(新课标人教版A)数学必修一:3章末
人教A版数学选择性必修第一册 第三章章末总结(课件PPT)
解得 x2=2c2-c2b2a2=3c2-c2a2a2.
又 x2∈[0,a2],∴2c2≤a2≤3c2,
∴e=ac∈
33,
2
2
.
第14页
新教材 •数学(RA) 选择性必修• 第一册
专题四 直线与圆锥曲线的位置关系 在逻辑推理核心素养的形成过程中,学生能够发现问题和提出命题;能掌握推理的基 本形式,表述论证的过程;在判断直线与圆锥曲线位置关系中,利用判断法进行推断. [典例 4] 已知椭圆 C:ax22+by22=1(a>b>0)过点1, 22,且焦距为 2. (1)求椭圆 C 的标准方程; (2)设过点 P(-2,0)的直线 l 与椭圆 C 交于不同的两点,求直线 l 的斜率 k 的取值范围.
第4页
新教材 •数学(RA) 选择性必修• 第一册
2.圆锥曲线的几何性质 (1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定 位、后定量”. 3.圆锥曲线的离心率 椭圆和双曲线的离心率是最重要的几何性质之一,离心率的考查是高考的一个热点, 下面就离心率的求法做一个简单的总结. (1)定义法; (2)几何法; (3)寻求齐次方程求离心率; (4)借助不等式求离心率的取值范围.
斜
率
k
的取值范围为
- 22, 22.
第17页
新教材 •数学(RA) 选择性必修• 第一册
[练习 4](2020·新高考全国卷Ⅱ)已知椭圆 C:ax22+by22=1(a>b>0)过点 M(2,3),点 A 为其 左顶点,且 AM 的斜率为12.
(1)求 C 的方程; (2)点 N 为椭圆上任意一点,求△AMN 的面积的最大值.
人教版A版高中数学必修1课后习题及答案 三章全
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}AB A B =-=-. 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}AB x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上, 得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -, 222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.因为3sin 60=,所以与A 中元素60相对应的B 中的元素4.解:3; 是 因为2sin 45=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x =-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+, 即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-,即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤,即125xt -=+,(012)x ≤≤.(2)当4x =时,12483()55t h -==+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5 (,)2-∞上递减;函数在5[,)2+∞上递增;(2)(,0)-∞上递增;函数在[0,)+∞上递减.函数在2.证明:(1)设12x x<<,而2212121212()()()()f x f x x x x x x x-=-=+-,由12120,0x x x x+<-<,得12()()0f x f x->,即12()()f x f x>,所以函数2()1f x x=+在(,0)-∞上是减函数;(2)设12x x<<,而1212211211()()x xf x f xx x x x--=-=,由12120,0x x x x>-<,得12()()0f x f x-<,即12()()f x f x<,所以函数1()1f xx=-在(,0)-∞上是增函数.3.解:当0m>时,一次函数y mx b=+在(,)-∞+∞上是增函数;当0m<时,一次函数y mx b=+在(,)-∞+∞上是减函数,令()f x mx b=+,设12x x<,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x+=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---,即1()()f f x x=-.9.解:该二次函数的对称轴为8kx =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++, 121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y 41-)=(2x21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y 31-)÷(-6x 21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =;(4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5. 练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++; (3)33311lg()lg lg lg lg 3lg lg 22xy z x y z x y z z=-=+-=+-; (4)22211lglg()lg (lg lg )lg 2lg lg 22x x y z x y z x y z y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====; (3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x =(5) 100.3x = (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=-5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43x x -==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a > 3. (1)当1I = W/m 2时,112110lg 12010L -==; (2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x 是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时.(3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x =1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1,即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x e e -+)2+(2x x e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章函数的应用3.1函数与方程练习(P88)1.(1)令f(x)=-x2+3x+5,作出函数f(x)的图象(图3-1-2-7(1)),它与x轴有两个交点,所以方程-x2+3x+5=0有两个不相等的实数根.(2)2x(x-2)=-3可化为2x2-4x+3=0,令f(x)=2x2-4x+3,作出函数f(x)的图象(图3-1-2-7(2)),它与x轴没有交点,所以方程2x(x-2)=-3无实数根.(3)x2=4x-4可化为x2-4x+4=0,令f(x)=x2-4x+4,作出函数f(x)的图象(图3-1-2-7(3)),它与x轴只有一个交点(相切),所以方程x2=4x-4有两个相等的实数根.(4)5x2+2x=3x2+5可化为2x2+2x-5=0,令f(x)=2x2+2x-5,作出函数f(x)的图象(图3-1-2-7(4)),它与x轴有两个交点,所以方程5x2+2x=3x2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.。
2020-2021学年新教材数学人教A版必修第一册:第3章章末综合提升
