新知杯历年上海市初中数学竞赛试卷及答案试题全与答案分开
2006年新知杯上海市初中数学竞赛
![2006年新知杯上海市初中数学竞赛](https://img.taocdn.com/s3/m/a9548089b9d528ea81c77929.png)
易 见 直 线 AAc 同 时 平 分 N Ac 和 N BA C, 故
AcBcCc 与 ABC 的内心 是相 同的. 设 AcBcCc、 ABC 的内 切圆半径分别为 rc、r , 则
rc=
r+
h,且 r=
2S p
.
由于 AcBcCc ABC, 且相似比为
rc r
=
r+ r
h=
1+
ph 2S
,
因此,
设 a1 \ a2 \ a3 , 则
a1 \ a1+
a2 + 3
a3 = 669, a2 a3 [
2 007 [ a1
3.
若 a1 = 669, 则 a2 a3 = 3. 从而,
a2 + a3 [ 4, a1 + a2 + a3 [ 673< 2 007, 不可能.
若 a1> 669, 只能 a1= 2 007, a2 a3 = 1 且 a2+ a3
5x - 2< 8x -
7[ 2
5x Z
1 2
<
x[
7 6
Z
1 2
<
8x-
7 2
[
35 6
.
因为 8x -
7 2
=
[ 2x] +
[
3x ]
为整数, 所以 ,
8x-
7 2
=
1, 2,
3, 4,
5.
解得 x=
9 16
,
11 16
,
13 16
,
15 16
,
17 16
.
经检验, 只有 x=
历届 最近十年 (新知杯)上海市初中数学竞赛试卷及答案(含模拟试题及解答)
![历届 最近十年 (新知杯)上海市初中数学竞赛试卷及答案(含模拟试题及解答)](https://img.taocdn.com/s3/m/fa4010a5f90f76c661371aee.png)
新 知 杯 模 拟 试 题一、填空题(第1-5小题每题8分,第6-10题每题10分,共90分)1. 对于任意实数b a ,,定义b a *=b b a a ++)(,已知5.285.2=*a ,则实数a 的值是_________。
2. 在三角形ABC 中,,其中,,a CA a BC b AB 2122==-=b a ,是大于1的整数,则=-a b 。
3. 一个平行四边形可以被分成92个边长为1的正三角形,它的周长可能是 。
4. 已知关于x 的方程02)2()3(2234=++++++k x k x k x x 有实根,并且所有实根的乘积为-2,则所有实根的平方和为 。
5. 如图,直角三角形ABC 中1=AC ,2=BC ,P 为斜边AB 上一动点。
BC PE ⊥,CA PF ⊥,则线段EF 长的最小值为 。
6. 设b a ,是方程01682=++x x 的两个根,d c ,是方程01862=+-x x 的两个根,则()()()()d b d a c b c a --++的值为 。
7. 在平面直角坐标系中有两点()1,1-P ,()2,2Q ,函数1-=kx y 的图像与线段PQ 延长线相交(交点不包括Q ),则实数k 的取值范围是 。
8. 方程2009=xyz 的所有整数解有 组。
9. 如图,四边形ABCD 中CD BC AB ==,78=∠ABC ,162=∠BCD 。
设BC AD ,延长线交于E ,则=∠AEB _________________.EEC10. 如图,在直角梯形ABCD 中,90=∠=∠BCD ABC ,10==BC AB ,点M 在BC上,使得ADM ∆是正三角形,则ABM ∆与DCM ∆的面积和是________________。
二、(本题15分)如图,ABC ∆中,90=∠ACB ,点D 在CA 上,使得,,31==AD CD 并且,BAC BDC ∠=∠3求BC 的长。
上海初一初中数学竞赛测试带答案解析
![上海初一初中数学竞赛测试带答案解析](https://img.taocdn.com/s3/m/d561e508910ef12d2bf9e7df.png)
上海初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.六位数由三位数重复构成,如256256,或678678等等,这类数能被何数整除(15届江苏初一2试)六位数六位数A.11;B.101;C.13;D.1001.2.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是A.75分;B.74分;C.72分;D.77分.3.一个数被10除余9,被9除余8,被8除余7,…,被2除余1,则此数为A.59 ;B.1259;C.2519;D.非以上结论.4.0.000000375与下列数不等的是A.;B.;C.;D..5.若1+2+3+…+k之和为一完全平方,若n小于100,则k可能的值为A.8;B.1,8 ;C.8,49;D.1,8,49.6.若,则z等于(15届江苏初二1试)若A.;B.;C.;D..7.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
