北大半导体物理讲义整理

合集下载

半导体物理总结-讲义(1)

半导体物理总结-讲义(1)

半导体物理总结-讲义(1)《半导体物理总结-讲义》是一本关于半导体物理基础知识的讲解材料,其中包括半导体的基本特性、载流子运动、PN结、场效应管等内容。

以下为该书的重点内容概述:一、半导体材料特性1. 能带结构:半导体的能带结构高于导体、低于绝缘体,因此具有介于导体和绝缘体之间的导电和绝缘特性。

2. 晶格结构:半导体具有有序、周期性的晶体结构,能够有效控制电子在晶体内的运动。

3. 掺杂:通过掺杂材料改变半导体的电子浓度,从而使其具有p型或n型半导体的特性。

二、载流子运动1. 热激发:半导体中的电子可以受到能量的激励而被激发到导带中。

热能、光能、电场或磁场都可以起到激发的作用。

2. 离子化:在电场的作用下,半导体中的电子可能与晶格原子碰撞,失去能量而被离子化。

形成的正负离子对在电场作用下会向相反方向漂移。

3. 扩散:电子或空穴在半导体中由高浓度区域向低浓度区域扩散,使浓度逐渐平均,实现电流的流动。

扩散是在没有外电场的情况下发生的。

三、PN结1. 构成:PN结由p型半导体和n型半导体组成。

2. 特性:PN结具有一定的整流特性,能够阻止电流从n型半导体流向p型半导体,但允许反向电流。

3. 工作原理:在PN结中,载流子在电场的作用下发生扩散和漂移,形成电流。

四、场效应管1. 构成:场效应管由栅、漏极和源极三部分构成。

栅极位于n型半导体上,由于n型半导体中的电子易受到电场的影响,因此在栅极上加入电信号可以控制通道的导电性。

2. 工作原理:在没有控制电压的作用下,场效应管的通道是关闭的。

当加入一定电压时,栅极上的电场可以将通道打开,使得电流得以流动。

以上为《半导体物理总结-讲义》的重点内容概述,读者可根据需要深入学习相关内容。

《半导体物理》讲义

《半导体物理》讲义

半导体物理讲义(第五稿)胡礼中编大连理工大学物理与光电工程学院电子科学与技术研究所2011年2月引言本课程是为我校电子科学与技术专业开设的一门必修专业基础课,也是其他相关专业的重要选修课,主要介绍半导体的一些基本物理概念、现象、物理过程及其规律,为学习诸如《半导体材料》、《半导体器件》等后续课程打下基础。

