2019届高三数学(文)一轮复习课件:名师专题讲座6

合集下载

2019版高考数学一轮复习 专题讲座三课件 文

2019版高考数学一轮复习 专题讲座三课件 文
专题讲座三 不等式恒成立问题
专题讲座三 不等式恒成立问题
ppt精选
1
含参不等式恒成立问题是高考中的热点内容,它以各种形 式出现在高中数学的各部分内容中,扮演着重要的角色.解 决含参不等式恒成立问题的关键是转化与化归思想的运 用,从解题策略的角度看,一般而言,针对不等式的表现 形式,有如下四种策略.
是否存在实数 a,使得关于 x 的不等式 3x2-
logax<0 在 0<x<13时恒成立?若存在,求出 a 的取值范围;
若不存在,请说明理由.
[解]
由题意知,“关于
x
的不等式
3x2-logax<0

1 0<x<3
时 恒 成 立 ” 等 价 于 “3x2<logax 在 x∈ 0,13 内 恒 成
立”.若 a>1,在同一平面直角坐标系内,分别作出函数 y=3x2 和 y=logax 的大致图象,
又∵f(cos 2θ-3)+f(4m-2mcos θ)>0, ∴f(cos 2θ-3)>-f(4m-2mcos θ)=f(2mcos θ-4m),
∴cos 2θ-3>2mcos θ-4m,
ppt精选
8
即 2m(2-cos θ)>3-cos 2θ,
∵2-cos θ∈[1,3],
∴2m>3ss2θθ,
∴m 的取值范围为(4-2 2,+∞).
ppt精选
10
[规律方法] 这类问题经常用到下面的结论:若函数 f(x) 存在最小值,则 a≤(<)f(x)恒成立⇔a≤(<)f(x)min;若函数 f(x)存在最大值,则 a≥(>)f(x)恒成立⇔a≥(>)f(x)max.

【导与练】(新课标)2019届高三数学一轮复习 第6篇 均值不等式学案 理

【导与练】(新课标)2019届高三数学一轮复习 第6篇 均值不等式学案 理

第八课时 均值不等式课前预习案1.利用均值不等式证明其他不等式2.利用均值不等式求最值1.几个重要不等式:①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“相等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤222b a +。

2、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xbax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:,[0)1.已知a >0,b >0,a+b=2,则14y a b=+的最小值是( ) A .72B .4C . 92D .52.若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A .222a b ab +> B.a b +≥C .11a b +> D .2b a a b +≥ ]课堂探究案考点1 利用基本不等式、均值不等式求最值【典例1】 (1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时, f(x)=2xx 2+1的最大值为________.【变式1】(1)已知x >1,则f(x)=x +1x -1的最小值为________.(2)已知0<x <25,则y =2x -5x 2的最大值为________.【变式2】已知2()log (2)f x x =-,若实数,m n 满足()(2)3f m f n +=,则m n + 的最小值是 .考点2 利用基本不等式、均值不等式证明不等式【典例2】 已知a >0,b >0,c >0,求证:bc a +ca b +abc≥a+b +c.【变式3】 已知a >0,b >0,c >0,且a +b +c =1.求证:1a +1b +1c≥9.考点3 解决恒成立问题【典例3】若对任意x >0,xx +3x +1≤a 恒成立,则a 的取值范围是________.【变式4】已知x >0,y >0,xy =x +2y ,若xy≥m-2恒成立,则实数m 的最大值是________.1.【2018高考浙江文9】若正数x ,y 满足x+3y=5xy ,则3x+4y 的最小值是A.245 B. 285C.5D.6 2. 【2018高考陕西文10】小王从甲地到乙地的时速分别为a 和b (a<b ),其全程的平均时速为v ,则 ( )2a b + D.v=2a b+ 3.【(2019年高考福建理】下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 4. 若实数b a ,满足2=+b a ,则ba 33+的最小值是( )(A)18 (B)6 (C)32 (D)432 5.y x x x R =++∈2254()的最小值为 。

推荐2019届高三数学(理 新课标)一轮复习课件第六章 数列6.1

推荐2019届高三数学(理 新课标)一轮复习课件第六章 数列6.1

=n(n+ 2 1)+1.
自查自纠
1.(1)项 首项 a1,a2,a3,…,an,…
(2)第 n 项 n (3)函数值 (4)an an-1 (5)通项公式法(解析式法) 列表法 图象法 递推公式法
2.(1)有穷数列 无穷数列
(2)递增数列 递减数列 摆动数列 常数列 > < =
3.S1 Sn-Sn-1
4.(1)n (2)2n (3)2n+1 (4)2n (5)(-1)n
6.1 数列的概念与简单表示法
1.数列的概念
(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数
叫做这个数列的
.数列中的每一项都和它的序号有关,排在第一
位的数称为这个数列的第 1 项(通常也叫做
),排在第 n 位的数称
为这个数列的第 n 项.所以,数列的一般形式可以写成
,其中
an 是数列的第 n 项,叫做数列的通项.常把一般形式的数列简记作{an}.
(2)通项公式:如果数列{an}的
与序号____________之间的关
系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
(3)从函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它
的有限子集{1,2,3,…,n})的函数(离散的),当自变量从小到大依次取
值时所对应的一列________.
集数合与常用列逻辑用语 章章
考纲链接 6.1 数列的概念与简单表示法
1.数列的概念和简单表示法 (1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类特殊函数. 2.等差数列、等比数列 (1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前 n 项和公式. (3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等 差数列、等比数列的有关知识解决相应的问题. (4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.

2019年高考数学(文)名师一轮总复习ppt课件 打包下载(共8套)

2019年高考数学(文)名师一轮总复习ppt课件 打包下载(共8套)
【解析】由 m(1+i)=7+ni,得 m+mi=7+ni, 即 m=n=7, m+ni 7+7i 1+i (1+i)2 2i ∴ = = = = = m-ni 7-7i 1-i (1-i)(1+i) 2 i,故答案为 i.
【知识要点】 1.复数的有关概念 (1)复数的概念 形如 a+bi(a,b∈R)的数叫做复数,其中 a,b 分别 虚部 是它的实部和__________ ,若 b≠0,则 a+bi 为虚数, a=0,b≠0 若________________ , 则 a+bi 为纯虚数, i 为虚数单位. a=c且b=d (2)复数相等:复数 a+bi=c+di⇔________________( a, b,c,d∈R). a=c且d=-b (3)共轭复数: a+bi 与 c+di 共轭⇔________________( a, b,c,d∈R). (4)复数的模 → 的模 r 叫做复数 z=a+bi(a, 向量OZ b∈R)的模, 记 a2+b2 作|z|或|a+bi|,即|z|=|a+bi|=_____________ .
5i 4.在复平面内与复数 z= 所对应的点关于虚 1+2i 轴对称的点为 A,则 A 对应的复数为( C ) A.1+2i B.1-2i C.-2+i D.2+i 5i 【解析】z= =2+i,所以点 A 的坐标为 1+2i (-2,1),所对应复数为-2+i,故选 C.
5.已知 i 是虚数单位,m 和 n 都是实数,且 m(1 m+ni i +i)=7+ni,则 =____. m-ni
第四章
三角函数、平面向量与复数
第28讲 复数的概念及运算
【学习目标】 1. 理解复数的有关概念, 掌握复数相等的充要条件, 并会应用. 2. 了解复数的代数形式的表示方法, 能进行复数的 代数形式的四则运算. 3. 了解复数代数形式的几何意义及复数的加、 减法 的几何意义,会简单应用.

