8.正弦函数、余弦函数的性质(四)---最值,解三角不等式

合集下载

艺术生高考数学专题讲义:考点17 三角函数的图象和性质

艺术生高考数学专题讲义:考点17 三角函数的图象和性质

考点十七 三角函数的图象和性质知识梳理1.正弦函数、余弦函数、正切函数的图象与性质2.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).3. 三角函数的周期性正弦函数、余弦函数都是周期函数,周期均为2k π,k ∈Z ,最小正周期均为2π;正切函数也是周期函数,周期为k π,k ∈Z ,最小正周期为π.典例剖析题型一 三角函数的定义域和值域 例1 函数y =cos x -32的定义域为________. 答案 ⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) 解析 ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 变式训练 函数y =sin x -cos x 的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z解析 要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示. 结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z .例2 (1) 函数y =2sin x ⎝⎛⎭⎫π6≤x ≤2π3的值域是________.(2) 函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 (1) [1,2] (2) -22解析 (1) 根据正弦函数图象,可知x =π6时,函数取到最小值1;x =π2时,函数取到最大值2.(2) ∵x ∈⎣⎡⎦⎤0,π2,∴-π4≤2x -π4≤3π4,令y =2x -π4,则sin ⎝⎛⎭⎫2x -π4=sin y 在y ∈⎣⎡⎦⎤-π4,3π4上的最小值为sin ⎝⎛⎭⎫-π4=-22. 变式训练 求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫||x ≤π4的最大值为54,最小值为1-22. 解题要点 1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法 (1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域;(3)把sin x 或cos x 看作一个整体,通过换元,令t =sin x (或t =cos x ),转换成二次函数求值域;(4)利用sin x ±cos x 和sin x cos x 的关系通过换元,令t =sin x +cos x ,转换成二次函数求值域. 题型二 三角函数的单调性例3 (1)函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________. (2) 函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是____________________. 答案 (1) ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) (2) ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) 解析 (1)由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z ), 故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). (2) 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).变式训练 若函数f (x )=-cos 2x ,则f (x )的一个递增区间为________. 答案 ⎝⎛⎭⎫0,π2 解析 由f (x )=-cos 2x 知递增区间为⎣⎡⎦⎤k π,k π+π2,k ∈Z ,故只有B 项满足. 解题要点 1.求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;2.求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. 题型三 三角函数的周期性例4 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为________. 答案 4π解析 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4的最小正周期为T =2π12=4π. 当堂练习1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 -22解析 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π4∈⎣⎡⎦⎤-π4,3π4,当2x -π4=-π4,即x =0时,f (x )取得最小值-22. 2.如果函数f (x )=sin(ωx +π6)(ω>0)的两个相邻零点之间的距离为π12,则ω的值为________.答案 12解析 T =π6,ω=2πT =12.3. 函数y =cos x -12的定义域为________.答案 ⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z 解析 ∵cos x -12≥0,得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z .4.y =sin(x -π4)的图象的一个对称中心是________.答案 (-3π4,0)解析 令x -π4=k π,k ∈Z 得x =π4+k π,k ∈Z ,于是(-3π4,0)是y =sin(x -π4)的图象的一个对称中心.5.函数f (x )=cos(2x +3π2)(x ∈R ),下面结论不正确的是________.(填序号)① 函数f (x )的最小正周期为π ② 函数f (x )的对称中心是(π2,0)③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )是偶函数 答案 ④解析 ∵f (x )=cos(2x +3π2)=sin2x (x ∈R ),∴最小正周期T =2π2=π,选项①正确;由2x =k π得x =k π2,k ∈Z ,∴函数f (x )的对称中心为(k π2,0),∴取k =1得选项②正确;由2x =k π+π2得x =k π2+π4,k ∈Z ,∴取k =0得函数f (x )的对称轴为x =π4,∴选项③正确;∵f (x )=sin2x (x ∈R ),∴f (-x )=-f (x ),f (x )为奇函数, ∴选项④不正确.课后作业一、 填空题1.若函数f (x )=sin x +φ3(φ∈[0,2π]) 是偶函数,则φ=________.答案3π2解析 ∵f (x )为偶函数,关于y 轴对称,x =0为其对称轴. ∴x +φ3=π2+k π,令x =0,φ=3k π+32π,当k =0时,φ=32π.2.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为________. 答案 π6解析 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.3.函数y =cos 2x ,周期为_____,且在⎣⎡⎦⎤0,π2上是________(填“增函数”或“减函数”). 答案 π,减函数解析 因为y =cos 2x 的周期T =2π2=π,而2x ∈[0,π],所以y =cos 2x 在⎣⎡⎦⎤0,π2上为减函数. 4.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是________. 答案 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z )解析 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).5.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=________. 答案 π4解析 由题意得周期T =2⎝⎛⎭⎫54π-14π=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+φ=±1,f ⎝⎛⎭⎫5π4=sin ⎝⎛⎭⎫5π4+φ=±1.∵0<φ<π,∴π4<φ+π4<54π,∴φ+π4=π2,∴φ=π4.6.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 -22解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4,所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.7.(2015四川文)下列函数中,最小正周期为π的奇函数是________.(填序号) ①y =sin ⎝⎛⎭⎫2x +π2 ②y =cos ⎝⎛⎭⎫2x +π2 ③y =sin 2x +cos 2x ④y =sin x +cos x 答案 ②解析 ①项,y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,不符合题意; ②项,y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,最小正周期为π,且为奇函数,符合题意; ③项,y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期为π,为非奇非偶函数,不符合题意; ④项,y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,最小正周期为2π,为非奇非偶函数,不符合题意. 8.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________. 答案 ⎣⎡⎦⎤-32,3 解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 9.函数y =3sin(2x +π4)的最小正周期为________.答案 π 解析 T =2π2=π.10.函数f (x )=cos(2x -π4)+3在[-π2,π2]上的单调递减区间为________.答案 [-π2,-3π8]∪[π8,π2]解析 由2k π≤2x -π4≤2k π+π得k π+π8≤x ≤k π+5π8,k ∈Z .∵x ∈[-π2,π2],∴取k =0得f (x )在[-π2,π2]上的单调递减区间为[π8,π2];取k =-1得f (x )在[-π2,π2]上的单调递减区间为[-π2,-3π8].∴f (x )在[-π2,π2]上的单调递减区间为[-π2,-3π8]和[π8,π2]. 11.函数y =sin(x +π4)的对称中心为________.答案 (k π-π4,0),k ∈Z二、解答题12.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解析 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎣⎡⎦⎤π8,π2上单调递减.13.(2015北京文)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x - 3.=2sin ⎝⎛⎭⎫x +π3- 3. 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3时,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。

