Phase structure of Abelian Chern-Simons gauge theories

合集下载

框架结构外文文献

框架结构外文文献

Seismic Collapse Safety of Reinforced ConcreteBuildings.II:Comparative Assessment of Nonductile and Ductile Moment FramesAbbie B.Liel,M.ASCE 1;Curt B.Haselton,M.ASCE 2;and Gregory G.Deierlein,F.ASCE 3Abstract:This study is the second of two companion papers to examine the seismic collapse safety of reinforced concrete frame buildings,and examines nonductile moment frames that are representative of those built before the mid-1970s in California.The probabilistic assessment relies on nonlinear dynamic simulation of structural response to calculate the collapse risk,accounting for uncertainties in ground-motion characteristics and structural modeling.The evaluation considers a set of archetypical nonductile RC frame structures of varying height that are designed according to the seismic provisions of the 1967Uniform Building Code.The results indicate that nonductile RC frame structures have a mean annual frequency of collapse ranging from 5to 14×10À3at a typical high-seismic California site,which is approximately 40times higher than corresponding results for modern code-conforming special RC moment frames.These metrics demonstrate the effectiveness of ductile detailing and capacity design requirements,which have been introduced over the past 30years to improve the safety of RC buildings.Data on comparative safety between nonductile and ductile frames may also inform the development of policies for appraising and mitigating seismic collapse risk of existing RC frame buildings.DOI:10.1061/(ASCE)ST.1943-541X .0000275.©2011American Society of Civil Engineers.CE Database subject headings:Structural failures;Earthquake engineering;Structural reliability;Reinforced concrete;Concrete structures;Seismic effects;Frames.Author keywords:Collapse;Earthquake engineering;Structural reliability;Reinforced concrete structures;Buildings;Commercial;Seismic effects.IntroductionReinforced concrete (RC)frame structures constructed in Califor-nia before the mid-1970s lack important features of good seismic design,such as strong columns and ductile detailing of reinforce-ment,making them potentially vulnerable to earthquake-induced collapse.These nonductile RC frame structures have incurred significant earthquake damage in the 1971San Fernando,1979Imperial Valley,1987Whittier Narrows,and 1994Northridge earthquakes in California,and many other earthquakes worldwide.These factors raise concerns that some of California ’s approxi-mately 40,000nonductile RC structures may present a significant hazard to life and safety in future earthquakes.However,data are lacking to gauge the significance of this risk,in relation to either the building population at large or to specific buildings.The collapse risk of an individual building depends not only on the building code provisions employed in its original design,but also structuralconfiguration,construction quality,building location,and site-spe-cific seismic hazard information.Apart from the challenges of ac-curately evaluating the collapse risk is the question of risk tolerance and the minimum level of safety that is appropriate for buildings.In this regard,comparative assessment of buildings designed accord-ing to old versus modern building codes provides a means of evalu-ating the level of acceptable risk implied by current design practice.Building code requirements for seismic design and detailing of reinforced concrete have changed significantly since the mid-1970s,in response to observed earthquake damage and an in-creased understanding of the importance of ductile detailing of reinforcement.In contrast to older nonductile RC frames,modern code-conforming special moment frames for high-seismic regions employ a variety of capacity design provisions that prevent or delay unfavorable failure modes such as column shear failure,beam-column joint failure,and soft-story mechanisms.Although there is general agreement that these changes to building code require-ments are appropriate,there is little data to quantify the associated improvements in seismic safety.Performance-based earthquake engineering methods are applied in this study to assess the likelihood of earthquake-induced collapse in archetypical nonductile RC frame structures.Performance-based earthquake engineering provides a probabilistic framework for re-lating ground-motion intensity to structural response and building performance through nonlinear time-history simulation (Deierlein 2004).The evaluation of nonductile RC frame structures is based on a set of archetypical structures designed according to the pro-visions of the 1967Uniform Building Code (UBC)(ICBO 1967).These archetype structures are representative of regular well-designed RC frame structures constructed in California between approximately 1950and 1975.Collapse is predicted through1Assistant Professor,Dept.of Civil,Environmental and Architectural Engineering,Univ.of Colorado,Boulder,CO 80309.E-mail:abbie .liel@ 2Assistant Professor,Dept.of Civil Engineering,California State Univ.,Chico,CA 95929(corresponding author).E-mail:chaselton@csuchico .edu 3Professor,Dept.of Civil and Environmental Engineering,Stanford Univ.,Stanford,CA 94305.Note.This manuscript was submitted on July 14,2009;approved on June 30,2010;published online on July 15,2010.Discussion period open until September 1,2011;separate discussions must be submitted for individual papers.This paper is part of the Journal of Structural Engineer-ing ,V ol.137,No.4,April 1,2011.©ASCE,ISSN 0733-9445/2011/4-492–502/$25.00.492/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .nonlinear dynamic analysis of the archetype nonductile RC frames,using simulation models capable of capturing the critical aspects of strength and stiffness deterioration as the structure collapses.The outcome of the collapse performance assessment is a set of measures of building safety and relating seismic collapse resistance to seismic hazard.These results are compared with the metrics for ductile RC frames reported in a companion paper (Haselton et al.2011b ).Archetypical Reinforced Concrete Frame StructuresThe archetype nonductile RC frame structures represent the expected range in design and performance in California ’s older RC frame buildings,considering variations in structural height,configuration and design details.The archetype configurations explore key design parameters for RC components and frames,which were identified through previous analytical and experimental studies reviewed by Haselton et al.(2008).The complete set of archetype nonductile RC frame buildings developed for this study includes 26designs (Liel and Deierlein 2008).This paper focuses primarily on 12of these designs,varying in height from two to 12stories,and including both perimeter (P )and space (S )frame lateral resisting systems with alternative design details.All archetype buildings are designed for office occupancies with an 8-in.(20-cm)flat-slab floor system and 25-ft (7.6-m)column spacing.The 2-and 4-story buildings have a footprint of 125ft by 175ft (38.1m by 53.3m),and the 8-and 12-story buildings measure 125ft (38.1m)square in plan.Story heights are 15ft (4.6m)in the first story and 13ft (4.0m)in all other stories.Origi-nal structural drawings for RC frame buildings constructed in California in the 1960s were used to establish typical structural configurations and geometry for archetype structures (Liel and Deierlein 2008).The archetypes are limited to RC moment frames without infill walls,and are regular in elevation and plan,without major strength or stiffness irregularities.The nonductile RC archetype structures are designed for the highest seismic zone in the 1967UBC,Zone 3,which at that time included most of California.Structural designs of two-dimensional frames are governed by the required strength and stiffness to satisfy gravity and seismic loading combinations.The designs also satisfy all relevant building code requirements,including maximum and minimum reinforcement ratios and maximum stirrup spacing.The 1967UBC permitted an optional reduction in the design base shear if ductile detailing requirements were employed,however,this reduction is not applied and only standard levels of detailing are considered in this study.Design details for each structure areTable 1.Design Characteristics of Archetype Nonductile and Ductile RC Frames Stucture Design base shear coefficient a,bColumn size c (in :×in.)Column reinforcementratio,ρColumn hoop spacing d,e (in.)Beam size f (in :×in.)Beam reinforcementratios ρ(ρ0)Beam hoop spacing (in.)Nonductile2S 0.08624×240.0101224×240.006(0.011)112P 0.08630×300.0151530×300.003(0.011)114S 0.06820×200.0281020×260.007(0.014)124P 0.06824×280.0331424×320.007(0.009)158S 0.05428×280.0141424×260.006(0.013)118P 0.05430×360.0331526×360.008(0.010)1712S 0.04732×320.025926×300.006(0.011)1712P 0.04732×400.032930×380.006(0.013)184S g 0.06820×200.028 6.720×260.007(0.014)84S h 0.06820×200.0281020×260.007(0.014)1212S g 0.04732×320.025626×300.006(0.011)1112S h 0.04732×320.025926×300.006(0.011)17Ductile2S 0.12522×220.017518×220.006(0.012) 3.52P 0.12528×300.018528×280.007(0.008)54S 0.09222×220.016522×240.004(0.008)54P 0.09232×380.016 3.524×320.011(0.012)58S 0.05022×220.011422×220.006(0.011) 4.58P 0.05026×340.018 3.526×300.007(0.008)512S 0.04422×220.016522×280.005(0.008)512P0.04428×320.0223.528×380.006(0.007)6aThe design base shear coefficient in the 1967UBC is given by C ¼0:05=T ð1=3Þ≤0:10.For moment resisting frames,T ¼0:1N ,where N is the number of stories (ICBO 1967).bThe design base shear coefficient for modern buildings depends on the response spectrum at the site of interest.The Los Angeles site has a design spectrumdefined by S DS ¼1:0g and S D1¼0:60g.The period used in calculation of the design base shear is derived from the code equation T ¼0:016h 0:9n ,where h n isthe height of the structure in feet,and uses the coefficient for upper limit of calculated period (C u ¼1:4)(ASCE 2002).cColumn properties vary over the height of the structure and are reported here for an interior first-story column.dConfiguration of transverse reinforcement in each member depends on the required shear strength.There are at least two No.3bars at every location.eConfiguration of transverse reinforcement in ductile RC frames depends on the required shear strength.All hooks have seismic detailing and use No.4bars (ACI 2005).fBeam properties vary over the height of the structure and are reported here are for a second-floor beam.gThese design variants have better-than-average beam and column detailing.hThese design variants have better-than-average joint detailing.JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/493D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .summarized in Table 1,and complete documentation of the non-ductile RC archetypes is available in Liel and Deierlein (2008).Four of the 4-and 12-story designs have enhanced detailing,as described subsequently.The collapse performance of archetypical nonductile RC frame structures is compared to the set of ductile RC frame archetypes presented in the companion paper (Haselton et al.2011b ).As sum-marized in Table 2,these ductile frames are designed according to the provisions of the International Building Code (ICC 2003),ASCE 7(ASCE 2002),and ACI 318(ACI 2005);and meet all gov-erning code requirements for strength,stiffness,capacity design,and detailing for special moment frames.The structures benefit from the provisions that have been incorporated into seismic design codes for reinforced concrete since the 1970s,including an assort-ment of capacity design provisions [e.g.,strong column-weak beam (SCWB)ratios,beam-column and joint shear capacity design]and detailing improvements (e.g.,transverse confinement in beam-column hinge regions,increased lap splice requirements,closed hooks).The ductile RC frames are designed for a typical high-seismic Los Angeles site with soil class S d that is located in the transition region of the 2003IBC design maps (Haselton and Deierlein 2007).A comparison of the structures described in Table 1reflects four decades of changes to seismic design provisions for RC moment frames.Despite modifications to the period-based equation for design base shear,the resulting base shear coefficient is relatively similar for nonductile and ductile RC frames of the same height,except in the shortest structures.More significant differencesbetween the two sets of buildings are apparent in member design and detailing,especially in the quantity,distribution,and detailing of transverse reinforcement.Modern RC frames are subject to shear capacity design provisions and more stringent limitations on stirrup spacing,such that transverse reinforcement is spaced two to four times more closely in ductile RC beams and columns.The SCWB ratio enforces minimum column strengths to delay the formation of story mechanisms.As a result,the ratio of column to beam strength at each joint is approximately 30%higher (on average)in the duc-tile RC frames than the nonductile RC frames.Nonductile RC frames also have no special provision for design or reinforcement of the beam-column joint region,whereas columns in ductile RC frames are sized to meet joint shear demands with transverse reinforcement in the joints.Joint shear strength requirements in special moment frames tend to increase the column size,thereby reducing axial load ratios in columns.Nonlinear Simulation ModelsNonlinear analysis models for each archetype nonductile RC frame consist of a two-dimensional three-bay representation of the lateral resisting system,as shown in Fig.1.The analytical model repre-sents material nonlinearities in beams,columns,beam-column joints,and large deformation (P -Δ)effects that are important for simulating collapse of frames.Beam and column ends and the beam-column joint regions are modeled with member end hinges that are kinematically constrained to represent finite joint sizeTable 2.Representative Modeling Parameters in Archetype Nonductile and Ductile RC Frame Structures Structure Axial load a,b (P =A g f 0c )Initial stiffness c Plastic rotation capacity (θcap ;pl ,rad)Postcapping rotation capacity (θpc ,rad)Cyclicdeterioration d (λ)First mode period e (T 1,s)Nonductile2S 0.110:35EI g 0.0180.04041 1.12P 0.030:35EI g 0.0170.05157 1.04S 0.300:57EI g 0.0210.03333 2.04P 0.090:35EI g 0.0310.10043 2.08S 0.310:53EI g 0.0130.02832 2.28P 0.110:35EI g 0.0250.10051 2.412S 0.350:54EI g 0.0290.06353 2.312P 0.140:35EI g 0.0450.10082 2.84S f 0.300:57EI g 0.0320.04748 2.04S g 0.300:57EI g 0.0210.03333 2.012S f 0.350:54EI g 0.0430.09467 2.312S g 0.350:54EI g 0.0290.06353 2.3Ductile2S 0.060:35EI g 0.0650.100870.632P 0.010:35EI g 0.0750.1001110.664S 0.130:38EI g 0.0570.100800.944P 0.020:35EI g 0.0860.100133 1.18S 0.210:51EI g 0.0510.10080 1.88P 0.060:35EI g 0.0870.100122 1.712S 0.380:68EI g 0.0360.05857 2.112P0.070:35EI g0.0700.1001182.1a Properties reported for representative interior column in the first story.