2019届高考数学一轮复习 名师专题讲座2 三角函数、平面向量的高考解答题型及求解策略课件 文

2019届高考数学一轮复习 名师专题讲座2 三角函数、平面向量的高考解答题型及求解策略课件 文

(2018·合 肥 模 拟 ) 已 知 函 数 f(x) = (2 3 ·cosωx + sinωx)sinωx-sin22π+ωx(ω>0),且函数 y=f(x)图象的一个对称中 心到最近的对称轴的距离为π4.
(1)求 ω 的值和函数 f(x)的单调递增区间; (2)求函数 f(x)在区间0,2π上的值域.
(4)已知两边 a,b 及其中一边的对角 A,由正弦定理sianA=sibnB 可求出另一边 b 的对角 B,由 C=π-(A+B),可求出角 C,再由 sianA=sincC可求出 c,而通过sianA=sibnB求角 B 时,可能有一解或 两解或无解的情况.
(2017·湖南五市十校 3 月联考)在△ABC 中,内角 A、 B、C 的对边分别为 a,b,c,若 b2+c2-a2=bc.
(1)求角 A 的大小; (2)若 a= 3,求 BC 边上的中线 AM 的最大值. [审题程序] 第一步:依据余弦定理角化边; 第二步:依据余弦定理求 cosB 及 AM; 第三步:由余弦定理和重要不等式求 AM 的最大值.
[规范解答] (1)∵b2+c2-a2=bc, ∴cosA=b2+2cb2c-a2=12. 又 0<A<π, ∴A=π3. (2)在△ABC 中,A=π3,a= 3, 由余弦定理 a2=b2+c2-2bccosA 得 b2+c2=bc+3.则 b2+c2 =bc+3≥2bc,得 bc≤3(当且仅当 b=c 时取等号).
[答题模板] 解决这类问题的答题模板如下:
[题型专练] 1.设函数 f(x)= 23- 3sin2ωx-sinωxcosωx(ω>0),且 y=f(x) 的图象的一个对称中心到最近的对称轴的距离为π4. (1)求 ω 的值; (2)求 f(x)在区间π,32π上的最大值和最小值.

高三数学一轮复习 6.4 数列求和

高三数学一轮复习 6.4 数列求和

(2)等比数列的求和公式:Sn=
������1-������������������ 1-������
=
������1(1-������������) 1-������
,������

1.
-5-
知识梳理 双基自测 自测点评
123
2.非基本数列的求和常用方法 (1)倒序相加法:如果一个数列{an}的前n项中与首末两端等“距离” 的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如 等差数列的前n项和公式即是用此法推导的. (2)分组求和法:一个数列的通项公式是由若干个等差数列或等比 数列或可求和的数列组成,则求和时可用分组求和法,先分别求和 后再相加减.如已知an=2n+(2n-1),求Sn. (3)并项求和法:一个数列的前n项和中两两结合后可求和,则可用 并项求和法.如已知an=(-1)nf(n),求Sn. (4)错位相减法:如果一个数列的各项是由一个等差数列和一个等 比数列的对应项之积构成的,那么这个数列的前n项和即可用错位 相减法来求,如等比数列的前n项和公式就是用此法推导的.
又 S2n+1=bnbn+1,bn+1≠0,所以 bn=2n+1.
令 cn=������������������������,则 cn=2���2���+������ 1,
因此
Tn=c1+c2+…+cn=32
+
5 22
+
273+…+22������������--11
+
2���2���+������ 1.
������1 + 4������ = 11, 2������1 + 6������ = 18,

2019届高三数学一轮复习研讨(共94张PPT)

2019届高三数学一轮复习研讨(共94张PPT)

口袋直播课
一、研究高考命题方 向。 二、全国卷命题具体特点。 三、备考策略。
很好地退一步,就是为了更好地进 一步!
微信号:zhixuekoudai
一、研究高考命题方向
追溯高考试题的演变和重现——感悟命题思 路
反思:2018年高考数学试题绝大部分都是以前考过 的原题......
往前追溯,发现全国卷在不断重复中,思路是惊人的一致,再往教材、 往课改理念、往考纲中追溯,发现命题的根,进一步思考其意义在什么地方?
(二)从原题重现到察二项式定理一直注重对基本知识和基本 原理的考察,不仅要知道结果,更要注重理解定理的 推导过程。
(三)从课改理念重新审视高考题目 从高考或教材题目感悟命题思路,也可以反过来,从命题思路审视高考 很多高考都体现了课改的理念,并且坚持不懈。
(二)命题立意
数学科的考试,按照“考查基础知识的同时,注重考查能力”的原 则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体, 全面检测考生的数学素养. —摘自《数学考试大纲(新课 标实验版)》
1.能力立意落在实处
(1)考查五种能力:空间想象能力,抽象概括能力,推理论 证能力,运算求解能力和数据处理能力 (2)考查两个意识:应用意识和创新意识.
-----对于一些复杂难解的问题,先退到简单易解的地步,以探求原 题的解题信息,这就叫“退一步想”。退化模式的主要方法有:降维法、 类比法、特殊化法、极端化方法、反证法、寻求等价命题法、构造函数 法等. 数学思维是中心;数学思想是难点;数学计算是基础;知识积累是关键;数学训
练是保证!
微信号:zhixuekoudai
计算22分,直线与二次曲线位置关系22分,概率统计分值27分,占总分值的65%。 2. 试题坚持能力立意,考查学生对知识的理解和综合运用。 第7题考查三视图以及几何体的展开图,第12题对学生空间想象力提出较高要求, 第16题是三角函数和导数综合考查,第20题考查学生对实际问题的理解和解决能力。 相比往年试题,对运算能力要求有所下降,整套试卷难度有所降低。

(浙江版)2019年高考数学一轮复习(讲+练+测): 专题6.3 等比数列及其前n项和(测)

(浙江版)2019年高考数学一轮复习(讲+练+测): 专题6.3 等比数列及其前n项和(测)

第03节 等比数列及其前n 项和一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【2018届安徽省合肥一中、马鞍山二中等六校教育研究会高三上第一次联考】已知等比数列{}n a 满足213562,4a a a a ==,则3a 的值为( )A. 1B. 2C. 14D. 12【答案】A2.已知等比数列{}n a 的前n 项和为n S .若321510,9S a a a =+=,则1a =( ) A .13-B .13C .19-D .19【答案】D【解析】由已知可得⎪⎩⎪⎨⎧==+91041211q a q a a ,解之得⎪⎩⎪⎨⎧==3911q a ,应选D 。