则n最小为A.7;B.9;C.10 ;D.11.8.如表所示,则x与y的关系式为()+x+1C.y=(x2+x+1)(x-1) D.非以上结论9.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A.1 ;B.2;C.3;D.4.二、填空题1.计算: .2.(17届江苏初一1试)计算等式,式中的应为 .3.三个连续的自然数的最小公倍数是168,那么这三个自然数的和等于 .4.将1,2,3,…,49,50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,则这10个中位数的最大值是 .5.(15届江苏初一1试)时钟在2点时,分针与时针所夹的角为60°.从0时到3时,会有个时刻,分针与时针也能构成60°的角.6.图中阴影部分占(15届江苏初二1试)图中图形的(填几分之几).7.如图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长为1,则这个六边形的周长是 (17届江苏初一1试)如图如 .8.已知,点O在三角形内,且,则的度数是(17届江苏初一1试) 度.9.(17届江苏初三)在在在4点钟与5点钟之间,分钟与时钟成一条直线,那么此时时间是 .10.(15届江苏初一1试)一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k (k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.上海初一初中数学竞赛测试答案及解析一、选择题1.六位数由三位数重复构成,如256256,或678678等等,这类数能被何数整除(15届江苏初一2试)六位数六位数A.11;B.101;C.13;D.1001.【答案】D【解析】析:六位数由三位数重复构成,说明这类数一定能被此三位数整除,不妨用构成的六位数除以三位数得到的数即所求的数.解答:解:256256÷256=1001,678678÷678=1001,设三位数abc,则重复构成的六位数为abcabc,abcabc÷abc=1001.故选D.点评:此题考查了学生对数的整除性问题的解答与掌握,此题解答的关键是用构成的六位数除以三位数得出要求的数.2.两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是A.75分;B.74分;C.72分;D.77分.【答案】B【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:根据题意得:该组数据的平均数==74.故选B.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80,70这四个数的平均数,对平均数的理解不正确.3.一个数被10除余9,被9除余8,被8除余7,…,被2除余1,则此数为A.59 ;B.1259;C.2519;D.非以上结论.【答案】C【解析】分析:这个最小正整数加上1是2、3、4、5、…10的最小公倍数,求得最小公倍数减1即可求得答案.解答:解:由题意可知所求最小正整数是2,3,4,5,…,10的最小公倍数减去1,2,3,4,5,…,10的最小公倍数是实际就是7,8,9,10的最小公倍数为2520,则所求最小数是2520-1=2519.故选C.点评:此题考查了带余数除法,主要利用求几个数的最小公倍数的方法解决问题.4.0.000000375与下列数不等的是A.;B.;C.;D..【答案】D【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.注意小数和分数相互间的转化.解答:解:0.000 000 375=3.75×10-7=3×10-7=≠.故选D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若1+2+3+…+k之和为一完全平方,若n小于100,则k可能的值为A.8;B.1,8 ;C.8,49;D.1,8,49.【答案】D【解析】分析:本题直接求解难度较大,故采用代入法,间接验证.解答:解:∵1+2+3+…+k=k(k+1)∴k(k+1)=n2,当k=1时,则k(k+1)=1,n=1,显然成立.当k=8时,则k(k+1)=36,此时n=6,成立;当k=49时,则k(k+1)=25×49,n=35,成立.故答案为D.点评:本题考查完全平方数.同学们对于做选择题目,采用将选项代入验证的方法,有时候起到事半功倍的效果,本题就是这样,如直接求解,难度非常大,这样求解简单多了.6.若,则z等于(15届江苏初二1试)若A.;B.;C.;D..【答案】D【解析】略7.一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
上海历届新知杯试题
![上海历届新知杯试题](https://img.taocdn.com/s3/m/5e179ad958f5f61fb636661e.png)
Image
轨迹的总长是_____(保留π)。 Image
9、如图,△ABC中,AB=BC=10,点M、N在BC上,使得MN=AM=4, ∠MAC=∠BAN,则△ABC的面积是____。
10、△ABC中,∠C=3∠A,AB=10,BC=8,则AC的长是____。 二、(本题16分) ,均为正整数,若关于的方程的两个实数根都大于1,且小于2,
则S△DEF∶S△ABC= .
14.已知a、b、c都是整数,且对一切实数x,都成立,则这样的有序数
组(a,b,c)共有 组.
15.如图,I是Rt△ABC()的内心,过I作直线EF∥AB,分别交CA、CB
于E、F.已知,,则用m、n表示S△ABC=
.
