面内,OP 对应的复数是 1-i ,将OP 向左平移一个单位后得到O 0P 0,则⎪ ⎪ ⎩⎩解析:选 D.要求 P 0 对应的复数,根据题意,只需知道OP 0,而OP 0=OO 0+O 0P 0,从而 因为O 0P 0=OP ,OO 0对应的复数是-1,即OP0对应的复数是-1+(1-i)=-i.5.设 a ,b ,c ∈(-∞,0),则 a + ,b + ,c + ()模块综合检测(时间:120 分钟,满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只 有一项是符合题目要求的)1.已知复数 z 满足(3+4i)z =25,则 z =( ) A .-3+4i B .-3-4i C .3+4i D .3-4i 解析:选 D.法一:由(3+4i)z =25,25 25(3-4i )3+4i (3+4i )(3-4i )法二:设 z =a +b i(a ,b ∈R ),则(3+4i )(a +b i )=25, 即 3a -4b +(4a +3b )i =25,⎧3a -4b =25, ⎧a =3, 所以⎨ 解得⎨ 故 z =3-4i.⎪4a +3b =0, ⎪b =-4, 2.根据给出的数塔猜测 123 456×9+7 等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析:选 B.根据数塔知结果为各位数为 1 的七位数,故选 B.3.利用独立性检验来考察两个分类变量 X ,Y 是否有关系,当随机变量 K 2 的值( ) A .越大,“X 与 Y 有关系”成立的可能性越大 B .越大,“X 与 Y 有关系”成立的可能性越小 C .越小,“X 与 Y 有关系”成立的可能性越大 D .与“X 与 Y 有关系”成立的可能性无关解析:选 A.由 K 2 的意义可知,K 2 越大,说明 X 与 Y 有关系的可能性越大.→ → →P 0 对应的复数为()A .1-i C .-1-iB .1-2i D .-i→ → → →可求 P 0 对应的复数.→ → →所以 P 0 对应的复数,→ 1 1 1b c a A .都不大于-2B .都不小于-2C .至少有一个不大于-2解析:选 C.假设 a + ,b + ,c + 都大于-2, 则 a + +b + +c + >-6,①所以 a + ≤-2,b + ≤-2,c + ≤-2,a + +b + +c + ≤(-2)+(-2)+(-2)=-6,与①矛所以 a + +b + +c + = a ⎭ ⎝ b ⎭ ⎝ c ⎭⎝②设有一个回归方程y =6-4x ,变量 x 增加一个单位时,y 平均增加 4 个单位;程y =6-4x ,当 x 增加一个单位时,y 平均减少 4 个单位,②错误;由线性回归方程的定义解析:选 A.因为 x = (0+1+3+4)=2,y = (2.2+4.3+4.8+6.7)=4.5.^ ^ ^ - -^ ^ ^ -- 若从散点图分析,y 与 x 线性相关,且y =0.95x +a ,则a 的值等于( )^ - -D .至少有一个不小于-21 1 1b c a1 1 1b c a由于 a ,b ,c ∈(-∞,0),1 1 1abc1 1 1 ⎛ 1⎫ ⎛ 1⎫ ⎛1⎫ b c a 盾,故选 C.6.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;^③回归方程y =bx +a 必过( x , y );④在一个 2×2 列联表中,由计算得 K 2=13.079,则有 99.9%的把握确认这两个变量间有 关系.其中错误的个数是( ) A .0 B .1 C .2 D .3解析:选 B.一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是 反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方^知,线性回归方程y =bx +a 必过点( x , y ),③正确;因为 K 2=13.079>10.828,故有 99.9% 的把握确认这两个变量间有关系,④正确.故选 B.7.若 P = a + a +7,Q = a +3+ a +4(a ≥0),则 P ,Q 的大小关系为( ) A .P >Q B .P =Q C .P <Q D .由 a 的取值确定解析:选 C.要比较 P 与 Q 的大小,只需比较 P 2 与 Q 2 的大小,只需比较 2a +7+ 2 a (a +7)与 2a +7+2 (a +3)(a +4)的大小,只需比较 a 2+7a 与 a 2+7a +12 的大 小,即比较 0 与 12 的大小,而 0<12,故 P <Q .8.已知 x ,y 的取值如表所示:x0 1 3 4y 2.24.3 4.8 6.7 ^ ^ ^A .2.6B .6.3C .2D .4.5- 14- 1 4而回归直线方程过样本点的中心(2,4.5),所以a = y -0.95 x =4.5-0.95×2=2.6.A .若|z 1-z 2|=0,则 z 1= z 2B .若 z 1= z 2,则 z 1=z 2C .若|z 1|=|z 2|,则 z 1· z 1=z 2· z 2 解析:选 D.A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒ z 1= z 2,真命题;B ,z 1= z 2⇒ z 1= z 2=z 2,真命题; C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1· z 1=z 2· z 2,真命题;210.执行如图所示的程序框图,则输出 s 的值为()A .10B .17C .19D .36解析:选 C.k =2 时执行第一次循环:s =2,k =3; k =3 时,执行第二次循环:s =5,k =5; k =5 时,执行第三次循环:s =10,k =9; k =9 时,执行第四次循环:s =19,k =17; k =17 时不满足条件,结束循环, 输出的 s 的值为 19.11.