3. 【2017届山东省济宁市高三3月模拟考试】设a R ∈,“1, a , 16为等比数列”是“4a =”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B【解析】由题意得, 1, a , 16为等比数列21614a a ⇒=⨯⇒=±,因此4a =⇒ 1, a , 16为等比数列,所以“1, a , 16为等比数列”是“4a =”的必要不充分条件,故选B.4. 【原创题】设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 【答案】A【解析】由已知得,3564a a ⋅=,又3520a a +=,则354,16a a ==,故24q =,2q =,11a =,所以55123112S -==-.5. 【改编题】函数y =...成为公比的数是( )A .21B .1 D .33 【答案】A6.【2018届广西钦州市高三上第一次检测】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( )A. 1.3日B. 1.5日C. 2.6日D. 2.8日 【答案】C【解析】设蒲(水生植物名)的长度组成等比数列{a n },其a 1=3,公比为,其前n 项和为A n .莞(植物名)的长度组成等比数列{b n },其b 1=1,公比为2,其前n 项和为B n .则A ,B n =,由题意可得:,化为:2n +=7,解得2n =6,2n =1(舍去). ∴n==1+=≈2.6.∴估计2.6日蒲、莞长度相等,故答案为:2.6.7. 【2017届浙江台州中学高三10月月考】等比数列{}n a 中,已知对任意正整数n ,12321n n a a a a +++⋅⋅⋅+=-,则2222123na a a a +++⋅⋅⋅+等于( )A.2(21)n -B.1(21)3n- C.1(41)3n- D.41n - 【答案】C.8.【2018届河北省衡水中学高三上学期二调】设正项等比数列{}n a 的前n 项和为n S ,且11n na a +<,若3520a a +=, 3564a a =,则4S =( )A. 63或120B. 256C. 120D. 63 【答案】C 【解析】由题意得353520{64a a a a +==,解得3516{ 4a a ==或354{ 16a a ==.又11n naa +< ,所以数列{}n a 为递减数列,故3516{4a a ==.设等比数列{}n a 的公比为q ,则25314a q a ==,因为数列为正项数列,故12q =,从而164a =,所以4416412120112S ⎡⎤⎛⎫⨯-⎢⎥⎪⎝⎭⎢⎥⎣⎦==-.选C. 9.设等比数列}{n a 的前n 项和为n S ,若15m S -=,-11m S =,121m S +=,则=m ( ) A.3 B.4C.5D. 6【答案】C【解析】由已知得,116m m m S S a --==-,1132m m m S S a ++-==,故公比2q =-,又11mm a aq S q-=-11=-,故11a =-,又1116m m a a q-=⋅=-,代入可求得5m =.10.【2017届湖北武汉市蔡甸区汉阳一中高三第三次模拟】已知121,,,9a a --成等差数列, 1239,,,,1b b b --成等比数列,则()221b a a -的值为 A. 8± B. 8- C. 8 D. 98± 【答案】C11.【2018届河南省洛阳市高三上尖子生第一次联考】在等比数列{}n a 中, 2a , 16a 是方程2620x x ++=的根,则2169a a a 的值为( )A.B.【答案】B【解析】由2a , 16a 是方程2620x x ++=的根,可得: 21621662a a a a +=-⨯=,,显然两根同为负值,可知各项均为负值;21699a a a a ===故选:B.12.【2017年福建省三明市5月质量检查】已知数列的前项和为,且,,则( ) A. B.C.D.【答案】A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2017届浙江省丽水市高三下联考】已知数列{}n a 是公比为q 的单调递增的等比数列,且149a a +=,238a a =, 1a =__________; q =_________.【答案】 1 2【解析】311142322311199,8{ 8a a q a a a a a qa q a q +=+==∴== ,,且101a q >>,, 解得a 1=1,q=2.14.【2017届浙江省ZDB 联盟高三一模】已知{}n a 是等比数列,且0n a >, 243546225a a a a a a ++=,则35a a +=__________, 4a 的最大值为__________.【答案】 552【解析】243546225a a a a a a ++= ()2223355353522525,05n a a a a a a a a a ⇒++=⇒+=>∴+=22354354255242a a a a a a +⎛⎫∴=≤=⇒≤ ⎪⎝⎭,即4a 的最大值为52.15.【2017届浙江省台州市高三上期末】已知公差不为的等差数列,若且成等比数列,则__________._________.【答案】 1,.16.已知{}n a 满足, +⋅+⋅+=232144a a a S n 14-⋅n n a 类比课本中推导等比数列前项和公式的方法,可求得=-n n n a S 45___________. 【答案】n .【解析】因为++⋅+⋅+= 232144a a a S n 14-⋅n n a , 所以++⋅+⋅+= 332214444a a a S n 114--⋅n n a n n a 4⋅+,两式相加可得()()++++++= 322211445a a a a a S n ()n n n a a +--114n n a 4⋅+,所以n a S nn n n =+++=-11145. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【2017届浙江省丽水市高三下测试】已知数列{}n a 的相邻两项1,n n a a +是关于x 的方程()2*20n n x x b n N -+=∈的两实根,且11a =.(1)求234,,a a a 的值;(2)求证:数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式. 【答案】(1)21a =, 33a =, 45a = (2)()1213nn n a ⎡⎤=--⎣⎦【解析】试题分析:(1)由题中所给的递推关系可得21a =, 33a =, 45a =. (2)由题意可得数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是首项为13,公比为-1的等比数列.则()1213nn n a ⎡⎤=--⎣⎦.(2)∵11111122223331111222333n n n n n n n n nnn n n a a a a a a +++⎛⎫--⨯-⨯--⨯ ⎪⎝⎭===--⨯-⨯-⨯,故数列123n n a ⎧⎫-⨯⎨⎬⎩⎭是首项为12133a -=,公比为-1的等比数列. 所以()1112133n nn a --⨯=⨯-,即()1213nn n a ⎡⎤=--⎣⎦.18.【改编题】已知等比数列{n a }的公比为q ,且满足1n n a a +<,1a +2a +3a =913,1a 2a 3a =271.(1)求数列{n a }的通项公式;(2)记数列{n a n ⋅-)12(}的前n 项和为n T ,求.n T【答案】(1)n a =131-n (n *N ∈);(2)n T =3-131-+n n . 【解析】(1)由1a 2a 3a =271,及等比数列性质得32a =271,即2a =31,由1a +2a +3a =913得1a +3a =910由⎪⎪⎩⎪⎪⎨⎧=+=91031312a a a 得⎪⎪⎩⎪⎪⎨⎧=+=910312111q a a q a 所以31012=+q q ,即231030q q +=-解得q =3,或q =31由1n n a a +<知,{n a }是递减数列,故q =3舍去,q =31,又由2a =31,得1a =1, 故数列{n a }的通项公式为n a =131-n (n *N ∈) ………………6分(2)由(1)知n a n ⋅-)12(=1312--n n ,所以n T =1+33+235+⋯+1312--n n ①31n T =31+233+335+…+1332--n n +n n 312- ② ①-② 得:32n T =1+32+232+332+⋯+132-n -nn 312- =12+(31+231+331+⋯+131-n )-nn 312- =12+311)311(311--⋅-n -n n 312-=2-131-n -n n 312-,所以nT =3-131-+n n . 19.【2017全国卷2】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)12n n b -=.(2)6-或21.(2)由(1)及已知得2122121d q q q -++=⎧⎨++=⎩,解得41q d =⎧⎨=-⎩或58q d =-⎧⎨=⎩. 所以313236S a d⨯=+=-或3132321S a d ⨯=+=. 20.已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++= ,*n ∈N . (Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线对于*n ∈N 恒成立,求实数m 的最大值.【答案】(Ⅰ)详见解析;【解析】(Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线因为11b =满足该式,所以n b n =21.【2017届安徽省亳州市二中高三下检测】已知各项均不相等的等差数列{}n a 满足11a =,且125,,a a a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)若()()*111nn n n n n a a b n N a a +++=-∈,求数列{}n b 的前n 项和n S .【答案】(Ⅰ)21n a n =-;(Ⅱ)当n 为偶数时, 221n n S n =-+.当n 为奇数时, 2221n n S n +=-+.(Ⅱ)由21n a n =-,可得()()()()()1141111121212121nn n n n n n n a a n b a a n n n n +++⎛⎫=-=-=-+ ⎪-+-+⎝⎭,当n 为偶数时,111111112113355721212121n n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+++=-+=- ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭. 当n 为奇数时, 1n +为偶数,于是1111111122113355721212121n n S n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=--+++--+-+=--=- ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭22.设数列{}n x 的前n 项和为n S ,若存在非零常数p ,使对任意n *∈N 都有2n nS p S =成立,则称数列{}n x 为“和比数列”.(1)若数列{}n a 是首项为2,公比为4的等比数列,判断数列{}2log n a 是否为“和比数列”;(2)设数列{}n b 是首项为2,且各项互不相等的等差数列,若数列{}n b 是“和比数列”,求数列{}n b 的 通项公式.【答案】(1)是,证明见解析;(2)()24142n b n n =+-=-试题解析:(1)由已知,121242n n n a --=⋅=,则2log 21n a n =-.设数列{}2log n a 的前n 项和为n S ,则()21212n n S n n +-=⋅=,()22224n S n n ==. 所以24n nS S =,故数列{}2log n a 是“和比数列”. (2)设数列{}n b 的公差为d (0d ≠),前n 项和为n T ,则()122n n n n d -T =+, ()222142n n n n d -T =+,所以()()()()222148*********n n n n n d n d n n n d n d -++-T ==-T +-+ 因为{}n b 是“和比数列”,则存在非零常数p ,使()()822141n d p n d+-=+-恒成立.即()()822141n d p n d +-=+-⎡⎤⎣⎦,即()()()4240p dn p d -+--=恒成立.所以()()()40240p d p d -=⎧⎪⎨--=⎪⎩因为0d ≠,则4p =,4d = 所以数列{}n b 的通项公式是()24142n b n n =+-=-。

2019高三数学一轮复习+教师讲义(word版)

2019高三数学一轮复习+教师讲义(word版)