[巩固层·知识整合][提升层·题型探究](教师独具)圆锥曲线的定义及应用【例1】(1)已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M 的轨迹是()A.椭圆B.双曲线C.抛物线D.以上都不对(2)双曲线16x2-9y2=144的左、右两焦点分别为F1,F2,点P在双曲线上,且|PF1|·|PF2|=64,则∠F1PF2=________.(1)C(2)60°[(1)把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=|3x+4y-12|5.∴动点M到原点的距离与它到直线3x+4y-12=0的距离相等.∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.(2)双曲线方程16x2-9y2=144,化简为x29-y216=1,即a2=9,b2=16,所以c2=25,解得a=3,c=5,所以F1(-5,0),F2(5,0).设|PF1|=m,|PF2|=n,由双曲线的定义知|m -n |=2a =6, 又已知m ·n =64,在△PF 1F 2中,由余弦定理知 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=m 2+n 2-(2c )22m ·n=(m -n )2+2m ·n -4c 22m ·n=36+2×64-4×252×64=12.所以∠F 1PF 2=60°.]“回归定义”解题的三点应用应用一:在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;应用二:涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;应用三:在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.提醒:应用定义解题时注意圆锥曲线定义中的限制条件.[跟进训练]1.若A (3,2),F 为抛物线y 2=2x 的焦点,P 为抛物线上任意一点,则|PF |+|P A |的最小值为________.72 [设点P 在准线上的射影为D ,则根据抛物线的定义可知|PF |=|PD |, ∴要求|P A |+|PF |取得最小值,即求|P A |+|PD |取得最小值, 当D ,P ,A 三点共线时|P A |+|PD |最小,为3+12=72.]圆锥曲线的方程【例2】 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1 B .x 212-y 24=1 C .x 23-y 29=1D .x 29-y 23=1(2)已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,且a =2b .若|AB |=25,求椭圆的方程.(1)C [法一:因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以⎩⎪⎨⎪⎧c a =2,c 2=a 2+b 2,解得⎩⎨⎧c =2a ,b =3a .所以双曲线的渐近线方程为y =±ba x =±3x .依题意,不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a 到直线y =3x 的距离分别为d 1,d 2,因为d 1+d 2=6,所以⎪⎪⎪⎪⎪⎪3c -b 2a 2+⎪⎪⎪⎪⎪⎪3c +b 2a 2=6,所以23a -3a 2+23a +3a 2=6,解得a =3,所以b =3,所以双曲线的方程为x 23-y 29=1,故选C.法二:因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以⎩⎪⎨⎪⎧c a =2,c 2=a 2+b 2,解得⎩⎨⎧c =2a ,b =3a ,如图所示,由d 1+d 2=6,即|AD |+|BE |=6,可得|CF |=3,故b =3,所以a =3,所以双曲线的方程为x 23-y 29=1.](2)[解]由⎩⎪⎨⎪⎧y =-12x +2,x 24b 2+y 2b 2=1消去y 并整理得x 2-4x +8-2b 2=0.由Δ=16-4(8-2b 2)>0,得b 2>2.设A (x 1,y 1),B (x 2,y 2),则由根与系数的关系得x 1+x 2=4,x 1x 2=8-2b 2. ∵|AB |=25,∴1+14·(x 1+x 2)2-4x 1x 2=25,即52·16-4(8-2b 2)=25,解得b 2=4,故a 2=4b 2=16. ∴所求椭圆的方程为x 216+y 24=1.求圆锥曲线方程的一般步骤一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.(1)定形——指的是二次曲线的焦点位置与对称轴的位置.(2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1(m >0,n >0).(3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大小.[跟进训练]2.(1)以直线3x ±y =0为渐近线,一个焦点坐标为F (0,2)的双曲线方程是( ) A .y 2-x 23=1B .x 2-y 23=1C .x 23-y 2=1 D .y 23-x 2=1(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,求抛物线的标准方程.(1)D [设双曲线方程为3x 2-y 2=λ(λ≠0), 因为焦点在y 轴上,所以方程可化为y 2-λ-x 2-λ3=1,由条件可知-λ-λ3=4,解得λ=-3.所以双曲线方程为3x 2-y 2=-3,即y 23-x 2=1.](2)[解] 由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3, 即双曲线的渐近线方程为y =±3x . 由题意得,抛物线的准线方程为x =-p2, 可设A ⎝ ⎛⎭⎪⎫-p 2,-3p 2,B ⎝ ⎛⎭⎪⎫-p 2,3p 2, 从而△AOB 的面积为12·3p ·p2=3,解得p =2或p =-2(舍). 所以抛物线的标准方程为y 2=4x .圆锥曲线性质及应用【例3】 (1)已知F 1,F 2是椭圆C :x a 2+y b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23 B .12 C .13D .14(2)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2B . 3C . 2D .233[思路探究] (1)利用数形结合,采取三角函数定义建立方程求解; (2)根据弦长建立方程,求解.(1)D(2)A[(1)由题意易知直线AP的方程为y=36(x+a),①直线PF2的方程为y=3(x-c).②联立①②,得P点纵坐标y=35(a+c),如图,过P向x轴引垂线,垂足为H,则PH=35(a+c).因为∠PF2H=60°,PF2=F1F2=2c,PH=35·(a+c),所以sin 60°=PHPF2=35(a+c)2c=32,即a+c=5c,即a=4c,所以e=ca=14.故选D.(2)由题意可知圆的圆心为(2,0),半径为2.因为双曲线x2a2-y2b2=1的渐近线方程为y=±ba x,即bx±ay=0,且双曲线的一条渐近线与圆相交所得的弦长为2,所以|2b|a2+b2=22-12,所以ba= 3.故离心率e=1+b2a2=2.故选A.]求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.1.本例(2)条件改为“双曲线左、右焦点为F 1,F 2,O 为坐标原点,过F 2作C 的渐近线的垂线,垂足为P .若|PF 1|=6|OP |,求C 的离心率.”[解] 点F 2(c,0)到渐近线y =ba x 的距离|PF 2|=⎪⎪⎪⎪⎪⎪bc a -01+⎝ ⎛⎭⎪⎫b a 2=b (b >0),而|OF 2|=c ,所以在Rt △OPF 2中,由勾股定理可得|OP |=c 2-b 2=a ,所以|PF 1|=6|OP |=6a . 在Rt △OPF 2中,cos ∠PF 2O =|PF 2||OF 2|=bc, 在△F 1F 2P 中,cos ∠PF 2O =|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=b 2+4c 2-6a 22b ·2c,所以b c =b 2+4c 2-6a 24bc ⇒3b 2=4c 2-6a 2,则有3(c 2-a 2)=4c 2-6a 2, 解得ca =3(负值舍去), 即e = 3.2.