导学案019第三节 三角函数的图象和性质

导学案019第三节  三角函数的图象和性质

三角函数的图象和性质考纲要求1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等),理解正切函数的单调性.考情分析1.三角函数的值域、最值、单调性、周期性等性质是高考考查的重点.2.主要以选择题、填空题的形式考查,也常与三角恒等变换相结合在解答题中考查. 教学过程:基础梳理双基自测1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是 ( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠π4,x ∈RB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-π4,x ∈R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π4,k ∈Z ,x ∈R D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+3π4,k ∈Z ,x ∈R 2.函数f (x )=2cos⎝ ⎛⎭⎪⎫x +5π2是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为2π的非奇非偶函数 D .最小正周期为π的偶函数 3.函数y =|sin x |的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫-π4,π4B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π 4.比较大小,sin ⎝⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10. 5.(教材习题改编)y =2-3cos ⎝⎛⎭⎪⎫x +π4的最大值为________.此时x =________. 典例分析考点一:三角函数的定义域和值域例1:(2012·珠海模拟)函数y =lg(2sin x -1)+1-2cos x的定义域为________ .[例2] (2010·江西高考)函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54]变式1:(2012·嘉兴模拟)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6<x <π6的值域为________.方法总结:1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法 (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =Asin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函 数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.考点二:三角函数的单调性[例3] (2011·新课标全国卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+cos ⎝⎛⎭⎪⎫2x +π4,则( )A .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π2对称变式2.(2012·金华模拟)若函数f (x )=(1+tan x )cos x,0≤x <π2,则f (x )的最大、最小值分别为 ( ) A.2和1 B .2和1 C .2和 2 D .2和 3方法总结:求形如y =Asin(ωx +φ)或y =Acos(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y =sin x(x ∈R),y =cos x(x ∈R)的单调区间对应的不等式方向相同(反).考点三:三角函数的周期性和奇偶性[例4] (2010·湖北高考)函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为 ( )A.π2B .πC .2πD .4π[例5] (2010·陕西高考)函数f(x)=2sin xcos x 是 ( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数变式3.(2012·义乌模拟)下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2B .y =cos ⎝ ⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2变式4.(2012·黄冈模拟)我们把正切函数在整个定义域内的图象看作一组“平行曲线”,而“平行曲线”具有性质:任意两条平行直线与两条相邻的“平行曲线”相交,被截得的线段相等.已知函数f (x )=tan(ωx +π3)(ω>0)图象中的两条相邻“平行曲线”与直线y =2 012相 交于A ,B 两点,且|AB |=3π,则f (π)=( ) A .2+ 3 B .- 3 C. 3 D.3- 2方法总结:1.判断函数的奇偶性,首先要看函数的定义域是否关于原点对称,若定义域关于原点对称,再判断f(-x)与f(x)的关系,进而确定其奇偶性.2.求三角函数周期的方法: (1)利用周期函数的定义.(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. (3)利用图象.[考题范例](2011·北京高考)已知函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.[规范解题](1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1= 3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6, (5分) 所以f (x )的最小正周期为π.(6分) (2)因为-π6≤x ≤π4, 所以-π6≤2x +π6≤2π3. (8分) 于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; (10分) 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1. (12分)一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.本节检测1.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 2.函数y =2sin x -1的定义域为( )A.⎣⎢⎡⎦⎥⎤π6,5π6B.⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z)C.⎝ ⎛⎭⎪⎫2k π+π6,2k π+5π6(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π+π6,k π+5π6(k ∈Z)3.若函数y =2cos ωx 在区间[0,2π3]上递减,且有最小值1,则ω的值可以是( )A .2 B.12 C .3 D.134.(2011·天津高考)已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( ) A .f (x )在区间[-2π,0]上是增函数 B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数5.函数y =1-tan x 的定义域是________. 6.已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.自我反思9.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调递增区间.10.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.。

高中三角函数三角函数的不等式与最值问题

高中三角函数三角函数的不等式与最值问题

高中三角函数三角函数的不等式与最值问题在高中数学学习中,三角函数是一个重要的章节。

除了学习三角函数的定义、性质和图像等基本知识外,我们还需要掌握三角函数的不等式和最值问题的解决方法。

本文将为大家详细介绍高中三角函数的不等式与最值问题,并提供相应的解决思路和方法。

一、三角函数的不等式1. 正弦函数的不等式正弦函数的定义域为实数集,而正弦函数的值的范围在[-1, 1]之间。

因此,当我们解决正弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的正弦函数转化为关于θ的等价不等式;(3)根据正弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。

例如,解不等式sinθ > 0,我们可以按照上述步骤进行求解:(1)由于正弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式sinθ > 0转化为等价不等式:0 < sinθ < 1;(3)根据正弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (2kπ, 2kπ + π/2),其中k ∈ Z。

2. 余弦函数的不等式余弦函数的定义域为实数集,而余弦函数的值的范围在[-1, 1]之间。

因此,当我们解决余弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的余弦函数转化为关于θ的等价不等式;(3)根据余弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。

例如,解不等式cosθ ≥ 0,我们可以按照上述步骤进行求解:(1)由于余弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式cosθ ≥ 0转化为等价不等式:cosθ > -1 或cosθ < 1;(3)根据余弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (-2kπ, -2kπ + π/2) U (2kπ, 2kπ + π),其中k ∈ Z。

三角函数和不等式知识点

三角函数和不等式知识点

三角函数和不等式知识点三角函数和不等式是数学中的重要知识点,它们在解决实际问题和推导数学公式中都起着重要的作用。

接下来,我们将逐步介绍三角函数和不等式的相关内容。

一、三角函数1.什么是三角函数?三角函数是描述角和边之间关系的函数。

在解决几何问题和物理问题时,经常会涉及到角的度量和边长的关系。

三角函数可以帮助我们建立角度与边长之间的联系,常见的三角函数有正弦函数、余弦函数和正切函数。

2.正弦函数(sin)正弦函数描述了一个角的正弦值与其对边与斜边之间的比值关系。

在一个直角三角形中,角的正弦值等于对边与斜边的比值。

3.余弦函数(cos)余弦函数描述了一个角的余弦值与其邻边与斜边之间的比值关系。

在一个直角三角形中,角的余弦值等于邻边与斜边的比值。

4.正切函数(tan)正切函数描述了一个角的正切值与其对边与邻边之间的比值关系。

在一个直角三角形中,角的正切值等于对边与邻边的比值。

二、不等式1.什么是不等式?不等式是数学中用于描述数之间大小关系的符号组合。

不等式可以表示两个数的大小关系、多个数的大小关系以及未知数与已知数的大小关系等。

2.不等式的表示方法不等式可以用大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)等符号来表示。

例如,a > b 表示a大于b,a ≤ b 表示a小于等于b。

3.不等式的解集不等式的解集是满足不等式的所有实数的集合。

对于一元一次不等式,我们可以通过绘制数轴、构建数表或使用符号法来求解不等式。

4.不等式的性质和运算法则不等式具有传递性、加减法法则、乘除法法则等性质和运算法则。

利用这些性质和法则,我们可以对不等式进行合并、分离、求交集、求并集等运算。

综上所述,三角函数和不等式是数学中的重要知识点。

通过学习三角函数,我们可以了解角度与边长之间的关系;通过学习不等式,我们可以掌握数之间的大小关系。

这些知识点在解决实际问题和推导数学公式时都发挥着重要的作用。

正弦函数和余弦函数的图像与性质.ppt

正弦函数和余弦函数的图像与性质.ppt

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(

x) 可知余弦函数
y

cos
6
x的图像可由
y

2 sin
x
的图像向左平移
2
4
个单位得到.