B
C
A
E
F
m
n
I
求,的值。
三、(本题16分) 如图,正方形ABCD的边长为1,点M、N分别在
BC、CD上,使得△CMN的周长为2。求 (1)∠MAN的大小; (2)△MAN面积的最小值。
Image
四、(本题18分) 某学生为了描点作出函数的图象,取自变量的7个值:,且,分别算
出对应的的值,列出下表:
式的乘积,则这样的n共有_____个。 6、设正整数m,n满足m < n,且,则的值是____。 7、数1,2,3,…,按下列方式排列:
12…
…
……
…
任取其中一数,并划去该数所在的行与列;这样做了次后,所取出的个 数的和是___。
8、如图,边长为1的正三角形ANB放置在边长为MN=3,NP=4的正方形 MNPQ内,且NB在边NP上。若正三角形在长方形内沿着边NP、PQ、 QM、MN翻转一圈后回到原来起始位置,则顶点A在翻转过程中形成
最新上海市新知杯初中数学竞赛试题及答案(1)
![最新上海市新知杯初中数学竞赛试题及答案(1)](https://img.taocdn.com/s3/m/66fb5b3902020740bf1e9b14.png)
2011年(新知杯)上海市初中数学竞赛试卷一、 填空题(每题10分,共80分)1. 已知关于x 的两个方程: 032=+-m x x ①, 02=++m x x ②,其中0≠m 。
若方程①中有一个根是方程②的某个根的3倍,则实数m 的值是___________。
2. 已知梯形ABCD 中,AB //CD ,︒=∠90ABC ,AD BD ⊥,5=BC ,13=BD ,则梯形ABCD 的面积为_______________。
3. 从编号分别为1,2,3,4,5,6的6张卡片中任意抽取3张,则抽出卡片的编号都大于等于2的概率为______________。
4. 将8个数7-,5-,3-,2-,2,4,6,13排列为a ,b ,c ,d ,e ,f ,g ,h ,使得()()22h g f e d c b a +++++++的值最小,则这个最小值为____________。
5. 已知正方形ABCD 的边长为4,E ,F 分别是边AB ,BC 上的点,使得3=AE ,2=BF ,线段AF 与DE 相交于点G ,则四边形DGFC 的面积为_____________。
6. 在等腰直角三角形ABC 中,︒=∠90ACB ,P 是ABC ∆内一点,使得11=PA ,7=PB ,6=PC ,则边AC 的长为______________。
7. 有10名象棋选手进行单循环赛(即每两名选手比赛一场),规定获胜得2分,平局得1分,负得0分。
比赛结束后,发现每名选手的得分各不相同,且第2名的得分是最后五名选手的得分和的54,则第2名选手的得分是_________。
8. 已知a ,b ,c ,d 都是质数(质数即素数,允许a ,b ,c ,d 有相同的情况),且abcd是35个连续正整数的和,则d c b a +++的最小值为_________。
二、 解答题(第9,10题,每题15分,第11,12题,每题20分,共70分)9. 如图,矩形ABCD 的对角线交点为O ,已知︒=∠60DAC ,角DAC 的平分线与边DC 交于点S ,直线OS 与AD 相交于点L ,直线BL 与AC 相交于点M 。
2022年新知杯上海市初中数学竞赛试题及详解
![2022年新知杯上海市初中数学竞赛试题及详解](https://img.taocdn.com/s3/m/b6183c97dc88d0d233d4b14e852458fb770b38a7.png)
上海市初中数学竞赛试卷一、填空题(每题7分,共70分)2..有四个底部都是正方形旳长方体容器A、B、C、D,已知A、B旳底面边长均为3,C、D旳底面边长均为a,A、C旳高均为3,B、D旳高均为a,在只懂得a≠3,且不考虑容器壁厚度旳条件下,可鉴定、两容器旳容积之和不小于此外两个容器旳容积之和.3 若n旳十进制表达为99…9(共20位9),则n3旳十进制表达中具有个数码9。
4 在△ABC中,若AB=5,BC=6,CA=7,H为垂心,则AH=5 若直角三角形两直角边上中线长度之比为m,则m旳取值范畴是6、若有关旳方程|1-x|=mx有解,则实数m旳取值范畴7 从1000到9999中,四位数码各不相似,且千位数与个位数之差旳绝对值为2旳四位数有个.二、简答题(共3小题,共50分,11题16分,12题16分,13题18分)11 求所有满足下列条件旳四位数:能被111整除,且除得旳商等于该四位数旳各位数之和。
12 (1)在4×4旳方格纸中,把部分小方格涂成红色,然后划去2行和2列,若无论怎么划,都至少有一种红色旳小方格没有被划去,则至少要涂多少个小方格?证明你旳结论.(2)如果把上题中旳“4×4旳方格纸”改成“n×n旳方格纸(n≥5)”,其她条件不变,那么,至少要涂多少个小方格?证明你旳结论.13 如图,ABCD是一种边长为1旳正方形,U、V分别是AB、CD上旳点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积旳最大值。