设 z 1,z 2 是复数,则下列命题中的假命题是( )- -- -- - D .若|z 1|=|z 2|,则 z 21=z 2- -- - = - -D ,当|z 1|=|z 2|时,可取 z 1=1,z 2=i ,显然 z 1=1,z 2=-1,即 z 21≠z 2,假命题.12.某班主任对全班 50 名学生进行了认为作业量多少的调查,数据如下表:认为作业多 认为作业不多 总计喜欢玩电脑游戏不喜欢玩电脑游戏 总计 18 9 278 15 2326 24 50则可以判断“喜欢玩电脑游戏与认为作业多有关系”的把握大约为( ) A .99% B .95%2 的观测值为 k = ≈5.059>5.024.所以约有 97.5%的把 13.已知回归直线方程是y =a +bx ,如果当 x =3 时,y 的估计值是 17,x =8 时,y 的估 所以回归直线方程是y =x +14.答案:y =x +14则 =2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体 A -BCD 中,若△BCD的中心为 M ,四面体内部一点 O 到四面体各面的距离都相等,则 等于________.解析:面的重心类比几何体重心,平面类比空间, =2 类比得 =3.^ ^ ^ ^ ^ ^ 16.设 z 是虚数,ω=z + 是实数,且-1<ω<2,则 z 的实部的取值范围是________.⎛ ⎫ ⎛ ⎫x +y i <x <1,C .90%解析:选 D.KD .97.5%50(18×15-9×8)2 27×23×26×24握认为“喜欢玩电脑游戏与认为作业多有关系”.二、填空题(本大题共 4 小题,每小题 5 分,共 20 分.请把正确答案填在题中横线上)^ ^ ^计值是 22,那么回归直线方程为________________.解析:首先把两组值代入回归直线方程得⎧⎪3b+a =17, ⎨⎪⎩8b+a =22, ⎧⎪b =1, 解得⎨⎪⎩a=14. ^^14.已知结论:“在正三角形ABC 中,若 D 是边 BC 的中点,G 是三角形 ABC 的重心,AGGDAOOMAG AOGD OM答案:315.现有爬行、哺乳、飞行三类动物,其中蛇、地龟属于爬行动物,狼、狗属于哺乳动 物,鹰、长尾雀属于飞行动物,请你把下列结构图补充完整:①为______,②为________, ③为________.解析:根据题意,动物分成三大类:爬行动物、哺乳动物和飞行动物,故可填上②,然 后细分每一种动物包括的种类,填上①③.答案:地龟 哺乳动物 长尾雀1z解析:因为 z 是虚数, 所以可设 z =x +y i(x ,y ∈R ,且 y ≠0),1 1 x -y i 则 ω=z +z =(x +y i)+ =x +y i +x 2+y2 x y =⎝x +x 2+y 2⎭+⎝y -x 2+y 2⎭i.因为 ω 是实数,且 y ≠0,所以 y -x2+y 2y=0,即 x 2+y 2=1. 此时 ω=2x . 又-1<ω<2, 所以-1<2x <2,1 2即 z 的实部的取值范围是⎝-2,1⎭.答案:⎝-2,1⎭ 17.(本小题满分 10 分)已知 z = .解:z = = = = =1-i ,(2)用最小二乘法求出 y 关于 x 的线性回归方程y =bx +a ;⎪ ⎪ ⎩ ⎩ b a +b +c⎛ 1 ⎫⎛ 1 ⎫三、解答题(本大题共 6 小题,共 70 分.解答时应写出必要的文字说明、证明过程或演 算步骤)(1+i )2+3(1-i )2+i(1)求|z |;(2)若 z 2+az +b =1+i ,求实数 a ,b 的值.(1+i )2+3(1-i ) 2i +3-3i (3-i )(2-i ) 6-3i -2i -12+i 2+i (2+i )(2-i ) 5 所以(1)|z |=|1-i|= 2.(2)由 z 2+az +b =1+i 得(1-i)2+a (1-i)+b =1+i , 即 a +b +(-2-a )i =1+i ,⎧a +b =1, ⎧a =-3, 所以⎨ 所以⎨⎪-2-a =1, ⎪b =4.18.(本小题满分 12 分)2015 年某品牌汽车的广告费支出 x (单位:百万元)与销售额 y (单 位:百万元)之间有如下的对应数据:x 2 4 5 6 8 y 3040 50 60 70(1)请画出上表数据的散点图;^ ^ ^(3)若使该品牌汽车的销售额突破 1 亿元(含 1 亿元),广告费支出至少为多少?(结果精确 到 0.1)解:(1)散点图如图所示:a a +b19.(本小题满分 12 分△)已知 ABC 中,A ∶B ∶C =1∶2∶6.求证: = .b a +b +c 所以 A = ,B = π,C = π ,即 sin ·2sin cos =sin 2 π ,即 2sin cos =sin π ,显然成立,b a +b +c 所以( 1+a + 1+b )即证 ab ≤ ,因为 ab ≤⎝ 2 ⎭ =,a a +b证明:要证 = ,只需证 a 2+ab +ac =ab +b 2, 即证:a (a +c )=b 2.由正弦定理,只需证 sin A (sin A +sin C )=sin 2B . 因为 A ∶B ∶C =1∶2∶6,π 2 69 9 9 π ⎛ π 6 ⎫2 即 sin 9 ⎝sin 9 +sin 9π ⎭=sin 29π ,π ⎛ π 3 ⎫2 即 sin 9 ⎝sin 9 +sin 9π ⎭=sin 29π ,π 2π π 29 9 9 9 π π 29 9 9 a a +b 所以 = 成立.20.(本小题满分 12 分)设 a ,b ∈(0,+∞)且 a +b =3,求证: 1+a + 1+b ≤ 10. 证明:法一:(综合法)因为 a ,b ∈(0,+∞)且 a +b =3,2=2+(a +b )+2 (1+a )(1+b ) =5+2 (1+a )(1+b ) ≤5+(1+a +1+b )=10, 所以 1+a + 1+b ≤ 10. 