1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2

3 2
2
2 8
5
-10

三角函数知识点归纳与题型总结

三角函数知识点归纳与题型总结

三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角, 一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限,称作轴线角。

3、终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.【例1】与角1825-的终边相同,且绝对值最小的角的度数是 ,合 弧度。

(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 【例2】α的终边与6π的终边关于直线x y =对称,则α=____________。

4、α与2α的终边关系:由“两等分各象限、一二三四”确定.【例3】若α是第二象限角,则2α是第_____象限角。

5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.【例4】已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

6、任意角的三角函数的定义:、设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0yx xα=≠,cot x y α=(0)y ≠,【例5】(1)已知角α的终边经过点P(5,-12),则ααcos sin +的值为 。

三角函数的图象、定义域、最值(值域)、单调性

三角函数的图象、定义域、最值(值域)、单调性
三角函数的图象、定义域、最值(值域)、单调性
[学习要求] 1.能画出 y = sin x , y = cos x , y =tan x 的图象. 2.理解
正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小
值、图象与 x 轴的交点等). 3.理解正切函数在区间
π
π
− ,
2
2
上的性质.
π
π
− <<
2
2
由题意得 y = cos x ·|tan x |=ቐ
的大致图象是(
sin,0 ≤
π
< ,
2
π
−sin, − <
2
所以其图象的大致形状如选项C所示.
< 0,
C )
2. 已知函数 f ( x )= sin x +2| sin x |, x ∈[0,2π],若直线 y = k
与其仅有两个不同的交点,则 k 的取值范围为
, k ∈Z,
2
2
π
π
π
+ ≥ + 2π,
4
2
所以ቐ 2
k ∈Z,
π

π+ ≤ + 2π,
4
2
1
5
解得4 k + ≤ω≤2 k + , k ∈Z.
2
4
1
5
5
又由4 k + - 2+ ≤0, k ∈Z,且2 k + >0, k ∈Z,解得 k =0,
2
4
4
1
5
所以ω∈ , .
2
4
方法总结
A. [-1,1]
令 sin x = t , t ∈[-1,1],
则 y = t 2+ t -1=
1 2

高一数学讲义 第六章 三角函数

高一数学讲义 第六章 三角函数

高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。

正、余弦函数的图象与性质重难点题型

正、余弦函数的图象与性质重难点题型
【点睛】本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及图象之间的关系,属于基本知识的考查.
【变式3-2】画出下列函数的图象.
(1) , ,
(2) , , .
【分析】(1)用五点法作出函数y=1+3cosx在一个周期上的简图.
(2)用五点法作出函数y=2sinx﹣1在一个周期上的简图.
【答案】解:(1)列表:
化简可得 ,解得﹣ <x< .
故函数的定义域为(﹣ , ),
故答案为(﹣ , ).
【点睛】本题主要考查求余弦函数的定义域和值域,求对数函数的定义域,属于基础题.
【考点2正、余弦函数的值域】
【例2】(2018秋•启东市校级月考)函数 在区间 上的值域为.
【分析】由题意利用正弦函数的定义域和值域,求得函数f(x)=sin 在区间 上的值域.
要点诠释:
(1)熟记正弦函数、余弦函数图象起关键作用的五点。
(2)若 ,可先作出正弦函数、余弦函数在 上的图象,然后通过左、右平移可得到 和 的图象。
(3)由诱导公式 ,故 的图象也可以将 的图象上所有点向左平移 个单位长度得到。
【知识点2正弦曲线、余弦曲线】
1.定义:正弦函数 和余弦函数 的图象分别叫做正弦曲线和余弦曲线。
1.定义是对I中的每一个 值来说的,只有个别的 值满足 或只差个别的 值不满足 都不能说T是 的一个周期.
2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.
【知识点5正弦函数、余弦函数的图象和性质】
函数
正弦函数y=sinx
余弦函数y=cosx
【答案】解:令t=sinx,t∈[﹣1,1],
所以: ,

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。

考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。

考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。

考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。

此外,该函数的图像还可以通过一定的变换得到。

一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。

cosθ)(θ∈(π/2,π)),则sin=-cosθ。

3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。

练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。

4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。

练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。

正弦函数、余弦函数的性质

正弦函数、余弦函数的性质

结论: 结论: y = A sin( ω x + ϕ ) 的周期是
1.求下列函数的周期
y = A sin( ω x + ϕ )的周期的一半。 的周期的一半。
(1) y = sin 2 x ; ( 2) y = sin 3 x + sin x ⋅ cos 2 x
π 2. y = cos ωx + (ω > 0)最小正周期为1,求ω 4 nπ 3.若函数 f ( n) = sin ( n ∈ Z ), 求f (1) + f ( 2) + L + f (102) 6 4.为了使函数 y = sin ωx(ω > 0)在区间[0,上至少出现 50次 1]
正弦函数、余弦函数的性质
定义域与值域
定义域与值域
由三角函数定义及三角函数线, 由三角函数定义及三角函数线,我们知道正弦函 余弦函数的定义域为R,值域为[-1,1]. 数、余弦函数的定义域为 ,值域为 从正弦函数、余弦函数的图象, 从正弦函数、余弦函数的图象,也可以得到定义 域与值域. 域与值域
思考: 思考:
单调递减区间
3π π 2 + 2kπ , 2 + 2kπ
单调性 与最值
[2kπ − π ,2kπ ]
π
[2kπ ,2kπ + π ]
y = sin x当 x = 2 kπ +
2 π 3π ( 2 kπ − )时,取得最小值 − 1. 当 x = 2 kπ + 2 2 y = cos x当 x = 2 kπ时,取得最大值 1; 当 x = 2 kπ + π时,取得最小值 − 1.
奇偶性
正弦函 余弦函数关于 轴对称,偶函数

三角函数知识点总结

三角函数知识点总结

高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义. (3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. (7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. (8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α•cos α=1”.§04. 三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββο②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|οββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|οοββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|οββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|οοββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαkSIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180π≈0.01745(rad )3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则=αsin rx=αcos ; x y =αtan ; yx =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.7. 三角函数的定义域:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: (3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -==οο,42615cos 75sin +==οο,3275cot 15tan -==οο,3215cot 75tan +==οο.公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2x tan x ·cot x =11+cot 2x =csc 2x=1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tan xy =的周期为2π(πωπ2=⇒=T T ,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)tan(ϕω+=x y 的对称中心(0,2πk ). x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T )x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如: R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ(即当x =0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx替换x)由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )y=|cos2x +1/2|图象由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。

