电涡流传感器(位移)

合集下载

电涡流传感器位移实验报告总结

电涡流传感器位移实验报告总结

电涡流传感器位移实验报告总结
电涡流传感器是一种非接触式测量仪器,可以用于测量金属表面的位移、振动和形状等参数。

本次实验旨在通过使用电涡流传感器来测量铝合金试样不同位置处的位移,并分析其测量结果。

实验步骤如下:首先将铝合金试样放置在试验台上,然后将电涡流传感器放置在试样表面,通过旋钮调节传感器与试样之间的距离,并选择合适的频率进行测量。

在测量过程中,需要将试样固定在试验台上,避免试样在测量过程中移动。

经过多次实验,我们得到了不同位置处的位移数据,并进行了分析。

实验结果表明,铝合金试样的位移与传感器与试样的距离、频率以及试样表面的形状等因素密切相关。

当传感器与试样的距离较小时,测量结果较为准确;而当频率较高时,测量结果的精度也会得到提高。

此外,试样表面的形状和光洁度也会对测量结果产生影响,因此在测量过程中需要注意保持试样表面的平整和清洁。

通过本次实验,我们不仅掌握了电涡流传感器的测量原理和使用方法,还深入了解了电涡流传感器在位移测量方面的应用。

同时,我们也发现了实验中存在的一些问题,例如在调节传感器与试样之间的距离时需要非常仔细,否则会影响测量结果的准确性。

因此,在使用电涡流传感器进行位移测量时,需要认真对待每一个细节,以确保测量结果的准确性和可靠性。

本次实验为我们提供了一次宝贵的机会,让我们更深入地了解了电涡流传感器的应用和工作原理,同时也让我们体验到了科学实验的乐趣和挑战。

我们相信,在今后的学习和工作中,这一经验将对我们产生重要的启示和帮助。

电涡流位移传感器检定规程

电涡流位移传感器检定规程

电涡流位移传感器检定规程
电涡流位移传感器的检定规程通常由国家或地区的质量技术监督部门制
定和发布,用于规范电涡流位移传感器的检定流程和方法。

例如,中国国家质量监督检验检疫总局发布的《电子式涡流位移计》(JJG 752-2005)就规定了电子式涡流位移计的检定项目、检定方法和检定结果的处理等内容。

一般来说,电涡流位移传感器的检定规程主要包括以下几个方面:
1. 检定环境:包括温度、湿度、电压、电源等环境条件的要求。

2. 检定设备:包括标准器、校准设备、测量设备等的要求。

3. 检定方法:包括测量范围、分辨力、零点稳定性、线性、重复性、稳定性等检定项目的方法。

4. 检定结果的处理:包括数据处理、误差校正、数据记录、数据报告等内容。

5. 检定周期:包括电涡流位移传感器的首次检定、后续检定和周期检定的时间要求。

以上就是电涡流位移传感器检定规程的一些基本内容,具体的规程可能会根据传感器类型、测量范围、精度等级等因素有所不同。

电涡流传感器位移特性实验报告

电涡流传感器位移特性实验报告

电涡流传感器位移特性实验报告
一、实验目的
通过实验研究电涡流传感器的位移特性,了解电涡流传感器的工作原理和应用范围。

二、实验原理
三、实验器材
1.电涡流传感器
2.信号发生器
3.示波器
4.金属样品
四、实验步骤
1.将电涡流传感器固定在实验台上,将金属样品放在传感器的检测区域内。

