57 随机事件的概率互斥事件

合集下载

互斥事件的概率公式

互斥事件的概率公式

互斥事件的概率公式互斥事件是指事件 A 和事件 B 的交集为空,即 A∩B=。

互斥事件的概率可以用以下公式计算:P(A∪B) = P(A) + P(B) - P(A∩B)其中,A 和 B 为互斥事件,A∩B 表示事件 A 和事件 B 的并集,P(A) 表示事件 A 的概率,P(B) 表示事件 B 的概率,P(A∩B) 表示事件 A 和事件 B 的交集的概率。

互斥事件的概率和为 0,但对立事件的概率和为 1。

对立事件是指与事件 A 互斥的事件 B,即 A∩B=。

对立事件的概率可以用以下公式计算:P(B) = 1 - P(A∩B)在概率论中,互斥事件和对立事件是两种最基本的事件类型。

互斥事件的概率公式可以推导出其他许多事件的概率公式,例如等可能性事件的概率公式和必然事件的概率公式等。

拓展:1. 互斥事件和对立事件是概率论中最基本的事件类型之一。

在概率论中,我们可以用事件的概率来描述事件发生的可能性大小,而互斥事件和对立事件的概率公式则是计算事件发生可能性大小的基本公式。

2. 互斥事件和对立事件的概率和可以为 0 或 1,这取决于事件A 和事件B 的具体情况。

如果事件 A 和事件 B 是互斥的,则它们的交集为空,即 P(A∩B)=0。

如果事件 A 和事件 B 是对立事件,则它们的交集也为空,即 P(A∩B)=0。

如果事件 A 和事件 B 不是互斥事件或对立事件,则它们的交集的概率可以为 0 或 1。

3. 互斥事件和对立事件在概率论中有着广泛的应用。

例如,在赌博中,如果我们已知某个赌注是互斥事件,我们就可以计算出这个赌注的中奖概率,从而更好地决策是否参与这个赌注。

在统计学中,互斥事件和对立事件也是常用的概念,例如在抽样调查中,我们可以用互斥事件和对立事件来描述样本和总体之间的关系。

随机事件及其概率(知识点总结)

随机事件及其概率(知识点总结)