(Column model properties data from Haselton et al.2008.)bExpected axial loads include the unfactored dead load and 25%of the design live load.cEffective secant stiffness through 40%of yield strength.dλis defined such that the hysteretic energy dissipation capacity is given by Et ¼λM y θy (Haselton et al.2008).eObtained from eigenvalue analysis of frame model.fThese design variants have better-than-average beam and column detailing.gThese design variants have better-than-average joint detailing.494/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .effects and connected to a joint shear spring (Lowes and Altoontash 2003).The structural models do not include any contribution from nonstructural components or from gravity-load resisting structural elements that are not part of the lateral resisting system.The model is implemented in OpenSees with robust convergence algorithms (OpenSees 2009).As in the companion paper,inelastic beams,columns,and joints are modeled with concentrated springs idealized by a trilinear back-bone curve and associated hysteretic rules developed by Ibarra et al.(2005).Properties of the nonlinear springs representing beam and column elements are predicted from a series of empirical relation-ships relating column design characteristics to modeling parame-ters and calibrated to experimental data for RC columns (Haselton et al.2008).Tests used to develop empirical relationships include a large number of RC columns with nonductile detailing,and predicted model parameters reflect the observed differences in moment-rotation behavior between nonductile and ductile RC elements.As in the companion paper,calibration of model param-eters for RC beams is established on columns tested with low axial load levels because of the sparse available beam data.Fig.2(a)shows column monotonic backbone curve properties for a ductile and nonductile column (each from a 4-story building).The plastic rotation capacity θcap ;pl ,which is known to have an important influence on collapse prediction,is a function of the amount of column confinement reinforcement and axial load levels,and is approximately 2.7times greater for the ductile RC column.The ductile RC column also has a larger postcapping rotation capacity (θpc )that affects the rate of postpeak strength degradation.Fig.2(b)illustrates cyclic deterioration of column strength and stiffness under a typical loading protocol.Cyclic degradation of the initial backbone curve is controlled by the deterioration parameter λ,which is a measure of the energy dissipation capacity and is smaller in nonductile columns because of poor confinement and higher axial loads.Model parameters are calibrated to the expected level of axial compression in columns because of gravity loads and do not account for axial-flexure-shear interaction during the analysis,which may be significant in taller buildings.Modeling parameters for typical RC columns in nonductile and ductile archetypes are summarized in Table 2.Properties for RC beams are similar and reported elsewhere (Liel and Deierlein 2008;Haselton and Deierlein 2007).All element model properties are calibrated to median values of test data.Although the hysteretic beam and column spring parameters incorporate bond-slip at the member ends,they do not account for significant degradations that may occur because of anchorage or splice failure in nonductile frames.Unlike ductile RC frames,in which capacity design require-ments limit joint shear deformations,nonductile RC frames may experience significant joint shear damage contributing to collapse (Liel and Deierlein 2008).Joint shear behavior is modeled with an inelastic spring,as illustrated in Fig.1and defined by a monotonic backbone and hysteretic rules (similar to those shown in Fig.2for columns).The properties of the joint shear spring are on the basisofFig.1.Schematic of the RC frame structural analysismodel(a)(b)Fig.2.Properties of inelastic springs used to model ductile and non-ductile RC columns in the first story of a typical 4-story space frame:(a)monotonic behavior;(b)cyclic behaviorJOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/495D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .selected subassembly data of joints with minimal amounts of trans-verse reinforcement and other nonductile characteristics.Unfortu-nately,available data on nonconforming joints are limited.Joint shear strength is computed using a modified version of the ACI 318equation (ACI 2005),and depends on joint size (b j is joint width,h is height),concrete compressive strength (f 0c ,units:psi),and confinement (γ,which is 12to 20depending on the configu-ration of confining beams)such that V ¼0:7γffiffiffiffif 0c p b j h .The 0.7modification factor is on the basis of empirical data from Mitra and Lowes (2007)and reflects differences in shear strength between seismically detailed joints (as assumed in ACI 318Chap.21)and joints without transverse reinforcement,of the type consid-ered in this study.Unlike conforming RC joints,which are assumed to behave linear elastically,nonductile RC joints have limited duc-tility,and shear plastic deformation capacity is assumed to be 0.015and 0.010rad for interior and exterior joints,respectively (Moehle et al.2006).For joints with axial load levels below 0.095,data from Pantelides et al.(2002)are used as the basis for a linear increase in deformation capacity (to a maximum of 0.025at zero axial load).Limited available data suggest a negative postcapping slope of approximately 10%of the effective initial stiffness is appropriate.Because of insubstantial data,cyclic deterioration properties are assumed to be the same as that for RC beams and columns.The calculated elastic fundamental periods of the RC frame models,reported in Table 2,reflect the effective “cracked ”stiffness of the beams and columns (35%of EI g for RC beams;35%to 80%of EI g for columns),finite joint sizes,and panel zone flexibility.The effective member stiffness properties are determined on the basis of deformations at 40%of the yield strength and include bond-slip at the member ends.The computed periods are signifi-cantly larger than values calculated from simplified formulas in ASCE (2002)and other standards,owing to the structural modeling assumptions (specifically,the assumed effective stiffness and the exclusion of the gravity-resisting system from the analysis model)and intentional conservatism in code-based formulas for building period.Nonlinear static (pushover)analysis of archetype analysis mod-els shows that the modern RC frames are stronger and have greater deformation capacities than their nonductile counterparts,as illus-trated in Fig.3.The ASCE 7-05equivalent seismic load distribu-tion is applied in the teral strength is compared on the basis of overstrength ratio,Ω,defined as the ratio between the ultimate strength and the design base shear.The ductility is com-pared on the basis of ultimate roof drift ratio (RDR ult ),defined as the roof drift ratio at which 20%of the lateral strength of the structure has been lost.As summarized in Table 3,for the archetype designs in this study,the ductile RC frames have approximately 40%more overstrength and ultimate roof drift ratios three times larger than the nonductile RC frames.The larger structural deformation capacity and overstrength in the ductile frames results from (1)greater deformation capacity in ductile versus nonductile RC components (e.g.,compare column θcap ;pl and θpc in Table 2),(2)the SCWB requirements that promote more distributed yielding over multiple stories in the ductile frames,(3)the larger column strengths in ductile frames that result from the SCWB and joint shear strength requirements,and (4)the required ratios of positive and negative bending strength of the beams in the ductile frames.Fig.3(b)illustrates the damage concentration in lower stories,especially in the nonductile archetype structures.Whereas nonlin-ear static methods are not integral to the dynamic collapse analyses,the pushover results help to relate the dynamic collapse analysis results,described subsequently,and codified nonlinear static assessment procedures.Collapse Performance Assessment ProcedureSeismic collapse performance assessment for archetype nonductile RC frame structures follows the same procedure as in the companion study of ductile RC frames (Haselton et al.2011b ).The collapse assessment is organized using incremental dynamic analysis (IDA)of nonlinear simulation models,where each RC frame model is subjected to analysis under multiple ground motions that are scaled to increasing amplitudes.For each ground motion,collapse is defined on the basis of the intensity (spectral acceleration at the first-mode period of the analysis model)of the input ground motion that results in structural collapse,as iden-tified in the analysis by excessive interstory drifts.The IDA is repeated for each record in a suite of 80ground motions,whose properties along with selection and scaling procedures are de-scribed by Haselton et al.(2011b ).The outcome of this assessment is a lognormal distribution (median,standard deviation)relating that structure ’s probability of collapse to the ground-motion inten-sity,representing a structural collapse fragility function.Uncer-tainty in prediction of the intensity at which collapse occurs,termed “record-to-record ”uncertainty (σln ;RTR ),is associated with variation in frequency content and other characteristics of ground-motion records.Although the nonlinear analysis model for RC frames can simulate sidesway collapse associated with strength and stiffness degradation in the flexural hinges of the beams andcolumnsFig.3.Pushover analysis of ductile and nonductile archetype 12-story RC perimeter frames:(a)force-displacement response;and (b)distri-bution of interstory drifts at the end of the analysis496/JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .and beam-column joint shear deformations,the analysis model does not directly capture column shear failure.The columns in the archetype buildings in this study are expected to yield first in flexure,followed by shear failure (Elwood and Moehle 2005)rather than direct shear failure,as may be experienced by short,squat nonductile RC columns.However,observed earthquake damage and laboratory studies have shown that shear failure and subsequent loss of gravity-load-bearing capacity in one column could lead to progressive collapse in nonductile RC frames.Column shear failure is not incorporated directly because of the difficulties in accurately simulating shear or flexure-shear failure and subsequent loss of axial load-carrying capacity (Elwood 2004).Collapse modes related to column shear failure are therefore detected by postprocessing dynamic analysis results using compo-nent limit state ponent limit state functions are devel-oped from experimental data on nonductile beam-columns and predict the median column drift ratio (CDR)at which shear failure,and the subsequent loss of vertical-load-carrying capacity,will occur.Here,CDR is defined similarly to interstory drift ratio,but excludes the contribution of beam rotation and joint deforma-tion to the total drift because the functions are established on data from column component tests.Component fragility relationships for columns failing in flexure-shear developed by Aslani and Miranda (2005),building on work by Elwood (2004),are employed in this study.For columns with nonductile shear design and detailing in this study and axial load ratios of P =A g f 0c between 0.03and 0.35,Aslani and Miranda (2005)predict that shear failure occurs at a median CDR between 0.017and 0.032rad,depending on the properties of the column,and the deformation capacity decreases with increasing axial load.Sub-sequent loss of vertical-carrying capacity in a column is predicted to occur at a median CDR between 0.032and 0.10rad,again depending on the properties of the column.Since the loss of vertical-load-carrying capacity of a column may precipitate progressive structure collapse,this damage state is defined as collapse in this assessment.In postprocessing dynamic analysis results,the vertical collapse limit state is reached if,during the analysis,the drift in any column exceeds the median value of that column ’s component fragility function.If the vertical collapse mode is predicted to occur at a smaller ground-motion intensity than the sidesway collapse mode (for a particular record),then the collapse statistics are updated.This simplified approach can be shown to give comparable median results to convolving the probability distribution of column drifts experienced as a function of ground-motion intensity (engineering demands)with the com-ponent fragility curve (capacity).The total uncertainty in the col-lapse fragility is assumed to be similar in the sidesway-only case and the sidesway/axial collapse case,as it is driven by modeling and record-to-record uncertainties rather than uncertainty in the component fragilities.Incorporating this vertical collapse limit state has the effect of reducing the predicted collapse capacity of the structure.Fig.4illustrates the collapse fragility curves for the 8-story RC space frame,with and without consideration of shear failure and axial failure following shear.As shown,if one considers collapse to occur with column shear failure,then the collapse fragility can reduce considerably compared to the sidesway collapse mode.However,if one assumes that shear failure of one column does not constitute collapse and that collapse is instead associated with the loss in column axial capacity,then the resulting collapse capac-ity is only slightly less than calculations for sidesway alone.For the nonductile RC frame structures considered in this study,the limit state check for loss of vertical-carrying capacity reduces the median collapse capacity by 2%to 30%as compared to the sidesway collapse statistics that are computed without this check (Liel and Deierlein 2008).Table 3.Results of Collapse Performance Assessment for Archetype Nonductile and Ductile RC Frame Structures Structure ΩRDR ult Median Sa ðT 1Þ(g)Sa 2=50ðT 1Þ(g)Collapse marginλcollapse ×10À4IDR collapse RDR collapseNonductile 2S 1.90.0190.470.800.591090.0310.0172P 1.60.0350.680.790.85470.0400.0284S 1.40.0160.270.490.541070.0540.0284P 1.10.0130.310.470.661000.0370.0178S 1.60.0110.290.420.68640.0420.0118P 1.10.0070.230.310.751350.0340.00912S 1.90.0100.290.350.83500.0340.00612P 1.10.0050.240.420.561190.0310.0064S a 1.40.0160.350.490.72380.0560.0244S b 1.60.0180.290.490.60890.0610.02612S a 1.90.0120.330.350.93350.0390.00912S b 2.20.0120.460.351.32160.0560.012Ductile 2S 3.50.085 3.55 1.16 3.07 1.00.0970.0752P 1.80.0672.48 1.13 2.193.40.0750.0614S 2.70.047 2.220.87 2.56 1.70.0780.0504P 1.60.038 1.560.77 2.04 3.60.0850.0478S 2.30.028 1.230.54 2.29 2.40.0770.0338P 1.60.023 1.000.57 1.77 6.30.0680.02712S 2.10.0220.830.44 1.914.70.0550.01812P1.70.0260.850.471.845.20.0530.016a These design variants have better-than-average beam and column detailing.bThese design variants have better-than-average joint detailing.JOURNAL OF STRUCTURAL ENGINEERING ©ASCE /APRIL 2011/497D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y S u l t a n Q a b o o s U n i v e r s i t y o n 06/21/14. C o p y r i g h t A S CE .F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。