2.连接信号发生器和示波器,设置合适的频率和电压。

3.逐渐增加金属样品的位移,观察信号发生器输出的频率和示波器显示的波形变化。

4.记录金属样品位移和传感器输出信号的对应关系。

五、实验结果
在实验中,我们逐渐增加金属样品的位移,观察信号发生器输出的频
率和示波器显示的波形变化。

根据实验结果,可以得到金属样品的位移和
传感器输出信号的对应关系。

六、实验讨论
通过实验,我们发现位移增加时,传感器输出信号的频率也相应增加。

这是因为金属样品位移增加时,电涡流的密度和分布发生变化,导致传感
器测量到的电磁感应信号频率发生变化。

七、实验结论
通过本次实验,我们了解了电涡流传感器的位移特性,得到了金属样
品位移和传感器输出信号的对应关系。

电涡流传感器可以通过测量金属物
体表面电涡流的变化来检测金属物体位移,具有广泛的应用前景。

八、实验感想。

米朗科技电涡流位移传感器说明书

米朗科技电涡流位移传感器说明书

电涡流传感器系统的工作原理是电涡流效应,属于一种电感式测量原理。

电涡流效应源自振荡电路的能量。

而电涡流需要在可导电的材料内才可以形成。

给传感器探头内线圈导入一个交变电流以在探头线圈周围形成一个磁场。

如果将一个导体放入这个磁场,根据法拉第电磁感应定律激发出电涡流。

根据楞兹定律,电涡流的磁场方向与线圈磁场正好相反,而这将改变探头内线圈的阻抗性能参数测量量程1mm 2mm 4mm 5mm 12.5mm 20mm 25mm 50mm探头直径Φ6mm Φ8mm Φ11mm Φ17mm Φ30mm Φ40mm Φ50mm Φ60mm线性误差≤±0.25 ≤±0.25 ≤±0.5 ≤±0.5 ≤±1 ≤±1 ≤±1 ≤±2 (%FS)分辨率0.05um 0.1um 0.2um 0.25um 0.625um 1.0um 1.25um 2.5um重复性0.1um 0.2um 0.4um 0.5um 1.25um 2.0um 2.5um 5um频率响应0~10KHz 0~8KHz 0~2KHz 0~1KHz (-3dB)输出信号0~5V,0~10V,4~20mA,RS485电压型+9~18VDC,+18~36VDC或±15V~±18VDC可选供电电压电流型+22~30VDC,RS485型+12VDC电压型<45mA工作电流电流型<25mARS485型<40mA纹波≤20mV系统温漂≤0.05%/℃静态灵敏度根据输出信号和对应量程而定电压输出:负载能力<10KΩ输出负载电流输出:负载能力<500Ω标定时(20±5)℃环境温度探头-30℃~+150℃使用温度前置器-30℃~+85℃探头 IP67防护等级前置器 IP65探头电缆默认2m,可定制电源电缆默认2m,可定制接线定义电流型电压型RS485 棕线电源正 +24VDC 电源正 +12VDC或+24VDC 电源正 +12VDC黑线空电源负 0V 电源负 0V蓝线电流输出 OUT 输出正 OUT+ RS485 A+白线空输出负 OUT- RS485 B-屏蔽线接大地 GND 接大地 GND 接大地 GND探头典型结构图示在制作过程中,探头头部体一般采用耐高温ABS+PC工程塑料,通过“二次注塑”成型将线圈密封其中。

电涡流传感器位移实验

电涡流传感器位移实验

电涡流传感器位移实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。

二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。

电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图22.1.1所示。

根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。

我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图22.1.2的等效电路。

图中R1、L1为传感器线图22.1.1 电涡流传感器原理图图22.1.2 电涡流传感器等效电路图圈的电阻和电感。

短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。

线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。

根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。

因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0 —无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。

由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。

因此Z、L、Q均是x的非线性函数。

虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。

其实Z、L、Q的变化与导体的电导率、磁导率、几何形状、线圈的几何参数、激励电流频率以及线圈到被测导体间的距离有关。

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告电涡流传感器位移实验报告摘要:本实验旨在通过电涡流传感器测量物体的位移,并分析其原理和应用。