法二:(分析法)因为 a >0,b >0 且 a +b =3,所以要证 1+a + 1+b ≤ 10, 只需证( 1+a + 1+b )2≤10,即证 2+a +b +2 (1+a )(1+b )≤10, 即证 2 (1+a )(1+b )≤5, 只需证 4(1+a )(1+b )≤25, 即证 4(1+a +b +ab )≤25, 只需证 4ab ≤9,94⎛a +b ⎫2 9 4所以 1+a + 1+b ≤ 10, 当且仅当 a =b 时等号成立.21.(本小题满分 12 分)下表是某地区的一种传染病与饮用水的调查表:得病 不得病 总计干净水 不干净水 总计 52 466 518 94 218 312146 684 830(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;k = ≈54.21,2 的观测值 k = ≈5.785. 22.(本小题满分 12 分)设 f (x )= ,g (x )= (其中 a >0 且 a ≠1). 解:(1)证明:因为 f (x )= ,g (x )= ,2 2 2 2 4 4 = =g (2 017),2 2 2 2 = =g (x +y ).(2)若饮用干净水得病 5 人,不得病 50 人,饮用不干净水得病 9 人,不得病 22 人.按此 样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.解:(1)假设 H 0:传染病与饮用水的卫生程度无关,把表中数据代入公式得 K 2 的观测值830×(52×218-466×94)2 146×684×518×312因为 54.21>10.828,所以拒绝 H 0.因此我们有 99.9%的把握认为该地区这种传染病与饮用不干净水有关. (2)依题意得 2×2 列联表:得病 不得病 总计干净水 不干净水 总计 5 50 55 9 22 3114 72 86此时,K86×(5×22-50×9)2 14×72×55×31由于 5.785>5.024,所以我们有 97.5%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有 99.9% 的把握肯定结论的正确性,(2)中我们只有 97.5%的把握肯定.a x +a -x a x -a -x2 2 (1)求证:g (2 017)=f (1 008)g (1 009)+f (1 009)· g (1 008); (2)根据(1)猜想一般结论,并证明.a x +a -x a x -a -x2 2所以 f (1 008)g (1 009)+f (1 009)g (1 008)a 1 008+a -1 008 a 1 009-a -1 009 a 1 009+a -1 009 a 1 008-a -1 008 = · + ·a 2 017+a -a -1-a -2 017 a 2 017-a +a -1-a -2 017 = +a 2 017-a -2 017 2所以 g (2 017)=f (1 008)g (1 009)+f (1 009)g (1 008). (2)由(1)猜想:g (x +y )=f (x )g (y )+f (y )g (x ). 因为 f (x )g (y )+f (y )g (x )a x +a -x a y -a -y a y +a -y a x -a -x = · + ·=+a x +y +a -x +y -a x -y -a -x -y 4 a x +y +a x -y -a -x +y -a -x -y 4a x +y -a -(x +y ) 2 所以 g (x +y )=f (x )g (y )+f (y )g (x ).。

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

高中数学 模块综合评价(二)(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(1+i )3(1-i )2等于()A .1+iB .-1+iC .1-iD .-1-i解析:(1+i )3(1-i )2=(1+i )2(1+i )(1-i )2=-1-i. 答案:D2.如图所示的框图是结构图的是( ) A.P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q B.Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件C.D.入库→找书→阅览→借书→出库→还书 解析:选项C 为组织结构图,其余为流程图. 答案:C3.若大前提:任何实数的平方都大于0,小前提:a ∈R ,结论:a 2>0,那么这个演绎推理出错在()A .大前提B .小前提C .推理形式D .没有出错 答案:A4.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数”所得结论错误的原因是()A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误解析:对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.答案:A5.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为()A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:易知等式的左边是两项和,其中一项为序号n ,另一项为序号n -1的9倍,等式右边是10n -9.猜想第n 个等式应为9(n -1)+n =10n -9. 答案:B6.已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:因为(1-i )2z=1+i ,所以z =(1-i )21+i =(1-i )2(1-i )(1+i )(1-i )=(1+i 2-2i )(1-i )1-i 2=-2i (1-i )2=-1-i.