单斜相阿利特的晶体结构研究(英文)

单斜相阿利特的晶体结构研究(英文)
T1 ←⎯620⎯℃→ T2 ←⎯920⎯℃→ T3 ←⎯980⎯℃→ M1 ←⎯990⎯℃→ M2 ←⎯1 06⎯0 ℃→ M3 ←⎯1 07⎯0 ℃→ R
Recent work have concerned the identification of stabilized modifications at room temperature due to the importance in the quality control of Portland cement. Differential thermal analysis (DTA) showes the T1–T2 transi-
The objective of this paper was to describe the superstructures of the monoclinic modification of C3S. Some indices for describing the reflections due to the superstructures were proposed to express the orientations and
1 Experimental
The specimens were provided by China Building Materials Academy (CBMA). A selected-area electron diffraction (SAED) technique was applied to record the reflections. A TEM device (Model JEM–2010UHR, JEOL, Tokyo, Japan) equipped with a double tilt goniometry was used to record the HRTEM images at an accelerating voltage of 200 kV. The preparation of specimens for the TEM was performed by a conventional method applied for the observation of ceramic powders except for the dispersion of the specimens in ethanol. Table 1 shows the chemical compositions of the specimens, which was provided by the CBMA. The three specimens are remarked as A, B, and C.

PACSnumbers1215Ff,1130Hv,1210Dm,1125Mj…

PACSnumbers1215Ff,1130Hv,1210Dm,1125Mj…

a r X i v :0803.2889v 2 [h e p -p h ] 14 J u l 2008Mapping Out SU (5)GUTs with Non-Abelian Discrete Flavor SymmetriesFlorian Plentinger ∗and Gerhart Seidl †Institut f¨u r Physik und Astrophysik,Universit¨a t W¨u rzburg,Am Hubland,D 97074W¨u rzburg,Germany(Dated:December 25,2013)We construct a class of supersymmetric SU (5)GUT models that produce nearly tribimaximal lepton mixing,the observed quark mixing matrix,and the quark and lepton masses,from discrete non-Abelian flavor symmetries.The SU (5)GUTs are formulated on five-dimensional throats in the flat limit and the neutrino masses become small due to the type-I seesaw mechanism.The discrete non-Abelian flavor symmetries are given by semi-direct products of cyclic groups that are broken at the infrared branes at the tip of the throats.As a result,we obtain SU (5)GUTs that provide a combined description of non-Abelian flavor symmetries and quark-lepton complementarity.PACS numbers:12.15.Ff,11.30.Hv,12.10.Dm,One possibility to explore the physics of grand unified theories (GUTs)[1,2]at low energies is to analyze the neutrino sector.This is due to the explanation of small neutrino masses via the seesaw mechanism [3,4],which is naturally incorporated in GUTs.In fact,from the perspective of quark-lepton unification,it is interesting to study in GUTs the drastic differences between the masses and mixings of quarks and leptons as revealed by current neutrino oscillation data.In recent years,there have been many attempts to re-produce a tribimaximal mixing form [5]for the leptonic Pontecorvo-Maki-Nakagawa-Sakata (PMNS)[6]mixing matrix U PMNS using non-Abelian discrete flavor symme-tries such as the tetrahedral [7]and double (or binary)tetrahedral [8]groupA 4≃Z 3⋉(Z 2×Z 2)and T ′≃Z 2⋉Q,(1)where Q is the quaternion group of order eight,or [9]∆(27)≃Z 3⋉(Z 3×Z 3),(2)which is a subgroup of SU (3)(for reviews see, e.g.,Ref.[10]).Existing models,however,have generally dif-ficulties to predict also the observed fermion mass hierar-chies as well as the Cabibbo-Kobayashi-Maskawa (CKM)quark mixing matrix V CKM [11],which applies especially to GUTs (for very recent examples,see Ref.[12]).An-other approach,on the other hand,is offered by the idea of quark-lepton complementarity (QLC),where the so-lar neutrino angle is a combination of maximal mixing and the Cabibbo angle θC [13].Subsequently,this has,in an interpretation of QLC [14,15],led to a machine-aided survey of several thousand lepton flavor models for nearly tribimaximal lepton mixing [16].Here,we investigate the embedding of the models found in Ref.[16]into five-dimensional (5D)supersym-metric (SUSY)SU (5)GUTs.The hierarchical pattern of quark and lepton masses,V CKM ,and nearly tribi-maximal lepton mixing,arise from the local breaking of non-Abelian discrete flavor symmetries in the extra-dimensional geometry.This has the advantage that theFIG.1:SUSY SU (5)GUT on two 5D intervals or throats.The zero modes of the matter fields 10i ,5H,24H ,and the gauge supermul-tiplet,propagate freely in the two throats.scalar sector of these models is extremely simple without the need for a vacuum alignment mechanism,while of-fering an intuitive geometrical interpretation of the non-Abelian flavor symmetries.As a consequence,we obtain,for the first time,a realization of non-Abelian flavor sym-metries and QLC in SU (5)GUTs.We will describe our models by considering a specific minimal realization as an example.The main features of this example model,however,should be viewed as generic and representative for a large class of possible realiza-tions.Our model is given by a SUSY SU (5)GUT in 5D flat space,which is defined on two 5D intervals that have been glued together at a common endpoint.The geom-etry and the location of the 5D hypermultiplets in the model is depicted in FIG.1.The two intervals consti-tute a simple example for a two-throat setup in the flat limit (see,e.g.,Refs.[17,18]),where the two 5D inter-vals,or throats,have the lengths πR 1and πR 2,and the coordinates y 1∈[0,πR 1]and y 2∈[0,πR 2].The point at y 1=y 2=0is called ultraviolet (UV)brane,whereas the two endpoints at y 1=πR 1and y 2=πR 2will be referred to as infrared (IR)branes.The throats are supposed to be GUT-scale sized,i.e.1/R 1,2 M GUT ≃1016GeV,and the SU (5)gauge supermultiplet and the Higgs hy-permultiplets 5H and2neously broken to G SM by a 24H bulk Higgs hypermulti-plet propagating in the two throats that acquires a vac-uum expectation value pointing in the hypercharge direc-tion 24H ∝diag(−12,13,15i ,where i =1,2,3is the generation index.Toobtainsmall neutrino masses via the type-I seesaw mechanism [3],we introduce three right-handed SU (5)singlet neutrino superfields 1i .The 5D Lagrangian for the Yukawa couplings of the zero mode fermions then readsL 5D =d 2θ δ(y 1−πR 1) ˜Y uij,R 110i 10j 5H +˜Y d ij,R 110i 5H +˜Y νij,R 15j5i 1j 5H +M R ˜Y R ij,R 21i 1j+h.c. ,(3)where ˜Y x ij,R 1and ˜Y x ij,R 2(x =u,d,ν,R )are Yukawa cou-pling matrices (with mass dimension −1/2)and M R ≃1014GeV is the B −L breaking scale.In the four-dimensional (4D)low energy effective theory,L 5D gives rise to the 4D Yukawa couplingsL 4D =d 2θ Y u ij 10i 10j 5H +Y dij10i 5H +Y νij5i ∼(q i 1,q i 2,...,q i m ),(5)1i ∼(r i 1,r i 2,...,r im ),where the j th entry in each row vector denotes the Z n jcharge of the representation.In the 5D theory,we sup-pose that the group G A is spontaneously broken by singly charged flavon fields located at the IR branes.The Yukawa coupling matrices of quarks and leptons are then generated by the Froggatt-Nielsen mechanism [21].Applying a straightforward generalization of the flavor group space scan in Ref.[16]to the SU (5)×G A represen-tations in Eq.(5),we find a large number of about 4×102flavor models that produce the hierarchies of quark and lepton masses and yield the CKM and PMNS mixing angles in perfect agreement with current data.A distri-bution of these models as a function of the group G A for increasing group order is shown in FIG.2.The selection criteria for the flavor models are as follows:First,all models have to be consistent with the quark and charged3 lepton mass ratiosm u:m c:m t=ǫ6:ǫ4:1,m d:m s:m b=ǫ4:ǫ2:1,(6)m e:mµ:mτ=ǫ4:ǫ2:1,and a normal hierarchical neutrino mass spectrumm1:m2:m3=ǫ2:ǫ:1,(7)whereǫ≃θC≃0.2is of the order of the Cabibbo angle.Second,each model has to reproduce the CKM anglesV us∼ǫ,V cb∼ǫ2,V ub∼ǫ3,(8)as well as nearly tribimaximal lepton mixing at3σCLwith an extremely small reactor angle 1◦.In perform-ing the group space scan,we have restricted ourselves togroups G A with orders roughly up to 102and FIG.2shows only groups admitting more than three valid mod-els.In FIG.2,we can observe the general trend thatwith increasing group order the number of valid modelsper group generally increases too.This rough observa-tion,however,is modified by a large“periodic”fluctu-ation of the number of models,which possibly singlesout certain groups G A as particularly interesting.Thehighly populated groups would deserve further system-atic investigation,which is,however,beyond the scopeof this paper.From this large set of models,let us choose the groupG A=Z3×Z8×Z9and,in the notation of Eq.(5),thecharge assignment101∼(1,1,6),102∼(0,3,1),103∼(0,0,0),52∼(0,7,0),52↔4FIG.3:Effect of the non-Abelian flavor symmetry on θ23for a 10%variation of all Yukawa couplings.Shown is θ23as a function of ǫfor the flavor group G A (left)and G A ⋉G B (right).The right plot illustrates the exact prediction of the zeroth order term π/4in the expansion θ23=π/4+ǫ/√2and the relation θ13≃ǫ2.The important point is that in the expression for θ23,the leading order term π/4is exactly predicted by thenon-Abelian flavor symmetry G F =G A ⋉G B (see FIG.3),while θ13≃θ2C is extremely small due to a suppression by the square of the Cabibbo angle.We thus predict a devi-ation ∼ǫ/√2,which is the well-known QLC relation for the solar angle.There have been attempts in the literature to reproduce QLC in quark-lepton unified models [26],however,the model presented here is the first realization of QLC in an SU (5)GUT.Although our analysis has been carried out for the CP conserving case,a simple numerical study shows that CP violating phases (cf.Ref.[27])relevant for neutri-noless double beta decay and leptogenesis can be easily included as well.Concerning proton decay,note that since SU (5)is bro-ken by a bulk Higgs field,the broken gauge boson masses are ≃M GUT .Therefore,all fermion zero modes can be localized at the IR branes of the throats without intro-ducing rapid proton decay through d =6operators.To achieve doublet-triplet splitting and suppress d =5pro-ton decay,we may then,e.g.,resort to suitable extensions of the Higgs sector [28].Moreover,although the flavor symmetry G F is global,quantum gravity effects might require G F to be gauged [29].Anomalies can then be canceled by Chern-Simons terms in the 5D bulk.We emphasize that the above discussion is focussed on a specific minimal example realization of the model.Many SU (5)GUTs with non-Abelian flavor symmetries,however,can be constructed along the same lines by varying the flavor charge assignment,choosing different groups G F ,or by modifying the throat geometry.A de-tailed analysis of these models and variations thereof will be presented in a future publication [30].To summarize,we have discussed the construction of 5D SUSY SU (5)GUTs that yield nearly tribimaximal lepton mixing,as well as the observed CKM mixing matrix,together with the hierarchy of quark and lepton masses.Small neutrino masses are generated only by the type-I seesaw mechanism.The fermion masses and mixings arise from the local breaking of non-Abelian flavor symmetries at the IR branes of a flat multi-throat geometry.For an example realization,we have shown that the non-Abelian flavor symmetries can exactly predict the leading order term π/4in the sum rule for the atmospheric mixing angle,while strongly suppress-ing the reactor angle.This makes this class of models testable in future neutrino oscillation experiments.In addition,we arrive,for the first time,at a combined description of QLC and non-Abelian flavor symmetries in SU (5)GUTs.One main advantage of our setup with throats is that the necessary symmetry breaking can be realized with a very simple Higgs sector and that it can be applied to and generalized for a large class of unified models.We would like to thank T.Ohl for useful comments.The research of F.P.is supported by Research Train-ing Group 1147“Theoretical Astrophysics and Particle Physics ”of Deutsche Forschungsgemeinschaft.G.S.is supported by the Federal Ministry of Education and Re-search (BMBF)under contract number 05HT6WWA.∗********************************.de †**************************.de[1]H.Georgi and S.L.Glashow,Phys.Rev.Lett.32,438(1974);H.Georgi,in Proceedings of Coral Gables 1975,Theories and Experiments in High Energy Physics ,New York,1975.[2]J.C.Pati and A.Salam,Phys.Rev.D 10,275(1974)[Erratum-ibid.D 11,703(1975)].[3]P.Minkowski,Phys.Lett.B 67,421(1977);T.Yanagida,in Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe ,KEK,Tsukuba,1979;M.Gell-Mann,P.Ramond and R.Slansky,in Pro-ceedings of the Workshop on Supergravity ,Stony Brook,5New York,1979;S.L.Glashow,in Proceedings of the 1979Cargese Summer Institute on Quarks and Leptons, New York,1980.[4]M.Magg and C.Wetterich,Phys.Lett.B94,61(1980);R.N.Mohapatra and G.Senjanovi´c,Phys.Rev.Lett.44, 912(1980);Phys.Rev.D23,165(1981);J.Schechter and J.W. F.Valle,Phys.Rev.D22,2227(1980);zarides,Q.Shafiand C.Wetterich,Nucl.Phys.B181,287(1981).[5]P.F.Harrison,D.H.Perkins and W.G.Scott,Phys.Lett.B458,79(1999);P.F.Harrison,D.H.Perkins and W.G.Scott,Phys.Lett.B530,167(2002).[6]B.Pontecorvo,Sov.Phys.JETP6,429(1957);Z.Maki,M.Nakagawa and S.Sakata,Prog.Theor.Phys.28,870 (1962).[7]E.Ma and G.Rajasekaran,Phys.Rev.D64,113012(2001);K.S.Babu,E.Ma and J.W.F.Valle,Phys.Lett.B552,207(2003);M.Hirsch et al.,Phys.Rev.D 69,093006(2004).[8]P.H.Frampton and T.W.Kephart,Int.J.Mod.Phys.A10,4689(1995); A.Aranda, C. D.Carone and R.F.Lebed,Phys.Rev.D62,016009(2000);P.D.Carr and P.H.Frampton,arXiv:hep-ph/0701034;A.Aranda, Phys.Rev.D76,111301(2007).[9]I.de Medeiros Varzielas,S.F.King and G.G.Ross,Phys.Lett.B648,201(2007);C.Luhn,S.Nasri and P.Ramond,J.Math.Phys.48,073501(2007);Phys.Lett.B652,27(2007).[10]E.Ma,arXiv:0705.0327[hep-ph];G.Altarelli,arXiv:0705.0860[hep-ph].[11]N.Cabibbo,Phys.Rev.Lett.10,531(1963);M.Kobayashi and T.Maskawa,Prog.Theor.Phys.49, 652(1973).[12]M.-C.Chen and K.T.Mahanthappa,Phys.Lett.B652,34(2007);W.Grimus and H.Kuhbock,Phys.Rev.D77, 055008(2008);F.Bazzocchi et al.,arXiv:0802.1693[hep-ph];G.Altarelli,F.Feruglio and C.Hagedorn,J.High Energy Phys.0803,052(2008).[13]A.Y.Smirnov,arXiv:hep-ph/0402264;M.Raidal,Phys.Rev.Lett.93,161801(2004);H.Minakata andA.Y.Smirnov,Phys.Rev.D70,073009(2004).[14]F.Plentinger,G.Seidl and W.Winter,Nucl.Phys.B791,60(2008).[15]F.Plentinger,G.Seidl and W.Winter,Phys.Rev.D76,113003(2007).[16]F.Plentinger,G.Seidl and W.Winter,J.High EnergyPhys.0804,077(2008).[17]G.Cacciapaglia,C.Csaki,C.Grojean and J.Terning,Phys.Rev.D74,045019(2006).[18]K.Agashe,A.Falkowski,I.Low and G.Servant,J.HighEnergy Phys.0804,027(2008);C.D.Carone,J.Erlich and M.Sher,arXiv:0802.3702[hep-ph].[19]Y.Kawamura,Prog.Theor.Phys.105,999(2001);G.Altarelli and F.Feruglio,Phys.Lett.B511,257(2001);A.B.Kobakhidze,Phys.Lett.B514,131(2001);A.Hebecker and J.March-Russell,Nucl.Phys.B613,3(2001);L.J.Hall and Y.Nomura,Phys.Rev.D66, 075004(2002).[20]D.E.Kaplan and T.M.P.Tait,J.High Energy Phys.0111,051(2001).[21]C.D.Froggatt and H.B.Nielsen,Nucl.Phys.B147,277(1979).[22]Y.Nomura,Phys.Rev.D65,085036(2002).[23]H.Georgi and C.Jarlskog,Phys.Lett.B86,297(1979).[24]H.Arason et al.,Phys.Rev.Lett.67,2933(1991);H.Arason et al.,Phys.Rev.D47,232(1993).[25]D.S.Ayres et al.[NOνA Collaboration],arXiv:hep-ex/0503053;Y.Hayato et al.,Letter of Intent.[26]S.Antusch,S.F.King and R.N.Mohapatra,Phys.Lett.B618,150(2005).[27]W.Winter,Phys.Lett.B659,275(2008).[28]K.S.Babu and S.M.Barr,Phys.Rev.D48,5354(1993);K.Kurosawa,N.Maru and T.Yanagida,Phys.Lett.B 512,203(2001).[29]L.M.Krauss and F.Wilczek,Phys.Rev.Lett.62,1221(1989).[30]F.Plentinger and G.Seidl,in preparation.。