通过实验发现,电涡流传感器具有高灵敏度、快速响应和非接触式等特点,适用于工业自动化、机械加工和材料测试等领域。

本实验结果可为电涡流传感器的实际应用提供参考。

引言:电涡流传感器是一种利用电磁感应原理测量物体位移的传感器。

其工作原理是通过感应线圈产生的交变磁场诱发物体表面的涡流,进而测量物体位移。

电涡流传感器具有高灵敏度、快速响应和非接触式等特点,广泛应用于工业自动化、机械加工和材料测试等领域。

实验方法:本实验使用一台电涡流传感器和一块金属板进行位移测量。

首先,将金属板固定在实验台上,使其与传感器平行。

然后,将传感器的感应线圈靠近金属板表面,并连接到示波器上。

最后,通过调节传感器与金属板的距离,观察示波器上的波形变化。

实验结果:实验中,我们发现当传感器与金属板的距离逐渐减小时,示波器上的波形幅度逐渐增大。

当传感器与金属板的距离为零时,波形幅度达到最大值。

这说明传感器能够感应到金属板表面的涡流,并随着距离的减小而增强。

讨论:根据实验结果,我们可以得出结论:电涡流传感器的灵敏度与物体与传感器的距离成反比。

当物体与传感器的距离越近,感应到的涡流越强,波形幅度也越大。

这是因为当物体靠近传感器时,感应线圈产生的磁场能够更好地诱发物体表面的涡流。

电涡流传感器的应用十分广泛。

在工业自动化领域,它可以用于测量机械零件的位移和变形,以及监测设备的运行状态。

在机械加工领域,电涡流传感器可以用于检测工件的尺寸和表面质量,提高加工精度。

在材料测试领域,电涡流传感器可以用于评估材料的导电性和磁导率等特性。

然而,电涡流传感器也存在一些限制。

首先,它只适用于导电性材料的位移测量,对于非导电性材料无法工作。

其次,传感器与物体之间的距离需要保持一定范围,过大或过小都会影响测量结果。

此外,传感器的价格相对较高,对于一些应用场景来说可能不太经济实用。

电涡流位移传感器介绍

电涡流位移传感器介绍
③ 如果产品完好,而且又不立即安装使用,最好将各部分小心 的放回原包装箱内,封好保存,以备以后使用。
④ 如果验收不合格,请尽快与本公司联系。
2、 贮存 如果长期不使用,传感器系统应存放在温度介于-30℃~70℃、相
对湿度不大于 90%的整洁室内,且室内空气中不得含有腐蚀性气体。 存放期达一年以上的,使用前应重新校准。 3、试件材料
ZA21 系列前置器只有一种外形结构。 外型尺寸: 78×70×30(mm) 安装尺寸: DIN35 导轨安装 供电电源 UT: 1、 -20V DC~-26V DC,输出电压极限:-0.7V~(UT+1)V,线性
量程内输出电压范围:-2V~-18V。 2、 亦可使用供电电源+20V~+26V 输出电压极限: 0.7V~(UT-1)
探头壳体用于连接和固定探头头部,并作为探头安装时的装夹结
构。壳体一般采用不锈钢制成(对于高温、高压、强酸、强碱等特殊
环境的应用、本公司可以为用户提供一体化全陶瓷探头头部和壳体的
探头),一般上面刻有标准螺纹,并备有锁紧螺母。为了能适应不同的
应用和安装场合,探头壳体具有不同的形式和不同的螺纹及尺寸规格
(见附录 A)。
一套完整的传感器系统主要包括探头、延伸电缆(用户可以根据 需要选择)、前置器和附件。系统组成见图 1-1。
图 1-1 一套完整的传感器系统的组成
★ 与同类产品的兼容性 ZA21 系列电涡流位移传感器的各项性能指标相当或接近美国本
特利(BN)公司的 3300 系列产品水平,优于国内任何一家公司的同 类产品。
① 将系统各部分从包装箱取出。检查是否存在由于运输不当造 成的损坏。如果有,应立即与承运单位交涉提出索赔,并将情况反映 给本公司。

电涡流传感器位移特性实验

电涡流传感器位移特性实验

电涡流传感器位移特性实验
实验目的:
研究电涡流传感器的位移特性。

实验原理:
电涡流传感器是利用电涡流现象进行测量的传感器。

当导体中存在变化的磁场时,就会形成涡流,导致导体表面电流密度分布不均匀,这种现象称为电涡流现象。

电涡流传感器是利用这种现象进行测量的。

电涡流传感器由一个固定的线圈和一个可动的导体组成,当可动导体相对于线圈发生位移时,会产生涡流,从而改变线圈的电阻值,进而得到位移信息。

实验器材:
电涡流传感器、信号放大器、信号采集器、示波器、位移台、自行设计的位移系统等。

实验步骤:
1. 将电涡流传感器固定在一定的位置上,接上信号放大器并连接示波器。

2. 在示波器上观察电涡流传感器输出信号的波形和大小。

3. 将电涡流传感器放置在位移台上,在不同的位移位置上对预期的位移系统进行移动操作。

4. 在每个位移位置上读取电涡流传感器输出信号的波形和大小。

5. 将实验数据进行处理和分析,得到电涡流传感器的位移特性曲线。

实验注意事项:
1. 实验过程中要注意调整信号放大器的增益和滤波器的带宽,以保证信号的质量。

2. 移动位移系统时要注意操作轻柔,避免对电涡流传感器和位移系统造成损坏。

3. 实验结束后要注意恢复实验现场和接线状态,并注意设备的安全。

涡流传感器位移实验报告

涡流传感器位移实验报告

一、实验目的1. 理解涡流传感器的工作原理及其在位移测量中的应用。

2. 掌握电涡流传感器位移测量的基本操作流程。

3. 分析电涡流传感器在不同位移条件下的测量特性。

二、实验原理电涡流传感器是利用电磁感应原理进行非接触式测量的传感器。

当高频电流通过传感器线圈时,会在其周围产生交变磁场。

当金属被测物体靠近该磁场时,会在物体表面产生感应电流,即电涡流。

电涡流的产生会消耗部分能量,从而改变传感器线圈的阻抗,进而影响线圈的输出电压。

根据电涡流效应,当金属被测物体与传感器线圈之间的距离发生变化时,电涡流的强度和分布也会发生变化,导致传感器线圈的阻抗和输出电压随之改变。

通过测量线圈阻抗或输出电压的变化,可以实现对金属被测物体位移的测量。

三、实验器材1. 电涡流传感器2. 被测金属圆片3. 测微头4. 数显电压表5. 直流电源6. 连接导线7. 主控箱四、实验步骤1. 将电涡流传感器安装在主控箱上,并将传感器输出线接入实验模块的标有“TI”的插孔中。