本课程共分八章。

第一和第二章扼要复习一下《固体物理》已详细介绍过的有关晶体结构和晶格振动及缺陷的基本知识,这些内容是学习后续内容前必需掌握的。

第三章到第八章,讲述半导体物理的主要内容。

包括:半导体中的电子状态,电子与空穴的统计分布,电导和霍尔效应,非平衡载流子,半导体的接触现象和半导体表面。

应该说,能带理论是半导体物理学的基础,因此在第三章中先通过简单的模型和讨论将能带理论的主要结论告诉同学们。

包括更复杂的数学推导与计算的严格能带理论,我们将安排在研究生的《半导体理论》课程中讲授。

半导体物理涉及的物理概念和基本原理较多,为了加深对它们的理解,在各章里均给同学们留有习题或思考题,这些题目有的还是基本内容的补充。

也有少量难度较大的题目,这样的问题有利于拓宽同学们的知识面和训练同学们的独立思考能力。

这里还想说明一点,近年来,半导体学科发展迅速,涉及的内容极其丰富,这门48学时的课程是远远不能容纳的。

我只希望能通过本课程的学习,把大家引进门,使同学们对半导体科学和技术发生兴趣,以便今后进一步深入学习、研究和应用。

第五稿修正了第四稿中仍然存在的一些错误和不妥之处。

参考书1.黄昆,谢希德《半导体物理学》,科学出版社,1958年2.黄昆,韩汝琦《半导体物理基础》,科学出版社,1979年3.刘文明《半导体物理学》,吉林人民出版社,1982年4.刘恩科等《半导体物理学》,国防工业出版社(1~~4版)5.孟宪章,康昌鹤《半导体物理学》,吉林大学出版社,1993年6.中岛坚志郎《半导体工程学》,科学出版社,2001年7.叶良修《半导体物理学》,高等教育出版社,1987年8.方俊鑫,陆栋《固体物理学》,上海科学技术出版社,1993年9.曾谨言《量子力学》,科学出版社,2000年作业本:活页形式目录第一章晶体结构 4 §1-1 晶体内部结构的周期性 4 §1-2 晶体的对称性 5 §1-3 倒格子与周期性函数的付立叶展开 6 §1-4 常见半导体的晶体结构7 第二章晶格振动和晶格缺陷9 §2-1 一维均匀线的振动9 §2-2 一维单原子链的振动10 §2-3 一维双原子链的振动12 §2-4 玻恩---卡门边界条件(周期性边界条件)14 §2-5 声子16 §2-6 晶体中的缺陷和杂质16 第三章半导体中的电子状态18 §3-1 电子的运动状态和能带18 §3-2 价带、导带和禁带21 §3-3 (自由)载流子22 §3-4 杂质能级与杂质补偿效应22 第四章半导体中载流子的统计分布25 §4-1 状态密度25 §4-2 费米分布函数和费米能级27 §4-3 导带电子密度和价带空穴密度29 §4-4 本征半导体30 §4-5 杂质半导体31 §4-5-1 杂质能级的占据几率31 §4-5-2 只含一种杂质的半导体32 §4-5-3 存在杂质补偿的半导体37 §4-6 简并半导体40 第五章半导体中的电导现象和霍耳效应42 §5-1 载流子的散射42 §5-2 电导现象44 §5-3 霍耳效应46 第六章非平衡载流子51 §6-1 非平衡载流子的产生和复合51 §6-2 连续性方程53 §6-3 非本征半导体中非平衡少子的扩散和漂移58 §6-4 近本征半导体中非平衡载流子的扩散和漂移63 §6-5 载流子复合64 第七章半导体的接触现象67 §7-1 外电场中的半导体67 §7-2 金属—半导体接触70 §7-3 金属—半导体接触的整流现象72 §7-4 半导体pn结74§7-5 pn结的整流现象77 §7-6 理想pn结理论(窄pn结理论)77 §7-7 pn结击穿80 §7-8 异质结81 §7-9 欧姆接触83 第八章半导体表面84 §8-1 表面态与表面空间电荷区84 §8-2 空间电荷区的理论分析84 §8-3 表面场效应87 §8-4 理想MOS的电容—电压特性88 §8-5 实际MOS的电容—电压特性90附:半导体物理习题。

北京大学微电子学研究所半导体物理讲义1

北京大学微电子学研究所半导体物理讲义1
•Born提出的概率波(Probability wave)概念和波函数(wave function) ,为量子力学的应用奠定了基础;
•基于量子力学的能带论建立,构成了固体物理学的基础。
•现代固体物理学的成熟、完善和应用,为晶体管的发明奠定 了理论基础。
北北京京大大学学 微微电电子子学学研研究究所所
2)半导体材料研究方面取得的进展,为晶体管的发明奠定了必 要的技术基础。
•黑体辐射实验与经典理论的矛盾和Plank量子论的提出; •Compton散射实验揭示了光的粒子性特征; •光电效应实验进一步促成了Einstein光量子理论的提出; •Bohr提出了关于原子结构的量子理论; •De Broglie提出的微观粒子的波粒二像性(Wave -Particle duality)理论和电子衍射实验的验证;(电子的波动性)
内容安排 第一章:引言 第二章:半导体的基本性质 第三章:平衡态半导体的物理基础 第四章:半导体中载流子的状态和运动规律 第五章:PN结 第六章:M/S与异质结 第七章:MOS结构
思考题:一个空白U盘与存满数据的U盘在质量上是否相同?
北北京京大大学学 微微电电子子学学研研究究所所
在Ge 衬 底 用 键 合 的 方 法 制 备 了1T、3R、1C
获2000年诺贝尔物理学奖
应用需求和技术发展,包括创新 性的思想共同作用的结果。
北北京京大大学学 微微电电子子学学研研究究所所
微电子发展中的里程碑式的重大事件(3)
平面加工工艺(光刻)的发明
使集成电路技术和产业迅速发 展的关键
第一块单片集成电路, 1959, Noyce
北北京京大大学学 微微电电子子学学研研究究所所
量子力学建立的基础已经奠定,如何建立量子力学理论体系?

(完整word版)半导体物理知识点梳理

(完整word版)半导体物理知识点梳理

半导体物理考点归纳一·1.金刚石1) 结构特点:a. 由同类原子组成的复式晶格。

其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。

c. 配位数为4,较低,较稳定。

(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。

2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。

2.闪锌矿1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性。

2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。

3.电子共有化运动:原子结合为晶体时,轨道交叠。

外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。

4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数,5.布里渊区:禁带出现在k=n/2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区)第二布里渊区:-1/a<k<-1/2a,1/2a<k<1/aE(k)也是k 的周期函数,周期为1/a,即E(k)=E(k+n/a),能带愈宽,共有化运动就更强烈。