上海市初中数学竞赛试卷详解一、填空题(每题7分,共70分)2..有四个底部都是正方形旳长方体容器A、B、C、D,已知A、B旳底面边长均为3,C、D旳底面边长均为a,A、C旳高均为3,B、D旳高均为a,在只懂得a≠3,且不考虑容器壁厚度旳条件下,可鉴定、两容器旳容积之和不小于此外两个容器旳容积之和.3 若n旳十进制表达为99…9(共20位9),则n3旳十进制表达中具有个数码9。
新知杯初中数学竞赛试卷
![新知杯初中数学竞赛试卷](https://img.taocdn.com/s3/m/97bda48f185f312b3169a45177232f60ddcce7aa.png)
一、选择题(每题5分,共50分)1. 下列各数中,不是无理数的是()A. √2B. πC. 0.1010010001……D. √92. 若a、b是实数,且a + b = 0,则下列各式中正确的是()A. a^2 + b^2 = 0B. a^2 - b^2 = 0C. a^2 - b^2 = -2abD. a^2 + b^2 = 2ab3. 已知等腰三角形ABC中,AB = AC,BC = 6cm,则底边BC上的高AD的长度是()A. 3cmB. 4cmC. 5cmD. 6cm4. 若一个数x满足x^2 - 5x + 6 = 0,则x的值是()A. 2B. 3C. 4D. 55. 下列函数中,定义域为实数集R的是()A. y = √(x - 1)B. y = 1/xC. y = |x|D. y = √(x^2 + 1)6. 在平面直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)7. 下列方程中,无解的是()A. 2x + 3 = 0B. x^2 + 1 = 0C. x^2 - 1 = 0D. x^2 + 2x + 1 = 08. 若一个数x满足x^2 - 2x - 3 = 0,则x + 1的值是()A. 1B. 2C. 3D. 49. 下列图形中,不是轴对称图形的是()A. 等边三角形B. 等腰梯形C. 等腰三角形D. 长方形10. 若一个数x满足x^2 - 4x + 4 = 0,则x的值是()A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)1. 若a、b是实数,且a^2 + b^2 = 1,则a^2 - b^2的值是______。
2. 在平面直角坐标系中,点P(-3,2)关于x轴的对称点坐标是______。
3. 若一个数x满足x^2 - 3x + 2 = 0,则x的值是______。
4. 在平面直角坐标系中,点A(2,3)关于y轴的对称点坐标是______。
2000-2017年(大同杯原新知杯)历年上海市初中数学竞赛试卷和参考答案
![2000-2017年(大同杯原新知杯)历年上海市初中数学竞赛试卷和参考答案](https://img.taocdn.com/s3/m/304578ce0242a8956bece4a5.png)
上海市大同杯(原新知杯、宇振杯)初中数学竞赛试题和参考答案目录2017年上海市初中数学竞赛(大同中学杯)试题 3 2017年上海市初中数学竞赛(大同中学杯)试题参考答案 6 2016年上海市初中数学竞赛(大同中学杯)试题11 2016年上海市初中数学竞赛(大同中学杯)试题参考答案14 2015年上海市初中数学竞赛(大同中学杯)试题18 2015年上海市初中数学竞赛(大同中学杯)试题详解22 2014年上海市初中数学竞赛(大同中学杯)试题29 2014年上海市初中数学竞赛(大同中学杯)试题参考答案31 2013年上海市初中数学竞赛(新知杯)试题35 2013年上海市初中数学竞赛(新知杯)试题参考答案38 2012年上海市初中数学竞赛(新知杯)试题43 2012年上海市初中数学竞赛(新知杯)试题详解46 2011年上海市初中数学竞赛(新知杯)试卷50 2011年上海市初中数学竞赛(新知杯)试卷详解53 2010年上海市初中数学竞赛(新知杯)试卷59 2010年上海市初中数学竞赛(新知杯)试卷详解61 2009年上海市初中数学竞赛(新知杯)试卷68 2009年上海市初中数学竞赛(新知杯)试卷参考答案71 2008年上海市初中数学竞赛(新知杯)试卷752008年上海市初中数学竞赛(新知杯)试卷参考答案79 2007年上海市初中数学竞赛(新知杯)试卷81 2007年上海市初中数学竞赛(新知杯)试卷答案详解83 2006年上海市初中数学竞赛(新知杯)试卷87 2006年上海市初中数学竞赛(新知杯)试卷答案详解90 2005年上海市初中数学竞赛(宇振杯)试卷94 2005年上海市初中数学竞赛(宇振杯)试卷参考答案97 2004年上海市初中数学竞赛(宇振杯)试卷99 2004年上海市初中数学竞赛(宇振杯)试卷参考答案101 2003年上海市初中数学竞赛(宇振杯)试卷104 2003年上海市初中数学竞赛(宇振杯)试卷参考答案106 2002年上海市初中数学竞赛(宇振杯)试卷107 2002年上海市初中数学竞赛(宇振杯)试卷参考答案108 2000年上海市初中数学竞赛(弘晟杯)试题110 2000年上海市初中数学竞赛(弘晟杯)试题参考答案1112017年上海市初中数学竞赛(大同中学杯)试卷一、 填空题(每题10分,共80分)1. 