2. 将测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。

3. 将电涡流传感器输出线接入实验模块的输出端Vo,并与数显电压表输入端Vi相接。

4. 将实验模块输出端Vo与数显电压表输入端Vi相接,并选择电压20V档。

5. 用连接导线从主控台接入15V直流电源到模块上标有15V的插孔中,同时主控台的地与实验模块的地相连。

6. 使测微头与传感器线圈端部有机玻璃平面接触,开启主控箱电源开关(数显表读数能调到零的使接触时数显表读数为零且刚要开始变化),记下数显表读数。

7. 每隔0.1mm读取一次数显表读数,直到输出几乎不变为止。

8. 将结果列入表格,并绘制位移-电压曲线。

五、实验结果与分析1. 位移-电压曲线如图所示,可以看出电涡流传感器具有较好的线性度,且在较小的位移范围内,其测量精度较高。

2. 通过曲线拟合,可以得到电涡流传感器的线性区域,并选择最佳工作点进行位移测量。

电涡流位移传感器原理

电涡流位移传感器原理

电涡流位移传感器原理
电涡流位移传感器利用了涡流效应来测量物体的位移。

涡流效应是指当一个导体在变化的磁场中移动时,会在导体内产生感应电流,进而产生磁场,这个磁场又会与变化的磁场相互作用,从而产生涡流。

涡流的大小与导体的导电性、磁场的强度、导体形状等因素有关。

电涡流位移传感器由一个线圈和一个金属圆盘组成。

当线圈中通过交流电时,会在金属圆盘上产生一个交变的磁场。

如果金属圆盘处于静止状态,那么它不会有涡流产生,因为没有磁场的变化。

但是,当金属圆盘受到外力作用而移动时,它会穿过线圈中的磁场,从而产生感应电流和涡流。

涡流产生的感应电流会经过线圈回路,形成一个感应电压。

这个感应电压与金属圆盘的位移成正比。

通过测量感应电压的大小,可以确定金属圆盘的位移量。

因此,通过测量感应电压的变化,就可以得到物体的位移信息。

电涡流位移传感器的优点是具有高精度、无接触、非破坏性等特点。

它常被应用于机械设备的位移测量、液位测量、压力测量等领域。

电涡流位移传感器的使用说明

电涡流位移传感器的使用说明

电涡流位移传感器的使用说明一、原理非接触式电涡流位移传感器'>传感器,是基于高频磁场在金属表面的涡流效应而成,是对金属物体的位移、振动、转速等机械量进行检测和控制的理想传感器。

它具有非接触测量、线性范围宽、灵敏度高、抗干扰能力强、无介质影响、稳定可靠、易于处理等明显优点,广泛用于冶金、化工、航天等行业中,也可用于科研和学校实验中的位移、振动、转速、长度、厚度、表面不平度等机械量的检测。

目前我公司生产的电涡流式传感器有两大类:位移、和转速传感器。

二、 MLW3300型位移、振动传感器1、量程: 250 .m----- 20mm2、线性误差:0.5% ~3.5%3、分辨率:0.05%(静态)0.1%(动态)。

4、频率响应:0 ~ 10KHz(0 ~ 2KHz, 0.5%, 2 ~ 10KHz 1%)5、工作温度:―20℃~100℃ (常温)―40℃~160℃ (高温)6、温度漂移:0.08%/℃(F.S)7、探头外径:Ф6~Ф65(mm)8、安装部分尺寸:a: M10 1 50. (量程 2mm)b: ф13 50. (量程 15mm)c: ф18 50. (量程 15mm)(注:尾架可根据用户要求定制)三、HR2000型前置变换器前置变换器的型号分为:1、信号输出:a: 非标准电压输出,(BZF Ⅰ)b: 0~~ 2V, 0~~ 5V,0~10V.(BZF―Ⅱ)C: 4~20mA. (BZF―Ⅲ)2、供电电源:a: 15~24V (BZF―Ⅰ,BZF―Ⅱ)b: ―20~30V (BZF―Ⅲ)(用户可选配本公司ZY-A型专用电源)3、接线:四芯航空插头①负电源, ②正电源,③信号输出,④公共地(4―20mA输出②脚为空脚)4、工作温度:0℃~65℃5、有容错装置,不会因电源接错而烧毁。

四、位移传感器的连接和标定1、传感器与前置变换器的连接①、通过高频连接,标准长度为3米。

②、最大可加长至9米,需订货时说明。

实验4 电涡流传感器位移实验

实验4 电涡流传感器位移实验

电涡流传感器位移实验
一、实验目的:
了解电涡流传感器测量位移的工作原理和特性。

二、基本原理:
通以高频电流的线圈会产生高频磁场,当有导体接近该磁场时,会在导体表面产生涡流效应,而涡流效应的强弱与该导体与线圈的距离有关,因此通过检测涡流效应的强弱即可以进行位移测量。

三、需用器件与单元:
电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片。

四、实验步骤:
1、根据图8-1安装电涡流传感器。

2、观察传感器结构,这是一个扁平的多层线圈,两端用单芯屏蔽线引出。

3、按图8-2将电涡流传感器输出插头接入实验模板上相应的传感器输入插口,传感器作为由晶体管T1组成振荡器的一个电感元件。

4、在测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。

5、将实验模板输出端V0与数显单元输入端Vi相接。

数显电压表量程置20V档。

图8-1
图8-2
6、用连接导线从主控箱接入+15V直流电源到模板上标有+15V的插孔中。

7、移动测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,旋转测微每隔0.2mm 读一个数,直到输出几乎不变为止,将结果填入表8-1。