本例(2)条件改为“双曲线的一条渐近线经过(3,-4),求其离心率”. [解] 由条件知双曲线的焦点在x 轴上,∴渐近线方程为y =±b a x ,把(3,-4)代入y =-ba x ,得-4=-b a ×3,∴b a =43. ∴离心率e =ca =1+⎝ ⎛⎭⎪⎫b a 2=53.直线与圆锥曲线的位置关系1.直线与圆锥曲线关系中,常见的有哪几种问题.[提示] 公共点个数问题,弦长问题、中点弦问题、定点、定值问题及最值问题.2.圆锥曲线中如何处理定点问题?[提示] ①引进参数法.引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.②特殊到一般法.根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【例4】 设椭圆C :x 2a 2+y 2b 2=1(a >b >0),右顶点是A (2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆交于两点M ,N (M ,N 不同于点A ),若AM →·AN →=0,求证:直线l 过 定点,并求出定点坐标.[思路探究] (1)由椭圆右顶点的坐标为A (2,0),离心率e =12,可得a ,c 的值,由此可得椭圆C 的方程;(2)当直线MN 斜率不存在时,设l MN :x =m ,易得m =27,当直线MN 斜率存在时,直线MN :y =kx +b (k ≠0),与椭圆方程x 24+y 23=1联立,得(4k 2+3)x 2+8kbx +4b 2-12=0,由AM →·AN →=0可得b =-27k ,从而得证.[解] (1)右顶点是A (2,0),离心率为12,所以a =2,c a =12,∴c =1,则b =3, ∴椭圆的标准方程为x 24+y 23=1.(2)当直线MN 斜率不存在时,设l MN :x =m ,与椭圆方程x 24+y 23=1联立得:|y |=3⎝ ⎛⎭⎪⎫1-m 24,|MN |=23⎝ ⎛⎭⎪⎫1-m 24, 设直线MN 与x 轴交于点B ,|MB |=|AB |, 即3⎝ ⎛⎭⎪⎫1-m 24=2-m , ∴m =27或m =2(舍),∴直线m 过定点⎝ ⎛⎭⎪⎫27,0;当直线MN 斜率存在时,设直线MN 斜率为k ,M (x 1,y 1),N (x 2,y 2),则直线MN :y =kx +b (k ≠0),与椭圆方程x 24+y 23=1联立,得(4k 2+3)x 2+8kbx +4b 2-12=0, x 1+x 2=-8kb4k 2+3,x 1x 2=4b 2-124k 2+3,y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2, Δ=(8kb )2-4(4k 2+3)(4b 2-12)>0,k ∈R , AM →·AN →=0,则(x 1-2,y 1)(x 2-2,y 2)=0,即x 1x 2-2(x 1+x 2)+4+y 1y 2=0,∴7b 2+4k 2+16kb =0, ∴b =-27k 或b =-2k ,∴直线l MN :y =k ⎝ ⎛⎭⎪⎫x -27或y =k (x -2),∴直线过定点⎝ ⎛⎭⎪⎫27,0或(2,0)舍去;综上知直线过定点⎝ ⎛⎭⎪⎫27,0.1.圆锥曲线中的定值问题的常见类型及解题策略(1)证明代数式为定值.依题设条件得出与代数式参数有关的等式,代入所求代数式,化简得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形.(3)求某线段长度为定值.利用两点间距离公式求得表达式,再根据条件对其进行化简、变形即可.2.圆锥曲线中定点问题的两种解法(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.[跟进训练]3.已知椭圆E 的中心在坐标原点,两个焦点分别为F 1(-1,0),F 2(1,0),短半轴长为2.(1)求椭圆E 的标准方程;(2)过焦点F 2的直线l 交椭圆E 于A ,B 两点,满足F 1A →⊥F 1B →,求直线l 的方程.[解] (1)由题意,椭圆E 的两个焦点分别为F 1(-1,0),F 2(1,0),短半轴长为2, 可得c =1,b =2,则a =b 2+c 2=5,所以椭圆E 的标准方程x 25+y 24=1;(2)由题意知直线l 与x 轴不重合,设直线l :x =ny +1,设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎨⎧4x 2+5y 2=20x =ny +1,整理得(4n 2+5)y 2+8ny -16=0, 可得y 1+y 2=-8n 4n 2+5,y 1y 2=-164n 2+5,又由F 1A →⊥F 1B →,则F 1A →·F 1B →=0,得(x 1+1,y 1)·(x 2+1,y 2)=0, 代入直线可得(ny 1+2,y 1)·(ny 2+2,y 2)=0,即 (n 2+1)y 1y 2+2n (y 1+y 2)+4=0,代入可得(n 2+1)⎝⎛⎭⎪⎫-164n 2+5+2n ×⎝ ⎛⎭⎪⎫-8n 4n 2+5+4=0,解得n 2=14,所以直线l 的方程为x =±12y +1,即直线l 的方程为:2x +y -2=0或2x -y -2=0.[培优层·素养升华]【例】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且与抛物线y 2=x 交于M ,N 两点,△OMN (O 为坐标原点)的面积为2 2.(1)求椭圆C 的方程;(2)如图,点A 为椭圆上一动点(非长轴端点),F 1,F 2为左、右焦点,AF 2的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求△ABC 面积的最大值.[思路探究] (1)由题意求得a ,b ,c 的值即可确定椭圆方程;(2)分类讨论直线的斜率存在和斜率不存在两种情况,联立直线方程与椭圆方程,结合根与系数的关系和均值不等式即可确定三角形面积的最大值.[解] (1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=x 交于M ,N 两点, 可设M (x ,x ),N (x ,-x ),∵△OMN 的面积为22, ∴x x =22,解得x =2,∴M (2,2), N (2,-2),由已知得⎩⎪⎨⎪⎧c a =224a 2+2b 2=1a 2=b 2+c2,解得a =22,b =2,c =2,∴椭圆C 的方程为x 28+y 24=1.(2)①当直线AB 的斜率不存在时,不妨取A (2,2),B (2,-2),C (-2,-2),故S △ABC =12×22×4=42;②当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2), 联立方程⎩⎪⎨⎪⎧y =k (x -2)x 28+y 24=1,化简得(2k 2+1)x 2-8k 2x +8k 2-8=0,则Δ=64k 4-4(2k 2+1)(8k 2-8)=32(k 2+1)>0, x 1+x 2=8k 22k 2+1,x 1·x 2=8k 2-82k 2+1,|AB |=(1+k 2)·[(x 1+x 2)2-4x 1·x 2] =(1+k 2)·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫8k 22k 2+12-4·8k 2-82k 2+1 =42·k 2+12k 2+1,点O 到直线kx -y -2k =0的距离d =|-2k |k 2+1=2|k |k 2+1, 因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d =4|k |k 2+1,∴S △ABC =12|AB |·2d =12·⎝⎛⎭⎪⎫42·k 2+12k 2+1·4|k |k 2+1=82·k 2(k 2+1)(2k 2+1)2.∵k 2(k 2+1)(2k 2+1)2=k 2(k 2+1)[k 2+(k 2+1)]2≤k 2(k 2+1)4k 2(k 2+1)=14,又k 2≠k 2+1,所以等号不成立. ∴S △ABC =82·k 2(k 2+1)(2k 2+1)2<42,综上,△ABC 面积的最大值为4 2.