6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为ED 。

施主能级离导带很近。

8.受主杂质:III 族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。

9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记为EA 。

受主能级离价带很近。

半导体物理讲义-2

半导体物理讲义-2

半导体物理讲义-2第二部分半导体中的电子和空穴前面我们讨论了半导体能带结构的一些共同的基本特点。

不同的半导体材料.其能带结构不同,而且往往是各向异件的,即沿不同的被矢k方向,E ~ K关系不同。

由于问题复杂,虽然理论上发展了多种计算的力法.但还不能完全确定出电子的全部能态,尚需借助于实验帮助,采用理论和实验相结合的方法来确定半导体中电子的能态。

本节介绍最初测出载流子有效质量并据此推出半导体能带结构的回旋共振实验及硅和锗的能带结构。

因对大多数半导体,起作用的往往是导带底附近的电子和价带顶附近的空穴,所以只给出导带底和价带顶附近的能带结构一、k空间等能面已知,一维情况下设能带极值在k=0处,则导带底附近和价带顶附近的E ~ K关系:图极值附近E ~K 关系示意图所以,如果知道m*n和m*p ,则极值附近的能带结构便可了解。

对实标的三维晶体,以kx , ky , kz为坐标轴构成k空间,k空间任―矢量代表波矢k(kx , ky , kz) 。

其中简单情况(半导体或晶体具有各向同性时):导带低附近E ~ K关系当E(k)为某一定值时,对应于许多组不同的(kx,ky,kz),将这些组不同的(kx,ky,kz)连接起来构成一个封闭面,在这个面上的能量值均相等,这个面称为等能量面,简称等能面。

容易看出,上式表示的等能面是一系列半径为的球面。

图 k空间球形等能面平面示意图一般情况(半导体或晶体具有各向异性的性质):导带低附近E ~ K关系晶体有各向异性时,E(k)与k的关系沿不同的k方向不一定相同,反映出沿不同的k 方向,电子的有效质量不一定相同,而且能带极值不一定位于k=o处。

设导带底位于k0 ,能量为E(k0),在晶体中选择适当的坐标轴kx , ky , kz,并令m*x , m*y , m*z分别表示沿kx , ky , kz 三个方向的导带底电子的有效质量,用泰勒级数在极值k0附近展开,略去高次项,得:注意:要具体了解这些球面或椭球面的方程,最终得出能带结构,还必须知道有效质量的值。

半导体物理讲义-4

半导体物理讲义-4

第二部分半导体中的电子和空穴一、热平衡载流子的统计分布为设计、分析半导体器件,有必要了解半导体单位体积内的载流子浓度(即载流子密度),由前面讲述可知,本征半导体中电子和空穴的浓度大致相等。

掺加施主杂质后,电子为多数载流子的n型半导体,其空穴浓度会怎么样? P型半导体的电子浓度、空穴浓度又如何? 这里,我们以前面获取的知识为基础,以定量方式求出半导体的载流子浓度。

前面已讲过,价带、导带是电子的能级集合体。

在各级能带中,电子按照某种分布概率配置在各能级上。

那么,单位晶体中电子所能利用的能级数有几个,它们在能带中怎样分布呢? 这就需要借助统计力学的一些结论来说明,以帮助我们进一步来理解半导体。

1、电子的分布函数固体中的电子具有下述特征:1)根据泡利不相容原理.若占有同一个能级的电子数超过2个则不能有相同的能量值。

2)不能相互区别。

受此制约,能量为E的电子态(能级)被1个电子占有的概率可由下式的费米-狄拉克分布函数(或者简称费米函数)结出:这里,k为玻尔兹曼常数(k=1.38x10-23 J/K=8.62x10-5 eV/K),T是绝对温度[K],EF 费米能级(费米能)。