表8-1:电涡流传感器位移与输出电压数据
8、根据表8-1数据,画出V-X曲线,根据曲线找出线性区域及选择位移测量时的最佳工作点,试计算量程为1mm、3mm及5mm时的灵敏度和非线性误差(可以用端基法或其它拟合直线)
五、思考题:
1、电涡流传感器的量程与哪些因素有关,如需要测量±3mm的量程应如何设计传感器处理电路?
2、用电涡流传感器进行非接触位移测量时,如何根据量程选用传感器?。

电涡流位移传感器实验报告

电涡流位移传感器实验报告

实验目的:通过对电涡流位移传感器的实验,了解其工作原理、特性以及在位移测量中的应用。

### 1. 实验背景
电涡流位移传感器是一种非接触、高精度的位移传感器,主要应用于测量金属导体的微小位移。

本实验旨在深入了解电涡流位移传感器的性能参数和使用方法。

### 2. 实验设备
- 电涡流位移传感器
- 信号调理电路
- 示波器
- 位移标准样品
### 3. 实验步骤
1. 连接电路:将电涡流位移传感器与信号调理电路连接,确保连接正确无误。

2. 设置示波器:对示波器进行适当设置,以便观察电涡流传感器输出信号的波形。

3. 校准:使用位移标准样品对电涡流传感器进行校准,调整信号调理电路,确保输出信号与位移值对应准确。

4. 进行位移测量:将电涡流传感器放置在待测物体上,通过示波器观察和记录输出信号的变化,进行位移测量。

5. 性能评估:测量不同位移值下的输出信号,并评估电涡流位移传感器的灵敏度、稳定性和线性度等性能指标。

### 4. 实验数据处理
对实验得到的数据进行整理和分析,绘制位移与输出信号的关系曲线,计算性能指标。

### 5. 实验结论
根据实验数据和分析结果,得出电涡流位移传感器在不同条件下的性能特点,评估其在位移测量中的适用性。

### 6. 实验总结
通过本次实验,深入了解了电涡流位移传感器的工作原理和性能,掌握了其在位移测量中的应用方法,为今后的传感器应用和实验研究提供了基础。

### 7. 实验改进和展望
根据实验中的经验,提出可能的实验改进方案,并展望电涡流位移传感器在未来的发展方向和应用领域。

电涡流振动位移传感器

电涡流振动位移传感器
(一)压电加速度传感器 压电加速度传感器是根据压电效应制成的机电换能 器,由于具有体积小、重量轻、灵敏度高、测量范 围大、频响范围宽、线性度好、安装简便等诸多优 点而获得了广泛应用,是目前机械故障诊断测试中 最常用的一种传感器。
加速度传感器的安装方法及特点
(二)电涡流振动位移传感器 电涡流传感器是通过转轴表面与传感器探头端部 间的间隙变化来测量振动的。它利用导体在交变 磁场作用下的电涡流效应,将变形、位移与压力 等物理参数的改变转化为阻抗、电感等电磁参数 的变化。
1.数据采集的基本原理
数据采集的三个过程Biblioteka 采样量化编码
2.数据采集器的类型 按采集方式进行分类
同步采集
巡回采集
三、信号分析与处理设备
用于信号分析与处理的设备分为通用型和专用型两 大类。
通用型信号分析与处理设备,是指通用计算机硬件 及其信号分析与处理软件系统组成的设备; 专用型信号分析与处理设备,则是指除通用型之外 的其它各种信号分析与处理设备。
CZF1型电涡流传感器的结构示意
电涡流传感器的性能特点及使用注意事项 (1)传感器的灵敏度和线性范围因被测材料不同会 发生变化。 (2)对于同一种材料,若被测表面的材质不均匀, 或其内部有裂纹等缺陷,测量结果会受到影响。 (3)被测体形状对测量结果也有影响。 (4)传感器安装的好坏直接影响测量结果的准确性。
(三)振动传感器的选用原则
1.测量范围 2.频响范围 3.灵敏度
4.精度 5.其它方面
二、信号记录仪器
信号记录仪器是用来记录和显示被测振动随时间 的变化曲线或频谱图的,记录振动信号的仪器有 光线示波器、电子示波器、磁带机、X—Y记录仪 和数据采集器等。目前在机械故障诊断领域中, 使用最广泛的是数据采集器。

电涡流传感器位移实验报告

电涡流传感器位移实验报告

电涡流传感器位移实验报告一、前言在工业生产和科研实验中,位移测量是非常重要的。

传统的位移测量方法有很多,但是由于各种原因,比如测量范围小、精度不高等,很难达到实际要求。

电涡流传感器由于其测量范围广、精度高等优点,在位移测量方面得到了越来越广泛的应用。

本次实验旨在通过对电涡流传感器实际应用过程中的位移测量进行研究,探究其应用的可行性和效果。

二、实验原理电涡流传感器是一种基于涡流效应的传感器,它利用电磁感应原理,在传感器和被测物体之间产生一种涡流,再通过测量这种涡流的变化情况来计算出被测物体的位移信息。