答案:D7.根据如下样本数据得到的回归方程为y ^=bx +a ,则( )A.a >0,b C .a <0,b >0D .a <0,b <0解析:作出散点图如下:观察图象可知,回归直线y ^=bx +a 的斜率b <0, 当x =0时,y ^=a >0.故a >0,b <0. 答案:B8.下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥2lg a ·lg bD .若a 为正实数,ab <0,则a b +b a=-⎝⎛⎭⎪⎫-a b +-b a ≤-2⎝ ⎛⎭⎪⎫-a b ·⎝ ⎛⎭⎪⎫-b a =-2解析:A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.D 利用基本不等式,推理正确.答案:D9.下面的等高条形图可以说明的问题是()A .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C .此等高条形图看不出两种手术有什么不同的地方D .“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析:由等高条形图知,D 正确. 答案:D10.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数B .a ,b ,c 都大于1C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾所以a ,b ,c 中至少有一个不小于12.答案:D11.已知直线l ,m ,平面α,β且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β.其中正确命题的个数是() A .1B .2C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B12.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x解析:输入x =0,y =1,n =1,得x =0,y =1,x 2+y 2=1<36,不满足条件;执行循环:n =2,x =12,y =2,x 2+y 2=14+4<36,不满足条件;执行循环:n =3,x =32,y =6,x 2+y 2=94+36>36,满足条件,结束循环,输出x =32,y =6,所以满足y =4x . 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·某某卷)已知a ∈R ,i 为虚数单位,若a -i2+i 为实数,则a 的值为________.解析:a -i 2+i =15(a -i)(2-i)=2a -15-a +25i依题意a +25=0,所以a =-2.答案:-214.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为______________________________________________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb 2=1. 答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.(2017·卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________; ②该小组人数的最小值为________.解析:设男学生人数、女学生人数、教师人数分别为a ,b ,c ,则有2c >a >b >c ,且a ,b ,c ∈Z.①当c =4时,b 的最大值为6;②当c =3时,a 的值为5,b 的值为4,此时该小组人数的最小值为12.答案:①6②1216.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______.解析:首先把两组值代入回归直线方程得⎩⎨⎧3b ^+a ^=17,8b ^+a ^=22,解得⎩⎨⎧b ^=1,a ^=14. 所以回归直线方程是y ^=x +14. 答案:y ^=x +14三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,某某数a ,b ,使az +2b z -=(a +2z )2. 解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a =-2,b =-1,或⎩⎪⎨⎪⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)设a ,b ,c 为一个三角形的三边,S =12(a +b +c ),且S 2=2ab ,求证:S <2a .证明:因为S 2=2ab ,所以要证S <2a ,只需证S <S 2b,即b <S .因为S =12(a +b +c ),只需证2b <a +b +c ,即证b <a +c .因为a ,b ,c 为三角形三边, 所以b <a +c 成立,所以S <2a 成立. 19.(本小题满分12分)观察以下各等式:tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°, tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°, tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°. 分析上述各式的共同特点,猜想出表示一般规律的等式,并加以证明. 解:表示一般规律的等式是:若A +B +C =π,则tan A +tan B +tan C =tan A ·tan B ·tan C . 证明:由于tan(A +B )=tan A +tan B1-tan A tan B ,所以tan A +tan B =tan(A +B )(1-tan A tan B ). 