可以看出,当能量E与费米能级EF相等时,分布函数为即电子占有率为l/2的能级称为费米能级。

左图表示了T=0K和任意温度T1、T2(T2> T1)时费米分布函数f(E)的情况。

我们注意到f(E)在E=EF时是对称的。

T=0K时,若E < EF , f(E)=1 ; 若E > EF,f(E)=0 。

这意味着比EF小的能级上全部被电子占据,比EF大的能级上全部空着(没有电子)。

图费米分布函数当温度上升,即T>0K时,电于占据比EF高的能级的概率很小,比EF低的能级上电子不存在(能级空着)的概率为1- f(E)。

这意味着EF附近的电子获得热能后,占据了比EF更高的能级,而在原处留下了空位。

当能量E 比E F 大3KT 或小3KT 时,费米分布函数中的指数项分别大于20或小于0.05。

半导体物理知识点汇总总结

半导体物理知识点汇总总结

半导体物理知识点汇总总结一、半导体物理基本概念半导体是介于导体和绝缘体之间的材料,它具有一些导体和绝缘体的特性。

半导体是由单一、多层、回交或互相稀释的混合晶形的二元、三元或多元化合物所组成。

它的特点是它的电导率介于导体和绝缘体之间,是导体的电导率∗101~1015倍,是绝缘体的电导率÷102~103倍。

半导体材料具有晶体结构,对它取决于结晶度的大小,织排效应特别大。

由于它的电导率数值在半导体晶体内并不等同,所以它是隔离的,具有相当大的飞行束度,并且不容易受到外界的干扰。

二、半导体晶体结构半导体是晶体材料中最均匀最典型的材料之一,半导体的基本结构是一个由原子排成的一种规则有序的晶体结构。

半导体原子是立方体的晶体,具有600个原子的立方体晶体结构,又称之为立方的晶体结构。

半导体晶体结构的代表性六面体晶体结构,是一种由两个或两个以上的六面全部说构成的立方晶体。

半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶体包围构成,是由两个或两个以上的六面全部说构成的立方晶体。

半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶点构成,是由两个或两个以上的六面全部说构成的晶点构成。

三、半导体的能带结构半导体的能带“带”是指其电子是在“带”中运动的,是光电子带,又称作价带,当其中的自由电子都填满时另一种平面,又称导电带,当其中的自由电子并不填满时其另一种平面在有一些能够使电子轻易穿越的东西。

半导体的能带是由两个非常临近的能带组成的,其中价带的最上一层电子不足,而导电带的下一层电子却相当到往动能,这一些动能可能直到加到电子摆脱它自己体原子,变成自由电子,并且在整体晶体里自由活动。

四、半导体的导电机理半导体的导电机理是在外加电压加大时一部分自由电子均可以在各自能带中加速骚扰,从而增加在给导电子处所需要的电压增大并最终触碰到另一种平面上产生电流就可以。

五、半导体的掺杂掺杂是指在纯净半导体中加入某些以外杂质元素的行为。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理知识点梳理简介半导体物理学是研究半导体材料的电子结构、载流子动力学和半导体器件工作原理的学科。

它是现代微电子工业的基础和前提,包含了多种复杂的物理过程和电子器件设计原理。

在集成电路中,半导体物理学的研究对于我们理解电子器件的工作原理和提高器件性能至关重要。

一、半导体材料的电子结构1. 能带能带是指材料中的能量电子集合,可以被电子占据或空出来。

常见的能带包括价带和导带。

价带中的电子与原子核共享一个价电子对,导带则含有未占据的电子。

导带和价带之间的区域称为禁带,其中没有可用的能级,这使得该区域没有自由电子。

禁带宽度决定了材料的导电性质。

2. 牛顿力学与量子力学经典物理学,如牛顿力学,不能完全描述电子在原子中的行为,因此计算价带和导带的能量需要借助量子力学。

量子力学通过考虑波粒二象性和不确定性原理,说明电子存在于这两个能带中,以及它们的位置和能量。

3. 材料的类型半导体凭借其调谐电子运动的能力而成为电子器件的主要材料之一。

半导体材料通常可以划分为晶体(单晶或多晶)和非晶体,前者由规则排列的原子构成,后者则表现为无序空间结构。

二、载流子动力学1. 载流子类型在材料中,载流子是指负电荷(电子)或正电荷(空穴),它们的运动是电流传导的主要过程。

半导体中的载流子种类包括电子和空穴。

这些载流子的输运以及它们的沟通将直接影响材料的电学行为。

2. 拉曼散射与荷质比拉曼散射是一种通过材料中的声子色散特性筛选其材料类型和结构的方法。

这可以帮助确定载流子的荷质比,荷质比是电荷与带负荷的质量之比。

荷质比是半导体的一个关键参数,它决定了载流子的涵盖区域和速度。

3. 面掺杂多数半导体材料中的电子和空穴浓度是非常低的,这导致了它们的电导率较低。

通过面掺杂,半导体的电导率可以得到提高。

面掺杂涉及向材料表面引入杂质原子,这些原子具有带电性质以及能影响材料电荷载流子浓度的能力。

三、半导体器件工作原理1. 篱截型场效应晶体管篱截型场效应晶体管(MESFET)是一种单极型晶体管器件,它是通过在材料中形成门结构,控制源引线到漏引线通道上电子流的芯片。