在实际应用中,将电涡流传感器固定在被测物体上,当被测物体发生位移时,由于涡流的变化,传感器会产生电信号,再通过信号处理器转化成数字信号,从而得到被测物体的位移信息。

三、实验步骤(一)实验设备准备我们使用的是一台B系列电涡流传感器,其工作频率为250 kHz,灵敏度为5 mV/μm。

同时,我们还需要一台信号处理器、一台电荷放大器和一台示波器。

(二)实验样品准备我们选择了一根长度为200 mm的金属棒作为实验样品。

在金属棒的一端固定电涡流传感器,另一端固定一个位移测量装置。

(三)实验数据采集将电涡流传感器和位移测量装置连接到信号处理器上,启动实验设备,让金属棒发生位移。

在位移过程中,通过示波器对信号进行实时监测和记录,并将数据导出到电脑中进行分析。

(四)实验结果分析通过对实验采集的数据进行分析,我们得到了金属棒的位移曲线图。

从曲线图中可以看出,在位移范围为0-100 mm时,电涡流传感器的测量精度可以达到0.5 μm,这个精度已经可以满足大多数实际应用的需求。

同时,我们还发现,在位移范围为0-100 mm时,电涡流传感器的灵敏度为5 mV/μm,这个灵敏度足以满足大多数实际应用的需求。

四、实验结论通过本次实验,我们得到了以下结论:(一)电涡流传感器的测量精度可以达到0.5 μm,足以满足大多数实际应用的需求。

电涡流位移传感器工作原理

电涡流位移传感器工作原理

电涡流位移传感器工作原理小伙伴们!今天咱们来唠唠电涡流位移传感器这个超有趣的东西。

你知道吗?电涡流位移传感器就像是一个超级敏感的小侦探呢。

它主要是利用电涡流效应来工作的。

啥是电涡流效应呢?想象一下,你在一个平静的湖面上丢了一颗小石子,会激起一圈圈的涟漪吧。

在传感器的世界里,当一个通有交变电流的线圈靠近金属导体的时候,就会在金属导体里产生像那湖面上的涟漪一样的电涡流啦。

这个电涡流可不得了哦。

它会产生自己的磁场,这个磁场呢就会和原来线圈产生的磁场相互作用。

就像是两个小怪兽在打架一样,你影响我,我影响你。

当金属导体靠近或者远离传感器的线圈时,电涡流的大小就会发生变化呢。

为啥会这样呢?因为距离不一样了呀,就好像你和朋友之间的距离变了,你们之间的相互影响也就不一样了。

那这个变化有啥用呢?这可太有用啦。

传感器就是靠着检测这个电涡流的变化来知道金属导体的位移情况的。

比如说,在一个机器设备里,有个金属零件在来回移动。

电涡流位移传感器就像一个小眼睛一样盯着这个零件的位移。

如果这个零件移动得太离谱了,传感器就能马上发现,然后给其他设备发出信号,就像在喊:“那个零件跑错地方啦,快管管它!”这个传感器的线圈就像是一个魔法圈。

交变电流通过它的时候,就像给这个魔法圈注入了魔力。

当有金属靠近时,电涡流产生的磁场就会让这个魔法圈的魔力发生变化。

这种变化可以被转化成各种信号,比如电信号。

就好像魔法圈把它看到的金属的位移情况用一种特殊的语言告诉了其他设备。

而且哦,电涡流位移传感器还特别聪明呢。

它可以在很多不同的环境里工作。

不管是有点小灰尘的地方,还是有点小震动的地方,它都能坚守岗位。

不过呢,它也有自己的小脾气。

如果周围的环境太恶劣了,比如说温度特别高或者有很强的电磁干扰,它可能就会有点小迷糊啦。

在一些大型的工业设备里,电涡流位移传感器可是大功臣呢。

比如说在汽轮机里,那些高速旋转的金属部件的位移都得靠它来监测。

要是没有它,那些部件一旦发生位移异常,可能就会引发大事故呢。

电涡流位移传感器安全操作及保养规程

电涡流位移传感器安全操作及保养规程

电涡流位移传感器安全操作及保养规程前言电涡流位移传感器是一种测量物体位移变化的传感器,具有高精度、高灵敏度、高稳定性的特点。

在实际应用中,需要严格按照操作规程进行操作,并进行定期维护保养,以确保传感器的性能和可靠性。

本文将详细介绍电涡流位移传感器的安全操作及保养规程。

安全操作1. 环境要求使用电涡流位移传感器时需要注意环境条件,要求:•温度:在传感器使用时,温度应在0℃ ~ 50℃之间。

•湿度:湿度不应高于90%。

•环境噪声:传感器应该远离任何可能干扰其正常工作的噪声源。

2. 连接导线在连接传感器时应注意:•选择适用的电源电压和导线规格。

•如有需要,需要使用屏蔽导线,以尽可能地减小干扰。

3. 操作注意事项在使用电涡流位移传感器时需要注意:•不要使用不兼容的电源,以免对传感器产生损害。

•不要过度安装传感器,以避免对其产生倾斜和应力。

•不要在无指导的情况下更改或重新设置器件的任何设置值。

•不要使用由于冷却不当导致器件表面产生冷凝水的条件下使用传感器。

4. 防护措施传感器的表面应定期清洁,并考虑到可能存在的潜在破坏因素。

应采取以下措施保护传感器表面:•安装爆炸隔离器等措施以防止传感器受到爆炸或其他外部压力损伤。

•在传感器周围放置防护罩,防止碰撞和其他外部物理切割。

•使用保护外壳对传感器进行保护,保护外壳应具有良好的耐腐蚀和耐磨损性能。

保养规程电涡流位移传感器属于精密仪器,使用后需要定期进行保养维护,以确保其性能稳定、准确。

下面是电涡流位移传感器保养规程:1. 定期清洁定期清洁是保持传感器稳定性的关键。

我们建议每隔3个月对传感器进行一次彻底清洗。

具体操作如下:1.断开电源:在拆卸传感器之前,应首先断开电源,并等待传感器完全冷却。

2.清除积尘:使用一块干净的棉布或软刷清除传感器表面的灰尘和污垢。

(注:不要使用水或任何化学物质清洁。

)3.检查传感器状态:在进行重新组装之前,请检查传感器表面上是否有任何可见痕迹或损害。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (

Contents
1
电涡流传感器的原理
2
测量电路电路
3

4
问题、 问题、 决
Your company slogan
1 电涡流式传感器原理
电涡流效应 根据法拉第电磁感应原理,块状金属导体置于变化的磁场 中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋 状的感应电流,此电流叫电涡流,以上现象称为电涡流效 应。而根据电涡流效应制成的传感器称为电涡流式传感器。 线圈的阻抗变化与导体的 电导率、磁导率、几何形状, 线圈的几何参数,激励电流 频率以及线圈到被测导体间 的距离等因素有关。
Your company slogan
3 电涡流传感器的应用
电涡流探头线圈的阻抗受诸多因素影响,例如金 属材料的厚度、尺寸、形状、电导率、磁导率、 表面因素、距离等。只要固定其他因素就可以用 电涡流传感器来测量剩下的一个因素。因此电涡 流传感器的应用领域十分广泛。但也同时带来许 多不确定因素,一个或几个因素的微小变化就足 以影响测量结果。所以电涡流传感器多用于定性 测量。 即使要用作 定 量 测量,也必须采用逐点 标定、计算机线性纠正、温度补补偿等措施。
利用电涡流效应将被测量转换为传感器线圈阻抗 的变化这一原理就可以制成相应的电涡流传感器
Your company slogan
1 电涡流式传感器原理
测位移原理 线圈等效阻抗与金属导体的导电率 、磁导率 、几何形状、线圈的 几何参数 r 、激磁电流频率f 以及线圈到金属导体的距离x等参数有关。 假定金属导体是均质的,其性质是线性和各向同性,线圈的阻抗可用 如下函数表示:
Your company slogan
3 电涡流传感器的应用
转速测量 若转轴上开z 个槽(或齿),频率计的读数为f(单位为Hz),则 转轴的转速n(单位为r/min)的计算公式为
涡流探伤 利用电涡流式传感器可以检查金属表面裂纹,热处理裂纹,以及焊接 的缺陷等。在探伤时,传感器应与被测导体保持距离不变。检测时, 由于裂陷出现,将引起导体电导率,磁导率的变化,从而引起输出电 压的突变。
Your company slogan
3 电涡流传感器的应用
位移测量 电涡流传感器可以测量各种形状金属零件的动态位移,测量范围可以 为0~15µm,分辨率为0.05µm;或是0~500mm,分辨率可达0.1%。这种 传感器可用于测量汽轮机主轴的轴向窜动、金属件的热膨胀系数、钢 水液位、纱线张力、流体压力等。 振幅测量
Your company slogan
4 问题及优化
3、被测体表面磁效应对传感器的影响 、 电涡流效应主要集中在被测体表面,如果由于加工过程中形成残磁效 应,以及淬火不均匀、硬度不均匀、金相组织不均匀、结晶结构不均 匀等都会影响传感器特性。在进行振动测量时,如果被测体表面残磁 效应过大,会出现测量波形发生畸变。 4、被测体表面尺寸对传感器的影响 、 当被测体表面为平面时,以正对探头中心线的点为中心,被测面直径 应大于探头头部直径的1.5倍以上;当被测体为圆轴且探头中心线与轴 心线正交时,一般要求被测轴直径为探头头部直径的3倍以上,否则传 感器的灵敏度会下降,被测体表面越小,灵敏度下降越多。
(a)汽轮机和空气压缩机常用的监控主轴的径向振动的示意图 (b)测量发动机涡轮叶片的振幅的示意图 (c) 通常使用数个传感器探头并排地安置在轴附近
Your company slogan
3 电涡流传感器的应用
厚度测量
为克服金属板移动过程中上下波动及带材不够平整的影响,常在板材 上下两侧对称放置两个特性相同的传感器2。由图可知,板厚d=D- (x1+x2)。工作时,两个传感器分别测得x1和x2。板厚不变时,(x1+x2) 为常值;板厚改变时,代表板厚偏差的(x1+x2)所反映的输出电压发生 变化。测量不同厚度的板材时,可通过调节距离D来改变板厚设定值, 并使偏差指示为零。这时,被测板厚即板厚设定值与偏差指示值的代 数和。
YD9800系列 系列 电涡流位移传感器 (上海测振自动化 仪器有限公司) 仪器有限公司)
Your company slogan