群落内物种多样性发生与维持的一个假说

群落内物种多样性发生与维持的一个假说

生物多样性 1997,5(3):161~167CHIN ESE BIODIV ERSIT Y群落内物种多样性发生与维持的一个假说3张大勇 姜新华(兰州大学生物系干旱农业生态国家重点实验室, 兰州 730000)摘 要 本文根据作者对竞争排除法则的研究而提出了一个新的群落多样性假说。

按照作者的观点,占用相同生态位的物种可以稳定共存;这样,群落内物种多样性将受到4个基本因子所控制。

它们分别是:(Ⅰ)生态位的数量;(Ⅱ)区域物种库的大小;(Ⅲ)物种迁入速率,以及(Ⅳ)物种灭绝速率。

该假说强调区域生物地理过程与局域生态过程共同决定了群落内种多样性的大小及分布模式。

关键词 局域物种多样性,物种分化,区域物种库,生态位,竞争排除法则A hypothesis for the origin and maintenance of within2community species diversity/Zhang Dayong,JiangXinhu a//CHINESE BIODIVERSIT Y.—1997,5(3):161~167This paper formulates a novel hypothesis of community diversity on the basis of rejecting the competitive exclu2 sion principle.Since we accept the view that many species could occupy the same niche,local s pecies diversity is considered to be controlled by four fundamental factors,which are,res pectively,(Ⅰ)the number of niches in the community,(Ⅱ)the size of regional species2pool,(Ⅲ)species immigration rate,and(Ⅳ)species extinc2 tion rate.The hypothesis suggests that both regional biogeographic processes and local ecological processes will play an important role in determining the magnitude and pattern of community diversity.K ey w ords local species diversity,speciation,regional species2pool,niche,competitive exclusion principle Author’s address Department of Biology&State K ey Laboratory of Arid Agroecology,Lanzhou Univer2sity,Lanzhou 7300001 引言由于环境污染和生境破坏等人类活动的影响,大规模物种灭绝已成为当今社会所密切关注的一个焦点。

Haldane大叔的猜想诺奖深度解析(之三)

Haldane大叔的猜想诺奖深度解析(之三)

图1: S=1 的AKLT 模型基态。

每个S=1 的自旋(图中的椭圆)可以拆成两个S=1/2 (图中的黑点),两个S=1/2 又可以组合成一个自旋单态。

系统在体内是自旋单态的直积,在左右边界上各有一个S=1/2 的边界态。

Haldane这个猜想为什么如此有名呢?原因有三。

其一,80年代以前,人们还沉浸在 Landau的对称破缺理论中,还是习惯于从对称性破缺和长程序来区分物质的不同形态或者相,而 Haldane的猜想犹如一声惊雷,让人们开始关注没有对称破缺的物质形态,里面有一个很大的未开垦的王国,即拓扑物质形态,或拓扑相;其二,整数和半整数自旋的区别完全是量子力学的效应,是量子的威力在宏观的强关联多体系统中的体现,没有经典的物理对应;其三,Haldane预言的量子相在实验上被实现,其猜想的正确性也被大量研究所证实。

Haldane还研究了海森堡相互作用中存在各向异性的情况,阐明能隙的存在是很稳定的,不受 XXZ类型或单离子或其他类型的各项异性项的影响。

由于整数自旋(特别是S=1)的反铁磁链中的能隙不受微扰的影响,这个稳定存在的有能隙的量子态构成一个非平庸的量子相(其基态没有对称破缺,但因为存在边界态,而与平庸的有能隙的直积态有本质区别),后来被称为 Haldane phase。

Haldane有着过人的计算能力和良好的物理直觉。

其猜想是从准经典的角度,在磁有序的经典基态上考虑量子涨落,并在大的时间和空间尺度下取连续极限,通过场论的分析而得到的。

由于其理论相对比较晦涩,这些我们放到本文后半部分讲解,这里先说说 Haldane猜想对后来研究产生的影响。

在 Haldane大叔提出 conjecture之后不久,Affleck-Kennedy-Lieb-Tasaki四位大佬提出了后来以其名字命名的 AKLT模型Affleck et al. [1987](其基态可以严格的得到,如图1所示),简洁而漂亮阐述了S=1的自旋反铁磁链的基态,即 Haldane phase,并证明了其(1)没有反铁磁长程序;(2)具有有限的能隙;(3)具有自旋S=1/2的边界态。

berry phases in electronic structure theory pdf

berry phases in electronic structure theory pdf

Berry phase in electronic structure theoryIn quantum mechanics,Berry phase is a very important concept that describes the geometric properties of a system in parameter space.In electronic structure theory,Berry phase also plays an important role.It is not only of great significance for understanding the wave function and energy level of electrons,but also plays a crucial role in many physical phenomena.In the theory of electronic structure,Berry phase usually refers to the phase that the electron wave function evolves in the parameter space in a periodic lattice.This phase is dependent on system parameters and can affect the energy of electrons and the shape of wave functions.By calculating the Berry phase,one can gain a deeper understanding of the quantum behavior of electrons and the geometric properties of the system.In many physical phenomena,Berry phase plays an important role.For example,in spintronics, Berry phase can affect the spin state and magnetization direction of electrons.In topological insulators,Berry phase and topological properties are closely related and can affect the band structure and surface state of electrons.In addition,Berry phase can also affect optical and magnetic properties,making it widely applicable in materials science and physics.In recent years,with the continuous development of computer technology,calculating Berry phase has become a hot research field.Many numerical methods and computational software have been developed for calculating Berry phases and related physical quantities.These methods and software can not only be used for theoretical research,but also for the analysis and simulation of experimental data.In summary,Berry phase is a very important concept in electronic structure theory.It is not only of great significance for understanding the wave function and energy level of electrons,but also plays a crucial role in many physical phenomena.With the continuous development of computer technology,calculating Berry phase has become a hot research field,providing important tools and means for theoretical and experimental research.。

AdsCft在凝聚态中应用简介

AdsCft在凝聚态中应用简介

Why AdS/CMT ?
• Understand strongly coupled quantum many body systems is difficult.
(Non-fermion liquid, High T SC, interplay between disorder and interaction, metal/insulator phase transition)
The Duality Dictionary
Finite Temperature
Gauge/Gravity Duality as a LAB
Black hole full of answers (Nature 448, 1000-1001 (30 August 2007))
Some Applications
Another example: Area laws for the entanglement entropy - a review,J. Eisert, M. Cramer, M.B. Plenio, arXiv:0808.3773
Ancient thoughts源自• 天地万物莫大于秋毫。《庄子》 • 一花一世界。 •
• What is AdS/CFT?
Applied AdS/CFT
• How it works? • Two typical examples of AdS/CMT • Conclusion and future
What is Gauge/Gravity duality and the position of it
The Conclusion Of Gauge/Gravity (AdS/CFT) Duality Maldacena 1997