已知抛物线c bx ax y ++=2过点(0,0),(22.5,2020.5),(62.5,1812.5),则抛物线与x 轴的另一交点的横坐标为 (精确到0.001)。
2010年(新知杯)上海市初中数学竞赛试卷
![2010年(新知杯)上海市初中数学竞赛试卷](https://img.taocdn.com/s3/m/9b5efd1258fb770bf78a5543.png)
2010年(新知杯)上海市初中数学竞赛试卷(2010年12月12日 上午9:00~11:00)解答本试卷可以使用计算器一、填空题(第1~5小题,每题8分,第6~10小题,每题10分,共90分)1.已知31=+x x ,则=+++10551011xx x x _________。
2. 满足方程()()33222=-+++y x y x 的所有实数对()y x ,为__________。
3. 已知直角三角形ABC 中,3690===∠CA BC C ,,,CD 为C ∠的角平分线,则_________。
4. 若前2011个正整数的乘积201121⨯⨯⨯ 能被k2010整除,则正整数k 的最大值为________。
5. 如图,平面直角坐标系内,正三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM=MN ,则点M 的坐标为_________。
6. 如图,矩形ABCD 中,AB=5,BC=8,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,使得AE=2,BF=5,DG=3,AH=3,点O 在线段HF 上,使得四边形AEOH 的面积为9,则四边形OFCG 的面积是_________。
7. 整数q p ,满足2010=+q p ,且关于x 的一元二次方程0672=++q px x 的两个根均为正整数,则=p ________。
8. 已知实数c b a ,,满足0=++≥≥c b a c b a ,且0≠a 。
设21x x ,是方程02=++c bx ax 的两个实数根,则平面直线坐标系内两点()()1221x x B x x A ,,,之间的距离的最大值为_______。
9. 如图,设ABCDE 是正五边形,五角星ACEBD (阴影部分)的面积为1,设AC 与BE 的交点为P ,BD 与CE 的交点为Q ,则四边形APQD 的面积等于_______。
(完整版)2007--2011年“新知杯”上海市初中数学竞赛试题(设好格式,A4打印即可)
![(完整版)2007--2011年“新知杯”上海市初中数学竞赛试题(设好格式,A4打印即可)](https://img.taocdn.com/s3/m/96cf0d2bbed5b9f3f80f1c04.png)
QP E DC BAF P E DCBA2008年“新知杯”上海市初中数学竞赛一、填空题:1、如图:在正ABC ∆中,点D 、E 分别在边BC 、CA 上,使得AE CD =,AD 与BE 交于点P ,AD BQ ⊥于点Q .则=QBQP_____________. 2、不等式a x x ≥-+622对于一切实数x 都成立.则实数a 的最大值为_____________. 3、设n a 表示数4n 的末位数.则=+++200821a a a _____________.4、在菱形ABCD 中,︒=∠60A ,1=AB ,点E 在边AB 上,使得12:EB :AE =,P 为对角线AC 上的动点.则PB PE +的最小值为_____________.5、关于x 的方程12122+=--a a x ax 的解为_____________. 6、如图:设P 是边长为12的正ABC ∆内一点,过P 分别作三条边BC 、CA 、AB 的垂线,垂足分别为D 、E 、F .已知321::PF :PE :PD =.那么,四边形B D P F 的面积是_____________.7、对于正整数n ,规定n !n ⨯⨯⨯= 21.则乘积!!!921⨯⨯⨯ 的所有约数中,是完全平方数的共有_____________个.8、已知k 为不超过2008的正整数,使得关于x 的方程02=--k x x 有两个整数根.