高中数学解题方法系列:三角函数最值问题的10种方法

高中数学解题方法系列:三角函数最值问题的10种方法

高中数学解题方法系列:三角函数最值问题的10种方法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,对三角函数的恒等变形能力及综合应用要求较高.解决三角函数最值这类问题的基本途径,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题.下面介绍几种常见的求三角函数最值的方法:一.转化一次函数在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法.例1.求函数2cos 1y x =-的值域[分析] 此为cos y a x b =+型的三角函数求最值问题, 设cos t x =,由三角函数的有界性得[1,1]t ∈-,则21[3,1]y t =-∈-二. 转化sin()y A x b ωϕ=++(辅助角法)观察三角函数名和角,先化简,使三角函数的名和角统一.例2.(2017年全国II 卷)求函数()2cos sin f x x x =+的最大值为.[分析] 此为sin cos y a x b x =+型的三角函数求最值问题,通过引入辅助角公式把三角函数化为sin()y A x B ωϕ=++的形式,再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.()f x ≤三. 转化二次函数(配方法)若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.例3. 求函数3cos 3sin 2+--=x x y 的最小值.[分析]利用22sin cos 1x x +=将原函数转化为2cos 3cos 2+-=x x y ,令cos t x =,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t Θ当t=1时,即cosx=1时,0min =y四. 引入参数转化(换元法)对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围.例4. 求函数sin cos sin .cos y x x x x =++的最大值.[分析]解:令().cos sin 21cos sin 2x x x x +=+,设sin cos .t x x =+则[]()t t y t t x x +-=∴-∈-=21,2,221cos sin 22,其中[]2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝⎛+=y x t π 五. 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区.例5. 已知()π,0∈x ,求函数1sin 2sin y x x =+的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解.设()1sin ,01,2x t t y t t =<≤=+≥=2t =. 六.利用函数在区间内的单调性 例6.已知()π,0∈x ,求函数x x y sin 2sin +=的最小值. [分析] 此题为xa x sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解. 设()t t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3min =y .七.转化部分分式例7.求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解.或者也可先用反解法,再用三角函数的有界性去解. 解法一:原函数变形为1cos ,1cos 221≤-+=x x y Θ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x Θ3≥y 或.31≤y 八. 数形结合由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得. 例8. 求函数()π<<--=x xx y 0cos 2sin 的最小值. [分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率.由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3365tan -==πAB k 所以y 的最小值为33-(此时3π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有界性来求解.九. 判别式法例9.求函数22tan tan 1tan tan 1x x y x x -+=++的最值. [分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法.解:()()()()222tan tan 1tan tan 11tan 1tan 101,tan 0,x x y x x y x y x y y x x k k ππ-+=++∴-+++-=∴===∈1≠y 时此时一元二次方程总有实数解()()()().3310313,014122≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4max =∈+=∴y z k k x ππ 由.31,4,1tan ,31min =+=∴==y k x x y ππ 十. 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论.例10.设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().214sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当12≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();214422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4210a g a M -== ()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,21442,21432a a a a a a a a M以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见.解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在.挑战自我:1.求函数y=5sinx+cos2x 的最值2.已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合.3.已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值.参考答案:1.[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一. ()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππΘ 2.[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解.解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ∴ f(x)的最小正周期为π,最大值为21+.3.[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式. 解:()⎪⎭⎫ ⎝⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f。

数学中的三角函数性质总结

数学中的三角函数性质总结

数学中的三角函数性质总结三角函数是数学中一类重要的函数,广泛应用于几何、物理、工程等领域。

三角函数包括正弦函数、余弦函数、正切函数等,它们都具有一些独特的性质。

在本文中,我将对三角函数的性质进行总结,并探讨它们在数学中的应用。

首先,我们来看正弦函数。

正弦函数是一个周期函数,其周期为2π。

它的图像呈现出一条连续的波浪线,具有以下性质:1. 奇偶性:正弦函数是一个奇函数,即sin(-x)=-sin(x),这意味着它的图像关于原点对称。

2. 反函数:正弦函数的反函数是反正弦函数,通常记作arcsin(x)或sin^(-1)(x)。

反正弦函数的定义域为[-1,1],值域为[-π/2,π/2]。

3. 周期性:正弦函数的周期为2π,即sin(x+2π)=sin(x)。

这意味着正弦函数的图像在每个周期内重复。

接下来,我们来看余弦函数。

余弦函数也是一个周期函数,其周期同样为2π。

它的图像呈现出一条连续的波浪线,具有以下性质:1. 奇偶性:余弦函数是一个偶函数,即cos(-x)=cos(x),这意味着它的图像关于y轴对称。

2. 反函数:余弦函数的反函数是反余弦函数,通常记作arccos(x)或cos^(-1)(x)。

反余弦函数的定义域为[-1,1],值域为[0,π]。

3. 周期性:余弦函数的周期为2π,即cos(x+2π)=cos(x)。

这意味着余弦函数的图像在每个周期内重复。

最后,我们来看正切函数。

正切函数是一个奇函数,它的图像呈现出一条连续的曲线,具有以下性质:1. 奇偶性:正切函数是一个奇函数,即tan(-x)=-tan(x),这意味着它的图像关于原点对称。

2. 反函数:正切函数的反函数是反正切函数,通常记作arctan(x)或tan^(-1)(x)。

反正切函数的定义域为整个实数集,值域为(-π/2,π/2)。

3. 周期性:正切函数的周期为π,即tan(x+π)=tan(x)。

这意味着正切函数的图像在每个周期内重复。

三角函数总复习教学资料知识点及例习题

三角函数总复习教学资料知识点及例习题

三角函数总复习教学资料一、考纲要求:1.理解任意角的概念、弧度的意义,能正确进行弧度和角度的互换。

2.掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。

3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。

4.能正确运用三角公式,进行简单三角函数式的化简,求值和恒等式的证明。

5.了解正弦函数、余弦函数,正切函数的图像和性质,会用“五点法”画正弦函数,余弦函数和函数y=Asin(wx+φ)的简图,理解A 、、φ的物理意义。

6.会由已知三角函数值求角,并会用符号arcsinx 、arccosx 、arctgx 表示。

7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决三角形的计算问题。

8.理解反三角函数的概念,能由反三角函数的图像得出反三角函数的性质,能运用反三角函数的定义、性质解决一些简单问题。

9.能够熟练地写出最简单的三角方程的解集。

二、知识结构1.角的概念的推广:(1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。

其中射线OA 叫角α的始边,射线OB 叫角α的终边,O 叫角α的顶点。

(2)正角、零角、负角:由始边的旋转方向而定。

(3)象限角:由角的终边所在位置确定。

第一象限角:2k π<α<2k π+,k ∈Z 第二象限角:2k π+<α<2k π+π,k ∈Zωω2π2π第三象限角:2k π+π<α<2k π+,k ∈Z第四象限角:2k π+<α<2k π+2π,k ∈Z(4)终边相同的角:一般地,所有与α角终边相同的角,连同α角在内(而且只有这样的角),可以表示为k ·360°+α,k ∈Z 。

(5)特殊角的集合:终边在坐标轴上的角的集合{α|α=,k ∈Z }终边在一、三象限角平分线上角的集合{α|α=k π+,k ∈Z } 终边在二、四象限角平分线上角的集合{α|α=k π-,k ∈Z }终边在四个象限角平分线上角的集合{α|α=k π,k ∈Z }2.弧度制:(1)定义:用“弧度”做单位来度量角的制度,叫做弧度制。

正弦函数和余弦函数的图像与性质

正弦函数和余弦函数的图像与性质

D
矩形 A' B'C ' D' 周长最大? a B' B
b
D' C
C'
课堂练习答案
1.(1) y cos x 3
当 x 6k , k Z 时,ymin 1
当 x 6k 3 , k Z 时,ymax 1
(2) y (sin x 1)2 3
当 x 2k , k Z 时,ymax 3
6
P
30
3x
课堂练习
1.求下列函数的最大值与最小值,及取到最值时
的自变量 x 的值.
(1) y cos x (2) y cos2 x 2sin x 1 3
2.要求同第1题.
(1) y cos(2x ) (2) y 2 cos2 x sin 2x
4
A'
3.如图,当 为何值时, A
这个函数的周期.
思考 2T ,3T , 4T , 也是周期吗? 周期函数有多少个周期?
一、函数周期性的定义
一般地,对于函数 f (x) ,如果存在非零常数 T
使得对于定义域内的每一个自变量 x 值,都有 f (x+T ) f (x)
那么函数 f (x) 叫做周期函数,非零常数 T 叫做
这个函数的周期. 最小正周期 一个周期函数的全部周期中 若存在一个最小正数,那么这个最小的正数 就叫做这个周期函数的最小正周期.
正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
二、正弦函数的图像
正弦函数 y sin x在区间[0, 2 ]上的图像.
思考 如何利用正弦线确定点(x0 , sin x0 ) 的坐标?