随机事件及其概率一、随机事件1、必然事件在一定条件下,必然会发生的事件叫作必然事件.2、不可能事件在一定条件下,一定不会发生的事件叫作不可能事件.3、随机事件在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件.4、确定事件必然事件和不可能事件统称为相对于随机事件的确定事件.5、试验为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验.【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象.(3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件.二、基本事件空间1、基本事件在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件.2、基本事件空间所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件.【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏.三、频率与概率1、频数与频率在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率()n f A 稳定在某个常数上,则把这个常数称为事件A 的概率,简称为A 的概率,记作()P A .3、频率与概率的关系(1)频率虽然在一定程度上可以反映事件发生的可能性的大小,但频率并不是一个完全确定的数. 随着试验次数的不同,产生的频率也可能不同,所以频率无法从根本上刻画事件发生的可能性的大小,但人们从大量的重复试验中发现:随着试验次数的无限增加,事件发生的频率会稳定在某一固定的值上,即在无限次重复试验下,频率具有某种稳定性.(2)概率是一个常数,它是频率的科学抽象. 当试验次数无限多时,所得到的频率就会近似地等于概率. 另外,概率大,并不表示事件一定会发生,只能说明事件发生的可能性大,但在一次试验中却不一定会发生.四、事件的关系与运算1、包含关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,则我们称 事件B 包含事件A (或称事件A 包含于事件B ),记作B A ⊇(或A B ⊆).2、相等关系一般地,对于事件A 与事件B ,如果事件A 发生时,事件B 一定发生,并且如果事件B 发生时,事件A 一定发生,即若B A ⊇且A B ⊇,则我们称事件A 与事件B 相等,记作A B =.3、并事件如果某事件发生当且仅当事件A 或事件B 发生,则我们称该事件为事件A 与事件B 的并事件(或和事件),记作A B ⋃(或A B +).如果某事件发生当且仅当事件A发生且事件B也发生,则我们称该事件为事件A 与事件B的交事件(或积事件),记作A B⋅).⋂(或A B5、互斥事件如果事件A与事件B的交事件A B⋂=∅),则我们称事⋂为不可能事件(即A B件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中都不会同时发生.6、对立事件如果事件A与事件B的交事件A B⋂=∅),而事件A与⋂为不可能事件(即A B事件B的并事件A B⋃=Ω),则我们称事件A与事件B互⋃为必然事件(即A B为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.【注】事件的关系与运算可以类比集合的关系与运算. 例如,事件A包含事件B 类比集合A包含集合B;事件A与事件B相等类比集合A与集合B相等;事件A 与事件B的并事件类比集合A与集合B的并集;事件A与事件B的交事件类比集合A与集合B的交集……五、互斥事件与对立事件互斥事件与对立事件是今后考察的重点,因此关于互斥事件与对立事件,我们很有必要再作进一步的说明.1、互斥事件与对立事件的关系互斥事件与对立事件都反映的是两个事件之间的关系. 互斥事件是不可能同时发生的两个事件,而对立事件除了要求这两个事件不同时发生以外,还要求这两个事件必须有一个发生. 因此,对立事件一定是互斥事件,而互斥事件不一定是对立事件. 例如,掷一枚骰子,事件:“出现的点数是1”与事件:“出现的点数是偶数”是互斥事件,但不是对立事件;而事件:“出现的点数是奇数”与事件:“出现的点数是偶数”既是互斥事件,也是对立事件.2、互斥事件的概率加法公式(1)两个互斥事件的概率之和如果事件A 与事件B 互斥,那么()()()P A B P A P B ⋃=+;(2)有限多个互斥事件的概率之和一般地,如果事件1A ,2A ,…,n A 两两互斥,那么事件“12n A A A ⋃⋃⋃L 发生”(指事件1A ,2A ,…,n A 中至少有一个发生)的概率等于这n 个事件分别发生的概率之和,即1212()()()()n n P A A A P A P A P A ⋃⋃⋃=+++L L .【注】上述这两个公式叫作互斥事件的概率加法公式. 在运用互斥事件的概率加法公式时,一定要首先确定各事件是否彼此互斥(如果这个条件不满足,则公式不适用),然后求出各事件分别发生的概率,再求和.3、对立事件的概率加法公式对于对立的两个事件A 与B 而言,由于在一次试验中,事件A 与事件B 不会同时发生,因此事件A 与事件B 互斥,并且A B ⋃=Ω,即事件A 或事件B 必有一个发生,所以对立事件A 与B 的并事件A B ⋃发生的概率等于事件A 发生的概率与事件B 发生的概率之和,且和为1,即()()()()1P P A B P A P B Ω=⋃=+=,或()1()P A P B =-.【注】上述这个公式为我们求事件A 的概率()P A 提供了一种方法,当我们直接求()P A 有困难时,可以转化为先求其对立事件B 的概率()P B ,再运用公式()1()P A P B =-即可求出所要求的事件A 的概率()P A .4、求复杂事件的概率的方法求复杂事件的概率通常有两种方法:一种是将所求事件转化为彼此互斥的事件的和,然后再运用互斥事件的概率加法公式进行求解;另一种是先求其对立事件的概率,然后再运用对立事件的概率加法公式进行求解. 如果采用方法一,一定要准确地将所求事件拆分成若干个两两互斥的事件,不能有重复和遗漏;如果采用方法二,一定要找准所求事件的对立事件,并准确求出对立事件的概率.六、概率的基本性质1、任何事件的概率都在01:之间,即对于任一事件A ,都有0()1P A ≤≤.2、必然事件的概率为1,不可能事件的概率为0.3、若事件A 与事件B 互斥,则()()()P A B P A P B ⋃=+.4、两个对立事件的概率之和为1,即若事件A 与事件B 对立,则()()1P A P B +=.。