半导体物理讲义

半导体物理讲义

半导体物理讲义一、硅的性质硅是一种呈灰色金属光泽的半金属。

所谓半金属是其一些物理,化学特性介于金属和非金属之间的元素。

硅无毒,无害,性脆,易碎。

元素符号为Si,属周期表中第三周期ⅣA族元素,比重为2.33,原子序数14,原子量为28.086。

在自然界中没有游离状态的硅、多呈氧化物状态存在。

在岩石圈(自表面深度为16公里内的地壳)中的丰度为27.6(重量)%,因而硅的资源极为丰富。

硅的资源虽然极为丰富,但由于其在自然界中呈氧化物状态存在,想要获得半导体级硅实为不是一件易事。

硅的主要原子价态是4价,其次是2价。

常温下化学性质稳定,不溶于强酸,易溶于碱。

在高温下性质活泼,易与多种物资发生化学反应。

硅在自然界的同位素及其所占的比例分别为:28Si 为92.23%, 29Si为4.67 %,30Si为3.10 %。

常压下硅的晶体结构为金刚石型,α=0.5431nm, 加压到15GPa时,改变为面心立方型,α=0.6636nm。

硅纯化到一定程度为良好半导体材料。

所谓半导体,是指其电阻率介于导体和绝缘体之间,其范围为10-3-1010Ω.cm的一种固体物质。

如载流子浓度为1×1018 cm-3的N型重掺硅单晶,其电阻率大约为5×10-2Ω.cm,而载流子浓度为1×1012 cm-3的N型高纯度硅单晶,其电阻率大约为5000Ω.cm。

载流子浓度是一个与杂质浓度有关的重要电学参数,杂质含量多少是影响电阻率大小的重要因素。

电流是带正电的空穴和带负电的电子定向传输实现的。

硅是一种神奇元素,通常的工业硅(99.0 - 99.9%)不具有半导体性能。

这种纯度水平的硅多用在制造硅钢片或与铝制成合金用在汽车工业上。

只有将硅提纯到很高纯度,即人们常说的89(99.999999 %)到99 (99.9999999 %)时就显示出其优异的半导体材料性能。

半导体硅材料包括:硅多晶,硅单晶,硅单晶片(切片,研磨片以及抛光片等)硅外延片,非晶硅和微晶硅,多孔硅以及以硅基材料(SOI和SiGe/Si材料等)。

半导体物理总结-讲义

半导体物理总结-讲义
过。
击穿
当外加电压过高时,会发生雪崩 击穿,导致电流急剧增加。
双极晶体管
发射极
01
空穴和电子从这里注入到基极。
基极
02
控制空穴和电子的流动,起到放大作用。
集电极
03
收集从基极流过的空穴和电子,形成输出电流。
场效应晶体管
源极
提供电子通道。
漏极
收集电子通道中的电子。
栅极
控制电子通道的开启和关闭。
集成电路
掺杂
通过向半导体中添加杂质元素,可 以改变半导体的载流子浓度,从而 改变其导电性能。
热学性质
01
02
03
热容
热容是描述物质吸收或释 放热量时温度变化的物理 量。
热膨胀
当温度升高时,半导体材 料的体积会膨胀。
热传导
热传导是热量在物质内部 传递的过程。
电学性质
电导率
电导率是描述物质导电能 力的物理量。
半导体物理与其他领域的交叉研究
生物学
将半导体物理与生物学结合,研究生物分子在半导体表面上的吸附、反应和传输过程,为生物传感器 和生物芯片提供技术支持。
医学
利用半导体物理原理和技术,研究医学影像、诊断和治疗技术,提高医学诊断和治疗的准确性和安全 性。
半导体物理在新能源领域的应用
太阳能电池
研究高效、低成本、长寿命的太阳能电 池,利用半导体物理原理提高光电转换 效率。
费米能级
费米能级是描述半导体中电子占据状态的参数,它决定了半导体的导电性能。
能带填充
在半导体中,价带被填满,导带是空的,这决定了半导体的导电性。
载流子类型与浓度
自由电子与空穴
在半导体中,价带中的电子获得 足够的能量后跃迁到导带,形成 自由电子;而在价带中留下一个

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理知识点梳理1.半导体材料的能带结构:半导体材料的能带结构是理解其物性的基础。