第一节集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.授课提示:对应学生用书第1页◆教材通关◆1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)集合中元素与集合的关系有且仅有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系A B[必记结论]集合的子集、真子集个数的规律为:含n 个元素的集合有2n 个子集,有2n -1个真子集(除集合本身),有2n -1个非空子集,有2n -2个非空真子集(除集合本身和空集,此时n ≥1).3.集合的基本运算(1)A ∩∅=∅,A ∪∅=A ;(2)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅;(3)A ∪(∁U A )=U ,A ∩(∁U A )=∅,∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[小题诊断]1.(2017·高考全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32B .A ∩B =∅C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32D .A ∪B =R解析:因为A ={x |x <2},B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪x <32,A ∪B ={x |x <2}.故选A.答案:A2.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:由已知得集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},所以M ⊆N ,故选C.答案:C3.(2018·唐山模拟)已知全集U ={1,2,3,4,5},A ={1,2,4},B ={2,5},则(∁U A )∪B =( ) A .{3,4,5} B .{2,3,5} C .{5}D .{3}解析:因为U ={1,2,3,4,5},A ={1,2,4},所以∁U A ={3,5},又B ={2,5},所以(∁U A )∪B={2,3,5}.答案:B4.(2018·衡水中学联考)若集合B={x|x≥0},且A∩B=A,则集合A可能是()A.{1,2} B.{x|x≤1}C.{-1,0,1} D.R解析:由A∩B=A得A⊆B,因为B={x|x≥0},所以集合A可能是{1,2},故选A.答案:A5.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}解析:由Venn图可知,阴影部分的元素由属于A且不属于B的元素构成,所以用集合表示为A∩∁U B.∵U=R,A={0,1,2,3,4,5},B={x∈R|x≥2},∴A∩∁U B={0,1},故选A.答案:A6.已知集合A={(x,y)|x,y∈R,x2+y2=1},B={(x,y)|x,y∈R,y=4x2-1},则A∩B 的元素个数是________.解析:集合A是以原点为圆心,半径等于1的圆周上的点的集合,集合B是抛物线y=4x2-1上的点的集合,观察图象可知,抛物线与圆有3个交点,因此A∩B中含有3个元素.答案:3◆易错通关◆1.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.2.运用数轴图示法易忽视端点是实心还是空心.3.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.设全集U=R,集合A={x|7-6x≤0},集合B={x|y=lg(x+2)},则(∁U A)∩B等于()A.⎝⎛⎭⎫-2,76 B .⎝⎛⎭⎫76,+∞ C.⎣⎡⎭⎫-2,76 D .⎝⎛⎭⎫-2,-76 解析:依题意得A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≥76,∁U A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <76;B ={x |x +2>0}={x |x >-2},因此(∁U A )∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <76. 答案:A2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={x ∈N |x 2-2x ≤0},则满足A ∪B ={0,1,2}的集合B 的个数为________. 解析:由A 中的不等式解得0≤x ≤2,x ∈N ,即A ={0,1,2}.∵A ∪B ={0,1,2},∴B 可能为{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},∅,共8个.答案:8授课提示:对应学生用书第2页考点一 集合的概念与关系 自主探究 基础送分考点——自主练透[题组练通]1.已知集合A ={1,-1},B ={1,0,-1},则集合C ={a +b |a ∈A ,b ∈B }中元素的个数为( )A .2B .3C .4D .5解析:由题意,当a =1,b =1时,a +b =2;当a =1,b =0时,a +b =1;当a =1,b =-1时,a +b =0;当a =-1,b =1时,a +b =0;当a =-1,b =0时,a +b =-1;当a =-1,b =-1时,a +b =-2.因此集合C ={2,1,0,-1,-2},共有5个元素.故选D.答案:D2.(2018·兰州模拟)已知集合A ={x |y =ln(x +3)},B ={x |x ≥2},则下列结论正确的是( ) A .A =B B .A ∩B =∅ C .A ⊆BD .B ⊆A解析:A ={x |x >-3},B ={x |x ≥2},结合数轴可得:B ⊆A . 答案:D3.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π8-π4,k ∈Z ,则( ) A .M ∩N =∅ B .M ⊆N C .N ⊆MD .M ∪N =N解析:由题意可知,M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =(2k +4)8π-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪x =2n π8-π4,n ∈Z ,N =⎩⎨⎧ x ⎪⎪ x =2k π8-π4或⎭⎪⎬⎪⎫x =(2k -1)8π-π4,k ∈Z ,所以M ⊆N ,故选B.答案:B4.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4, 即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 答案:41.集合中元素的互异性常常容易被忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.如题组中1易错.2.已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的条件,解决这类问题常常要合理利用数轴、Venn 图帮助分析.如题组中2,4均用了数轴进行分析求解.考点二 集合的基本运算 多维探究 题点多变考点——多角探明[锁定考向] 集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:(1)集合的基本运算;(2)利用集合运算求参数或范围. 角度一 集合的基本运算1.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B2.设集合A ={x ∈Z ||x |≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪32x≤1,则A ∩B =( ) A .{1,2} B .{-1,2} C .{-2,1,2}D .{-2,-1,0,2}解析:A ={-2,-1,0,1,2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2x -32x≥0=⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥32或x <0,所以A ∩B ={-2,-1,2},故选C.答案:C3.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A.⎣⎡⎭⎫0,12 B .(-∞,0)∪⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 解析:A ={y |y =x 2-1}=[0,+∞), B ={x |y =lg(x -2x 2)}=⎝⎛⎭⎫0,12, 所以A ∩B =⎝⎛⎭⎫0,12, 所以∁R (A ∩B )=(-∞,0]∪⎣⎡⎭⎫12,+∞. 答案:D解决集合运算的两个方法角度二 利用集合运算求参数或范围4.(2017·高考全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.答案:C5.已知集合A ={x |log 2x <1},B ={x |0<x <c },若A ∪B =B ,则c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,2]D .[2,+∞)解析:A ={x |log 2x <1}={x |0<x <2},因为A ∪B =B ,所以A ⊆B ,所以c ≥2,所以c ∈[2,+∞),故选D.答案:D6.(2017·合肥模拟)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A. 答案:A根据集合运算的结果确定参数的取值范围解决此类问题的步骤一般为:(1)化简所给集合;(2)用数轴表示所给集合;(3)根据集合端点间关系列出不等式(组);(4)解不等式(组);(5)检验,通过返回代入验证端点是否能够取到.解决此类问题多利用数形结合的方法,结合数轴或Venn 图进行求解.[即时应用]1.(2017·高考全国卷Ⅱ)设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}解析:由题意得A ∪B ={1,2,3,4}. 答案:A2.(2017·高考浙江卷)已知集合P ={x |-1<x <1},Q ={x |0<x <2},则P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2) 解析:P ∪Q =(-1,2). 答案:A3.(2017·高考山东卷)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1) 解析:由4-x 2≥0,解得-2≤x ≤2,由1-x >0,解得x <1,∴A ∩B ={x |-2≤x <1}.故选D.答案:D4.(2018·长沙模拟)已知集合A ={1,2,3},B ={x |x 2-3x +a =0,a ∈A },若A ∩B ≠∅,则a 的值为( )A .1B .2C.3 D.1或2解析:当a=1时,B中元素均为无理数,A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,则A∩B=∅,所以a的值为2,故选B.答案:B5.设集合A={0,1},集合B={x|x>a},若A∩B=∅,则实数a的取值范围是() A.a≤1 B.a≥1C.a≥0 D.a≤0解析:由A∩B=∅知0∉B,1∉B,∴a≥1,故选B.答案:B考点三集合的新定义问题创新探究交汇创新考点——突破疑难与集合有关的新定义问题属于信息迁移类问题,它是化归思想的具体运用,是近几年高考的热点问题,这类试题的特点是:通过给出的新的数学概念或新的运算法则,在新的情境下完成某种推理证明,或在新的运算法则下进行运算.常见的有定义新概念、新公式、新运算和新法则等类型.解决此类题型的关键是理解问题中的新概念、新公式、新运算、新法则等的含义,然后分析题目中的条件,设法进行套用.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A 的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个解析:由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.答案:C[即时应用]1.