则所有这样的正整数k 的和为_____________.9、如图:边长为1的正111C B A ∆的中心为O ,将正111C B A ∆绕中心O 旋转到222C B A ∆,使得1122C B B A ⊥.则两三角形的公共部分(即六边形ABCDEF )的面积为_________. 第9题图 第10题图10、如图:已知︒=∠=∠9DAC BAD ,AE AD ⊥,且BE AC AB =+.则=∠B _____________.二、如图:在矩形ABCD 内部(不包括边界)有一点P ,它到顶点A 及边BC 、CD 的距离都等于1,求矩形ABCD 面积的取值范围.FEDC三、已知实数x 、y 满足如下条件:()()⎪⎩⎪⎨⎧=-+>->+4220202y x y x y x y x ,求y x -的最小值.四、如图:在凹六边形ABCDEF 中,A ∠、B ∠、D ∠、E ∠均为直角,p 是凹六边形ABCDEF 内一点,PM 、PN 分别垂直于AB 、DE ,垂足分别为M 、N ,图中每条线段的长度如图所示(单位是米),求折线MPN 的长度(精确到0.01米).五、求满足不等式n n n n n <⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡131132的最大正整数n ,其中[]x 表示不超过实数x 的最大整数.2009年新知杯上海市初中数学竞赛试题一、填空题(第1-5小题每题8分,第6-10小题每题10分,共90分)1、对于任意实数a,b ,定义,a ∗b =a(a +b)+b, 已知a ∗2.5=28.5,则实数a 的值是 。
2000-2012年(新知杯)历年上海市初中数学竞赛试卷及答案(试题全与答案分开)
![2000-2012年(新知杯)历年上海市初中数学竞赛试卷及答案(试题全与答案分开)](https://img.taocdn.com/s3/m/2197d677dcccda38376baf1ffc4ffe473368fd9d.png)
2012年(新知杯)上海市初中数学竞赛试卷解答本试卷可以使用科学计算器一、填空题(每题10分,共80分)1. 已知的边上的高为,与边平行的两条直线将的面积三等分,则直线与之间的距离为_____________。
2. 同时投掷两颗骰子,表示两颗骰子朝上一面的点数之和为的概率,则的值为______________。
3. 在平面直角坐标系中,已知点(,),点在直线上,使得是等腰三角形,则点的坐标是____________________。
4. 在矩形中,。
点分别在上,使得。
是矩形内部的一点,若四边形的面积为,则四边形的面积等于_______________。
5. 使得是素数的整数共有___________个。
6. 平面上一动点到长为的线段所在直线的距离为,当取到最小值时,_____________。
7. 已知一个梯形的上底、高、下底恰好是三个连续的正整数,且这三个数使得多项式(是常数)的值也恰好是按同样顺序的三个连续正整数,则这个梯形的面积为________________。
8. 将所有除以余和除以余的正整数从小到大排成一列,设表示这数列的前项的和,则___________。
(这里表示不超过实数的最大整数。
)二、解答题(第9,10题,每题15分,第11,12题,每题20分,共70分)9. 如图,是正方形内一点,过点分别作的垂线,垂足分别为。
已知,求证:或者,或者。
10. 解方程组。
11. 给定正实数,对任意一个正整数,记,这里,表示不超过实数的最大整数。
(1)若,求的取值范围;(2)求证:。
12. 证明:在任意个互不相同的实数中,一定存在两个数,满足2011年(新知杯)上海市初中数学竞赛试卷一、 填空题(每题10分,共80分)1. 已知关于x 的两个方程: 032=+-m x x ①, 02=++m x x ②,其中0≠m 。
若方程①中有一个根是方程②的某个根的3倍,则实数m 的值是___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013上海市初中数学竞赛(新知杯)1.已知721,721-=+=b a ,则.________33=-+-b b a a 2.已知43214321//////,//////m m m m l l l l ,._______,20,100===EFGH ILKJ ABCD S S S 则 3.已知F E AC AB A 、,,8,690==︒=∠在AB 上且3,2==BF AE 过点E 作AC 的平行线交BC 于D ,FD 的延长线交AC 的延长线于G ,则.__________=GF 4.