随机事件的互斥性与全概率公式

随机事件的互斥性与全概率公式

随机事件的互斥性与全概率公式互斥事件和全概率公式在概率论中扮演着重要的角色。

理解这些概念对于解决随机事件的相关问题至关重要。

本文将详细介绍互斥事件和全概率公式,探讨它们在概率论中的应用。

首先,我们来理解互斥事件。

互斥事件是指两个或多个事件之间不存在共同结果的情况。

简而言之,如果一个事件发生了,那么其他事件就不会同时发生。

例如,抛掷一枚硬币,事件A表示出现正面,事件B表示出现反面。

这两个事件是互斥的,因为只能有一个事件发生。

互斥事件之间的概率计算很简单。

当两个事件是互斥的时候,它们的概率之和等于所有事件的概率之和。

以之前的例子来说,事件A的概率为0.5,事件B的概率也为0.5,因此事件A和事件B的概率之和为1。

互斥事件的互斥性使得概率计算更加直观和简化。

接下来,我们将介绍全概率公式。

全概率公式是一种用于计算一个事件在多个互斥事件中发生的概率的方法。

假设有事件A,且事件A可以被划分为一组互斥事件B1,B2,...,Bn,那么全概率公式可以表示为:P(A) = P(B1) * P(A|B1) + P(B2) * P(A|B2) + ... + P(Bn) * P(A|Bn)其中,P(B1),P(B2),...,P(Bn)表示事件B1,B2等互斥事件发生的概率,P(A|B1),P(A|B2),...,P(A|Bn)表示在事件B1,B2等发生的条件下事件A发生的概率。

全概率公式的应用非常广泛。

它可以用于解决诸如信号检测、投资决策、医学诊断等问题。

例如,在医学诊断中,一个患者可能有多种不同的疾病可能性,而每种疾病的发生概率和特定检查结果的条件概率都是已知的。

通过运用全概率公式,我们可以计算出患者患有某种特定疾病的概率。

除了互斥事件和全概率公式,我们还可以通过条件概率和贝叶斯公式来进一步扩展概率论的应用。

条件概率是指某个事件在已知其他相关事件的情况下发生的概率。

贝叶斯公式是利用条件概率来计算逆概率的工具。

综上所述,互斥事件是指两个或多个事件之间不存在共同结果的情况,而全概率公式是一种用于计算一个事件在多个互斥事件中发生的概率的方法。

高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

高考数学复习考点知识讲解课件57 事件的相互独立性、条件概率与全概率公式

件 B:甲和乙选择的景点不同,则条件概率 P(B|A)=( D )
A.176
B.78
C.37
D.67
பைடு நூலகம்
[解析] 由题意知,事件 A:甲和乙至少一人选择庐山,共有 n(A)=C12·C13+1=7 种 情况,事件 AB:甲和乙选择的景点不同,且至少一人选择庐山,共有 n(AB)=C12·C13=6 种情况,P(B|A)=nnAAB=67.故选 D.
2
— 19 —
(新教材) 高三总复习•数学
— 返回 —
条件概率的 2 种求法 (1)利用定义,分别求 P(A)和 P(AB),得 P(B|A)=PPAAB,这是求条件概率的通法. (2)借助古典概型概率公式,先求事件 A 包含的基本事件数 n(A),再求事件 A 与事件 B 的交事件中包含的基本事件数 n(AB),得 P(B|A)=nnAAB.
满 2 局或 3 局,且在 11 分制比赛中,每局甲获胜的概率为23,乙获胜的概率为13;在“FAST5”
模式,每局比赛双方获胜的概率都为12,每局比赛结果相互独立.
(1)求 4 局比赛决出胜负的概率;
(2)设在 24 分钟内,甲、乙比赛了 3 局,比赛结束时,甲乙总共进行 5 局的概率.
— 13 —
— 4—
(新教材) 高三总复习•数学
— 返回 —
2.条件概率 (1)概念:一般地,设
A,B
为两个随机事件,且
P(A)>0,我们称
P(B|A)=PPAAB

在事件 A 发生的条件下,事件 B 发生的条件概率,简称条件概率.
(2)两个公式
nAB
①利用古典概型,P(B|A)= nA .
②概率的乘法公式:P(AB)= P(A)P(B|A) .