设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=()A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}解析:∵A ={x ∈N |0≤x ≤5}={0,1,2,3,4,5},B ={x |x 2-7x +10<0}={x |2<x <5},A -B ={x |x ∈A 且x ∉B },∴A -B ={0,1,2,5}.故选D. 答案:D2.设P ,Q 为两个非空实数集合,定义集合P ⊗Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P ⊗Q 中元素的个数是( )A .2B .3C .4D .5解析:当a =0时,无论b 取何值,z =a ÷b =0; 当a =-1,b =-2时,z =12;当a =-1,b =2时,z =-12;当a =1,b =-2时,z =-12;当a =1,b =2时,z =12.故P ⊗Q =⎩⎨⎧⎭⎬⎫0,-12,12,该集合中共有3个元素,所以选B.答案:B课时作业单独成册 对应学生用书第187页A 组——基础对点练1.(2017·高考天津卷)设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6}D .{1,2,3,4,6}解析:由题意知A ∪B ={1,2,4,6}, ∴(A ∪B )∩C ={1,2,4}. 答案:B2.(2018·成都市模拟)设集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z },则A ∪B =( ) A .{-2,-1,0,1} B .{-1,0,1} C .{0,1}D .{0} 解析:因为集合A ={0,1},B ={x |(x +2)(x -1)<0,x ∈Z }={-1,0},所以A ∪B ={-1,0,1}.故选B.答案:B3.设集合A ={x |x <2},B ={y |y =2x -1},则A ∩B =( ) A .(-∞,3) B .[2,3) C .(-∞,2)D .(-1,2)解析:A ={x |x <2},因为y =2x -1>-1,所以B ={y |y =2x -1}=(-1,+∞),所以A ∩B =(-1,2),故选D.答案:D4.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:根据题意,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,又∵a ≠0,∴a +b =0,即a =-b ,∴ba=-1,b =1.故a =-1,b =1,则b -a =2.故选C. 答案:C5.已知集合A ={-2,-1,0,1,2,3},B ={x |x +1x -2<0},则A ∩B =( )A .{-2,-1,0,1,2,3}B .{-1,0,1,2}C .{-1,2}D .{0,1}解析:由题意,得B ={x |-1<x <2},所以A ∩B ={0,1},故选D. 答案:D6.已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( ) A .{1} B .{4} C .{1,3}D .{1,4}解析:由题意,得B ={1,4,7,10},∴A ∩B ={1,4}. 答案:D7.(2018·长沙市模拟)已知集合P ={x |-2 016≤x ≤2 017},Q ={x | 2 017-x <1},则P ∩Q =( )A .(2 016,2 017)B .(2 016,2 017]C .[2 016,2 017)D .(-2 016,2 017)解析:由已知可得Q ={x |0≤2 017-x <1}=(2 016,2 017],则P ∩Q =(2 016,2 017]. 答案:B8.(2018·石家庄模拟)函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =( )A.(1,2] B.[1,2]C.(-∞,1]∪[2,+∞) D.(-∞,1)∪[2,+∞)解析:使x-2有意义的实数x应满足x-2≥0,∴x≥2,∴M=[2,+∞),y=ln(1-x)中x应满足1-x>0,∴x<1,∴N=(-∞,1),所以M∪N=(-∞,1)∪[2,+∞),故选D.答案:D9.(2018·沈阳市模拟)设全集U=R,集合A={x|x≥2},B={x|0≤x<6},则集合(∁U A)∩B =()A.{x|0<x<2} B.{x|0<x≤2}C.{x|0≤x<2} D.{x|0≤x≤2}解析:∵U=R,A={x|x≥2},∴∁U A={x|x<2}.又B={x|0≤x<6},∴(∁U A)∩B={x|0≤x <2}.故选C.答案:C10.(2017·天津模拟)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.答案:D11.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3}C.{9,16} D.{1,2}解析:n=1,2,3,4时,x=1,4,9,16,∴集合B={1,4,9,16},∴A∩B={1,4}.答案:A12.(2018·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B )=()A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.答案:B13.已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B=________.答案:{-1,2}14.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=________.解析:∁U B={2},∴A∪∁U B={1,2,3}.答案:{1,2,3}15.集合{-1,0,1}共有__________个子集.解析:集合{-1,0,1}的子集有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1},共8个.答案:816.已知集合U ={1,2,3,4,5},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__________. 答案:{1,2,3,5}B 组——能力提升练1.已知全集U ={0,1,2,3},∁U M ={2},则集合M =( ) A .{1,3} B .{0,1,3} C .{0,3}D .{2}解析:M ={0,1,3}. 答案:B2.已知集合A ={0,1,2},B ={1,m }.若A ∩B =B ,则实数m 的值是( ) A .0 B .2C .0或2D .0或1或2 解析:∵A ∩B =B ,∴B ⊆A ,∴m =0或m =2. 答案:C3.(2018·南昌市模拟)已知集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2},则(∁A B )∩Z =( )A .{4}B .{5}C .[4,5]D .{4,5}解析:∵集合A ={x ∈R |0<x ≤5},B ={x ∈R |log 2x <2}={x |0<x <4},∴∁A B ={x |4≤x ≤5},∴(∁A B )∩Z ={4,5},故选D.答案:D4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0,B ={x |y =lg(-x 2+4x +5)},则A ∩(∁R B )=( ) A .(-2,-1] B .[-2,-1] C .(-1,1]D .[-1,1]解析:依题意,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +2≤0={x |-2<x ≤1},B ={x |y =lg(-x 2+4x +5)}={x |-x 2+4x +5>0}={x |-1<x <5},∴∁R B ={x |x ≤-1或x ≥5},A ∩(∁R B )=(-2,-1],选A.答案:A5.(2018·惠州模拟)已知集合A ={0,1},B ={z |z =x +y ,x ∈A ,y ∈A },则集合B 的子集的个数为()A.3 B.4C.7 D.8解析:由题意知,B={0,1,2},则集合B的子集的个数为23=8.故选D.答案:D6.(2018·太原市模拟)已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是()A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]解析:因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.答案:C7.(2018·郑州质量预测)设全集U={x∈N*|x≤4},集合A={1,4},B={2,4},则∁U(A∩B)=()A.{1,2,3} B.{1,2,4}C.{1,3,4} D.{2,3,4}解析:因为U={1,2,3,4},A∩B={4},所以∁U(A∩B)={1,2,3},故选A.答案:A8.(2018·广雅中学测试)若全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()解析:由题意知,N={x|x2+x=0}={-1,0},而M={-1,0,1},所以N M,故选B.答案:B9.已知集合A满足条件{1,2}⊆A{1,2,3,4,5},则集合A的个数为()A.8 B.7C.4 D.3解析:由题意可知,集合A中必含有元素1和2,可含有3,4,5中的0个、1个、2个,则集合A 可以为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.故选B.答案:B10.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D . 2解析:若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=4,得k =±6,显然满足条件.所以集合B 中的元素为-2,±2,±3,±6,所以集合B 中的元素之和为-2,故选B.答案:B11.给出下列四个结论: ①{0}是空集; ②若a ∈N ,则-a ∉N ;③集合A ={x |x 2-2x +1=0}中有两个元素;④集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x∈N 是有限集. 其中正确结论的个数是( ) A .0 B .1 C .2D .3解析:对于①,{0}中含有元素0,不是空集,故①错误; 对于②,比如0∈N ,-0∈N ,故②错误;对于③,集合A ={x |x 2-2x +1=0}={1}中有一个元素,故③错误;对于④,当x ∈Q 且6x ∈N 时,6x 可以取无数个值,所以集合B =⎩⎨⎧⎭⎬⎫x ∈Q ⎪⎪6x ∈N 是无限集,故④错误.综上可知,正确结论的个数是0.故选A. 答案:A12.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A B 中元素的个数为( )A .77B .49C .45D .30解析:集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },所以集合A中有5个元素(即5个点),即图中圆内及圆上的整点.集合B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z }中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD 上的整点.集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B }中的元素可看作正方形A 1B 1C 1D 1内及正方形A 1B 1C 1D 1上除去四个顶点外的整点,共7×7-4=45个.答案:C13.设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________. 解析:依题意得U ={1,2,3,4,5,6,7,8,9,10},∁U A ={4,6,7,9,10},(∁U A )∩B ={7,9}. 答案:{7,9}14.集合A ={x ∈R ||x -2|≤5}中的最小整数为________.解析:由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3. 答案:-315.若集合A ={x |(a -1)x 2+3x -2=0,x ∈R }有且仅有两个子集,则实数a 的值为________.