(1)本题属于直线与圆锥曲线的综合问题.这类题目常出现在高考题的压轴题位置.难度属于中难程度.(2)本题以椭圆为载体,考查了直线及椭圆与数学运算能力、逻辑推理能力. (3)解决直线与椭圆的综合问题时,要注意:①注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件; ②强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.[跟进训练]4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为32. (1)求椭圆C 的标准方程;(2)若过点(-3,0)的直线l 与椭圆C 交于不同的两点M ,N ,O 为坐标原点,求OM →·ON →的取值范围.[解] (1)因为椭圆C 的短轴长为2,所以2b =2, 所以b =1,又椭圆C 的离心率为32,所以c a =a 2-b 2a =a 2-1a =32, 解得a =2,所以椭圆C 的标准方程为x 24+y 2=1.(2)由题可设直线l 的方程为y =k (x +3),M (x 1,y 1),N (x 2,y 2), 将y =k (x +3)代入x 24+y 2=1,消去y 可得 (1+4k 2)x 2+24k 2x +36k 2-4=0,所以Δ=(24k 2)2-4×(1+4k 2)(36k 2-4)>0,即k 2<15,且x 1+x 2=-24k 21+4k 2,x 1x 2=36k 2-41+4k 2,所以OM →·ON →=x 1x 2+y 1y 2=x 1x 2+k (x 1+3)·k (x 2+3)=(1+k 2)x 1x 2+3k 2(x 1+x 2)+9k 2=(1+k 2)·36k 2-41+4k 2+3k 2·⎝ ⎛⎭⎪⎫-24k 21+4k 2+9k 2=41k 2-41+4k 2=-4+57k 21+4k 2, 因为0≤k 2<15,所以0≤57k 21+4k 2<193,所以-4≤-4+57k 21+4k2<73, 所以OM →·ON →的取值范围是⎣⎢⎡⎭⎪⎫-4,73.莘莘学子,最重要的就是不要去看远方模糊的,而要做手边清楚的事。
新教材人教版高中数学必修第一册 第3章章末 函数概念与性质(1) 教学课件
表格形式给出时,定义域就是表格中数的集合.
4.分段函数 若函数在定义域的不同子集上的对应关系也不同,这种 形式的函数叫做分段函数,它是一类重要的函数.
第五页,共三十三页。
5. 函数的单调性
(1)增函数与减函数
一般地,设函数f(x)的定义域为I:
第十页,共三十三页。
(1)设 x<0,则-x>0,∴f(-x)= -x+1.∵f(x)是奇函数,∴f(- x)=-f(x),
即-f(x)= -x+1,∴f(x)=- -x-1. ∵f(x)是奇函数,∴f(0)=0,
1+ x,x>0, ∴f(x)= 0,x=0,
- -x-1,x<0.
第十一页,共三十三页。
(2).奇函数的定义:如果对于函数f(x)的定义域内任意一个x都 有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
(3).几个结论: ①偶函数的图象关于y轴对称.
②奇函数的图象关于原点对称.
③函数y=f(x)是奇函数或偶函数的一个必不可少的条件 是---定义域关于原点对称,否则它是非奇非偶函数.
①如果对于定义域I内某个区间D上的 任意两个自变量
的值x1,x2,当x1<x2时,都有f(x1)<f(. 增函数
②如果对于定义域I内某个区间D上的
任意自两变个量的值
x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数
f(x)在区间D上是
. 减函数
(2)令 t=1+x x=1x+1,则 t≠1.把 x=t-1 1代入 f1+x x=1+x2x2+1x,
得 f(t)=1+ 1t-1212+
1 1
t-1
人教A版高中数学第一册(必修1)第三章 函数的概念与性质7:章末检测卷(三)
章末检测卷(三)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列所示的图形中,可以作为函数y =f (x )的图象是( )『解 析』 作直线x =a 与曲线相交,由函数的概念可知,定义域中任意一个自变量对应唯一的函数值,∴y 是x 的函数,那么直线x =a 移动中始终与曲线只有一个交点,于是可排除A ,B ,C ,只有D 符合,故选D. 『答 案』 D2.函数f (x )=1+x +1x 的定义域是( ) A.『-1,+∞) B.(-∞,0)∪(0,+∞) C.『-1,0)∪(0,+∞)D.R『解 析』 ⎩⎪⎨⎪⎧1+x ≥0,x ≠0,解得-1≤x <0或x >0,区间表示为『-1,0)∪(0,+∞),故选C. 『答 案』 C3.下列函数中,与函数y =x (x ≥0)有相同图象的一个是( )A.y =x 2B.y =(x )2C.y =3x 3D.y =x 2x『解 析』 y =x 2=|x |,x ∈R ;y =(x )2=x ,x ≥0;y =3x 3=x ,x ∈R ;y =x 2x=x ,x >0,所以选B. 『答 案』 B4.幂函数的图象过点⎝ ⎛⎭⎪⎫2,14,则它的单调递增区间是( )A.(0,+∞)B.『0,+∞)C.(-∞,0)D.(-∞,+∞)『解 析』 设幂函数y =x α,则2α=14,解得α=-2,所以y =x -2,故函数y =x-2的单调递增区间是(-∞,0).『答 案』 C5.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A.y =x B.y =|x |+1 C.y =-x 2+1D.y =-1x『解 析』 A :y =x 是奇函数,故不符合题意;B :y =|x |+1是偶函数,在(0,+∞)上单调递增,故正确;C :y =-x 2+1是偶函数,在区间(0,+∞)上单调递减,不合题意,D :y =-1x 是奇函数,不合题意.故『答 案』为B. 『答 案』 B6.已知f (x )是一次函数,且f 『f (x )』=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -1『解 析』 设f (x )=kx +b (k ≠0),则f 『f (x )』=k (kx +b )+b =k 2x +kb +b =x +2,∴⎩⎪⎨⎪⎧k 2=1,kb +b =2,∴⎩⎪⎨⎪⎧k =1,b =1,故选A.『答 案』 A7.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -7 (x ≤1),a x (x >1)是R 上的增函数,则a 的取值范围是( ) A.『-4,0) B.(-∞,-2』 C.『-4,-2』D.(-∞,0)『解 析』 ∵f (x )在R 上为增函数,∴需满足⎩⎪⎨⎪⎧-a2≥1,a <0,-1-a -7≤a ,即-4≤a ≤-2,故选C. 『答 案』 C8.已知函数f (x )是定义域为R 的偶函数,且对任意x 1,x 2∈(-∞,0』,当x 1≠x 2时总有f (x 1)-f (x 2)x 1-x 2>0,则满足f (1-2x )-f ⎝ ⎛⎭⎪⎫-13>0的x 的范围是( )A.⎝ ⎛⎭⎪⎫13,23 B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23『解 析』 由题意,f (x )在(-∞,0』上是增函数,又f (x )是定义域为R 的偶函数,故f (x )在『0,+∞)上是减函数.由f (1-2x )-f ⎝ ⎛⎭⎪⎫-13>0可得f (1-2x )>f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫13,即f (|1-2x |)>f ⎝ ⎛⎭⎪⎫13,所以|1-2x |<13,解得13<x <23. 『答 案』 A二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)9.已知奇函数f (x )在(0,+∞)上是减函数,且在区间『a ,b 』(a <b <0)上的值域为『-3,4』,则在区间『-b ,-a 』上( ) A.有最大值4 B.有最小值-4 C.有最大值3D.有最小值-3『解 析』 法一 根据题意作出y =f (x )的简图,由图知,故选BC.