探究三角函数与三角变换的不等式与恒等式

探究三角函数与三角变换的不等式与恒等式

探究三角函数与三角变换的不等式与恒等式三角函数与三角变换的不等式与恒等式三角函数与三角变换在数学中具有广泛的应用。

通过研究三角函数与三角变换的不等式与恒等式,我们可以深入理解它们的性质和特点。

本文将探究三角函数与三角变换的不等式与恒等式,并分析其应用。

一、不等式1. 正弦函数的不等式正弦函数的值域在[-1,1]之间,因此对于任意实数x,有-1≤sin(x)≤1。

根据这一性质,我们可以推导出正弦函数的不等式。

1.1 正弦函数的单调性正弦函数在区间[-π/2,π/2]上是严格递增的,在区间[π/2,3π/2]上是严格递减的。

基于这一性质,我们可以得到以下不等式:(1)当0≤a≤b≤π/2时,有sin(a)≤sin(b);(2)当π/2≤a≤b≤3π/2时,有sin(a)≥sin(b)。

1.2 正弦函数的周期性正弦函数的周期为2π。

对于任意实数x,在正弦函数的周期上添加任意整数倍的2π,函数值保持不变。

因此,我们可以得到以下不等式:(1)sin(x)≤sin(x+2kπ)≤1,其中k为整数;(2)-1≤sin(x+2kπ)≤s in(x),其中k为整数。

2. 余弦函数的不等式余弦函数的值域也在[-1,1]之间,因此对于任意实数x,有-1≤cos(x)≤1。

根据这一性质,我们可以推导出余弦函数的不等式。

2.1 余弦函数的单调性余弦函数在区间[0,π]上是严格递减的,在区间[-π,0]上是严格递增的。

基于这一性质,我们可以得到以下不等式:(1)当0≤a≤b≤π时,有cos(b)≤cos(a);(2)当-π≤a≤b≤0时,有cos(b)≥cos(a)。

2.2 余弦函数的周期性余弦函数的周期也为2π。

对于任意实数x,在余弦函数的周期上添加任意整数倍的2π,函数值保持不变。

因此,我们可以得到以下不等式:(1)-1≤cos(x)≤cos(x+2kπ)≤1,其中k为整数;(2)cos(x)≥cos(x+2kπ)≥-1,其中k为整数。

数学中的三角恒等式与三角不等式

数学中的三角恒等式与三角不等式

数学中的三角恒等式与三角不等式三角恒等式是指在三角函数中成立的等式关系,而三角不等式则是指在三角函数中成立的不等式关系。

这两个概念在数学中具有重要的意义,不仅在解题过程中有着广泛的应用,而且在理论推导和证明中也起到了关键的作用。

本文将从三角恒等式和三角不等式的定义、性质以及应用等方面进行论述。

一、三角恒等式1. 定义三角恒等式是指在三角函数中成立的等式关系。

常见的三角恒等式包括正弦函数、余弦函数和正切函数的恒等式。

例如,正弦函数的恒等式sin^2θ + cos^2θ = 1是最为著名的三角恒等式之一。

2. 性质三角恒等式具有以下几个重要的性质:(1)对于任意实数θ,三角恒等式都成立;(2)三角恒等式在数学推导和证明中起到了重要的作用;(3)三角恒等式可以用来简化复杂的三角函数表达式;(4)三角恒等式的证明可以通过几何方法、代数方法以及三角函数的性质等多种途径。

3. 应用三角恒等式在数学中有着广泛的应用,特别是在解三角方程、求极限、求导数等方面。

通过运用三角恒等式,可以简化问题的解题过程,提高解题的效率。

此外,三角恒等式在物理学、工程学等实际应用中也有着重要的作用。

二、三角不等式1. 定义三角不等式是指在三角函数中成立的不等式关系。

常见的三角不等式包括正弦函数、余弦函数和正切函数的不等式。

例如,正弦函数的不等式sinθ < 1是最为常见的三角不等式之一。

2. 性质三角不等式具有以下几个重要的性质:(1)对于任意实数θ,三角不等式都成立;(2)三角不等式可以用来判断三角函数的取值范围;(3)三角不等式在数学推导和证明中起到了重要的作用;(4)三角不等式的证明可以通过几何方法、代数方法以及三角函数的性质等多种途径。