在二维的能带图中,包含导带和价带之间的能隙。

导带中的电子可以自由移动,而价带中的电子需要外加能量才能进入导带。

2.纯半导体和杂质半导体:纯半导体指的是没有杂质掺杂的半导体材料,其导电能力较弱。

而杂质半导体是通过引入适量的杂质原子来改变半导体材料的导电性质,其中掺入的杂质原子被称为施主或受主。

3.载流子输运:半导体中的电导主要是由自由载流子贡献的,包括n型半导体中的电子和p型半导体中的空穴。

当施主杂质掺杂进入p型半导体时,会产生附加的自由电子;相反,当受主杂质掺杂进入n型半导体时,会产生附加的空穴。

这些自由载流子通过材料中的散射、漂移和扩散等方式进行输运。

4. pn结和二极管:pn结是由p型半导体和n型半导体结合而成的电子器件。

在pn结中,发生了空穴从p区向n区的扩散和电子从n区向p区的扩散,导致p区和n区的空间电荷区形成。

当正向偏置时,电流可以通过pn结,而反向偏置时,电流很小。

这种特性使得二极管可以用作整流器件。

5.晶体管:晶体管是一种三层结构的半导体器件,由一个n型区和两个p型区或一个p型区和两个n型区构成。

晶体管可以用作放大器和开关,其工作原理是通过控制基极电流来调节集电极电流。

6.MOSFET:金属-绝缘体-半导体场效应晶体管,即MOSFET,是一种三层结构的半导体器件。

MOSFET具有较高的输入阻抗和较低的功耗,广泛应用于集成电路中。

MOSFET的工作原理是通过调节栅极电压来调节通道中的电荷密度。

7.光电二极管和光电导:光电二极管和光电导是基于光电效应的半导体器件。

光电二极管是将光信号转换为电压信号的器件,而光电导则是将光信号转换为电流信号。

这两种器件在通信和光电探测等领域有广泛的应用。

8.半导体激光器:半导体激光器是一种利用半导体材料的发光原理来产生激光束的器件。

半导体激光器具有体积小、效率高和工作电流低等优势,广泛应用于光通信和光存储等领域。

北京大学微电子学研究所半导体物理讲义4

北京大学微电子学研究所半导体物理讲义4

4.1.3 半导体中载流子的散射机制
散射是影响载流子输运能力的主要因素之一,不同的散射机制,对载 流子输运能力(迁移率)的影响显示不同的温度关系。
平均自由程(Mean free path l)和平均自由时间
载流子热运动时,发生两次散射之间所运动的平均距离(统计平均值)。 载流子在Si中的平均自由程约为1nm~1μm。设其平均自由程为1μm,则其 平均自由运动时间~1ps。
4.1.2. 载流子散射 按照固体物理理论,在理想周期势场作用下,在有效质量近 似下,电子的运动等效为载流子的自由运动。 然而,一旦严格的周期势场受到破坏,则载流子的运动将不 再是自由的了,此时,载流子的运动中会受到散射作用。 任何破坏周期势场的因素都可以引起载流子的散射作用。 正是由于散射的存在使得载流子在外场(电场)作用下加速 运动的最大速度(漂移速度)受到限制。
4.2.1. 载流子的漂移运动和漂移电流
漂移速度和漂移电流
载流子的漂移运动实际是载流子在 电场作用下经历加速、碰撞减速过 程的统计平均结果,载流子的漂移 运动将形成电流,称为漂移电流。
在热平衡情况下,电子 热运动完全随机,因而 净电流为零
4.2.1. 载流子的漂移运动和漂移电流 漂移电流和迁移率
4.2.2 载流子的电导和电阻率 欧姆定律
载流子在电场作用下的输运过程满足物理规律
j = nqμE
比较漂移电流公式与欧姆定律,得到半导体的电导率表达式:
σ = nqμ
μ
称为迁移率,对Si有
μ n = 1350 cm 2 / Vs
μ p = 480 cm 2 / Vs
电子的迁移率总是高于空穴的迁移率,后面我们将说明,其原因 是电子的有效质量总是小于空穴的有效质量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章晶体结构晶格§1晶格相关的基本概念1.晶体:原子周期排列,有周期性的物质。

2.晶体结构:原子排列的具体形式。

3.晶格:典型单元重复排列构成晶格。

4.晶胞:重复性的周期单元。

5.晶体学晶胞:反映晶格对称性质的最小单元。

6.晶格常数:晶体学晶胞各个边的实际长度。

7.简单晶格&复式晶格:原胞中包含一个原子的为简单晶格,两个或者两个以上的称为复式晶格。

8.布拉伐格子:体现晶体周期性的格子称为布拉伐格子。

(布拉伐格子的每个格点对应一个原胞,简单晶格的晶格本身和布拉伐格子完全相同;复式晶格每种等价原子都构成和布拉伐格子相同的格子。

)9.基失:以原胞共顶点三个边做成三个矢量,α1,α2,α3,并以其中一个格点为原点,则布拉伐格子的格点可以表示为αL=L1α1 +L2α2 +L3α3 。

把α1,α2,α3称为基矢。

10.平移对称性:整个晶体按9中定义的矢量αL 平移,晶格与自身重合,这种特性称为平移对称性。

(在晶体中,一般的物理量都具有平移对称性)11.晶向&晶向指数:参考教材。

(要理解)12.晶面&晶面指数:参考教材。

(要理解)立方晶系中,若晶向指数和晶面指数相同则互相垂直。

§2金刚石结构,类金刚石结构(闪锌矿结构)金刚石结构:金刚石结构是一种由相同原子构成的复式晶格,它是由两个面心立方晶格沿立方对称晶胞的体对角线错开1/4长度套构而成。