法二 当x ∈『-b ,-a 』时,-x ∈『a ,b 』, 由题意得f (b )≤f (-x )≤f (a ), 即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间『-b ,-a 』上f (x )min =-4,f (x )max =3, 故选BC. 『答 案』 BC10.已知函数f (x )=-x 2+2x +1的定义域为(-2,3),则函数f (|x |)的单调递增区间是( ) A.(-∞,-1) B.(-3,-1) C.(0,1)D.(1,3)『解 析』 因为函数f (x )=-x 2+2x +1的定义域为(-2,3),对称轴为直线x =1,开口向下,所以函数f (|x |)满足-2<|x |<3,所以-3<x <3. 又f (|x |)=-x 2+2|x |+1=⎩⎪⎨⎪⎧-x 2+2x +1,0≤x <3,-x 2-2x +1,-3<x <0,且y =-x 2-2x +1图象的对称轴为直线x =-1,所以由二次函数的图象与性质可知,函数f (|x |)的单调递增区间是(-3,-1)和(0,1).故选BC. 『答 案』 BC11.某位同学在学习函数的性质时提出了如下两个命题:已知函数y =f (x )的定义域为D ,x 1,x 2∈D .①若当f (x 1)+f (x 2)=0时,都有x 1+x 2=0,则函数y =f (x )是D 上的奇函数; ②若当f (x 1)<f (x 2)时,都有x 1<x 2,则函数y =f (x )是D 上的增函数. 则下列说法正确的有( ) A.①是真命题 B.①是假命题 C.②是真命题D.②是假命题『解 析』 对于命题①,由于函数的定义域是否关于原点对称不明确,因此不符合奇函数的定义,错误;对于命题②,由于x 1,x 2是否具有任意性不明确,不符合单调性的定义.所以两个都是假命题,故选BD. 『答 案』 BD12.已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的有( ) A.a +b >0,ab <0 B.a +b <0,ab >0 C.a +b <0,ab <0D.以上都可能『解 析』 由函数f (x )为幂函数可知m 2-m -1=1,解得m =-1或m =2.当m =-1时,f (x )=1x 3;当m =2时,f (x )=x 3.由题意知函数f (x )在(0,+∞)上为增函数,因此f (x )=x 3,在R 上单调递增,且满足f (-x )=-f (x ).结合f (-x )=-f (x )以及f (a )+f (b )<0可知f (a )<-f (b )=f (-b ),所以a <-b ,即b <-a ,所以a +b <0.当a =0时,b <0,ab =0;当a >0时,b <0,ab <0;当a <0时,ab >0(b <0)或ab <0(0<b <-a ),故BC 都有可能成立.故选BC.『答 案』 BC三、填空题(本大题共4小题,每小题5分,共20分.把『答 案』填在题中的横线上)13.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 『解 析』 由f (x )是偶函数,所以f (x )=f (-x ), 即(x +a )(x -4)=(-x +a )(-x -4),解得a =4. 『答 案』 414.若函数f (x )=x 2-x 12,则满足f (x )<0的x 的取值范围为________. 『解 析』 设函数y 1=x 2,函数y 2=x 12,则f (x )<0, 即y 1<y 2.在同一平面直角坐标系中作出函数y 1与y 2的图象,如图所示,则由数形结合得x ∈(0,1). 『答 案』 (0,1)15.图中折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (min)之间的函数关系的图象,根据图象判断:通话5 min ,需付电话费________元;如果t ≥3,那么电话费y (元)与通话时间t (min)之间的函数关系式是________(第一空2分,第二空3分).『解 析』 由题图知,通话5 min ,需付电话费6元.当t ≥3时,设y =kx +b (k ≠0),则有⎩⎪⎨⎪⎧3.6=3k +b ,6=5k +b ,解得⎩⎪⎨⎪⎧k =1.2,b =0,∴t ≥3时,y =1.2t .『答 案』 6 y =1.2t (t ≥3)16.若函数f (x )同时满足:①对于定义域上的任意x ,恒有f (x )+f (-x )=0;②对于定义域上的任意x 1,x 2,当x 1≠x 2时,恒有f (x 1)-f (x 2)x 1-x 2<0,则称函数f (x )为“理想函数”.给出下列四个函数中:①f (x )=1x ;②f (x )=x 2;③f (x )=|x |;④f (x )=⎩⎨⎧-x 2,x ≥0,x 2,x <0.能被称为“理想函数”的有________(填相应的序号).『解 析』 ①中,函数f (x )=1x 为定义域上的奇函数,但不是定义域上的减函数,所以不正确;②中,函数f (x )=x 2为定义域上的偶函数,所以不正确;③中,函数f (x )=|x |的定义域为R ,在定义域内不单调,所以不正确;④中,函数f (x )=⎩⎪⎨⎪⎧-x 2 (x ≥0),x 2(x <0)的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,所以为“理想函数”,综上,『答 案』为④. 『答 案』 ④四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的『解 析』式; (2)画出函数f (x )的图象.解 (1)①由于函数f (x )是定义域为R 的奇函数,则f (0)=0; ②当x <0时,-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-『(-x )2-2(-x )』=-x 2-2x . 综上,f (x )=⎩⎪⎨⎪⎧x 2-2x ,x >0,0,x =0,-x 2-2x ,x <0.(2)图象如图所示.18.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f (f (x ))=9x -2. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈『-1,a 』上的最大值. 解 (1)由题意可设f (x )=kx +b (k <0), 由于f (f (x ))=9x -2,则k 2x +kb +b =9x -2,故⎩⎪⎨⎪⎧k 2=9,kb +b =-2,解得⎩⎪⎨⎪⎧k =-3,b =1,故f (x )=-3x +1. (2)由(1)知,函数y =-3x +1+x 2-x =x 2-4x +1=(x -2)2-3, 故函数y =x 2-4x +1的图象开口向上,对称轴为x =2, 当-1<a ≤5时,y 的最大值是f (-1)=6, 当a >5时,y 的最大值是f (a )=a 2-4a +1, 综上,y max =⎩⎪⎨⎪⎧6 (-1<a ≤5),a 2-4a +1 (a >5).19.(本小题满分12分)设函数f (x )=ax 2+bx +1(a ,b 为实数),F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,(1)若f (-1)=0且对任意实数x 均有f (x )≥0成立,求F (x )的表达式;(2)在(1)的条件下,当x ∈『-2,2』时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解 (1)由已知可知:⎩⎪⎨⎪⎧f (-1)=a -b +1=0,a >0,b 2-4a ≤0,解得⎩⎪⎨⎪⎧a =1,b =2, 则F (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,-x 2-2x -1,x <0.(2)由(1)可知f (x )=x 2+2x +1,则g (x )=x 2+2x +1-kx =x 2+(2-k )x +1, 则g (x )的对称轴为x =k -22.由于g (x )在『-2,2』上是单调函数, 故k -22≤-2或k -22≥2,即k ≤-2或k ≥6.即实数k的取值范围是(-∞,-2』∪『6,+∞).20.(本小题满分12分)设函数f(x)=ax2+1bx+c是奇函数(a,b都是正整数),且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,f(x)的单调性如何?用单调性定义证明你的结论.