3. 应用三角不等式在数学中也有着广泛的应用。

它可以用来证明三角函数的性质,判断三角函数的增减性,以及解决与三角函数相关的不等式问题。

此外,三角不等式在几何学、物理学等领域中也有着重要的应用。

正弦余弦的应用知识点总结

正弦余弦的应用知识点总结

正弦余弦的应用知识点总结正弦余弦是中学数学中常见的概念,它们有着广泛的应用。

在物理、工程、地理、天文等领域,正弦余弦函数常常被用来描述周期性的现象,计算物体的运动轨迹,解决三角形相关问题,以及进行信号处理等。

本文将对正弦余弦函数的应用知识点进行总结,希望能够帮助读者更好地理解正弦余弦函数的实际应用。

一、物理学中的应用正弦余弦函数在物理学中有着广泛的应用。

首先,在描述振动现象时,正弦函数是最常用的函数之一。

例如,弹簧振子的运动可以使用正弦函数来描述,而声波的传播也可以用正弦函数来表示。

此外,正弦函数还可以用来描述机械波的传播,例如水波、声波等。

正弦函数形成的波形可以很好地描述波的特性,包括波的振幅、频率和波长等。

因此,在物理学中,正弦函数常常被用来描述振动和波动现象。

另外,在描述运动轨迹时,正弦余弦函数也有着重要的应用。

例如,一个物体在弹簧的作用下做简谐振动,它的位置随时间的变化可以用正弦函数来描述。

同样地,行星绕太阳运动的轨迹也可以用正弦函数来表示。

因此,在物理学中,正弦余弦函数可以用来描述物体的周期性运动、振动和波动现象。

二、工程中的应用在工程领域,正弦余弦函数也有着重要的应用。

例如,在电气工程中,交流电路中的电压和电流都是正弦函数。

正弦函数可以很好地描述交流电的周期性变化,帮助工程师分析电路的特性,设计电子设备和控制电路的性能。

此外,正弦函数还可以用来描述声波在空气中传播的情况,例如声音的频率、波长和振幅等。

因此,在工程领域中,正弦余弦函数常常被用来分析波动现象,设计电路和控制系统。

另外,在建筑工程和土木工程中,正弦余弦函数也有着重要的应用。

例如,在桥梁和建筑物的设计中,正弦函数可以用来描述结构的振动和变形,帮助工程师设计更加稳定和安全的建筑结构。

此外,在地震工程中,正弦余弦函数可以用来描述地震波的传播和建筑物的响应,帮助工程师设计更加抗震的建筑物。

因此,在工程领域中,正弦余弦函数对于分析振动和波动现象、设计电路和控制系统、以及设计建筑结构都有着重要的应用。

正弦函数、余弦函数的性质_基础-高中数学知识讲解

正弦函数、余弦函数的性质_基础-高中数学知识讲解

正弦函数、余弦函数的性质【学习目标】1.了解周期函数、周期、最小正周期的定义;2.理解正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、周期性、最大值和最小值以及与x 轴的交点等).【要点梳理】要点一:周期函数的定义函数)(x f y =,定义域为I ,当I x ∈时,都有)()(x f T x f =+,其中T 是一个非零的常数,则)(x f y =是周期函数,T 是它的一个周期. 要点诠释:1.定义是对I 中的每一个x 值来说的,只有个别的x 值满足)()(x f T x f =+或只差个别的x 值不满足)()(x f T x f =+都不能说T 是)(x f y =的一个周期.2.对于周期函数来说,如果所有的周期中存在一个最小的正数,就称它为最小正周期,三角函数中的周期一般都指最小正周期.要点二:正弦函数、余弦函数的图象和性质(1)正弦函数、余弦函数的值域为[]1,1-,是指整个正弦函数、余弦函数或一个周期内的正弦曲线、余弦曲线,如果定义域不是全体实数,那么正弦函数、余弦函数的值域就可能不是[]1,1-,因而求正弦函数、余弦函数的值域时,要特别注意其定义域.(2)求正弦函数的单调区间时,易错点有二:一是单调区间容易求反,要注意增减区间的求法,如求sin()y x =-的单调递增区间时,应先将sin()y x =-变换为sin y x =-再求解,相当于求sin y x =的单调递减区间;二是根据单调性的定义,所求的单调区间必须在函数的定义域内,因此求单调区间时,必须先求定义域.要点三:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>的性质. 函数sin()y A x ωϕ=+与函数cos()y A x ωϕ=+可看作是由正弦函数sin y x =,余弦函数cos y x =复合而成的复合函数,因此它们的性质可由正弦函数sin y x =,余弦函数cos y x =类似地得到:(1)定义域:R (2)值域:[],A A -(3)单调区间:求形如sin()y A x ωϕ=+与函数cos()(,0)y A x A ωϕω=+>的函数的单调区间可以通过解不等式的方法去解答,即把x ωϕ+视为一个“整体”,分别与正弦函数sin y x =,余弦函数cos y x =的单调递增(减)区间对应解出x ,即为所求的单调递增(减)区间.比如:由)(2222Z k k x k ∈+≤+≤-ππϕωππ解出x 的范围所得区间即为增区间,由)(23222Z k k x k ∈+≤+≤+ππϕωππ解出x 的范围,所得区间即为减区间.(4)奇偶性:正弦型函数sin()y A x ωϕ=+和余弦型函数cos()(,0)y A x A ωϕω=+>不一定具备奇偶性.对于函数sin()y A x ωϕ=+,当()k k z ϕπ=∈时为奇函数,当()2k k z πϕπ=±∈时为偶函数;对于函数cos()y A x ωϕ=+,当()k k z ϕπ=∈时为偶函数,当()2k k z πϕπ=±∈时为奇函数.要点诠释:判断函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的奇偶性除利用定义和有关结论外,也可以通过图象直观判断,但不能忽视“定义域关于原点对称”这一前提条件.(5)周期:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期与解析式中自变量x 的系数有关,其周期为2T πω=.(6)对称轴和对称中心与正弦函数sin y x =比较可知,当()2x k k z πωϕπ+=±∈时,函数sin()y A x ωϕ=+取得最大值(或最小值),因此函数sin()y A x ωϕ=+的对称轴由()2x k k z πωϕπ+=±∈解出,其对称中心的横坐标()x k k z ωϕπ+=∈,即对称中心为,0()k k z πϕω-⎛⎫∈ ⎪⎝⎭.同理,cos()y A x ωϕ=+的对称轴由()x k k z ωϕπ+=∈解出,对称中心的横坐标由()2x k k z πωϕπ+=±∈解出.要点诠释:若x R ∉,则函数sin()y A x ωϕ=+和函数cos()y A x ωϕ=+不一定有对称轴和对称中心. 【典型例题】类型一:正弦函数、余弦函数的定义域与值域 例1.求函数22sin cos 1y x x =+-的定义域; 【答案】2222,33x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭【解析】 为使函数有意义,需满足2sin 2x+cos x -1≥0,即2cos 2x―cos x―1≤0,解得1cos 12x -≤≤. 画出余弦函数的图象或单位圆,如下图所示.∴定义域为2222,33x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭. 【总结升华】求三角函数的定义域要注意三角函数本身的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步都保持恒等,即不能改变原函数的自变量的取值范围.举一反三:【变式1】求函数lg(2sin 1)y x =-的定义域 【解析】依题意得2sin x -1>0,即1sin 2x >,∴52266k x k ππππ+<<+(k ∈Z ), ∴函数的定义域为522,66x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭. 例2.求下列函数的值域: (1)y=3―2sin x (2)2sin 23y x π⎛⎫=+ ⎪⎝⎭,,66x ππ⎡⎤∈-⎢⎥⎣⎦; (3)cos 2cos 1x y x -=-.【答案】(1)[1,5](2)[0,2](3)3,2⎡⎫+∞⎪⎢⎣⎭【解析】 (1)∵-1≤sin x≤1,∴-2≤2sin x≤2,∴-2≤-2sin x≤2,∴1≤3-2sin x≤5,∴函数的值域为[1,5].(2)∵66x ππ-≤≤,∴20233x ππ≤+≤. ∴0sin 213x π⎛⎫≤+≤ ⎪⎝⎭.∴02sin 223x π⎛⎫≤+≤ ⎪⎝⎭, ∴0≤y≤2.∴函数的值域为[0,2].(3)∵cos 2cos 1111cos 1cos 11cos x x y x x x---===+---,当cos x=-1时,min 13122y =+=,∴函数的值域为3,2⎡⎫+∞⎪⎢⎣⎭.【总结升华】 一般函数的值域求法有:观察法、配方法、判别式法、反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质.举一反三:【变式1】 求y=cos 2x+4sin x―2的值域. 【解析】y=cos 2x+4sin x―2=―sin 2x+4sin x―1 =―(sin x―2)2+3. ∵-1≤sin x≤1,∴当sin x=―1时,y min =―6;当sin x=1时,y max =2. ∴函数的值域为[-6,2].类型二:正弦函数、余弦函数的单调性例3.(2016 浙江温州期末)设函数()sin(2)3f x a x b π=++(1)若a >0,求f (x )的单调递增区间; (2)当[0,]4x π∈时,f (x )的值域为[1,3],求a ,b 的值.【思路点拨】(1)由复合函数的单调性,解不等式222232k x k πππππ-≤+≤+可得答案;(2)由[0,]4x π∈,可得1sin(2)123x π≤+≤,结合题意可得03112a a b a b ⎧⎪>⎪+=⎨⎪⎪+=⎩或01132a ab a b ⎧⎪<⎪+=⎨⎪⎪+=⎩,解方程组可得.【答案】(1)5[,]()1212k k k Z ππππ-+∈;(2)41a b =⎧⎨=-⎩或45a b =-⎧⎨=⎩ 【解析】(1)∵a >0,由222232k x k πππππ-≤+≤+可得51212k x k ππππ-≤≤+,∴f (x )的单调递增区间为5[,]()1212k k k Z ππππ-+∈; (2)当[0,]4x π∈时,52336x πππ≤+≤,∴1sin(2)123x π≤+≤, ∵f (x )的值域为[1,3],∴03112a a b a b ⎧⎪>⎪+=⎨⎪⎪+=⎩,或01132a ab a b ⎧⎪<⎪+=⎨⎪⎪+=⎩, 分别可解得41a b =⎧⎨=-⎩或45a b =-⎧⎨=⎩举一反三:【变式1】已知函数1sin()32y x π=-(1)求该函数的周期,并求函数在区间[0,π]上的值域; (2)求该函数在[-2π,2π]上的单调增区间. 