解析:由题意知,方程(a -1)x 2+3x -2=0,x ∈R ,有一个根,∴当a =1时满足题意,当a ≠1时,Δ=0,即9+8(a -1)=0,解得a =-18.答案:1或-18第二节 命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、 否命题与逆否命题,会分析四种命题的相互关系. 3.理解必要条件、充分条件与充要条件的意义.授课提示:对应学生用书第4页◆ 教材通关 ◆1.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.[必记结论]由于互为逆否命题的两个命题具有相同的真假性,因而当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.[提醒]易混否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.充分条件、必要条件与充分必要条件的概念qpp1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是() A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3解析:同时否定原命题的条件和结论,所得命题就是它的否命题.答案:A2.命题“若a2<b,则-b<a<b”的逆否命题为()A.若a2≥b,则a≥b或a≤-bB.若a2>b,则a>b或a<-bC.若a≥b或a≤-b,则a2≥bD.若a>b或a<-b,则a2>b解析:因为“a 2<b ”的否定为“a 2≥b ”,“-b <a <b ”的否定为“a ≥b 或a ≤-b ”,所以逆否命题为“若a ≥b 或a ≤-b ,则a 2≥b ”. 答案:C3.(2018·唐山模拟)已知a ,b 为实数,则“a 3<b 3”是“2a <2b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:由于函数y =x 3,y =2x 在R 上单调递增,所以a 3<b 3⇔a <b ⇔2a <2b ,即“a 3<b 3”是“2a <2b ”的充要条件.答案:C4.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.答案:B5.(2016·高考四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q p .故p 是q 的充分不必要条件.答案:A6.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.答案:B◆ 易错通关 ◆1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且BA )与A 的充分不必要条件是B (B ⇒A 且A B )两者的不同.[小题纠偏]1.设a ,b 均为非零向量,则“a ∥b ”是“a 与b 的方向相同”的________条件. 答案:必要不充分2.“在△ABC 中,若C =90°,则A ,B 都是锐角”的否命题为:________. 解析:原命题的条件:在△ABC 中,C =90°, 结论:A ,B 都是锐角.否命题是否定条件和结论, 即“在△ABC 中,若C ≠90°,则A ,B 不都是锐角”. 答案:在△ABC 中,若C ≠90°,则A ,B 不都是锐角授课提示:对应学生用书第5页考点一 命题及其关系 自主探究 基础送分考点——自主练透[题组练通]1.命题“若△ABC 有一内角为π3,则△ABC 的三个内角成等差数列”的逆命题( )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三个内角成等差数列,则△ABC有一内角为π3”,它是真命题.答案:D2.(2018·焦作质检)设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是( )A .3B .2C .1D .0解析:若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.答案:B3.命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >b D .若a >b ,则a +c ≤b +c解析:否命题是将原命题的条件和结论都否定,故命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”,故选A.答案:A1.判断命题真假的方法(1)判定一个命题是真命题,需经过严格推理证明,而要说明它是假命题,只需举出一个反例即可.(2)利用原命题与逆否命题、逆命题与否命题具有相同的真假性对所给命题的真假进行间接判断.2.由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将原命题的条件与结论互换即得到逆命题,将原命题的条件与结论同时否定即得否命题,将原命题的条件与结论互换的同时进行否定即得逆否命题.考点二 充分必要条件的判定 互动探究 重点保分考点——师生共研[典例] (1)(2018·合肥教学质检)“x ≥1”是“x +1x ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件(3)(2018·衡阳联考)设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:(1)由题意得x +1x ≥2⇔x >0,所以“x ≥1”是“x +1x≥2”的充分不必要条件,故选A.(2)设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.(3)∵x 2-x -20>0,∴x >5或x <-4,∴p :x >5或x <-4.∵log 2(x -5)<2,∴0<x -5<4,即5<x <9,∴q :5<x <9,∵{x |5<x <9}{x |x >5或x <-4},∴p 是q 的必要不充分条件.故选B.答案:(1)A (2)C (3)B充要条件的3种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.答案:A2.设a ,b ∈R ,则“log 2a >log 2b ”是“2a -b >1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:log 2a >log 2b ⇔a >b >0,2a -b >1⇔a >b ,所以“log 2a >log 2b ”是“2a -b >1”的充分不必要条件.故选A.答案:A3.已知命题甲是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 2+x x -1≥0”,命题乙是“{x |log 3(2x +1)≤0}”,则( ) A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:由x 2+x x -1≥0,即x (x +1)(x -1)≥0且x ≠1,解得-1≤x ≤0或x >1.∵log 3(2x +1)≤0,∴0<2x +1≤1,解得-12<x ≤0.∴甲是乙的必要条件,但不是乙的充分条件.故选B. 答案:B考点三 根据充分、必要条件求参数的取值范围 变式探究 母题变式考点——多练题型[典例] (2018·济南月考)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.是否存在实数m ,使得x ∈P 是x ∈S 的充分必要条件?若存在,求出m 的取值范围.解析:P ={x |x 2-8x -20≤0}={x |-2≤x ≤10}.要使x ∈P 是x ∈S 的充分必要条件,则P =S ,即{x |-2≤x ≤10}={x |1-m ≤x ≤1+m }.∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,此时,m 不存在,即不存在实数m ,使得x ∈P 是x ∈S 的充分必要条件.[变式探究1]母题条件若改为“x ∈P 是x ∈S 的必要条件”,问题不变.解析:∵x ∈P 是x ∈S 的必要条件,即x ∈S ⇒x ∈P ,∴S P ,∴1-m >1+m 或⎩⎪⎨⎪⎧ 1-m ≥-2,1+m ≤10,1-m ≤1+m ,∴m ≤3.[变式探究2] 母题条件若改为“綈P 是綈S 的必要不充分条件”,问题不变.解析:∵綈P 是綈S 的必要不充分条件,∴S 是P 的必要不充分条件,∴P 是S 的充分不必要条件,∴P S ⇔⎩⎪⎨⎪⎧ 1+m >1-m ,1-m ≤-2,1+m ≥10,∴m ≥9.利用充要条件求参数的值或范围的关键点和注意点(1)关键点:是合理转化条件,准确将每个条件对应的参数的范围求出来,然后转化为集合的运算.(2)注意点:注意区间端点值的检验.[即时应用]1.(2018·日照模拟)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1, ∴命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12, 即实数a 的取值范围是⎣⎡⎦⎤0,12.答案:⎣⎡⎦⎤0,12 2.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:(2,+∞)课时作业单独成册 对应学生用书第189页A 组——基础对点练1.(2017·高考天津卷)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由|x -1|≤1,得0≤x ≤2,∵0≤x ≤2⇒x ≤2,x ≤20≤x ≤2, 故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件,故选B.2.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.答案:C3.已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题 解析:命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.3解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:向量a =(1,m ),b =(m,1),若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:a 1>0,a 2n -1+a 2n =a 1q 2n -2(1+q )<0⇒1+q <0⇒q <-1⇒q <0,而a 1>0,q <0,取q =-12,此时a 2n -1+a 2n =a 1q 2n -2(1+q )>0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“a ⊥b ”是“α⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为α⊥β,b ⊥m ,所以b ⊥α,又直线a 在平面α内,所以a ⊥b ;但直线a ,m 不一定相交,所以“a ⊥b ”是“α⊥β”的必要不充分条件,故选B.答案:B11.(2018·南昌市模拟)a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析:若A ∩B ={4},则m 2+1=4,∴m =±3,而当m =3时,m 2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件.答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =b sin B,故a ≤b ⇔sin A ≤sin B .答案:充要14.“x >1”是“log 12(x +2)<0”的__________条件. 解析:由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________.答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________.解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x +7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C.答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A. 答案:A5.若a ,b 为正实数,且a ≠1,b ≠1,则“a >b >1”是“log a 2<log b 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件。