而A +B +C =π,所以A +B =π-C .于是tan A +tan B +tan C =tan(π-C )(1-tan A tan B )+tan C =-tan C +tan A tanB tanC +tan C =tan A ·tan B ·tan C .故等式成立.20.(本小题满分12分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值;(2)当a >0且b a >14时,证明该方程没有实数根.解:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,所以⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)证明:原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .因为a >0,所以b a ≤14,这与题设b a >14相矛盾,故原方程无实数根.21.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解:设等差数列{a n }的公差为d ,则⎩⎨⎧a 1=1+2,3a 1+3d =9+32,联立得d =2,故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r , 从而(q +2)2=(p +2)(r +2), 所以(q 2-pr )+(2q -p -r )2=0. 因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝ ⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0, 所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).。

人教版数学高二人教A选修1-2 综合素质检测.

人教版数学高二人教A选修1-2 综合素质检测.

选修1-2综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n }中,若a n >0,公差d>0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,公比q>1,则b 4,b 5,b 7,b 8的一个不等关系是( )A .b 4+b 8>b 5+b 7B .b 4+b 8<b 5+b 7C .b 4+b 7>b 5+b 8D .b 4+b 7<b 5+b 8A在等差数列{a n }中,由于4+6=3+7时有a 4·a 6>a 3·a 7, 所以在等比数列{b n }中,由于4+8=5+7, 所以应有b 4+b 8>b 5+b 7,选A .2.在如下图所示的各图中,两个变量具有相关关系的是( )A .(1)(2)B .(1)(3)C .(2)(4)D .(2)(3)D(1)为函数关系,(4)关系很不明显.3.否定结论“至多有两个解”的说法中,正确的是( ) A .有一个解B .有两个解C .至少有三个解D .至少有两个解C4.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n (n ∈N *),猜想a n 等于( )A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1D .2sin θ2nB∵0<θ<π2,∴a 2=2+2cos θ=2cos θ2.a 3=2+2cos θ2=2cos θ4,a 4=2+2cos θ4=2cos θ8.于是猜想a n =2cos θ2n -1.5.(2010·福建文,6)阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( ) A .2 B .3 C .4D .5C本题主要考查框图等知识. S =0 i =0 a =1·21=2 S =2 i =2 a =2·22=8 S =10 i =3 a =3·23=24 S =34 i =4 ∵S =34>11所以输出的i 值等于4.6.在复平面内的▱ABCD 中,点A ,B ,C 分别对应复数4+i,3+4i,3-5i ,则点D 对应的复数是( )A .2-3iB .4+8iC .4-8iD .1+4iC由题意知BC →=AD →且BC →对应的复数为-9i ,设D 点对应的复数为x +yi (x ,y ∈R ),则x -4+(y -1)i =-9i ,所以x =4,y =-8.7.(2010·浙江理,5)对任意复数z =x +yi (x ,y ∈R ),i 为虚数单位,则下列结论正确的是( )A .|z -z -|=2y B .z 2=x 2+y 2 C .|z -z -|≥2xD .|z |≤|x |+|y |Dz =x +yi ,z =x -yi ,有|z -z |=2x ,而|z |=x 2+y 2,则|z |2=x 2+y 2,|z |2=x 2+y 2≤x 2+y 2+2|x |·|y |,故选D.8.已知等比数列a n =13n-1,其前n 项和为S n =∑nk =1a k ,则S k +1与S k 的递推关系不满足...( )A .S k +1=S k +13k +1B .S k +1=1+13S kC .S k +1=S k +a k +1D .S k +1=3S k -3+a k +a k +1 AS k +1=S k +a k +1=S k +13k .B 、D 可以验证是正确的.9.观察两相关变量得如下数据:A.y ^=12x +1B.y ^=xC.y ^=2x +13D.y ^=x +1B回归直线过(x ,y )验证即得.10.一等差数列的前n 项和为210,其中前4项的和为40,后4项的和为80,则n 的值为( )A .12B .14C .16D .18B由a 1+a 2+a 3+a 4=40. a n +a n -1+a n -2+a n -3=80.