多元系统视角下《暴风雨》汉译模式的对比研究

多元系统视角下《暴风雨》汉译模式的对比研究

2023年12月 第40卷 第6期西南科技大学学报:哲学社会科学版Journal of Southwest University of Science and TechnologyDec. 2023Vol. 40 No. 6多元系统视角下《暴风雨》汉译模式的对比研究葛 颂1 马 滢2(1. 中国人民大学外国语学院 北京 100859; 2. 中央财经大学外国语学院 北京 102206)【摘要】埃文-佐哈尔的多元系统翻译观认为翻译文学是文学动态多元系统不可分割的部分,翻译文学与特定文学存在此起彼伏的关系。

玄幻主义戏剧《暴风雨》是英国文艺复兴巨匠莎士比亚晚期表达人文主义精神的巅峰之作,民国时期以来多位中国翻译家对其进行了汉译实践。

本文研究朱生豪与方平《暴风雨》汉译本,对比两译本在多元系统视角下的翻译模式与策略选择的异同,并结合历史、文化与社会状况探求原因。

研究发现,翻译文学在译入语文学中心位置时,朱生豪采取顺应《暴风雨》原剧本“文化意象”与“语言表达形式”的翻译模式,“以散文译莎”,创造性地发挥译者的主体性;相比之下,新中国成立后翻译文学退居边缘位置,方平运用更加符合中国本土文学的策略处理《暴风雨》中的“文化意象”与“表达方式”,“以诗译莎”,也保留了原作文体特色。

动态的多元系统很大程度上体现出译者对翻译模式的倾向与选择,同时,译者并不完全受多元系统制约,而是在具体社会背景中创造性地进行翻译实践。

多元系统框架中对不同版本译著的阐释,有助于深刻挖掘经典译文的多维度时代内涵。

【关键词】多元系统;《暴风雨》汉译本;翻译模式【中图分类号】H315.9 【文献标识码】A 【文章编号】1672-4860(2023)06-0050-09收稿日期:2023-01-26 修返日期:2023-04-29作者简介:葛 颂(1985-),男,汉族,甘肃天水人,博士在读。

研究方向:典籍英译、翻译理论与实践。

马 滢(1999-),女,汉族,山东济南人,硕士在读。

复杂性理论复杂性理论

复杂性理论复杂性理论

复杂性理论复杂性科学/复杂系统耗散结构理论协同学理论突变论(catastrophe theory)自组织临界性理论复杂性的刻画与“复杂性科学”论科学的复杂性科学哲学视野中的客观复杂性Information in the Holographic Universe“熵”、“负熵”和“信息量”-有人对新三论的一些看法复杂性科学/复杂系统复杂性科学是用以研究复杂系统和复杂性的一门方兴未艾的交叉学科。

1984年,在诺贝尔物理学奖获得盖尔曼、安德逊和诺贝尔经济学奖获得者阿若等人的支持下,在美国新墨西哥州首府圣塔菲市,成立了一个把复杂性作为研究中心议题的研究所-圣塔菲研究所(简称SFI),并将研究复杂系统的这一学科称为复杂性科学(Complexity Seience)。

复杂性科学是研究复杂性和复杂系统的科学,采用还原论与整体论相结合的方法,研究复杂系统中各组成部分之间相互作用所涌现出的特性与规律,探索并掌握各种复杂系统的活动原理,提高解决大问题的能力。

20世纪40年代为对付复杂性而创立的那批新理论,经过50-60年代的发展终于认识到:线性系统是简单的,非线性系统才可能是复杂的;“结构良好”系统是简单的,“结构不良”系统才可能是复杂的;能够精确描述的系统是简单的,模糊系统才可能是复杂的,等等。

与此同时,不可逆热力学、非线性动力学、自组织理论、混沌理论等非线性科学取得长足进展,把真正的复杂性成片地展现于世人面前,还原论的局限性充分暴露出来,科学范式转换的紧迫性呈现了。

这些新学科在提出问题的同时,补充了非线性、模糊性、不可逆性、远离平衡态、耗散结构、自组织、吸引子(目的性)、涌现、混沌、分形等研究复杂性必不可少的概念,创立了描述复杂性的新方法。

复杂性科学产生所需要的科学自身的条件趋于成熟。

另一方面,60年代以来,工业文明的严重负面效应给人类造成的威胁已完全显现,社会信息化、经济全球化的趋势把大量无法用现代科学解决的复杂性摆在世人面前,复杂性科学产生的社会条件也成熟了。

塞西尔·巴尔蒙德

塞西尔·巴尔蒙德

波尔多住宅用朗香教堂式的开窗,达到范思沃斯 住宅的采光效果及良好的视野。

查维斯公园

西雅图中央图书馆

2005蛇形画廊 合作人:西扎

蓬皮杜中心 合作人:坂茂
长期与世界顶尖建筑师合作 将结构工程提升到一种富于创新的行为 提倡将现象学与建筑学进行融合,让建筑直 达人的心理情绪和生存状态 日本建筑师伊东丰雄:“他更像一位哲学家, 而不仅仅是一位结构专家。”



主要兴趣包括数字使用形态的起源、动态几何、 音乐、建筑及结构设计领域 认为数字是建筑和工程以抽象方式的交集 从自然界发现几何构形法则,对几何的理解追 求以一种动态不确定的复杂性接近建筑 库哈斯:“他动摇甚至颠覆了笛卡尔学说的传 统稳定性……他设计的结构不是固化且固定的, 而是表达了疑惑、任意、神秘甚至神秘主义。”


被美国《时代》评选为2007年世界十大建筑奇迹 两座塔楼双向内倾斜6度,在163米以上由“L”形悬 臂结构连为一体



建筑外表面的玻璃 幕墙由强烈的不规 则几何图案组成 “侧面S正面O”的 奇特造型 结构由许多个不规 则的菱形渔网状金 属脚手架构成的。


这种回旋式结构在建筑 界还没有现成的施工规 范可循 香港建筑师严迅奇:起 初他对这个“极其疯狂 的设计方案”持相当保 留的态度,但到后来, 他感觉这个设计能代表 “某种精神,这种精神 也正是中国在新时期展 现出来的东西:不惧权 威,敢于尝试,无所畏 惧,高度自信”

阿纳姆中央车站 设计者:UNStudio、塞西尔· 巴尔蒙德 (英国奥雅纳工程为一种新型综合体

巴特西发电厂

巴特西发电站自废弃以来,新建筑及其周边的发展建设 方案层出不穷,目前这里成为一个拥有公寓,商店,办 公室及剧院的综合性建筑区。

Chern-Simons理论

Chern-Simons理论

$\textbf{外微分形式}$
实流形$M$上$U\subset M$为一稠密开集,令其足够小使得存在有m维局域坐标满足
\[
M\supset U\ni x\leftrightarrow\widetilde{x}\triangleq (x^1,...,x^m)\in\mathbb{R}^m
$\rho_{i_1...i_r}$为交错张量;
坐标变换后得
\[
y=y(x):df=(\partial\widetilde{f}/\partial x^i)dx^i=(\partial\widetilde{f}/\partial y^i ) (\partial y^i/\partial x^i)dx^i=(\partial\widetilde{f}/\partial y^i ) dy^i
其中曲率张量定义为:$F=dA+A\wedge A$
通常的Chern–Simons $\omega_{2k-1}$形式 由以下方式给出:$d\omega_{2k-1}=\text{Tr}(F^k)$
其中由楔积定义,等式右边正比于联络的第陈类。
一般地,由定义可知Chern–Simons p-形式中的是任意奇数$2k-1$。(可参考规范理论的定义)若$M$是平庸$2k-1$维流形(i.e.三维可定向流形),那么存在映射 $s: M\rightarrow P(M)$;并且从$s^{*}\omega_{2k-1}$在p维流形上的积分是整体几何不变量,且是模增加一整数的规范不变量。
由它(3-形式)可定义Chern–Simons理论的作用量。陈省身与James Harris Simons于1974年合作发表了一篇历史性文章,文中提出了 Chern–Simons理论。$M$为Riemann流形,其联络$A\in \Omega^1(P(M),\mathfrak{g}l(n))$是标架丛$P(M)$上的1-形式Lie代数。给定一流形与1-形式Lie代数,$A$为上面的向量场。可由此定义一族p-形式。

2016年诺贝尔物理学奖揭晓拓扑相变:开启一个未知世界

2016年诺贝尔物理学奖揭晓拓扑相变:开启一个未知世界
变量。
邓肯・ 霍 尔丹 之所以披授 予诺 奖, 也与“ 拓 扑” 有关 。 上 世纪8 0 年代 , 他系统 地研究 了一 种一维线性 材料 的 “ 量 了自旋链”, 指
出 了这 种 物 理 现 象背 后 的 拓 扑 原 因 。
有 望催 生量 子计算机
这 些关 于物质拓扑 相的开 创性研 究, 给凝 聚态物 理学 带来 了深远 影响 , 也为一 系列 “ 超级 材料 ” 的研 发奠定 了基础 。 上海交
何为 “ 拓扑 ” ? 斯小 } f - { 人一 ’ 物
教 授张 首晟介 绍, 拓扑 是 一个几何学 概念 , 捕述 的是几何 图案 或空 间往连 续改 变肜状 后还
能 保持 不变的性 质。“ 很 多美国人吃点心时 , 右手 拿着 一只咖啡杯 , 左手 拿着一个 而包圈, 这两样 东西 的形状看 k去完全 小 一 样, 但 它们的拓J / I 、 性 质是一样 的, 面包圈 可以通过 一系列形变 , 变成咖啡杯。 ” 物理学 界 公认 , 索 利斯 、 霍尔丹和 科斯特 利茨在 上世纪 7 0 —8 0 年代做 的一系列研 究, 首次将 拓扑学原理 引入凝聚态物 理学的基础理 论, 具 有开创性意义 。 所谓 “ 相变”, 是 物质从 一种相转 变为另一 种相的过程 , 并伴随 物质性 质的改 变。 物 质系统 中, 物 理、 化 学性质完全 相同, 与其
他部 分具有明显分界 面的均匀部分称 为 “ 相” 。
复旦 大学物 理学系教授 陈钢 介绍 , 上世_  ̄ E 7 0 年代 , 索 利斯和 科斯特 利茨 合作, 在研 究二维材 料有限温 度下的超流 体相变时 , 发现 了 “ KT相 变”( 以两 人姓氏的首字 母命 名) 。 上世纪8 0 年 代初, 索利斯 等 人用拓 扑学原 理描述 整数量 子霍尔效 应 ̄ O . TKNN/ f

法布里珀罗基模共振英文

法布里珀罗基模共振英文

法布里珀罗基模共振英文The Fabryperot ResonanceOptics, the study of light and its properties, has been a subject of fascination for scientists and researchers for centuries. One of the fundamental phenomena in optics is the Fabry-Perot resonance, named after the French physicists Charles Fabry and Alfred Perot, who first described it in the late 19th century. This resonance effect has numerous applications in various fields, ranging from telecommunications to quantum physics, and its understanding is crucial in the development of advanced optical technologies.The Fabry-Perot resonance occurs when light is reflected multiple times between two parallel, partially reflective surfaces, known as mirrors. This creates a standing wave pattern within the cavity formed by the mirrors, where the light waves interfere constructively and destructively to produce a series of sharp peaks and valleys in the transmitted and reflected light intensity. The specific wavelengths at which the constructive interference occurs are known as the resonant wavelengths of the Fabry-Perot cavity.The resonant wavelengths of a Fabry-Perot cavity are determined bythe distance between the mirrors, the refractive index of the material within the cavity, and the wavelength of the incident light. When the optical path length, which is the product of the refractive index and the physical distance between the mirrors, is an integer multiple of the wavelength of the incident light, the light waves interfere constructively, resulting in a high-intensity transmission through the cavity. Conversely, when the optical path length is not an integer multiple of the wavelength, the light waves interfere destructively, leading to a low-intensity transmission.The sharpness of the resonant peaks in a Fabry-Perot cavity is determined by the reflectivity of the mirrors. Highly reflective mirrors result in a higher finesse, which is a measure of the ratio of the spacing between the resonant peaks to their width. This high finesse allows for the creation of narrow-linewidth, high-resolution optical filters and laser cavities, which are essential components in various optical systems.One of the key applications of the Fabry-Perot resonance is in the field of optical telecommunications. Fiber-optic communication systems often utilize Fabry-Perot filters to select specific wavelength channels for data transmission, enabling the efficient use of the available bandwidth in fiber-optic networks. These filters can be tuned by adjusting the mirror separation or the refractive index of the cavity, allowing for dynamic wavelength selection andreconfiguration of the communication system.Another important application of the Fabry-Perot resonance is in the field of laser technology. Fabry-Perot cavities are commonly used as the optical resonator in various types of lasers, providing the necessary feedback to sustain the lasing process. The high finesse of the Fabry-Perot cavity allows for the generation of highly monochromatic and coherent light, which is crucial for applications such as spectroscopy, interferometry, and precision metrology.In the realm of quantum physics, the Fabry-Perot resonance plays a crucial role in the study of cavity quantum electrodynamics (cQED). In cQED, atoms or other quantum systems are placed inside a Fabry-Perot cavity, where the strong interaction between the atoms and the confined electromagnetic field can lead to the observation of fascinating quantum phenomena, such as the Purcell effect, vacuum Rabi oscillations, and the generation of nonclassical states of light.Furthermore, the Fabry-Perot resonance has found applications in the field of optical sensing, where it is used to detect small changes in physical parameters, such as displacement, pressure, or temperature. The high sensitivity and stability of Fabry-Perot interferometers make them valuable tools in various sensing and measurement applications, ranging from seismic monitoring to the detection of gravitational waves.The Fabry-Perot resonance is a fundamental concept in optics that has enabled the development of numerous advanced optical technologies. Its versatility and importance in various fields of science and engineering have made it a subject of continuous research and innovation. As the field of optics continues to advance, the Fabry-Perot resonance will undoubtedly play an increasingly crucial role in shaping the future of optical systems and applications.。