已知凸五边形的边长为)(,,,,,54321x f a a a a a 为二次三项式;当1a x =或者5432a a a a x +++=时,5)(=x f ,当21a a x +=时,,)(p x f =当543a a a x ++=时,q x f =)(,则.________=-q p 5.已知一个三位数是35的倍数且各个数位上数字之和为15,则这个三位数为___________.6.已知关于x 的一元二次方程0)2)(1(2=++++m m ax x 对于任意的实数a 都有实数根,则m 的取值范围是_________________.7.已知四边形ABCD 的面积为2013,E 为AD 上一点,CDE ABE BCE ∆∆∆,,的重心分别为321,,G G G ,那么321G G G ∆的面积为________________.8.直角三角形斜边AB 上的高3=CD ,延长DC 到P 使得2=CP ,过B 作AP BF ⊥交CD 于E ,交AP 于F ,则._________=DE二、解答题(第9题、第10题15分,第11题、第12题20分)9.已知︒=∠90BAC ,四边形ADEF 是正方形且边长为1,求CABC AB 111++的最大值.10.已知a 是不为0的实数,求解方程组:⎪⎪⎩⎪⎪⎨⎧=-=-ax y xy a yxxy 1 11.已知:,1>n n a a a a ,,,,321Λ为整数且2013321321=⋅⋅⋅⋅=++++n n a a a a a a a a ΛΛ,求n 的最小值.12.已知正整数d c a 、、、b 满足),13(),13(22-=+=d c b d c a 求所有满足条件的d 的值. 答案:1.27102- 2.60 3.265 4.0 5.735 6.12-≤≤-m 7.3671 8.599.CA BC AB 111++4221+≤ 10.经检验原方程组的解为:⎪⎩⎪⎨⎧+=+=1122a y a a x ,⎪⎩⎪⎨⎧+-=+-=1122a y a a x . 11.【解析】2013,1,1,554321===-===a a a a a n 当满足题设等式,下证当4≤n 时,不存在满足等式要求的整数,不妨设n a a a a ≤≤≤≤Λ321,(1)当4=n 时,611132013⨯⨯=,当4321,,,a a a a 中有负整数时,必为⎩⎨⎧==+⇒-==20132015,1434321a a a a a a ,若2013,143==a a 不满足条件,当20152671,344343<≤+⇒≤⇒≥a a a a a 无解.不可能,当4321,,,a a a a 中无负整数时,显然20134≠a ,6714≤a ,容易验证等式不可能成立.(2)当3=n 时,当321,,a a a 中有负整数时,必为,121-==a a 显然等式不成立,当321,,a a a 中无负整数时,同上容易验证等式不可能成立.(3)当2=n 时,21,a a 均为正整数,同上易验证等式不可能成立. 综上所述,n 的最小值为5.12.85=d2013上海新知杯初中数学竞赛答案2012年(新知杯)上海市初中数学竞赛试卷题号一(1~8)二总分9 10 11 12得分评卷复核一、填空题(每题10分,共80分)1. 已知的边上的高为,与边平行的两条直线将的面积三等分,则直线与之间的距离为_____________。
2. 同时投掷两颗骰子,表示两颗骰子朝上一面的点数之和为的概率,则的值为______________。
3. 在平面直角坐标系中,已知点(,),点在直线上,使得是等腰三角形,则点的坐标是____________________。
4. 在矩形中,。
点分别在上,使得。
是矩形内部的一点,若四边形的面积为,则四边形的面积等于_______________。
5. 使得是素数的整数共有___________个。
6. 平面上一动点到长为的线段所在直线的距离为,当取到最小值时,_____________。
7. 已知一个梯形的上底、高、下底恰好是三个连续的正整数,且这三个数使得多项式(是常数)的值也恰好是按同样顺序的三个连续正整数,则这个梯形的面积为________________。
8. 将所有除以余和除以余的正整数从小到大排成一列,设表示这数列的前项的和,则___________。
(这里表示不超过实数的最大整数。
)二、解答题(第9,10题,每题15分,第11,12题,每题20分,共70分)9. 如图,是正方形内一点,过点分别作的垂线,垂足分别为。
已知,求证:或者,或者。
10. 解方程组。
11. 给定正实数,对任意一个正整数,记,这里,表示不超过实数的最大整数。
(1) 若,求的取值范围;(2) 求证:。
12. 证明:在任意个互不相同的实数中,一定存在两个数,满足2011年(新知杯)上海市初中数学竞赛试卷题号 一(1~8) 二 总分9 10 11 12得分 评卷 复核一、 填空题(每题10分,共80分)1. 已知关于x 的两个方程:ΛΛ032=+-m x x ①,ΛΛ02=++m x x ②,其中0≠m 。