得4(a 1+a n )=120,所以a 1+a n =30. 所以S n =n (a 1+a n )2=n ×302=210.n =14.∴选B.11.(2010·陕西文,2)复数z =i1+i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限A本题考查复数的除法运算.z =i1+i =i(1-i)(1+i)(1-i)=1+i 1-i 2=12+i 2,故复数z 在复平面上对应的点位于第一象限. 12.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定B分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意,∴选B.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.已知回归直线方程y ^=0.6x -0.71,则当x =25时,y 的估计值是________. 14.29当x =25时,y ^=0.6×25-0.71=14.29.14.观察下列式子1+122<32,1+122+132<53,1+122+132+142<74,……,则可归纳出________________1+122+132+…+1(n +1)2<2n +1n +1(n ∈N *) 15.(2010·安徽理,14)如图所示,程序框图(算法流程图)的输出值x =________.12x =1→x =2→x =4→x =5→x =6→x =8→x =9→x =10→x =12.16.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a 、b ∈R ,则a -b =0⇒a =b ”类比推出“若a 、b ∈C ,则a -b =0⇒a =b ”; ②“若a 、b 、c 、d ∈R ,则复数a +bi =c +di ⇒a =c ,b =d ”类比推出;“若a 、b 、c 、d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“若a 、b ∈R ,则a -b >0⇒a >b ”类比推出“若a 、b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的命题序号为________(把你认为正确的命题序号都填上). ①②三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)设复数z =(1+i )2+3(1-i )2+i ,若z 2+a ·z +b =1+i ,求实数a ,b 的值.z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =(3-i )(2-i )5=1-i ,∵z 2+az +b =1+i ,∴(1-i )2+a (1-i )+b =1+i ,∴(a +b )-(a +2)i =1+i∴⎩⎪⎨⎪⎧a +b =1-(a +2)=1解得:a =-3,b =4. ∴a =-3,b =4.18.(本题满分12分)用分析法证明:若a >0,则a 2+1a 2-2≥a +1a-2.要证a 2+1a 2-2≥a +1a -2,只需证a 2+1a 2+2≥a +1a+ 2.∵a >0,∴两边均大于0. ∴只需证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22. 只需证a 2+1a 2+4+4a 2+1a 2≥a 2+1a2+2+22⎝⎛⎭⎫a +1a 只需证a 2+1a 2≥22⎝⎛⎭⎫a +1a 只需证a 2+1a 2≥12⎝⎛⎭⎫a 2+1a 2+2 只需证a 2+1a 2≥2,而这显然是成立的.∴原不等式成立.19.某报对“男女同龄退休”这一公众关注的问题进行了民意调查,数据如下表可以求得K 2=1000×(198×109-217×476)2674×326×585×415≈125.161由K 2≈125.161>6.635因此,在犯错误的概率不超过0.01的前提下,认为“男女同龄退休”这一问题的看法与性别有关.20.(本题满分12分)如图所示,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)平面上在任意三角形DEF 中有余弦定理:DE 2=DF 2+EF 2-2DF ·EF ·cos ∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面的面积与其中两个侧面所成的二面角之间的关系式.(1)证明:因为CC 1∥BB 1,所以CC 1⊥PM ,CC 1⊥PN ,又因为PM ∩PN =P ,所以CC 1⊥平面PMN ,而MN ⊂平面PMN ,从而CC 1⊥MN .(2)解:在斜三棱柱ABC -A 1B 1C 1中,有S 2四边形AA 1C 1C =S 2四边形AA 1B 1B +S 2四边形CC 1B 1B -2S 四边形AA 1B 1B ·S 四边形CC 1B 1B cos α,其中α是侧面AA 1B 1B 与侧面CC 1B 1B 所成的二面角的平面角.21.(本题满分12分)若α,β均为锐角,且cos αsin β+cos βsin α=2.求证:α+β=π2.假设α+β≠π2,则α+β>π2或α+β<π2.若α+β>π2,由于α,β均为锐角,所以0<π2-β<α<π2,所以0<sin ⎝⎛⎭⎫π2-β<sin α,即0<cos β<sin α, 所以cos βsin α<1.同理,可得0<cos α<sin β,所以cos αsin β<1.故cos αsin β+cos βsin α<2,与已知矛盾. 同理,若α+β<π2,得cos αsin β+cos βsin α>2,也与已知矛盾.综上可知,假设不成立.故α+β=π2. 对于三角恒等式的证明,通常都会从条件出发利用三角变换最后产生结论.