Phys LettersB.286,118

Phys LettersB.286,118

(3)
ቤተ መጻሕፍቲ ባይዱ
(4)
C
C'
where v[C, C'] is the number of right-handed minus the number of left-handed intersections of C and C'. (A right-handed intersection occurs when, if we move along the positive direction of C, C' crosses from right to left. ) Thus, the commutator gives a representation of the intersection form for Wilson loops. For closed curves C and C', v [ C, C' ] is a topological invariant and if either C or C' is contractible, u [ C, C' ] must vanish. Therefore, there is a nontrivial commutator only for homologically nontrivial curves. If%, fJj,j= 1..... g, are a canonical set of closed curves on Y.g generating its first homology group then v[a;, aj] = u[[3;, [3j] =0, v[ct;, [3j] =d;j. Upon imposition of the constraint (2) the integrals of A over the one-cycles a;, ~i are the only remaining degrees of freedom and, modulo the remaining symmetry under large gauge transformations, they form the reduced phase space [ 2 ]. It is the property (4), that the symplectic structure gives the intersection form for loops on E g, which we shall discover on the lattice as a consequence of lattice gauge invariance and locality. We work in continuum time and a square spatial lattice with spacing I. We begin by fixing some notation. The forward and backward shift operators are S ; f ( x ) = f (x + [), $7 ~f(x) = f ( x - {), respectively, and forward and backward difference operators are d i f ( x ) = f ( x + f) - f ( x ) , d;= S i - 1, a j ( x ) = f ( x ) - f ( x - [), a; = 1 - s7 ~= s7 ~d;. Summation by parts on a lattice takes the form (neglecting surface terms ) Y x f ( x ) d;g (x) = - Yx a;f(x) g (x) by virtue of the lattice Leibniz rule d;(fg) = f d ; g + d J S;g=fd;g+ S; (aorg) (no sum on i). The components A,(x) of the gauge field are realvalued functions on the links specified by the pair [x, [], Ao is a function on lattice sites, the magnetic field B (x) = d iA2(x) - d z A l (X) is a function on plaquettes where x labels the plaquette with corners x, x + L x + T + 2, x + 2 , and the electric field Fo;=e]i- de4o is a function on links. A gauge invariant, local, nondegenerate Chern-Simons term was found in ref. [ 11 ] :

突破极限,见所未见——2014年诺贝尔化学奖侧记

突破极限,见所未见——2014年诺贝尔化学奖侧记

突破极限,见所未见——2014年诺贝尔化学奖侧记作者:暂无来源:《创新科技》 2014年第11期译/ 石毅2014 年诺贝尔化学奖给了三个物理学家:艾力克·贝齐格(Eric Betzig)、斯特凡·W·赫尔(Stefan W. Hell)和W·E·莫纳(W. E. Moerner),以表彰他们对于发展超分辨率荧光显微镜做出的卓越贡献。

他们的突破性工作使光学显微技术进入了纳米尺度,从而使科学家们能够观察到活细胞中不同分子在纳米尺度上的运动。

这三位获奖科学家都是业内知名人士,很有知名度。

贝齐格是美国应用物理学家和发明家,目前在美国霍华德·休斯医学研究所珍利亚农场研究园区工作;赫尔是罗马尼亚出生的德国物理学家,现在担任德国马克斯·普朗克生物物理化学研究所所长;莫纳则是美国单分子光谱和荧光光谱领域的著名专家,从1998 年至今一直在斯坦福大学担任教授。

光学显微镜及其分辨率限制为什么说这三位获奖者的工作是突破性的呢?故事得从光学显微镜说起。

随着黑暗的中世纪结束,欧洲进入文艺复兴时期。

在文化艺术得到极大发展的同时,现代自然科学也慢慢发展起来:第一台光学显微镜正是在文艺复兴时期问世。

是谁制造了第一台光学显微镜已不完全可考(一说是两个荷兰的眼镜制造商于16 世纪晚期发明),但这不重要。

重要的是,从此以后科学家们可以用光学显微镜来瞧瞧这个瞅瞅那个了,观察的对象当然也包括各种生命有机体。

在那个时代,随便看看树叶小草也是个重量级的大发现:著名的罗伯特·胡克(Robert Hooke)先生就是在1665 年用光学显微镜看了看红酒瓶的软木塞从而发现了细胞的存在。

现代生物学及微生物学皆因光学显微镜而诞生,光学显微镜也成为生命科学中必不可少的工具。

随着人们观测的东西越来越小,人们不禁疑问,光学显微镜到底能看多小?“能看多小”换成比较科学的说法就是“分辨率有多高”。

结合非结合

结合非结合

‘科学文化评论“第20卷第5期(2023):89-105人物·访谈结合非结合:阿尔伯特对现代代数学的贡献谢㊀晓㊀王淑红摘㊀要㊀亚伯拉罕㊃阿德里安㊃阿尔伯特是20世纪美国数学家,在结合代数㊁非结合代数等领域都有所建树㊂他教书育人,培养了一批优秀代数学家㊂他敢于变革,推动了数学学科的进步㊂本文通过对原始文献以及研究文献的研读和分析,对其代数学成就和影响进行论述㊂关键词㊀亚伯拉罕㊃阿德里安㊃阿尔伯特㊀结合代数㊀黎曼矩阵㊀非结合代数中图分类号㊀N09ʒO1文献标识码㊀A收稿日期:2022-01-05作者简介:谢晓,1998年生,山西运城人,河北师范大学数学科学学院研究生,研究方向为近现代数学史;王淑红(通讯作者),1976年生,河北黄骅人,河北师范大学数学科学学院教授,中国科学院大学人文学院科学技术史专业博士后,研究方向为代数学及近现代数学史㊂Email:zyfwsh@㊂基金项目:国家自然科学基金资助项目 代数几何及其相关领域的历史研究 (项目编号:12271138)㊂图1.阿尔伯特亚伯拉罕㊃阿德里安㊃阿尔伯特(Abraham Adrian Albert,1905 1972,以下简称 阿尔伯特 ,图1)是美国数学家㊂因他的姓和两个名的开头字母都是A 和数学家的身份,被人们幽默地称为A 立方(即A 3)㊂他出版了8本代数学重要书籍,发表论文140余篇,在结合代数㊁非结合代数㊁数学教育㊁科学组织等方面都贡献卓著㊂他是继埃利亚基姆㊃穆尔(Eliakim Moore,1862 1932)㊁奥斯瓦尔德㊃维布伦(Oswald Veblen,9809㊀‘科学文化评论“第20卷第5期(2023)1880 1960)㊁伦纳德㊃迪克森(Leonard Dickson,1874 1954)和乔治㊃伯克霍夫(George Birkhoff,1911 1996)之后的美国第二代具有代表性的数学家之一㊂他曾获得美国数学会颁发的科尔代数奖,曾是美国国家科学院㊁美国艺术与科学院㊁巴西科学院和阿根廷科学院的院士㊂他曾任美国数学会主席和国际数学联盟副主席㊂他是一位数学教育家,一位强有力的领导者,推动了数学的发展和变革,被内森㊃雅各布森(Nathan Jacobson,1910 1999)誉为数学界的政治家[1]㊂他的数学成就主要涉及结合代数和非结合代数,介绍他有代表性成果和影响,有助于深入了解阿尔伯特及其现代代数学㊂一 16维正规可除代数的确定结合代数的研究始于19世纪四㊁五十年代,爱尔兰数学家威廉㊃哈密顿(William Hamilton,1805 1865)提出了四元数,德国数学家赫尔曼㊃格拉斯曼(Hermann Grassmann,1809 1877)给出了外代数,英国数学家阿瑟㊃凯莱(Ar-thur Cayley,1821 1895)等人讨论了矩阵代数㊂他们的目的是刻画各种类型的结合代数的结构和表示[2]㊂20世纪初,约瑟夫㊃韦德玻恩(Joseph Wedderburn, 1882 1948)㊁迪克森以及阿尔伯特等一批数学家继续探索代数的核心秘密㊂而所有正规可除代数的确定便是阿尔伯特在结合代数方面的第一项重要成果㊂关于正规可除代数的确定是结合代数的一个重要问题,可以追溯到20世纪20年代,是由迪克森提出的㊂1923年,迪克森整理了他和韦德玻恩在代数理论方面的所有成果,出版了‘代数及其算术“(Algebras and Their Arithmetics)[3]一书,介绍了 中心可除代数 和 代数数 的性质,以及迪克森(循环)代数㊂他列举了代数中尚未解决的3个问题:所有正规可除代数的确定问题,非结合代数的理论问题以及将代数扩张到整个代数数论的问题㊂这些问题具有挑战性,将阿尔伯特的目光吸引到了结合代数领域㊂1928年,阿尔伯特开始研究迪克森提出的第一个问题,即所有正规可除代数的确定问题㊂关于这个问题,迪克森已经证明了所有4维中心可除代数都是循环的,韦德玻恩证明了9维中心可除代数具有相同的特征㊂为了确定可除代数,阿尔伯特首先研究了它们的结构,然后将可除代数进行分类㊂阿尔伯特最终确定了16维中心可除代数的结构㊂他证明了16维中心可除代数不一定是循环代数,但总是一个叉积代数㊂而这一结果是阿尔伯特硕士和博士论文的重要结果㊂阿尔伯特在1926年获得了芝加哥大学学士学位后,继续在芝加哥大学读硕士,师从美国代数学派创始人之一迪克森㊂迪克森是一位多产的数学家,毕生发表了200多篇数学论文,出版了近20本书,在有限域㊁线性群和代数不变量论中均取得佳绩,这使他在数学界取得了很高的国际声望㊂也正是迪克森鼓励阿尔伯特从事代数学研究,并在阿尔伯特学术领域的起步阶段提供了很多帮助,可谓是阿尔伯特研究工作的灵感之源㊂在读硕士期间,阿尔伯特修读了24门数学课程,如吉尔伯特㊃布利斯(Gilbert Bliss,1876 1951)的‘变分法“(Calculus of Variations )㊁穆尔的‘一般分析“(General Analysis )和埃里克㊃贝尔(Eric Bell,1883 1960)的‘模系统“(Modular System )课程等㊂阿尔伯特很快便展露出了创新的天赋,在第1学期末,就提交了毕业论文 非模域F 上具有2㊁3㊁4个单位的所有结合代数的确定 (A Determination of All Associative Algebras in Two,Three,and Four Unit over a Non-Modular Field F ),于1927年顺利获得芝加哥大学硕士学位㊂在老师和家人的支持下,他继续在芝加哥大学攻读博士学位,导师依然是迪克森㊂阿尔伯特仅用了数月便完成了博士论文 代数及其根 (Alge-bras and Their Radical )㊂迪克森提出让他继续深入研究,希望他解决 确定所有的16维正规可除代数 这个问题㊂他全力以赴,仅用了数月就解决了这一问题㊂丹尼尔㊃泽林斯基(Daniel Zelinsky,1922 2015)给予了阿尔伯特高度评价: 1928年,阿尔伯特的博士论文已经证明他是那个时代杰出的代数学者之一㊂ [4]阿尔伯特于1929年发表了硕士和博士论文结果,题目为 具有16个单位的所有正规可除代数的确定 (A Determination of All Normal Division Algebras in Six-teen Units)[5]㊂该文确定了所有16维的正规可除代数,但证明过程冗长而复杂㊂为了改进上述结果,阿尔伯特1932年发表了论文 16阶可除代数的一个注记 (A Note on Division Algebras of Order Sixteen)[6],在证明非循环正规可除代数的存在性问题的基础上,极大地简化了证明过程㊂阿尔伯特在这篇注记中,根据F 上每一个16阶正规可除代数都包含一个二次子域,简化了证明方法,进一步解决了正规可除代数的确定问题,为这一理论的发展奠定了基础㊂但关于正规可除代数的确定问题,上述两篇论文中还存在一个缺陷,即阿尔伯特在证明过程中没有考虑特征为2的代数㊂于是1934年他在论文 特征为2的F 上4次正规可除代数 (Normal Division Algebras of Degree 4over F of Characteristic 2)[7]中进一步完善了证明过程㊂19谢㊀晓㊀王淑红㊀结合非结合:阿尔伯特对现代代数学的贡献㊀29㊀‘科学文化评论“第20卷第5期(2023)对于阿尔伯特1929年发表的结果,卡普兰斯基曾评价到: 这是一个曾经让他的前辈棘手的问题㊂阿尔伯特以顽强的毅力去攻克它,直到完全解决它,难以想象迪克森听到这个消息是多么高兴㊂ [8]此后的几年中,阿尔伯特撰写了20多篇关于可除代数的论文,其中1932年与哈塞合作发表的论文 代数数域上所有正规可除代数的确定 (A Determination of All Normal Division Algebras over an Algebraic Number Field)[9],对代数主定理进行了证明,使得他在这方面的成果达到顶峰㊂不过,在取得这一成果的同时,却有一个不大不小的插曲,那就是代数主定理的命名纷争㊂二 代数主定理的求证和命名纷争代数主定理指的是代数数域上任何有限阶中心单代数都是循环代数,所有交叉积都是单代数㊂这个定理是1931年末由德国数学家布饶尔㊁哈塞和诺特共同给出的,1932年正式发表㊂实际上,阿尔伯特对这一定理的贡献也不可忽视㊂他和哈塞紧随其后合作发表了论文 代数数域上所有正规可除代数的确定 ,给出了代数主定理的发展历史,并包含了该定理的另一种证明方法㊂1931年1月13日,哈塞在哥廷根大学的一次学术讨论会上提出了一个猜想:代数数域上的所有中心可除代数是否都是循环的?几乎在同一时间,哈塞通过迪克森寄给阿尔伯特一封信,随信附上了他1931年关于p进除环(可除代数)的成果,并表示对阿尔伯特的工作十分感兴趣㊂自此,他们开启了一场富有意义的学术对话,通过信件展开了更多的交流㊂1931年2月6日,阿尔伯特寄给哈塞第1封信㊂阿尔伯特在信中说到很高兴看到哈塞对他的工作感兴趣,并寄给哈塞他文章的重印本,并表示他还将发表5篇新论文,一旦收到重印本后就立即将其寄给哈塞[10]㊂哈塞在给阿尔伯特的回信中,向阿尔伯特提出了一个问题:关于16阶正规可除代数的循环性问题是否存在更精确的结果?1931年3月23日,阿尔伯特在给哈塞的第2封信中,建议哈塞阅读他1930年的论文 正规可除代数理论的新成果 (New Results in the Theory of Normal Divi-sion Algebras),其中研究了非循环可除代数的存在性问题㊂然而,在信件末尾,阿尔伯特谈到这个问题似乎是数论问题,看不出能用什么代数方法来解决㊂阿尔伯特此时已经意识到算术方法的重要性,但由于他一直不了解德国代数数论,特别是类域论的重大成果,因此他在算术方法的使用上一直存有障碍㊂而正是哈塞通过迪克森寄给阿尔伯特的信,才使得阿尔伯特对这些算术方法有所了解㊂仅仅4天后,也就是1931年3月27日,阿尔伯特给哈塞寄了第3封信㊂他在这封信中更正了他的一些结果㊂与此同时,哈塞意识到美国数学家对德国数学家的研究知之甚少㊂因此,哈塞在1931年4月向‘美国数学会汇刊“提交了论文 代数数域上的循环代数理论 (Theory of Cyclic Algebras over an Algebraic Num-ber Field)[11]㊂哈塞的目标是让美国人了解德国的代数数论㊁抽象代数等数学成果㊂在给哈塞寄出第4封信之前,阿尔伯特已经将哈塞关于代数数域(整体)上的二次型理论与p 进数域(局部)上的二次型理论的关系进行了深化㊂他于1931年4月17日发表了论文 代数域上的可除代数 (Division Algebras over an Alge-braic Field)[12],阿尔伯特使用 指数约化因子 定理成功地将问题简化为素数幂次的情况㊂在完成论文写作之后,发表之前,他得知了由布饶尔发展的类似结果在美国几乎无人知晓㊂于是阿尔伯特在这篇论文中充分肯定了布饶尔的观点,同时说明了他自己独立给出的证明更加简洁,并且包含了一些新结果㊂1931年5月11日他在给哈塞的第4封信中提到了这一巧合㊂特别地,阿尔伯特还提到了最近使用哈塞理论建立的重要结果,即在有限次代数域上16维正规可除代数都是循环叉积代数㊂1931年6月30日,阿尔伯特在给哈塞的第5封信中纠正了哈塞的一个错误印象,即哈塞认为阿尔伯特可以证明代数数域上正规可除代数的指数和次数之间的关系㊂实际上阿尔伯特只证明了较弱的一种情况㊂哈塞在回信中立刻询问阿尔伯特是否可以得到更进一步的结果,如果可以的话,阿尔伯特已经非常接近于得到代数主定理㊂间隔数月,即1931年11月6日,阿尔伯特在给哈塞的第6封信中说到: 今天早上我收到了您非常重要的来信,非常高兴看到如此重要的结果㊂对于在代数数域Ω上所有正规可除代数的确定问题,我认为它无疑是迄今为止获得的最重要的定理㊂特别地,它给出了 Ω上4次正规可除代数是循环的 一个新的证明㊂ [13]哈塞表示他可以证明阿贝尔叉积主定理,即如果叉积代数是交换的,那么可除代数就是循环的㊂阿尔伯特告知哈塞他能够根据哈塞的这个结果立即证明下面的定理:Ⅰ.所有2e 次正规可除代数是循环代数。