常见的半导体中Ge,Si,α-Sn(灰锡)都属于这种晶格。

金刚石结构的特点:每个原子都有四个最邻近原子,它们总是处在一个正四面体的顶点上。

(每个原子所具有的最邻近原子的数目称为配位数)每两个邻近原子都沿一个<1,1,1,>方向,处于四面体顶点的两个原子连线沿一个<1,1,0>方向,四面体不共顶点两个棱中点连线沿一个<1,0,0,>方向。

金刚石结构的密排面:{1,1,1}晶面的原子都按六方形的方式排列。

每两层{1,1,1}原子层完全相同,A B C A B C ……在这种结构中,关于任何两个相邻原子连线中点具有反演对称性。

类金刚石结构:GaAs,InSb,GaP等化合物晶体的晶格是由两种不同原子组成的面心立方晶格套构而成的,称为类金刚石结构或闪锌矿结构,显然闪锌矿不再具有反演中心。

§3共价结合§3.1晶体结合的四种基本方式1.离子结合:原子间交换电子,形成正负离子,之间相互库仑作用结合成固体。

2.共价结合:相邻原子共用电子对形成共价键。

(半导体中晶体普遍是共价结合,因此本节重点是共价结合。

)3.金属结合:价电子共有化形成负电子云,正离子浸泡在电子云中。

4.范德瓦尔结合:发生在饱和电子结构中,相互作用靠很弱的瞬时偶极矩。

§3.2成键态与反键态(以H2为例)A,B两原子相互靠近形成分子,两个价电子为A,B共有。

ψAψB成键态:ψ=C(ψA+ψB)反键态:ψ=C’(ψA-ψB)其中C和C’为归一常数成键态电子云集中在两原子核之间,同时受到两个原子核的库仑吸引作用,库仑能下降,故形成共价键。

反键态使能量升高△1,成键态能量下降△2且有△1 > △2,只有未成对电子才能形成共价键。

§3.3SP3杂化(以Si为例)Si的原子组态为:(1S)2(2S)2(2P)6(3S)2(3P)2稳定电子价电子由Si原子组态可知,若不改组的话只能形成2个共价键,但实际上有4个共价键,成四面体,这是因为发生了SP3杂化的缘故。

即价电子的组态发生了如下改组:(3S)2 (3P)2→(3S1) (3Px) (3Py) (3Pz)组成了新的4个轨道态,实际上四个共价键是以S态和P态波函数线形组合为基础的,这样使得系统能量最低。

杂化的好处:①成键数增多,四个杂化态上全部是未成对电子。

②成键能力增强,电子云集中在四面体方向,电子重叠大,使能量下降更多,抵消杂化的能量,使总能量减小。

§4晶格缺陷晶格缺陷分3类:●点缺陷:间隙原子和空位。

●线缺陷:位错。

●面缺陷:层错。

点缺陷的类型:●弗兰克尔缺陷:原子热运动,少量原子离开格点位置进入间隙形成空位间隙原子对。

●肖特基缺陷:单一空位的缺陷。

●反肖特基缺陷:单一缺陷原子的缺陷。

第二章 半导体中的电子状态§1半导体基本能带§1.1布洛赫波在晶体的周期场中,电子波函数的形式为ψk (r )=e i kr μk (r ),其中μk (r )=μk (r+αL )其中k 称为简约波束,有波束的量纲,但要在一简约范围内取值。

k 与动量类似,在跃迁过程中守衡,且有外F dtd k= ,故称为准动量。

在晶体中k 取值在一定范围内,这范围称为简约布里渊区,下面以一维为例加以证明。

设晶格周期为α ∵μk (x)= μk (x + n α)∴ψk (x +α)=e ik α·e ikx ·μk (x + n α)=e ik α[e ikx ·μk (x)] =e ik αψk (x)其中e ik α表示相邻原胞之间波函数位相差,因此-π≤k α≤π,三维情形,α1,α2,α3三个基矢有ψk (r +αn )=e i k αn ψk (r ) ,其中n=1,2,3。

定义矢量b 1,b 2,b 3分别等于321213321132321321222αααααb αααααb αααααb ⨯⋅⨯=⨯⋅⨯=⨯⋅⨯=πππ则有αi b j =2πδij (δij 函数表示,当i=j 时为1,不等为0)故称b 1,b 2,b 3为倒矢量,以b 1,b 2,b 3为基矢组成晶格,称为倒格子。