解(1)由f(x)=ax2+1bx+c是奇函数,得f(-x)=-f(x)对定义域内x恒成立,则a(-x)2+1b(-x)+c=-ax2+1bx+c⇒-bx+c=-(bx+c)对定义域内x恒成立,即c=0.f(1)=a+1b=2,f(2)=4a+12b<3,又a,b是整数,得b=a=1.(2)由(1)知f(x)=x2+1x=x+1x,当x<0时,f(x)在(-∞,-1』上单调递增,在『-1,0)上单调递减,下面用定义证明.设x1<x2≤-1,则f(x1)-f(x2)=x1+1x1-⎝⎛⎭⎪⎫x2+1x2=x1-x2+x2-x1x1x2=(x1-x2)⎝⎛⎭⎪⎫1-1x1x2,因为x1<x2≤-1,x1-x2<0,1-1x1x2>0.f(x1)-f(x2)<0,故f(x)在(-∞,-1』上单调递增.同理可证f(x)在『-1,0)上单调递减.21.(本小题满分12分)已知矩形ABCD中,AB=4,AD=1,点O为段线AB的中点,动点P沿矩形ABCD的边从B逆时针运动到A.当点P运动过的路程为x时,记点P的运动轨迹与线段OP,OB 围成的图形面积为f(x).(1)求f(x)的『解析』式;(2)若f (x )=2,求x 的值.解 (1)当x ∈『0,1』时,f (x )=12·OB ·x =x ;当x ∈(1,5』时,f (x )=(2+x -1)×12=12(x +1); 当x ∈(5,6』时,f (x )=4×1-12×2×(6-x )=x -2.所以f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤1,12(x +1),1<x ≤5,x -2,5<x ≤6.(2)若f (x )=2,显然1<x ≤5,所以f (x )=12(x +1)=2,解得x =3.22.(本小题满分12分)已知函数y =f (x )的定义域为R ,且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),且当x >0时,f (x )<0恒成立.(1)证明函数y =f (x )是R 上的单调函数;(2)讨论函数y =f (x )的奇偶性;(3)若f (x 2-2)+f (x )<0,求x 的取值范围.(1)证明 设x 1>x 2,则x 1-x 2>0,∴f (x 1)-f (x 2)=f 『(x 1-x 2)+x 2』-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又当x >0时,f (x )<0恒成立,所以f (x 1)<f (x 2),∴函数y =f (x )是R 上的减函数.(2)解 由f (a +b )=f (a )+f (b )得f (x -x )=f (x )+f (-x ),即f (x )+f (-x )=f (0),又由f (a +b )=f (a )+f (b ),令a =b =0,得f (0)=0,∴f (-x )=-f (x ),又函数y =f (x )的定义域为R ,即函数y =f (x )是奇函数.(3)解法一由f(x2-2)+f(x)<0得f(x2-2)<-f(x),又y=f(x)是奇函数,即f(x2-2)<f(-x),又y=f(x)在R上是减函数,所以x2-2>-x,解得x>1或x<-2.故x的取值范围是(-∞,-2)∪(1,+∞).法二由f(x2-2)+f(x)<0且f(0)=0及f(a+b)=f(a)+f(b),得f(x2-2+x)<f(0),又y=f(x)在R上是减函数,所以x2-2+x>0,解得x>1或x<-2.故x的取值范围是(-∞,-2)∪(1,+∞).。
人教A版数学必修一第三章全章精品教案
课题:§3.1.1方程的根与函数的零点教学目标:知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法零点存在性的判定.情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点零点的概念及存在性的判定.难点零点的确定.教学程序与环节设计:结合二次函数引入课题.零点存在性为练习重点.教学过程与操作设计:环节教学内容设置师生双边互动创设情境先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:○1方程0322=--xx与函数322--=xxy○2方程0122=+-xx与函数122+-=xxy○3方程0322=+-xx与函数322+-=xxy师:引导学生解方程,画函数图象,分析方程的根与图象和x轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?组织探究函数零点的概念:对于函数))((Dxxfy∈=,把使0)(=xf成立的实数x叫做函数))((Dxxfy∈=的零点.函数零点的意义:函数)(xfy=的零点就是方程0)(=xf实数根,亦即函数)(xfy=的图象与x轴交点的横坐标.即:方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点⇔函数)(xfy=有零点.函数零点的求法:求函数)(xfy=的零点:○1(代数法)求方程0)(=xf的实数根;○2(几何法)对于不能用求根公式的方程,可师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:○1代数法;○2几何法.零点存在性的探索:(Ⅰ)观察二次函数32)(2--=x x x f 的图象:○1 在区间]1,2[-上有零点______; =-)2(f _______,=)1(f _______,)2(-f ·)1(f _____0(<或>). ○2 在区间]4,2[上有零点______; )2(f ·)4(f ____0(<或>). (Ⅱ)观察下面函数)(x f y =的图象○1 在区间],[b a 上______(有/无)零点; )(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点; )(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点; )(c f ·)(d f _____0(<或>).由以上两步探索,你可以得出什么样的结论?怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.生:分析函数,按提示探索,完成解答,并认真思考. 师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系.生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析. 师:引导学生理解函数零点存在定理,分析其中各条件的作用.环节教学内容设置师生互动设计课题:§3.1.2用二分法求方程的近似解教学目标:知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点:重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教学程序与环节设计:由二分查找及高次多项式方程的求问题引入.初步应用二分法解.二分法为什么可以逼近零点的再分析;.追寻阿贝尔和伽罗瓦.教学过程与操作设计:课题:§3.2.1几类不同增长的函数模型教学目标:知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点怎样选择数学模型分析解决实际问题.教学程序与环节设计:实际问题引入,激发学生兴趣.归纳一般的应用题的求教学过程与操作设计:。
高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题