【答案】(1)T=4π,1[2-;(2)单调递增区间为:[2,]3ππ--和5[,2]3ππ. 【解析】(1)由题意函数的周期2412T ππ==, ∵x ∈[0,π],∴1[,]3263x πππ-∈-,∴11sin()[322x π-∈-, 即函数在区间[0,π]上的值域为1[,22-; (2)原函数可化为1sin()23y x π=--,原函数的增区间即为1sin()23y x π=-的减区间,令13222232k x k πππππ+≤-≤+,解得5114433k x k ππππ+≤≤+,k ∈Z , 令k =0,可得51133x ππ≤≤,令k =-1,可得733x ππ-≤≤-, ∵x ∈[-2π,2π],∴函数的单调递增区间为:[2,]3ππ--和5[,2]3ππ. 类型三:正弦函数、余弦函数的奇偶性例4.判断下列函数的奇偶性:(1)5())2f x x π=+;(2)()f x ;【思路点拨】(1)先利用诱导公式化简为()f x x =,再按步骤去判断.(2)先求函数的定义域,然后判断.【解析】(1)函数定义域为R ,且5()22222f x x x x ππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,显然有()()f x f x -=恒成立.∴函数5()22f x x π⎛⎫=+ ⎪⎝⎭为偶函数.(2)由2sin x -1>0,即1sin 2x >,得函数定义域为52,266k k ππππ⎛⎫++ ⎪⎝⎭(k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.∴该函数不具有奇偶性,为非奇非偶函数.【总结升华】 判断函数奇偶数时,必须先检查定义域是否是关于原点的对称区间.如果是,再验证()f x -是否等于()f x -或()f x ,进而判断函数的奇偶性;如果不是,则该函数必为非奇非偶函数.举一反三:【变式】(2017春 南阳月考)函数f (x )=cos (x+φ)(0≤φ≤π)的定义域为R ,若f (x )为奇函数,则φ=( )A .0B .4π C .2πD .π 【思路点拨】由条件利用三角函数的奇偶性可得,2k k Z πϕπ=+∈,结合所给的选项,得出结论.【答案】C【解析】函数f (x )=cos (x+φ)(0≤φ≤π)的定义域为R ,若f (x )为奇函数, 则,2k k Z πϕπ=+∈,结合所给的选项,故选:C .类型四:正弦函数、余弦函数的对称性例5.已知函数()2sin(2)4f x x π=-.(1)求函数的最值及相应的x 值集合; (2)求函数的单调区间;(3)求函数f (x )的图象的对称轴与对称中心. 【思路点拨】(1)根据正弦函数的最值性质即可求函数的最值及相应的x 值集合; (2)根据三角函数的单调性即可求函数的单调区间;(3)根据三角函数的对称性即可求函数f (x )的图象的对称轴与对称中心. 【解析】(1)当sin(2)14x π-=,即2242x k πππ-=+,k ∈Z ,即38x k ππ=+,k ∈Z ,此时函数取得最大值为2; 故f (x )的最大值为2,使函数取得最大值的x 的集合为3{|,}8x x k k Z ππ=+∈; (2)由222242k x k πππππ-+≤-≤+,得388k x k ππππ-+≤≤+,k ∈Z . ∴函数f (x )的单调递增区间为3[,]88k k ππππ-++,k ∈Z .由3222242k x k πππππ+≤-≤+,得3788k x k ππππ+≤≤+,k ∈Z . ∴函数f (x )的单调递减区间为37[,]88k k ππππ++,k ∈Z . (3)由242x k πππ-=+,得3182x k ππ=+,k ∈Z . 即函数f (x )的图象的对称轴为3182x k ππ=+,k ∈Z . 由24x k ππ-=,得182x k ππ=+,k ∈Z ,即对称中心为1(,0)82k ππ+,k ∈Z .【总结升华】(1)正弦曲线、余弦曲线的对称轴一定分别过正弦曲线、余弦曲线的最高点或最低点,即此时的正弦值、余弦值取最大值或最小值.(2)正弦曲线、余弦曲线的对称中心一定分别过正弦曲线、余弦曲线与x 轴的交点,即此时的正弦值、余弦值都为0.举一反三:【高清课堂:正弦函数、余弦函数的性质394836 例1】 【变式1】指出下列函数的对称轴与对称中心 (1)sin()4y x =+π;(2)cos(2)3y x =-π.【解析】(1)令4t x π=+,则sin sin 4y x t π⎛⎫=+= ⎪⎝⎭的对称轴方程是2t k ππ=+(k ∈Z ),即42x k πππ+=+(k ∈Z ),解得4x k ππ=+(k ∈Z ).∴函数sin 4y x π⎛⎫=+⎪⎝⎭的对称轴方程是4x k ππ=+(k ∈Z ).同理,对称中心的横坐标为4x k ππ+=,4x k ππ∴=-,即对称中心为,04k ππ⎛⎫-⎪⎝⎭. (2)令23t x π=-,则cos 2cos 3y x t π⎛⎫=-= ⎪⎝⎭的对称轴方程是t k π=(k ∈Z ),即23x k ππ-=(k ∈Z ),解得26k x ππ=+(k ∈Z ). ∴函数cos 23y x π⎛⎫=-⎪⎝⎭的对称轴方程是26k x ππ=+(k ∈Z ). 同理,对称中心的横坐标为232x k πππ-=+,5212k x ππ∴=+,即对称中心为5,0212k ππ⎛⎫+ ⎪⎝⎭(k ∈Z ).类型五:正弦函数、余弦函数的周期 例6.求下列函数的周期: (1)sin 3y x π⎛⎫=+⎪⎝⎭;(2)cos 2y x =;(3)3sin 23x y π⎛⎫=+ ⎪⎝⎭; (4)112sin cos 2326y x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭【解析】(1)①令3z x π=+,而sin(2)sin z z π+=,即(2)()f z f z π+=.(2)33f x f x πππ⎡⎤⎛⎫++=+ ⎪⎢⎥⎣⎦⎝⎭.∴T=2π.②令z=2x ,则()cos 2cos cos(2)cos(22)cos[2()]f x x z z x x πππ===+=+=+, 即()()f x f x π+=,∴T=π. ③令23x z π=+,则4()3sin 3sin(2)3sin 23sin (4)2323x x f x z z f x ππππππ+⎛⎫⎛⎫==+=++=+=+ ⎪ ⎪⎝⎭⎝⎭,∴T=4π④∵原式111112sin cos 2cos cos cos 22626262626x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+---=---=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,∴2412T ππ==.【高清课堂:正弦函数、余弦函数的性质394836 例2】【变式1】判断下列函数是否是周期函数.若是周期函数,求其最小正周期. (1)|sin |y x =; (2)sin ||y x =; (3)sin(2)3y x =-π.【答案】(1)是 T π= (2)不是 (3)22T ππ== 类型六:正弦函数、余弦函数性质的综合应用 例7.已知函数12()log |sin |f x x =.(1)求其定义域和值域; (2)判断奇偶性;(3)判断周期性,若是周期函数,求周期; (4)写出单调区间.【思路点拨】在(3)中,可画出图象求周期,除了用周期函数的定义求周期外,作图也是一种基本的方法.在(4)中,可以将12()log |sin |f x x =看成是由12log y u =,u=|t|,t=sin x 复合而成.【解析】(1)由|sin |0x >,得sin 0x ≠,∴x≠kπ,k ∈Z .∴函数的定义域为{x|x≠kπ,k ∈Z}. ∵0|sin |1x <≤,∴12log |sin |0x ≥,∴函数的值域为{y|y≥0}.(2)∵1122()log |sin()|log |sin |()f x x x f x -=-==,∴函数()f x 是偶函数.(3)∵1122()log |sin()|log |sin |()f x x x f x ππ+=+==,∴函数()f x 是周期函数,且周期是π.(可结合图象验证) (4)设t=|sin x|, 当,2x k k πππ⎛⎤∈+⎥⎝⎦时,sin x >0,t=|sin x|为增函数;当,2x k k πππ⎡⎫∈-⎪⎢⎣⎭时,sin x <0,t=|sin x|为减函数. 又∵函数12log y t =为减函数,∴函数()f x 的单调增区间为,2k k πππ⎡⎫-⎪⎢⎣⎭,k ∈Z ;单调减区间为,2k k πππ⎛⎤+ ⎥⎝⎦,k ∈Z .【变式】已知函数11cos |cos |22y x x =+. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期; (3)指出这个函数的单调增区间.【解析】 (1)11cos |cos |22y x x =+ cos , 2,2()2230, 2,2()22x x k k k Z x k k k Z ππππππππ⎧⎡⎤∈-+∈⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎪∈++∈⎢⎥⎪⎣⎦⎩. 函数图象如右图所示.(2)由图象知函数的周期是2π. (3)由图象知函数的单调区间为2,22k k πππ⎡⎤-⎢⎥⎣⎦(k ∈Z ) 【总结升华】本题易犯的错误是求得周期为π,实际上通过图象可知,在一个区间长为2π的区间内函数值才发生周期性变化.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 . 2
(2)y=cos 2x+2sin x-2=-sin 2x+2sin x-1 =-(sin x-1)2. ∵-1≤sin x≤1, ∴函数 y=cos 2x+2sin x-2,x∈R 的值域为[-4,0].
函数 性质
y= sinx
(k∈z)
y= cosx
x∈ R
(k∈z)
定义域 值域 最值及相应的 x 的集合
周期性 奇偶性
单调性
π
对称中心 对称轴
π
(kπ+ π 2 ,0) x = kπ
在x∈[2kπ, 2kπ+ π ] 上都是增函数 , 在x∈[2kπ- π , 2kπ ] 上都是减函数 。
2
7.正弦函数、余弦函数的性质 (三) ---最值,解三角不等
复习:正弦函数的单调性 y
1
3 5 2
2 3
2