这样定义下有倒格子原胞的体积于原晶格原胞的体积相乘之积为常数(2π)3用K n=n 1b 1+n 2b 2+n 3b 3表示倒格矢,则k 和k +K n 表示相同状态。

因此简约布里渊区也称作不相差任何倒矢量,位相变化单值完备的区域。

对于金刚石结构的面心立方晶格,倒格子为体心立方,通常取倒格子中k =0原点做次近邻,近邻中垂面围成的区域,它称为维格纳—塞兹原胞。

§1.2 周期性边界条件由于实际晶体包含的原子是有限的,故每个能带所包含的状态数是有限的,又由于边界条件的差异对大块晶体性质并无本质影响,故引入周期性边界条件来计算k 空间的取值密度。

一维:设一维晶格总长度L=N α(N 为包含原胞总数) 周期性边界条件为:ψk (0) = ψk (L) =ψk (N α)ψk (0) = μk (0) ψk (N α) = e ikN αμk (N α) = e ikN αμk (0) 所以得到e ikN α = 1 故有kN α = 2n π ( n 为整数)因此k 的可取值为k=(2n π)/N α , 取值密度g k = N α/2π =L/2π对一维,简约布里渊区长度为2π/α,因此布里渊区内包含的状态数为(2π/α)·(L/2π)= L/α = N 正好等于原胞数N所以k 空间的取值密度也可以用原胞总数除以布里渊区长度来计算(对于二维则除以布里渊区面积,三维除以布里渊区体积) 三维:对于三维可以类似地求得k 空间的状态密度 g k =(N 1α1·N 2α2·N 3α3)/(2π)3(N 1,N 2,N 3表示三个维度上的原胞数)显然,用倒格子原胞的体积 (2π)3/Ω乘以k 空间的密度g k 得到k 空间的状态数为N 1·N 2·N 3,仍等于晶体所包含的原胞总数。

*注:上面公式中Ω表示实际晶体原胞体积,有Ω=α1·α2·α3§2电子准经典运动§2.1电子准经典运动的两个基本公式①外F Pk ==dt d dt d②1=V ▽k E (k )§2.2 加速度和有效质量三维:)()(1))(1(2k k k k k V E F E d d d d t t ∇∇⋅=∇=写成张量形式:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂==222222222222211,)1(zyz x z zy y xy z x yx x t EE E E EEE EE m m d d k k k kk k k k k k k k k k k F V 其中 1/m 可对角化,因此可以写成αααm d d t ⋅⎪⎪⎭⎫⎝⎛=V F{}⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂=222222222*000z yxE EE m k k k 称为有效质量张量 对于能带底(E k 最小处)00=⎪⎭⎫ ⎝⎛∂∂k k E 设k 0 = 0 在k = 0处泰勒展开有:()())(2)(21*2*2*2202222222220zz y y x xz zy y x x m m m E E E E E E k k k k k k k k k k k k +++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+= ∵最小值处0022>⎪⎪⎭⎫⎝⎛∂∂k k E ∴ m x ,m y ,m z 均为正值,在满足上面抛物线性关系的能量范围内,有效质量各个分量可以看作常数,对立方对称性晶体m x = m y = m z = m ,可以写成:mE E 2)()(220k k k +=同理对于能带顶有:mE E 2)()(220k k k +=,此时m 为负值。

§3导带的电子和空穴§3.1 基本原理1. 满带中电子不导电,未填满能带在有外加场时产生电流。

2. 绝缘体和半导体只有一系列满带和一系列空带,不存在半满带,最上面的满带叫价带,最下面的空带叫导带。

导带底与价带顶之间的能量间隙称为禁带(也叫能隙),禁带宽度用Eg 表示。

可以用两条线代表导带底,和价带顶;能量值分别用E C 和E V 表示。

导带底E C 价带顶E V3.绝缘体,半导体和金属:Eg在1ev附近的称为半导体,热激发时满带不满,空带不空,有一定的导电性;Eg大于10ev的称为绝缘体,电子很少激发,因而几乎不导电,而金属中则存在半满带,因此具有良好的导电性能。

4.近满带的空穴:假想的粒子,等价于2N-1个电子的总体运动。

设空穴处有电子的时候,因为满带电流为0,有J(k) + (-e)V(k) = 0其中J(k)表示2N-1个电子的总电流推出2N-1个电子的总电流J(k) = e V(k)说明2N-1个电子的总电流等效于带正电,速度为V(k)的粒子又因为()*e*ee*2mmddmddttEEFkJv-=-==故而由于空穴出现在价带顶,m*<0,故引入空穴有效质量m h* =|m*|为正,综上,把空穴等价成一个正电荷,正有效质量的粒子。

相关文档
最新文档