5 总结及发展
1.目前国内关于磁性被测体下的线圈阻抗的理论求解方法研究较少。 线圈阻抗是涡流检测中的重要物理量,被测量的变化主要通过线圈阻 抗的变化来体现,因此对线圈阻抗计算方法的研究对解决涡流检测问 题至关重要。但目前关于线圈阻抗的研究主要集中在对非磁性被测体 下的线圈阻抗进行研究,没有学者或科研院所对磁性被测体下线圈阻 抗的数学模型和求解方法进行深入研究。 2.采用数值计算方法对线圈阻抗进行求解的研究甚少。目前采用数值 计算方法(有限元法、无网格法和有限元—边界元混合法等)对涡流检 测问题的研究主要局限在建立数值计算模型、获得电涡流传感器的磁 场分布,而通过数值计算方法获得线圈阻抗的研究较少。 3.对如何消除涡流检测中被测体电磁特性影响研究很少。涡流检测中 被测体的电磁特性对传感器输出产生很大影响,而且随着涡流检测技 术在工程应用中的日益广泛,这一问题也日益突出。很多著作和论文 都提出了这一问题,但鲜有学着能够提出有效的设计思路和方法。
Your company slogan
4 注意事项
1、被测体材料对传感器的影响 、 当被测体为导磁材料(如普通钢、结构钢等)时,由于涡 流效应和磁效应同时存在,磁效应反作用于涡流效应,使 得涡流效应减弱,即传感器的灵敏度降低。而当被测体为 弱导磁材料(如铜,铝,合金钢等)时,由于磁效应弱, 相对来说涡流效应要强,因此传感器感应灵敏度要高。 2、被测体表面平整度对传感器的影响 、 不规则的被测体表面,会给实际的测量带来附加误差,因 此对被测体表面应该平整光滑,不应存在凸起、洞眼、刻 痕、凹槽等缺陷。一般要求,对于振动测量的被测表面粗 糙度要求在0.4um~0.8um之间;对于位移测量被测表面 粗糙度要求在0.4um~1.6um之间。
Your 调频式测量转换电路如下图所示,图中将电涡流探头的电感量Lx与微 调电容C0构成LxC0振荡器,以振荡器的频率f作为输出量。
当电涡流线圈与被测体的距离x 改变时,电涡流线圈的电感量L 也随 之改变,引起LC 振荡器的输出频率变化,此频率可直接用计算机测量。 如果要用模拟仪表进行显示或记录时,必须使用鉴频器,将∆f转换为 电压∆Uo 。
Your company slogan
2 电涡流传感器测量电路
调幅式电路
图中Lx为传感器线圈电感,与一个微调电容组C0成并联谐振回路,晶 体振荡器提供高频激励信号。在电涡流探头远离被测导体时,调节C0, 使LxC0并联谐振回路调谐频率等于晶体振荡器频率f0。这时谐振回路 阻抗最大,LxC0并联谐振回路的压降U0也最大 。 当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压 U0相 应变小。这样,在一定范围内,输出电压幅值与位移成近似线性关系。 由于输出电压的频率 f0始终恒定,因此称定频调幅式。
Your company slogan
1 电涡流式传感器原理
电涡流的应用
Your company slogan
1 电涡流式传感器原理
电涡流效应测量原理 若一金属板置于一只线圈的附近,它们之间相互的间距为δ,当线圈输 一 入一交变电流i 时,便产生交变磁通量Φ,金属板在此交变磁场中会产 生感应电流i1,这种电流在金属体内是闭合的,即电涡流。涡流的大 小与金属板的电阻率ρ、磁导率μ、厚度h、金属板与线圈的距离δ、激 励电流角频率ω等参数有关。若固定某些参数,就可根据涡流的变化 测量另一个参数。 根据上边的原理,则可以制成各种电涡流式的传感器,如对汽轮机、 水轮机、鼓风机、压缩机、空分机、齿轮箱、大型冷却泵等大型旋转 机械轴的径向振动、轴向位移、轴转速、胀差、偏心、以及转子动力 学研究和零件尺寸检验等进行在线测量和保护。
如果控制上式中的 、 、 、 恒定不变,只改变其中的一个参 数x ,这样阻抗Z就成为间距x的单值函数。被测导体与电涡流线圈的 距离发生变化,线圈的等效阻抗也会发生变化,这就是采用电涡流传 感器进行位移非接触测量的基本原理。
Your company slogan
1 电涡流式传感器原理
相关文档
最新文档