章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案 D解析任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.2.下面一段程序执行后的结果是( )A.6B.4C.8D.10答案 A解析由程序知a=2,2×2=4,4+2=6,故最后输出a的值为6,故选A.3.执行如图所示的程序框图,若输出的结果为11,则M处可填入的条件为( )A.k≥31B.k≥15C.k>31D.k>15答案 B解析依题意k=1,S=0,进入循环,循环过程依次为:S=0+1=1,k=2×1+1=3;S=1+3=4,k=2×3+1=7;S=4+7=11,k=2×7+1=15,终止循环,输出S=11.结合选项知,M处可填k≥15.4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s为( )A.7B.12C.17D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件输出s=17,故选C.5.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15答案 C解析由程序框图得S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3,输出S的值为7.6.运行如图所示的程序,当输入的数据为75,45时,输出的值为( ) INPUT “输入两个不同正整数m,n=”;m,nDOIF m>n THENm=m-nELSEn=n-mEND IFLOOP UNTIL m=nPRINT mENDA.24B.18C.12D.15答案 D解析由程序语句知,此程序是用更相减损术求75,45的最大公约数.7.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.56 答案 D解析 第一次循环,S =0+11×2=12,k =2; 第二次循环,S =12+12×3=23,k =3;第三次循环,S =23+13×4=34,k =4;第四次循环,S =34+14×5=45,k =5;第五次循环,S =45+15×6=56,此时k =5不满足判断框内的条件,跳出循环, 输出S =56,故选D.8.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A .T =T ·(i +1)B .T =T ·iC .T =T ·1i +1D .T =T ·1i答案 C解析 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得C 正确.9.如图所示的程序运行时,从键盘输入-3,则输出值为( ) INPUT “x=”;x IF x >0 THEN y =1 ELSEIF x =0 THENy =0 ELSEy =-1 END IF END IF PRINT y END A .-3B .3C .1D .-1 答案 D解析 由程序知,当x >0时,y =1;否则,当x =0时,y =0;当x <0时,y =-1. 即y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.10.执行如图所示的程序框图,若输出的k =5,则输入的整数p 的最大值为( )A .7B .15C .31D .63 答案 B解析 由程序框图可知:①S =0,k =1;②S =1,k =2;③S =3,k =3;④S =7,k =4;⑤S =15,k =5,输出k ,此时S =15≥p ,则p 的最大值为15,故选B.11.执行如图所示的程序框图,若输出的结果是4,则判断框内实数m 的取值X 围是( )A .(2,6]B .(6,12]C .(12,20]D .(2,20] 答案 B解析 由程序框图,知第一次循环后,S =0+2=2,k =2; 第二次循环后,S =2+4=6,k =3; 第三次循环后,S =6+6=12,k =4.∵输出k =4,∴循环体执行了3次,此时S =12,∴6<m ≤12,故选B.12.执行如图所示的程序框图,若输出的结果为2,则输入的正整数a 的取值的集合是( )A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{2,3,4,5}D.{2,3,4,5,6}答案 C解析若输入a=1,则a=2×1+3=5,i=0+1=1,因为5>13不成立,所以继续循环;a =2×5+3=13,i=1+1=2,因为13>13不成立,所以继续循环;a=2×13+3=29,i=2+1=3,因为29>13成立,所以结束循环,输出的结果为3,不为2,所以a≠1,排除A,B,若输入a=6,则a=2×6+3=15,i=0+1=1,因为15>13成立,所以结束循环,输出的结果为1,不为2,所以a≠6,排除D,故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.答案 3解析第1次循环:i=1,a=1,b=8,a<b;第2次循环:i=2,a=3,b=6,a<b;第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.14.将二进制数110101(2)化成十进制数,结果为________,再将该结果化成七进制数,结果为________.答案53 104(7)解析110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104(7).15.执行如图所示的程序框图,则输出结果S=________.答案1010解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2019+2020)=1010,故输出的S 的值为1010.16.阅读下面的程序,该算法的功能是_____________________.S=0t=1i=1DOS=S+it=t*ii=i+1LOOP UNTIL i>20PRINT S,tEND答案求S=1+2+3+…+20,t=1×2×3×…×20三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,所以282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.235-141=94,141-94=47,94-47=47,所以470与282的最大公约数为47×2=94.18.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.解(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:19.(12分)下列是某个问题的算法,将其改为程序语言,并画出程序框图. 算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i.第四步,i =i +2,返回第二步. 解 程序如下: i =1 S =0WHILE i<=999 S =S +1/i i =i +2 WEND PRINT S END程序框图如图:20.(12分)下列语句是求S =2+3+4+…+99的一个程序,请回答问题: i =1 S =0DOS =S +ii =i +1LOOP UNTIL i >=99PRINT SEND(1)程序中是否有错误?若有,请加以改正;(2)把程序改成另一种类型的循环语句.解 (1)错误有两处:第一处:语句i =1应改为i =2.第二处:语句LOOPUNTIL i >=99应改为LOOPUNTIL i >99.(2)改为当型循环语句为:i =2S =0WHILE i <=99S =S +ii =i +1WENDPRINT SEND21.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出正确的算法步骤;(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2.第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧ x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.22.(12分)为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min 以内每分钟收费0.1元,30min 以上超过部分每分钟收费0.2元,编写程序并画出程序框图,要求输入洗澡时间,输出洗澡费用.解 用y (单位:元)表示洗澡费用,x (单位:min)表示洗澡时间,则y =⎩⎪⎨⎪⎧ 0.1x ,0<x ≤30,3+0.2x -30,x >30.程序如下:INPUT xIF x <=30 THENy =0.1*xELSEy =3+0.2*x -30END IFPRINT yEND程序框图如图所示.。
人教A版高中数学必修1 课件 :第三章 章末复习与总结
3.根据表格建立函数模型
【例 3】 某星级旅馆有 150 间标准房,经过一段时间的经营,
经理得到一些定价和住房率的数据如下:
定价/(元/间)
住房率
160
55%
140
65%
120
75%
100
85%
欲使每天的营业额最高,应如何定价?