与名师对话2019届高三数学(文)一轮复习:选修4-5 不等式选讲 课时跟踪训练62含解析

与名师对话2019届高三数学(文)一轮复习:选修4-5 不等式选讲 课时跟踪训练62含解析

课时跟踪训练(六十二)[基础巩固]1、(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围、[解](1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,f (x )≥1得,2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1解得x >2. 所以f (x )≥1的解集为{x |x ≥1}、(2)由f (x )≥x 2-x +m 得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝ ⎛⎭⎪⎫|x |-322+54≤54,且当x =32时,|x +1|-|x -2|-x 2+x ≤54. 故m 的取值范围为⎝ ⎛⎦⎥⎤-∞,54.2、(2017·甘肃兰州模拟)设函数f (x )=|x -1|+|x -a |(a ∈R )、 (1)当a =4时,求不等式f (x )≥5的解集;(2)若f (x )≥4对x ∈R 恒成立,求实数a 的取值范围、[解] (1)当a =4时,|x -1|+|x -a |≥5等价为⎩⎪⎨⎪⎧ x <1,-2x +5≥5,或⎩⎪⎨⎪⎧1≤x ≤4,3≥5,或⎩⎪⎨⎪⎧x >4,2x -5≥5,解得x ≤0或x ≥5. 所以不等式f (x )≥5的解集为{x |x ≤0或x ≥5}、(2)因为f (x )=|x -1|+|x -a |≥|(x -1)-(x -a )|=|a -1|,所以f (x )min =|a -1|.要使f (x )≥4对x ∈R 恒成立,则需|a -1|≥4.所以a ≤-3或a ≥5,即实数a 的取值范围是{a |a ≤-3或a ≥5}、3、(2017·东北三省四市高三二模)已知a >0,b >0,函数f (x )=|x +a |+|2x -b |的最小值为1.(1)证明:2a +b =2;(2)若a +2b ≥tab 恒成立,求实数t 的最大值、[解] (1)因为-a <b2,所以f (x )=|x +a |+|2x -b |=⎩⎪⎨⎪⎧-3x -a +b ,x <-a ,-x +a +b ,-a ≤x <b 2,3x +a -b ,x ≥b 2,显然f (x )在⎝ ⎛⎭⎪⎫-∞,b 2上单调递减,在⎝ ⎛⎭⎪⎫b 2,+∞上单调递增,所以f (x )的最小值为f ⎝ ⎛⎭⎪⎫b 2=a +b 2,所以a +b2=1,即2a +b =2.(2)因为a +2b ≥tab 恒成立,所以a +2bab ≥t 恒成立, a +2b ab =1b +2a =12⎝ ⎛⎭⎪⎫1b +2a (2a +b )=12⎝ ⎛⎭⎪⎫5+2a b +2b a ≥12⎝ ⎛⎭⎪⎫5+22a b ·2b a =92. 当且仅当a =b =23时,a +2b ab 取得最小值92, 所以t ≤92,即实数t 的最大值为92.4、(2017·湖南五市十校高三联考)已知函数f (x )=|x -a |+|x -3|(a <3)、 (1)若不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,求a 的值; (2)若对∀x ∈R ,f (x )+|x -3|≥1,求实数a 的取值范围、[解](1)解法一:由已知得f (x )=⎩⎪⎨⎪⎧-2x +a +3,x <a ,3-a ,a ≤x ≤3,2x -a -3,x >3,当x <a 时,由-2x +a +3≥4,得x ≤a -12; 当x >3时,2x -a -3≥4,得x ≥7+a2.已知f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,则显然a =2. 解法二:由已知易得f (x )=|x -a |+|x -3|的图象关于直线x =a +32对称, 又f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥92,则12+92=a +3,即a =2.(2)解法一:不等式f (x )+|x -3|≥1恒成立,即|x -a |+2|x -3|≥1恒成立、 当x ≤a 时,-3x +a +5≥0恒成立,得-3a +a +5≥0,解得a ≤52; 当a <x ≤3时,-x -a +5≥0恒成立,得-3-a +5≥0,解得a ≤2; 当x ≥3时,3x -a -7≥0恒成立,得9-a -7≥0,解得a ≤2. 综上,a ≤2.解法二:不等式f (x )+|x -3|≥1恒成立,即|x -a |+|x -3|≥-|x -3|+1恒成立, 由图象(图略)可知f (x )=|x -a |+|x -3|在x =3处取得最小值3-a , 而-|x -3|+1在x =3处取得最大值1,故3-a ≥1,得a ≤2. 5、(2017·湖北四地七校联盟)已知不等式2|x -3|+|x -4|<2a . (1)若a =1,求不等式的解集;(2)若已知不等式的解集不是空集,求a 的取值范围、 [解] (1)当a =1时,不等式即为2|x -3|+|x -4|<2, 若x ≥4,则3x -10<2,x <4,∴舍去; 若3<x <4,则x -2<2,∴3<x <4; 若x ≤3,则10-3x <2,∴83<x ≤3.综上,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪83<x<4.(2)设f (x )=2|x -3|+|x -4|,则 f (x )=⎩⎪⎨⎪⎧3x -10,x ≥4,x -2,3<x <4,10-3x ,x ≤3.作出函数f (x )的图象,如图所示、 由图象可知,f (x )≥1,∴2a >1,a >12,即a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞. [能力提升]6、(2017·广西桂林市、百色市、崇左市一联)设函数f (x )=|x +1|. (1)求不等式f (x )<2x 的解集;(2)若2f (x )+|x -a |>8对任意x ∈R 恒成立,求实数a 的取值范围、 [解] (1)由f (x )<2x 得|x +1|<2x , 则-2x <x +1<2x ,即⎩⎪⎨⎪⎧x +1<2x ,x +1>-2x , 解得x >1,∴不等式f (x )<2x 的解集为(1,+∞)、 (2)∵f (x )+|x -a |=|x +1|+|x -a |≥|x +1-x +a |=|a +1|,又2f (x )+|x -a |>8=23对任意x ∈R 恒成立,即f (x )+|x -a |>3对任意x ∈R 恒成立, ∴|a +1|>3,解得a <-4或a >2,∴实数a 的取值范围是(-∞,-4)∪(2,+∞)、7、(2017·安徽安师大附中、马鞍山二中高三阶段性测试)已知函数f (x )=|x -2|. (1)解不等式:f (x )+f (x +1)≤2; (2)若a <0,求证:f (ax )-af (x )≥f (2a )、[解] (1)由题意,得f (x )+f (x +1)=|x -1|+|x -2|. 因此只要解不等式|x -1|+|x -2|≤2.当x ≤1时,原不等式等价于-2x +3≤2,即12≤x ≤1; 当1<x ≤2时,原不等式等价于1≤2,即1<x ≤2; 当x >2时,原不等式等价于2x -3≤2,即2<x ≤52. 综上,原不等式的解集为x ⎪⎪⎪⎭⎬⎫12≤x ≤52. (2)由题意得f (ax )-af (x )=|ax -2|-a |x -2|=|ax -2|+|2a -ax |≥|ax -2+2a -ax |=|2a -2|=f (2a ),所以f (ax )-af (x )≥f (2a )成立、8、(2017·河北衡水中学四调)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由、 [解] (1)证明:记f (x )=|x -1|-|x +2|= ⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12,则M =⎝ ⎛⎭⎪⎫-12,12.所以⎪⎪⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14.(2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.9、(2015·福建卷)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4. (1)求a +b +c 的值; (2)求14a 2+19b 2+c 2的最小值、[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c , 当且仅当-a ≤x ≤b 时,等号成立、 又a >0,b >0,所以|a +b |=a +b , 所以f (x )的最小值为a +b +c . 又已知f (x )的最小值为4, 所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得⎝ ⎛⎭⎪⎫14a 2+19b 2+c 2(4+9+1)≥⎝ ⎛⎭⎪⎫a 2×2+b 3×3+c ×12=(a +b +c )2=16,即14a 2+19b 2+c 2≥87. 当且仅当12a 2=13b 3=c1,即a =87,b =187,c =27时等号成立、 故14a 2+19b 2+c 2的最小值为87.。

推荐2019届高三数学(理 新课标)一轮复习课件第六章 数列6.3

推荐2019届高三数学(理 新课标)一轮复习课件第六章 数列6.3

n-m an am
n-m ±
an am
(2)aq1
a1-anq 1-q
乘公比,错位相减
y=aq1qx
a1 q-1
5.(2)q11
q1
q1q2
q1 q2
(3)qm (4)qn (5)①q>1 0<q<1 ②0<q<1 q>1 ③q=1
④q<0
已知等比数列{an}的公比为正数,且 a3·a9=2a25,a2=1,则
a1=( )
1 A.2
2 B. 2
C. 2
D.2
解:因为 a3·a9=2a25,则由等比数列的性质有:a3·a9=a26=2a25,
所以aa2625=2,即aa652=q2=2.因为公比为正数,故 q= 2.又因为 a2=1,
所以
a1=aq2=
1= 2
22.故选
B.
已知等比数列{an}为递增数列.若 a1>0,且 2(an
所以{bn}是以 3 为首项,13为公比的等比数列,
所以 Tn=311--1331n=921-13n.
【点拨】在等比数列五个基本量 a1,q,n, an,Sn 中,已知其中三个量,可以将已知条件结 合等比数列的性质或通项公式、前 n 项和公式转 化为关于基本量的方程(组)来求得余下的两个 量,计算有时要整体代换,根据前 n 项和公式列 方程还要注意对 q 是否为 1 进行讨论.
a22=a1a3,即23λ-32=λ49λ-4,故49λ2-4λ+9=49λ2
-4λ,即 9=0,矛盾.所以对任意实数 λ,数列{an}都不 是等比数列.
类型二 等比数列基本量的计算
(1)在等比数列{an}中,a3=7,前 3 项之和 S3=21,则公比 q 的值为________.