若方程①中有一个根是方程②的某个根的3倍,则实数m 的值是___________。
2. 已知梯形ABCD 中,AB //CD ,︒=∠90ABC ,AD BD ⊥,5=BC ,13=BD ,则梯形ABCD 的面积为_______________。
3. 从编号分别为1,2,3,4,5,6的6张卡片中任意抽取3张,则抽出卡片的编号都大于等于2的概率为______________。
4. 将8个数7-,5-,3-,2-,2,4,6,13排列为a ,b ,c ,d ,e ,f ,g ,h ,使得()()22h g f e d c b a +++++++的值最小,则这个最小值为____________。
5. 已知正方形ABCD 的边长为4,E ,F 分别是边AB ,BC 上的点,使得3=AE ,2=BF ,线段AF 与DE 相交于点G ,则四边形DGFC 的面积为_____________。
6. 在等腰直角三角形ABC 中,︒=∠90ACB ,P 是ABC ∆内一点,使得11=PA ,7=PB ,6=PC ,则边AC 的长为______________。
7. 有10名象棋选手进行单循环赛(即每两名选手比赛一场),规定获胜得2分,平局得1分,负得0分。
比赛结束后,发现每名选手的得分各不相同,且第2名的得分是最后五名选手的得分和的54,则第2名选手的得分是_________。
8. 已知a ,b ,c ,d 都是质数(质数即素数,允许a ,b ,c ,d 有相同的情况),且abcd 是35个连续正整数的和,则d c b a +++的最小值为_________。
二、 解答题(第9,10题,每题15分,第11,12题,每题20分,共70分) 9. 如图,矩形ABCD 的对角线交点为O ,已知︒=∠60DAC ,角DAC 的平分线与边DC交于点S ,直线OS 与AD 相交于点L ,直线BL 与AC 相交于点M 。
求证:LC SM //。
解10. 对于正整数n ,记n n ⨯⨯⨯=Λ21!。
求所有的正整数组()f e d c b a ,,,,,,使得!!!!!!f e d c b a ++++=,且f e d c b a ≥≥≥≥>。
解11. (1)证明:存在整数x ,y ,满足2022422=++y xy x ;(2)问:是否存在整数x ,y ,满足?2011422=++y xy x 证明你的结论。
解12. 对每一个大于1的整数n ,设它的所有不同的质因数为1p ,2p ,...,k p ,对于每个()k i p i ≤≤1,存在正整数i a ,使得1+<≤i i a ia i p n p ,记()k ak aap p p n p +++=Λ2121例如,()895210026=+=p 。
(1)试找出一个正整数n ,使得()n n p >;(2)证明:存在无穷多个正整数n ,使得()n .n p 11>。
解2010年(新知杯)上海市初中数学竞赛试卷一、填空题(第1~5小题,每题8分,第6~10小题,每题10分,共90分)1. 已知31=+x x ,则=+++10551011x x x x _________。
2. 满足方程()()33222=-+++y x y x 的所有实数对()y x ,为__________。
3. 已知直角三角形ABC 中,3690===∠CA BC C ,,ο,CD 为C ∠的角平分线,则_________。
4. 若前2011个正整数的乘积201121⨯⨯⨯Λ能被k 2010整除,则正整数k 的最大值为________。
5. 如图,平面直角坐标系内,正三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM=MN ,则点M 的坐标为_________。
6. 如图,矩形ABCD 中,AB=5,BC=8,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,使得AE=2,BF=5,DG=3,AH=3,点O 在线段HF 上,使得四边形AEOH 的面积为9,则四边形OFCG 的面积是_________。
7. 整数q p ,满足2010=+q p ,且关于x 的一元二次方程0672=++q px x 的两个根均为正整数,则=p ________。
8. 已知实数c b a ,,满足0=++≥≥c b a c b a ,且0≠a 。
设21x x ,是方程02=++c bx ax 的两个实数根,则平面直线坐标系内两点()()1221x x B x x A ,,,之间的距离的最大值为_______。
9. 如图,设ABCDE 是正五边形,五角星ACEBD (阴影部分)的面积为1,设AC 与BE 的交点为P ,BD 与CE 的交点为Q ,则四边形APQD 的面积等于_______。