Maxwell-Chern-Simons模型拓扑解的存在性的开题报告

Maxwell-Chern-Simons模型拓扑解的存在性的开题报告

Maxwell-Chern-Simons模型拓扑解的存在性的开题报告1. 摘要Maxwell-Chern-Simons(MCS)模型是一种描述电磁波和规范场相互作用的场论模型。

该模型有许多有趣的数学性质,包括非平庸拓扑解的存在性。

本文将探讨MCS模型拓扑解的存在性问题,并针对该问题提出一些研究思路和方法。

2. 研究背景和意义MCS模型在凝聚态物理、高能物理和数学物理等领域有广泛的应用。

该模型可以用来描述拓扑绝缘体、拓扑序等物理现象,也可以用来研究拓扑场论的数学性质。

在这些研究中,拓扑解的存在性是一个关键问题。

拓扑解是指场论模型中的一类非平庸解,具有拓扑结构的性质。

例如,这类解可以被表示为曲率形式,也可以建立在拓扑内的不变量上。

拓扑解在物理学和数学中都有广泛的应用,它们可以解释许多复杂的物理现象和几何现象。

在MCS模型中,拓扑解是指具有非零拓扑荷的局域化解。

这些解可以被认为是拓扑缺陷或拓扑激发。

它们具有有趣的性质,并且在拓扑序和凝聚态物理中有广泛的应用。

目前,对于MCS模型拓扑解的存在性问题仍存在许多挑战。

本文将尝试探讨这一问题,并提出一些可能的研究思路和方法。

3. 研究内容和方法在本文中,我们将从以下几个方面研究MCS模型拓扑解的存在性问题:(1)理论分析。

我们将从场论的角度出发,探讨MCS模型的基本性质和数学结构。

通过理论推导,我们可以研究MCS模型中拓扑解的物理和数学性质,并探寻拓扑解的存在性条件。

(2)数值模拟。

我们将借助数值模拟的方法探究MCS模型中的拓扑解。

通过数值模拟,我们可以生成MCS模型的非平庸解,并分析它们的拓扑荷和局域性质。

(3)掺杂材料的制备和实验研究。

我们将尝试通过掺杂材料的制备和实验测量,验证MCS模型的拓扑解。

通过实验数据的分析,我们可以研究MCS模型中拓扑解的影响和性质。

4. 预期结果我们预期将会得到以下结果:(1)理论推导MCS模型拓扑解的存在性条件,并分析拓扑解的拓扑荷和局域性质。

细胞生物学家和生物成像专家合作解决第四维秘密

细胞生物学家和生物成像专家合作解决第四维秘密

细胞生物学家和生物成像专家合作解决第四维秘密伊利诺伊大学厄本那-香槟分校和巴伊兰大学的细胞生物学家以及中央佛罗里达大学的生物成像专家正在合作,希望他们能对理解三维组织产生重大突破随时间变化的原子核及其在某些疾病中的作用。

该梦幻团队比来获得了美国国立卫生研究院(National Institutes of Health)420万美元的帮助。

这项为期五年的赠款是NIH 4D核蛋白组计划(4DN)的一部分。

该计划旨在鞭策技术的发展,从而鞭策人们对DNA在空间和时间中如何摆列以及如何影响健康和疾病中细胞功能的理解。

UCF光学和光子学助理教授Kyu Young Han教授将开发新的多功能高性能显微镜,UIUC 教授Andrew Belmont教授和其他4DN研究人员将使用它们在蛋白质和基因上作图,并在第四维度上不雅察其动态。

更好地了解这些狭小的地方发生的事情,可能会为目前无法治疗甚至可以治愈其他疾病的疾病找到答案。

挑战在于当前的显微镜缺乏必要的功能,无法查看研究人员细胞核中所需的细节。

目前有研究人员在使用显微镜,但是为了实现4DN的目标,我们需要一种新型的显微镜。

它们也很昂贵。

我和我的团队正在构建具有一些关键功能的东西,包罗高分辨率和高通量,但成像柔和,不会摆荡钱。

”圭青年汉,助理教授Ø ptics和光电子学,中佛罗里达大学Han说,这两种新显微镜将使Belmont能够实时查看细胞核内的蛋白质和染色体,从而可以更好地了解基因表达的过程。