2
O

2

1
3 2
2
5 2
3
x
2 2 都是增函数,其值从-1增大到1; 3 而在每个闭区间[ 2k , 2k ](k Z )上都是 2 2 减函数,其值从1减小到-1。
探究:正弦函数的最大值和最小值 y
1
3 5 2
2 3
2


2
O

2

1
3 2
2
5 2
3
x
最大值: 当
x

2
有最大值 y 1 2k 时, 有最小值 y 1 2k 时,
最小值:当x


2
探究:余弦函数的最大值和最小值 y
1
3 5 2
2 3
2


2
O

2

1
3 2
2
5 2
3
x
最大值: 当
x 0 2k 时, 有最大值 y 1
x
有最小值 y 1 2k 时,
最小值:当
例3:比较大小
方法:同名,同一单调区间
59 53 ① sin 与 sin( ) 8 7
解: (2)令t=2x,因为使函数y 3sin t , t R 取最大值的t的取值是 t 2 k , k Z 2 由 2 x t 2k 得 x k 2 4 所以使函数 y 3sin 2 x, x R取最大值的x的取值是
∴- 3≤2sin
故最大值为 2,最小值为- 3. ∴最大值与最小值之和为 2- 3. (2)令 t=cos x,则-1≤t≤1, ∴y=t2-4t+5=(t-2)2+1, 当 t=-1 时,函数取得最大值 10.
• 【答案】 (1)A (2)10
• 1.三角函数最值问题的常见类型及求解方 法 • (1)y=asin 2x+bsin x+c(a≠0),利用换元 思想设t=sin x,转化为二次函数y=at2+bt +c求最值,t的范围需要根据定义域来确 定. • (2)y=Asin (ωx+φ)+b,可先由定义域求 得ωx+φ的范围,然后求得sin (ωx+φ)的 范围,最后得最值.
(1)由 y=cos
π π x + 0 , , x ∈ 可得 6 2
π π 2π x + ∈ , , 3 6 6
函数 y=cos x
1 为- , 2
π 2π 在区间 , 上单调递减,所以函数的值域 6 3
自主训练 求下列函数的值域
π (1)y=cos x+ 6
2


π x∈ 0, 2


(2)y=cos x+2sin x-2,x∈R.
【思路点拨】 π (1)将 x+ 看成一个整体,利用余弦函数的值域求得. 6 (2)将 sin x 看成一个整体,用换元法转化为求二次函 数的值域. 【自主解答】
x (2k 1) , k Z 函数 y cos x 1, x R 的最大值是1+1=2;最小值是-1+1=0.
例4.下列函数有最大、最小值吗?如果有,请写出取最大、最 小值时的自变量x的取值,并说出最大、最小值分别是什么.
(1)y cos x 1, x R; (2)y 3sin 2 x, x R.
正弦函数在每个闭区间[Leabharlann 2k ,
2k ]( k Z )
复习:余弦函数的单调性 y
1
3 5 2
2 3
2


2
O

2

1
3 2
2
5 2
3
x
由余弦函数的周期性知:
在每个闭区间[k 2
, 2k ]都是增函数,
其值从-1增大到1 ; 而在每个闭区间 [2k ,2k ] 上都是减函数, 其值从1减小到-1。
2
πx π - (0 ≤ x ≤ 9) 的最大值与 3 6
) B.0 D.-1- 3
(2)函数 y=cos x-4cos x+5 的最大值为________.
【解析】
π πx π 7π (1)∵0≤x≤9,∴- ≤ - ≤ , 3 6 3 6
πx π ≤2, - 6 3
解: 这两个函数都有最大值、最小值. (1)使函数 y cos x 1, x R 取得最大值的x的取值,就是 使函数 y cos x, x R 取得最大值的x的取值
x 2k , k Z
使函数 y cos x 1, x R 取得最小值的x的取值,就是 使函数 y cos x, x R 取得最小值的x的取值
x∈ R [-1,1]
[-1,1]
x= 2kπ时 ymax=1 x= 2kπ+ π时 ymin=-1 周期为T=2π 偶函数
π x= 2kπ+ 2 时 ymax=1 x=2kπ- π 时 ymin=-1 2
周期为T=2π 奇函数 在x∈[2kπ- π , 2kπ+ ]2上 2 都是增函数 , 在 π 3π x∈[2kπ+ ,2 2kπ+ ]上 2 都是减函数. (kπ,0) x = kπ+
分析:令 z 2 x
) 取得最大值、最小值

3
则 y 3 sin z
化未知为已知
3 x [0, ] 取得最大值、 (2)求使函数 y 3 sin x, 4 最小值的自变量x的取值,并写出最大值、最小值。
[变式训练 1]《新坐标》P28 (1) 函数 y = 2sin 最小值之和为( A.2- 3 C.-1
② cos500 与cos530
o
o
o
③ sin194 与cos160
o
例4.下列函数有最大、最小值吗?如果有,请写出取最大、最 小值时的自变量x的取值,并说出最大、最小值分别是什么.
(1)y cos x 1, x R; (2)y 3sin 2 x, x R.
方法:利用正余弦函 数的的最大(小)值
4 同理,使函数 y 3sin 2 x, x R 取最小值的x的取值是 4 函数 y 3sin 2 x, x R 取最大值是3,最小值是-3。 x
x

k , k Z

k , k Z
练习
(1)求使函数 y 3 sin( 2 x

3 的自变量x的取值,并写出最大值、最小值。
相关文档
最新文档