本题根据题目特点,发现使用反证法来证明比较简捷.本题的证明关键是否定结论后的分类,必须做到既不重复也不遗漏.22.(本题满分14分)观察以下各等式: sin 230°+cos 260°+sin30°cos60°=34,sin 220°+cos 250°+sin20°cos50°=34,sin 215°+cos 245°+sin15°cos45°=34,分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:sin 2α+cos 2(α+30°)+sin αcos(α+30°) =1-cos2α2+1+cos(60°+2α)2+sin(30°+2α)-sin30°2=1+cos(60°+2α)-cos2α2+12⎣⎡⎦⎤sin(30°+2α)-12 =1+-2sin(30°+2α)sin30°2+12⎣⎡⎦⎤sin(30°+2α)-12 =34-12sin(30°+2α)+12sin(30°+2α)=34.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(A)(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200 D.y ^=10x -200解析:选A.由题意知选项B 、D 为正相关,选项C 不符合实际意义. 2.在复平面内,复数10i3+i 对应的点的坐标为( )A .(1,3)B .(3,1)C .(-1,3)D .(3,-1)解析:选A.∵10i3+i =10i (3-i )(3+i )(3-i )=i(3-i)=1+3i.又复数1+3i 对应复平面内的点(1,3),故选A. 3.复数引入后,数系的结构图为( )解析:选A.复数引入后,数系扩充为实数和虚数两部分,故选A. 4.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B.由题中数字可发现:2+3=5,5+6=11,11+9=20,故20+12=32. 5.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 至多有一个大于1D .假设a ,b ,c 至多有两个大于1解析:选B.a ,b ,c 至少有一个大于1的否定为a ,b ,c 都不大于1. 6.已知线性回归方程y ^=1+bx ,若x =2,y =9,则b =( ) A .4 B .-4 C .18D .0解析:选A.因为y ^=1+bx ,且x =2,y =9,所以9=1+2b ,所以b =4. 7.已知z 1=a +b i ,z 2=c +d i ,若z 1-z 2是纯虚数,则( )A .a -c =0,且b -d ≠0B .a -c =0,且b +d ≠0C .a +c =0,且b -d ≠0D .a +c =0,且b +d ≠0解析:选A.∵z 1-z 2=a +b i -(c +d i) =(a -c )+(b -d )i 为纯虚数,∴⎩⎪⎨⎪⎧a -c =0b -d ≠0. 8.甲、乙、丙、丁四位同学各自对A ,B 两变量的线性相关性做试验,并由回归分析法分别求得相关指数R 与残差平方和m 如下表:甲 乙 丙 丁 R 0.82 0.78 0.69 0.85 m115106124103则哪位同学的试验结果体现A ,B 两变量更强的线性相关性( ) A .甲 B .乙 C .丙D .丁 解析:选D.相关指数R 越接近1,试验中两变量线性关系越强;残差平方和越小,线性关系越强.9.执行如图所示的程序框图,若输入n 的值为6,则输出s 的值为( )A.105 B.16C.15 D.1解析:选C.当i=1时,s=1×1=1;当i=3时,s=1×3=3;当i=5时,s=3×5=15;当i=7时,i<n不成立,输出s=15.10.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c,类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球半径为R,四面体S-ABC的体积为V,则R=()A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S4解析:选C.设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V S-ABC=13(S1+S2+S3+S4)R,∴R=3VS1+S2+S3+S4,故选C.二、填空题(本大题共5小题,把正确的答案填在题中横线上) 11.复数z1=cos θ+i,z2=sin θ-i,则|z1-z2|的最大值为________.解析:|z1-z2|=|(cos θ-sin θ)+2i|=(cos θ-sin θ)2+4=5-2sin θcos θ=5-sin 2θ≤ 6.12.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系为________. 解析:要比较P 与Q 的大小,只需比较P 2与Q 2的大小,只需比较2a +7+2a ·(a +7)与2a +7+2(a +3)(a +4)的大小,只需比较a 2+7a 与a 2+7a +12的大小,即比较0与12的大小,而0<12.故P <Q .答案:P <Q13.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线y ^=b ^x +a ^,那么下面说法不正确的是________.①直线y ^=b ^x +a ^必经过点(x ,y );②直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线y ^=b ^x +a ^的斜率为ni =1x i y i -n x y n i =1x 2i -n (x )2;④直线y ^=b ^x +a ^和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差的平方和ni =1[y i -(b ^x i +a ^)]2是该坐标平面上所有直线与这些点的偏差的平方和中最小的直线.