2019届高三数学课标一轮复习课件2.2 函数的单调性与最值精选ppt版本

2019届高三数学课标一轮复习课件2.2 函数的单调性与最值精选ppt版本

函数.故选 A.
关闭
A
解析 答案
知识梳理
知识梳 理
双击自 测
2.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为(
A.-2 B.2 C.-6 D.6
-8-
)
关闭
由图象易知函数 f(x)=|2x+a|的单调增区间是
-
������ 2
,
+

,令-���2��� =3,∴
a=-6. 关闭
2.理解函数的最大(小)值的含义,会求简单函数的最大
(小)值.
考情概览
-3-
年份
考向分 析
2017 2016 2015
2014
2013
函数的单调性和最值是函数的重要性质,也是高考的
重要内容.常见的问题有:求函数的单调区间、判断函
数单调性、求函数中参数的取值、利用函数单调性比
较数的大小、解不等式等问题.在注重考查基本概念
知识梳
双击自


5.已知函数 f(x)=
������
+
2 ������
-3,������
≥ 1,
f(x)的最小值是
lg(������2 + 1),������ < 1,
-11-
.
关闭
当 x≥1 时,f(x)=x+2-3≥2 2-3,当且仅当 x= 2时,取等号;当 x<1
������
时,f(x)=lg(x2+1)≥lg 1=0,当且仅当 x=0 时,取等号,∴f(x)的最小值为
;
∴根据指数函数单调性知,该函数在(-1,1)上为减函数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从中抽取 2 份评价表的不 同的结果有 28 个. 记事件“选出的 2 份评价表中至少有 1 份评价为 D”为事件 M,则事件- M 为“选出的 2 份评价表的评价都不为 D”,其所包 含的不同结果为{C11,C12},{C11,C13},{C11,C21},{C11,C22}, {C12,C13},{C12,C21},{C12,C22},{C13,C21},{C13,C22}, {C21,C22},共 10 个. 10 5 5 9 所以 P(- M )=28=14.故 P(M)=1-P(- M )=1-14=14.
第 十 一 章
概率
名师专题讲座(六) 概率与统计的高考解答 题型及求解策略
专题概述 1.概率与统计是高考中相对独立的一个内容,该类问题以应用题 为载体,注重考查应用意识及阅读理解能力、分类讨论与化归转化能 力;2.概率问题的核心是概率计算.其中事件的互斥、对立是概率计 算的核心,古典概型、几何概型是进行概率计算的工具.统计问题的 核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图 和样本的数字特征,但近两年全国课标卷突出回归分析的考查;3.离 散型随机变量的分布列及其均值的考查是历来高考的重点, 难度多为 中低档类题目,特别是与统计内容的渗透,背境新颖,充分体现了概 率与统计的工具性和交汇性.
从中抽取 2 份评价表,不同的结果为: {C11,C12},{C11,C13},{C11,D11},{C11,C21},{C11,C22}, {C11,D21},{C11,D22},{C12,C13},{C12,D11},{C12,C21}, {C12,C22},{C12,D21},{C12,D22},{C13,D11},{C13,C21}, {C13,C22},{C13,D21},{C13,D22},{D11,C21},{D11,C22}, {D11,D21},{D11,D22},{C21,C22},{C21,D21},{C21,D22}, {C22,D21},{C22,D22},{D21,D22}. 共 28 个.
(1)若按分层抽样从对 1 号方案进行评价的 100 名技工中抽取 样本进行调查,其中 C 等级层抽取 3 人,D 等级层抽取 1 人,求 a,b,c 的值. (2)若从对 2 个方案的评价为 C,D 的评价表中各抽取 10%进 行数据分析,再从中选取 2 份进行详细研究,求选出的 2 份评价 表中至少有 1 份评价为 D 的概率.
[解题反思]
解决古典概型问题的关键在于读懂题目,明确
事件,从而准确地列举全部基本事件及所求事件包含的基本事 件,求出概率,本例的解法一即是.若求的事件中含有 “ 至 多”“至少”,则考虑间接法——解法二.无论哪种方法,必要 的语言叙述和列举基本事件都是必须的.
[答题模板] 解决这类问题的答题模板如下:
[审题程序] 第一步:确定抽样比,然后根据已知数据即可求得 a,b,c 的值; 第二步:先根据题意确定样本的构成,利用列举法分别求出 总的基本事件数和所求事件所包含的基本事件数,求出概率.也 可通过求其对立事件来间接求解.
[规范解答]
(1)由分层抽样可知,a∶b=3∶1.
又 a+b=100-(15+35+10)=40,所以 a=30,b=10. 所以 c=100-(7+33+20+2×10)=20. (2)解法一:(直接法)由题意,对 1 号、2 号方案抽取的样本 容量都是 4.其中,1 号方案的评价表中,评价为 C 的有 3 份,评 价为 D 的有 1 份,令其分别记为 C11,C12,C13,D11. 2 号方案的评价表中,评价为 C 的有 2 份,评价为 D 的有 2 份,令其分别记为 C21,C22,D21,D22.
题型一 古典概型的综合应用 题型概览:古典概型的应用是数学高考的一大热点,复习中 应强化应用题目的理解与掌握,弄清基本事件的个数是正确解答 的关键,常借助表格、树状图以及列举法进行计算,对概型的确 定与转化是解题的基础,准确列举计算是解题的核心,在备考中 强化解答题的规范训练.
2017 年某公司举办产品创新研发创意大赛,经评 委会初评,有 2 个优秀方案入选,最后组委会决定请车间 100 名 经验丰富的技工对这 2 个方案进行等级评价(等级从高到低依次 为 A,B,C,D,E),评价结果对应的人数统计如下表:
其中至少有 1 份评价为 D 的所包含的不同结果为: {C11, D11}, {C11,D21},{C11,D22},{C12,D11},{C12,D21},{C12,D22}, {C13,D11},{C13,D21},{C13,D22},{D11,C21},{D11,C22}, {D11,D21},{D11,D22},{C21,D21},{C21,D22},{C22,D21}, {C22,D22},{D21,D22},共 18 个. 18 9 故所求事件的概率为 P=28=14.
[解] (1)根据从袋子中随机抽取 1 个小球,取到标号为 2 的 1 1 n 小球的概率是2,可得 = ,解得 n=2. 1+1+n 2 (2)①根据(1)可知袋子中有标号为 0 的小球 1 个, 标号为 1 的 小球 1 个,标号为 2 的小球 2 个(记为 2M,2N),从袋子中不放回 地随机抽取 2 个球, 包含的基本事件有(0,1), (0,2M), (0,2N), (1,0), (2M,0), (2N,0), (1,2M), (1,2N), (2M,1), (2N,1), (2M,2N), (2N,2M), 共 12 个,
[题型专练] 1. (2017· 广东清远一模)已知袋子中放有若干个大小和形状相 同的小球,其中标号为 0 的小球 1 个,标号为 1 的小球 1 个,标 号为 2 的小球 n 个.若从袋子中随机抽取 1 个小球,取到标号为 1 2 的小球的概率是2.
(1)求 n 的值. (2)从袋子中不放回地随机抽取 2 个小球,记第一次取出的小 球标号为 a,第二次取出的小球标号为 b. ①记“a+b=2”为事件 A,求事件 A 的概率; ②在区间[0,2]内任取 2 个实数 x,y,求使 x2+y2>(a-b)2 恒 成立的概率.
相关文档
最新文档