Han在化学和光学显微镜方面拥有广泛的背景。

他还具有在生物医学应用中创造新技术的经验。

在2018年,他开发了一种高度倾斜的扫掠瓷砖(HIST)显微镜,该显微镜可用于非常大的成像区域中的单分子成像。

来自分子和细胞生物学学院的Belmont一直在细胞核内染色体的移动和组织方面进行开创性工作。

贝尔蒙特的实验室怀疑,细胞核中可能至少有两个间隔与基因表达的增加有关。

摩斯分型结构

摩斯分型结构

摩斯分型结构摩斯分型结构是一种在自然界广泛存在的分形形态,以数学家法布里斯·摩斯(Benoit Mandelbrot)的名字命名。

摩斯分型结构具有自相似性和无穷细节的特点,在不同尺度上呈现相似的形态。

这种分型结构的发现对理解自然现象和人类社会有着重要的意义。

摩斯分型结构可以在自然界的许多物体中找到,比如云彩、树木、山脉等。

以云彩为例,我们可以观察到云朵的整体形态呈现出分型结构,而放大之后,可以发现云朵的局部结构和整体结构有着相似的形态特征。

这种自相似性的存在说明了自然界中的物体并非简单的重复模式,而是拥有复杂而有序的结构。

摩斯分型结构的研究对于理解自然界的演化和变化过程有着重要的启示。

它表明自然界中的形态和结构并非由简单的线性规律决定,而是由复杂的非线性过程产生。

这种非线性过程可以是自发的、随机的或者混沌的,使得自然界的形态呈现出多样性和复杂性。

通过研究摩斯分型结构,我们可以更深入地了解自然界的多样性和复杂性,并揭示其中的规律和原理。

除了对自然界的研究,摩斯分型结构还有很多应用价值。

例如,在图像处理领域,可以利用摩斯分型结构的自相似性特点,对图像进行压缩和加密,以实现更高效的存储和传输。

在金融市场分析中,也可以运用摩斯分型结构的原理,对股票价格的波动进行预测和分析。

这些应用都是基于摩斯分型结构的特点,通过深入研究和理解分形结构的原理,来实现对实际问题的解决和改进。

总之,摩斯分型结构作为一种自然界中普遍存在的分形形态,具有自相似性和无穷细节的特点。

它不仅对理解自然界的形态演化和复杂性有着重要意义,而且在应用领域也有广泛的应用价值。

通过深入研究和理解摩斯分型结构的原理,我们可以更好地解释自然界的奥秘,也能够应用于实际问题的解决和改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0311229v 3 [c o n d -m a t .s t r -e l ] 29 A u g 2004Europhysics Letters PREPRINT Phase structure of Abelian Chern-Simons gauge theories E.Smørgrav 1,J.Smiseth 1,A.Sudbø1and F.S.Nogueira 21Department of Physics,Norwegian University of Science and Technology,N-7491Trondheim,Norway 2Institut f¨u r Theoretische Physik,Freie Universit¨a t Berlin,D-14195Berlin,Germany PACS.11.15.Ha –Lattice gauge theory.PACS.74.20.-z –Theories and models of superconducting state.PACS.05.30.Pr –Fractional statistics systems.Abstract.–We study the effect of a Chern-Simons (CS)term in the phase structure of two different Abelian gauge theories.For the compact Maxwell-Chern-Simons theory,with the CS-term properly defined,we obtain that for values g =n/2πof the CS coupling with n =±1,±2,the theory is equivalent to a gas of closed loops with contact interaction,exhibiting a phase transition in the 3dXY universality class.We also employ Monte Carlo simulations to study the noncompact U (1)Abelian Higgs model with a CS term.Finite size scaling of the third moment of the action yields critical exponents αand νthat vary continuously with the strength of the CS term,and a comparison with available analytical results is made.Gauge theories in 2+1dimensions are frequently proposed as effective theories of strongly correlated electron systems in two spatial dimensions and zero temperature.Strong local constraints on the dynamics of lattice fermion systems are enforced by fluctuating compact gauge fields which exhibit topological defects in the form of space-time instantons [1].It is conceivable that such effective gauge theories may feature phase transitions from a phase of bound instantons (deconfined phase)to a phase of unbound free instantons (confined phase).Such theories have been proposed as effective theories for high-temperature cuprate supercon-ductors,chiral spin liquids,and Mott insulators [2–4].There is some hope that confinement-deconfinement transitions in 2+1dimensions may shed light on quantum phenomena such as spin-charge separation and the breakdown of Fermi liquid theory in two spatial dimensions,and quantum phase transitions in Mott insulators.One central issue is how to describe ex-otic physical phenomena which do not comply with the Fermi-liquid paradigm such as the fractional quantum Hall effect,high-T c superconductivity,and heavy fermion physics.In this paper we will consider two different (2+1)-dimensional Abelian lattice gauge theories containing a Chern-Simons (CS)term [5].The first of these theories is defined by a kind of lattice Maxwell-Chern-Simons Lagrangian.Polyakov has demonstrated that thecompact Maxwell theory is permanently confined in 2+1dimensions and does not exhibit any phase transition [1].When this theory is coupled to bosonic matter fields with an integer charge q >1,a deconfinement transition occurs [6,7].The case where the bosonic matter fields are coupled to the fundamental charge is more controversial and at present it is not yet known if a deconfinement transition indeed occurs [8,9].In this paper we will study the effect cEDP Sciences2EUROPHYSICS LETTERS of adding a CS-term to Polyakov theory.Such a theory was studied previously by a number of authors[10,11].In this paper we will use duality techniques to obtain new exact results on a lattice Abelian compact theory with a special type of CS-term.We will show that a phase transition does occur as a function of the gauge coupling for afixed value of the CS-coupling, while confinement of electric charges is suppressed.The second theory considered in this paper is a non-compact lattice Abelian Higgs model with a CS-term.This theory has also been much studied in the past by many authors[12–15], often in connection with condensed matter systems.In this paper,we will compute the critical exponents of this theory as a function of the CS-coupling using Monte Carlo simulations.To our knowledge,this is thefirst time Monte Carlo simulations are employed on a lattice CS-theory.The lattice Maxwell-Chern-Simons theory with a compact gaugefield used in this paper is defined by the partition functionZ= π−π iµdA iµ2f2(∆×A i−2πn i)2+ig2f2a2+ig2f2a2+ign2f2(∆×L)2−i4πE.Smørgrav,J.Smiseth,A.SudbøandF.S.Nogueira:Abelian Chern-Simons gauge theories3 the theory can be written in terms of a new integerfield R=∆×L to obtainZ= {R}′exp − i8π2(∆θi−f A i−2πn i)2+ig A i·∆×A i+λ(∆×A i)2 ,(6)2where A i is a noncompact gaugefield andθi is a scalar phasefield.Note that here the CS coupling g can be any real number,since now we are dealing with a non-compact Abelian gaugefield.The topological defects of this model are vortex loops.An Abelian Higgs theorywith a CS term has been proposed as an effective theory for the Laughlin state of fractional quantum Hall systems[3,12].By introducing an auxiliary continuousfield v i,we can rewrite the action in Eq.(6)asS= i 14EUROPHYSICS LETTERS in the term 2πi n i ·(∆×h i )to give 2πi h i ·(∆×n i )and identify the integer field m i =∆×n i as the vortex field.The end result isS =i1(ϕQ q Q −q +χ)2+Q q Q −q (ϕ2Q q Q −q +ϕχ+1)δµν−iχǫµνλQ λ−qD Ψe S R +iS I (10)where Ψdenotes the complete set of eigenstates given by S .Since the real part of the action S R defines the same set of eigenstates,i.e.closed vortex loops,we may express O S in terms of expectation values S RO S = D Ψ(O e iS I )e S R /Z S R e iS I S R,(11)where Z S R is the partition function for the system defined by the real part of the action.The MC simulations areperformed using e S R as the Boltzmann weight and expectation values are calculated from Eq.(11).The system size L and the lattice constant define the only length scales of the system.Critical properties are governed by the long range physics i.e.the q →0limit.In this limit the real part of the potential (9)has an effective screening length λ−2eff∼χ2/(2ϕχ+1).When this screening length is of the order of L/2,the critical behavior will probably be a crossover to the 3dXY model with an infinite screening length.On the other hand,when λeff<a the critical behavior will experience a crossover towards a system with steric repulsion.Hence,MC simulations on finite lattices can only provide true critical exponents in a limited region of coupling space where a ≪λeff≪L/2.E.Smørgrav,J.Smiseth,A.SudbøandF.S.Nogueira :Abelian Chern-Simons gauge theories 50.10.20.30.40.50.6(1 + α)/νa)1.151.201.251.301.351.401.451.5000.10.20.30.40.50.6νb)0.640.660.680.700.720.7400.10.20.30.40.50.6αg c)0.00-0.05 -0.10 -0.15Fig.1–a)(1+α)/νfrom finite size scaling of M 3.The solid line denotes the well known 3dXY values and is included here for the sake of comparison.b)Critical exponent νcomputed directly from the width of M 3.c)αfrom combining M 3results for (1+α)/νand 1/ν.We have performed MC simulations on the model defined byZ ={m µ(r i )}′exp − i,j m µ(r i )V µν(r i −r j )m ν(r j ) ,(12)where the potential V µν(r )is the inverse Fourier transform of Eq.(9).A MC move is an attempt to insert a unitary closed vortex loop of random orientation,and the move is accepted or rejected according to the standard Metropolis algorithm using the real part of the action.6EUROPHYSICS LETTERS One sweep consists of traversing the lattice performing one MC move for each lattice site.The system with size L ×L ×L has periodic boundary conditions.Simulations with up to 106sweeps per coupling constant combined with Ferrenberg-Swendsen multihistogram reweighting are used to produce finite size scaling (FSS)plots.System sizes L ∈[4,6,8,10,12,14,16,20,24]have been used.To investigate the critical properties of the model,we compute critical exponents αand ν.Recently we have proposed a FSS method based on the third moment M 3of the action S [7],M 3=<(S − S )3>S ,for which the asymptotically correct behavior is reached for accessibly small system sizes.The peak to peak value of this quantity scales with system size as L (1+α)/νand the width between the peaks scales as L −1/ν.In this way one can resolve αand νindependently from one measurement without invoking hyperscaling [7].The denominator | e iS I S R|decreases with system size and coupling strength,contaminat-ing expectation values Eq.(11).Hence,as the strength of the CS term g increases,smaller system sizes are accessible for the FSS.Together with the limitations on the effective screen-ing length λeff,this restricts the range in coupling space for which critical exponents can be calculated.We compute exponents along a line in coupling space corresponding to fixing f =1,λ=1π2N1−8(¯g 2+1)2 ,(13)where we have defined ¯g =4g/π.The critical exponent νas given by Eq.(13)exhibits a similar qualitative behavior in comparison with panel (b)in Fig.1,having a maximum at some value of g .For smaller values of N ,on the other hand,the RG treatment is in poor agreement with our numerical results,both from qualitative and quantitative points of view [14].In summary,we have shown in two different gauge theories that the presence of a CS term changes dramatically their behavior.In both cases the analysis was entirely non-perturbative and based on duality arguments.∗∗∗The authors would like to thank H.Kleinert for discussions.This work received financial support from the Norwegian University of Science and Technology through the Norwegian High Performance Computing Program (NOTUR),from the Research Council of Norway,Grant Nos.157798/432,158518/431,158547/431(A.S),and from DFG Priority Program SPP 1116(F.S.N.).E.Smørgrav,J.Smiseth,A.SudbøandF.S.Nogueira:Abelian Chern-Simons gauge theories7 REFERENCES[1]Polyakov,A.M,Nucl.Phys.B,120(1977)429.[2]Lee,P.A.and Nagaosa,N.,Phys.Rev.B,46(1992)5621;Mudry,C.and Fradkin,E.,Phys.Rev.B,50(1994)11409;Balents,L.,Fisher,M.P.A.and Nayak,C.,Phys.Rev.B,61(2000)6307;Ichinose,I.,Matsui,T.,and Onoda,M.,Phys.Rev.B,64(2001)104516.[3]Fradkin,E.,Field Theories of Condensed Matter Systems(Addison-Wesley,Reading,MA)1991,and references therein.[4]Read,N.and Sachdev,S.,Phys.Rev.Lett.,66(1991)1773;Sachdev,S.and Read,N.,Int.J.Mod.Phys.B,5(1991)219;Sachdev,S.and Park,K.,Ann.Phys.(N.Y.),298(2002)58;Sachdev,S.,Rev.Mod.Phys.,75(2003)913.[5]Deser,S.,Jackiw,R.and Templeton,S.,Ann.Phys.(N.Y.),140(1982)372.[6]Fradkin,E.and Shenker,S.H.,Phys.Rev.D,19(1979)3682.[7]Sudbø,A.,Smørgrav,E.,Smiseth,J.,Nogueira,F.S.and Hove,J.,Phys.Rev.Lett.,89(2002)226403;Smiseth,J.,Smørgrav,E.,Nogueira,F.S.,Hove,J.and Sudbø,A.,Phys.Rev.B,67(2003)205104.[8]Kleinert,H.,Nogueira,F.S.and Sudbø,A.,Phys.Rev.Lett.,88(2002)232001;Nucl.Phys.B,666(2003)361.[9]Herbut,I.F.and Seradjeh,B.H.,Phys.Rev.Lett.,91(2003)171601;Herbut,I.F.,Ser-adjeh,B.H.,Sachdev,S.and Murthy,G.,Physical Review B,68(2003)195110.[10]d’Hoker,E.and Vinet,L.,Ann.Phys.(N.Y.),162(1985)413;Pisarski,R.D,Phys.Rev.D,34(1986)3851;Affleck,I.,Harvey,J.,Palla,L.and Semenoff,G.,Nucl.Phys.B,238(1999)575;Fradkin,E.and Schaposnik,F.A.,Phys.Rev.Lett.,66(1991)276.[11]Kogan,I.and Kovner,A.,Phys.Rev.D,53(1996)4510.[12]Read,N.,Phys.Rev.Lett.,62(1989)86;Zhang,S.C.,Hansson,T.and Kivelson,S.,Phys.Rev.Lett.,62(1989)82.[13]Semenoff,G.W.,Sodano,P.,and Wu,Y.-S.,Phys.Rev.Lett.,62(1989)715.[14]de Calan,C.,Malbouisson,A.P.C.,Nogueira,F.S.and Svaiter,N.F.,Phys.Rev.B,59(1999)554;Kleinert,H.and Nogueira,F.S.,J.Phys.Stud.,5(2001)327.[15]Rey,S.J.and Zee,A.,Nucl.Phys.B,352(1991)897;Diamantini,M.C.,Sodano,P.andTrugenberger,C.A.,Phys.Rev.Lett.,71(1993)1969;Phys.Rev.Lett.,75(1995)3517.[16]Wen,X.G.,Wilczeck,F.and Zee,A.,Phys.Rev.B,39(1989)11413.[17]Peskin,M,Ann.Phys.(N.Y.),113(1978)122.[18]Dasgupta,C.and Halperin,B.I.,Phys.Rev.Lett.,47(1981)1556.[19]Kleinert,H.,Gauge Fields in Condensed Matter,vol.1(World Scientific,Singapore)1989,page561,readable at http://www.physik.fu-berlin.de/˜kleinert/re.html#b1.[20]von der Linden,W.,Phys.Rep.,220(1992)53.[21]Ferretti,G.and Rajeev,S.G.,Mod.Phys.Lett.A,7(1992)2087.。

相关文档
最新文档