解析:由回归直线方程的推导知,回归直线方程y ^=b ^x +a ^不一定至少经过点(x 1,y 1),…,(x n ,y n )中的一个点,④就是最小二乘法推导的理论基础,①,③是公式,故选②.答案:②14.为研究大气污染与人的呼吸系统疾病是否有关,对重污染地区和轻污染地区做跟踪调查,得出如下资料:患呼吸系统疾病 未患呼吸 系统疾病 总计 重污染地区 103 1 397 1 500 轻污染地区13 1 487 1 500 总计1162 8843 000根据列联表,求得K 2的值为________. 解析:由公式得K 2的观测值 k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500答案:72.63615.自然数列按如图规律排列,若2 008在第m 行第n 个数,则nm =________.1 32 4 5 6 10 9 8 7 11 12 13 14 15 …解析:观察图中数字的排列规律,可知自然数的排列个数呈等差数列,所以其总个数之和与行数m 有关,为m (m +1)2.而62×632<2 008<63×642, ∴m =63.而2 008-62×632=55,∴n =55. 答案:5563三、解答题(本大题共5小题,解答时应写出必要的文字说明、证明过程或演算步骤) 16.已知复数z =cos θ+isin θ(0≤θ≤2π),求θ为何值时,|1-i +z |取得最值.并求出它的最值.解:|1-i +z |=|cos θ+isin θ+1-i| = (cos θ+1)2+(sin θ-1)2 =2(cos θ-sin θ)+3 =22cos (θ+π4)+3,当θ=7π4时,|1-i +z |max =2+1;当θ=3π4时,|1-i +z |min =2-1.17.已知sin α+cos α=1,求证:sin 6α+cos 6α=1. 证明:要证sin 6α+cos 6α=1,只需证(sin 2α+cos 2α)(sin 4α-sin 2αcos 2α+cos 4α)=1.即证sin 4α-sin 2αcos 2α+cos 4α=1, 只需证(sin 2α+cos 2α)2-3sin 2αcos 2α=1, 即证1-3sin 2αcos 2α=1, 即证sin 2αcos 2α=0, 由已知sin α+cos α=1,所以sin 2α+cos 2α+2sin αcos α=1, 所以sin αcos α=0,所以sin 2αcos 2α=0, 故sin 6α+cos 6α=1.18.设三组实验数据(x 1,y 1),(x 2,y 2),(x 3,y 3)的回归直线方程是:y ^=b ^x +a ^,使代数式[y 1-(bx 1+a )]2+[y 2-(bx 2+a )]2+[y 3-(bx 3+a )]2的值最小时,a ^=y -b ^x ,b ^=x 1y 1+x 2y 2+x 3y 3-3x yx 21+x 22+x 23-3x2,(x ,y 分别是这三组数据的横、纵坐标的平均数)若有7组数据,列表如下:(1)求上表中前三组数据的回归直线方程;(2)若|y i -(b ^x i +a ^)|≤0.2,即称(x i ,y i )为(1)中回归直线的拟和“好点”,求后四组数据中拟合“好点”的概率.解:(1)前三组数的平均数: x =13×(2+3+4)=3,y =13×(4+6+5)=5,根据公式:b ^=2×4+3×6+4×5-3×3×522+32+42-3×32=12,∴a ^=5-12×3=72,∴回归直线方程是y ^=12x +72.(2)|6.2-3.5-0.5×5|=0.2≤0.2, |8-3.5-0.5×6|=1.5>0.2, |7.1-3.5-0.5×7|=0.1<0.2, |8.6-3.5-0.5×8|=1.1>0.2, 综上,拟合的“好点”有2组, ∴“好点”的概率P =24=12.19.请阅读下列不等式的证法:已知a 1,a 2∈R ,a 21+a 22=1,求证:|a 1+a 2|≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2,则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2(a 1+a 2)x +1.因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4(a 1+a 2)2-8≤0,从而得|a 1+a 2|≤ 2. 请回答下面的问题:若a 1,a 2,…,a n ∈R ,a 21+a 22+…+a 2n =1,请写出上述结论的推广形式,并进行证明. 解:推广形式:若a 1,a 2,…,a n ∈R ,a 21+a 22+…+a 2n =1,则|a 1+a 2+…+a n |≤n .证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2(a 1+a 2+…+a n)x +1. 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4(a 1+a 2+…+a n )2-4n ≤0, 从而得|a 1+a 2+…+a n |≤n .20.如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊂/ 平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,DE∩CD=D,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.又DE∩DP=D,所以A1C⊥平面DEP. 从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。

相关文档
最新文档