[思路点拨] 根据已知数据,可假设该旅馆的最高定价为 160 元/间,且在各价位之间,定价与住房率之间存在线性关系.
所以国内市场的日销售量 f(t)=2-t,6t0+≤2t4≤0,303,0<t≤40. 由题图(2)可知,设 g(t)=ct(t-40)(c≠0). 由 60=20c(20-40),得 c=-230. 所以国外市场的日销售量 g(t)=-230t2+6t(0≤t≤40).
(2)设每件产品 A 的销售利润为 q(t). 由题图(3),得 q(t)=36t0,,02≤0<t≤t≤204,0. 所以这家公司的日销售利润 Q(t)的解析式为 Q(t)=q(t)·[f(t)+g(t)]=
4.根据图象建立函数模型 【例 4】 某公司是一家专做产品 A 的国内外销售的企业, 每一批产品 A 上市 40 天内全部售完.该公司对第一批产品 A 上 市后的国内外市场销售情况进行了跟踪调查,调查结果如图所示, 图(1)中的折线表示的是国内市场的日销售量与上市时间的关系; 图(2)中的抛物线表示的是国外市场的日销售量与上市时间的关 系;图(3)中的折线表示的是每件产品 A 的销售利润与上市时间的 关系(国内外市场相同).
[解] 设该旅馆每天的营业额为 y 元,定价为(160-x)元/间, 则住房率55+2x0·10%,于是 y=150(160-x)55+2x0·10%.
由于55+2x0·10%≤1,所以 0≤x≤90. 由 y=150(160-x)55+2x0·10%=-34(x-25)2+13 668.75,可 知当 x=25,即 160-x=135 时,y 取得最大值,ymax=13 668.75. 所以该旅馆定价为 135 元/间时,每天的营业额最高.
人教A版数学必修一第三章章末复习课
近似值即为所求近似解.
用二分法逐次计算,列表如下:
题型三 函数模型及应用
ax b( x m) y cx d ( x ≥ m)
400 ∴k= , 81
400 4 ∴流量速率 R 的表达式为 Rቤተ መጻሕፍቲ ባይዱ r . 81
高中数学课件
灿若寒星整理制作
第三章函数的应用
章末复习课
内容 索引
01
理网络 明结构
探题型 提能力
02
03
04
理网络·明结构
题型二 用二分法求函数的零点或方程的近似解 1.看清题目的精确度,它决定着二分法的结束. 2.根据f(a0)· f(b0)<0 确定初始区间,高次方程要先确定有几个解再 确定初始区间. 3.初始区间的选定一般在两个整数间,不同初始区间结果是相同 的,但二分的次数相差较大. 4.取区间中点 c,计算中点函数值 f(c) ,确定新的零点区间,直到 所取区间(an,bn)中,an与bn按精确度要求取值相等,这个相等的
2020-2021学年人教A版必修一课件第三章末复习与总结 (1)
②∀1<x1<x2,则 f(x1)-f(x2)=x1x-1 a-x2x-2 a =x1a-xa2-xx2-1 a. 因为a>0,x2-x1>0, 所以要使f(x1)-f(x2)>0, 只需(x1-a)(x2-a)>0恒成立,所以a≤1. 综上所述,a的取值范围是(0,1].
四、数学建模 在本章中,数学建模主要体现在函数模型的应用中. 在建立模型的过程中,要遵循以下基本原则: (1)简化原则:建立模型,要对原型进行一定的简化,抓主
由①②消去f(-t)得f(t)=2t+25,故f(x)=2x+25. [答案] (1)x2-7x+10 (2)f(x)=x2+1 (3)f(x)=2x+25
二、直观想象 直观想象是指借助几何直观和空间想象感知事物的形态
与变化,利用空间形式特别是图形,理解和解决数学问题的 素养,主要表现为:建立形与数的联系,利用几何图形描述 问题,借助几何直观理解问题,运用空间想象认识事物.本 章主要体现在利用函数的图象研究函数的性质.
∵24x7+2≠0,∴y≠54.
所以函数的值域为y∈R
y≠54
.
(2)∵y=x22x-2-4xx+ -31=xx--112xx-+31=2xx-+31(x≠1),
又2xx-+31=1222xx++11-72=12-22x7+1. 当 x=1 时,原式 y=2×1-1+3 1=-23.
∴函数的值域为y∈R
(2)已知函数 y=f(x+1)的定义域是[-2,3],则 y=f(2x-1)的
定义域是
()
A.0,52 C.[-5,5]
B.[-1,4] D.[-3,7]
[解析] (1)由题意得,13- x-x>1≠0,0, 解得x<1且x≠13. (2)设u=x+1,由-2≤x≤3,得-1≤x+1≤4,所以y= f(u)的定义域为[-1,4].再由-1≤2x-1≤4, 解得0≤x≤52,即函数y=f(2x-1)的定义域是0,52. [答案] (1)D (2)A