第十章 第五节 随机事件、互斥事件的概率

第十章  第五节      随机事件、互斥事件的概率
靶心的频率. f(1)= =0.8,f(2)=
,可以依次计算出表中击中
=0.95,f(3)=
=0.88,f(4)= =
=0.9,f(5)= 0.906.
=0.89,f(6)=
=0.91,f(7)=
(2)由(1)知,射击的次数不同,计算得到的频率值不同,但 随着射击次数的增多,却都在常数0.9的附近摆动. 所以击中靶心的概率约是0.9.
求复杂的互斥事件的概率一般有两种方法:一是直接 求解法,将所求事件的概率分解为一些彼此互斥的事件的
概率的和,运用互斥事件的求和公式计算.二是间接求法,
先求此事件的对立事件的概率,再用公式P(A)=1-P( ), 即运用逆向思维(正难则反),特别是“至多”、“至少”型题目, 用间接求法就显得较简便.
某射手在同一条件下进行射击,结果如下表所示: 射击次数n 10 20 50 100 90 200 178 500 455 1 000 906
击中靶心的次数m 8 19 44 击中靶心的频率
(1)计算表中击中靶心的各个频率; (2)这个运动员击中靶心的概率约是多少?
[思路点拨]
[课堂笔记] (1)依据公式f=
(理)甲、乙两袋装有大小相同的红球和白球,甲袋装 有2个红球,2个白球;乙袋装有2个红球,n个白球.现从 甲、乙两袋中各任取2个球. (1)若n=3,求取到的4个球至少有一个是白球的概率; (2)若“取到的4个球中至少有2个红球”的概率为 求n. ,
则P(A)=
而4个球至少有一个是白
球的概率
P=1-P(A)=1(2)记“取到的4个球至多有1个红球”为事件B,“取到的 4个球只有1个红球”为事件B1,“取到的4个球全是白球” 为事件B2. 由题意,
得P(B)=1-

随机事件的互斥事件和独立事件

随机事件的互斥事件和独立事件

随机事件的互斥事件和独立事件1. 互斥事件1.1 定义互斥事件(Mutually Exclusive Events)指的是两个事件不可能同时发生。

用数学符号表示为:A ∩ B = ∅,即事件A和事件B的交集为空集。

1.2 性质(1)完备性:对于任意事件A,有P(A) = P(A ∩ B’) + P(A ∩ B),其中B’为事件B的补集。

(2)互斥事件的概率公式:若A1, A2, …, An为互斥事件,则P(A1 ∪ A2 ∪ … ∪ An) = P(A1) + P(A2) + … + P(An)。

1.3 应用互斥事件在实际生活中有很多应用,如在抽奖活动中,中奖和不中奖这两个事件就是互斥的。

在统计分析中,也可以利用互斥事件来计算概率。

2. 独立事件2.1 定义独立事件(Independent Events)指的是两个事件的发生与否互不影响。

用数学符号表示为:P(A ∩ B) = P(A)P(B)。

2.2 性质(1)组合性:对于任意事件A和B,有P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。

(2)独立事件的乘法公式:若A1, A2, …, An和B1, B2, …, Bm为独立事件,则P(A1 ∩ B1 ∩ … ∩ An ∩ Bm) = P(A1)P(B1) … P(An)P(Bm)。

2.3 应用独立事件在实际生活中也有很多应用,如在投掷两个骰子的情况下,第一个骰子出现1点,第二个骰子出现2点的概率就是独立事件。

在统计分析中,独立事件可以用来计算联合概率。

3. 互斥事件与独立事件的区别与联系3.1 区别(1)定义不同:互斥事件指的是两个事件不可能同时发生,而独立事件指的是两个事件的发生与否互不影响。

(2)概率公式不同:互斥事件的概率公式为P(A ∩ B’) + P(A ∩ B),独立事件的概率公式为P(A)P(B)。

3.2 联系(1)互补事件:互斥事件和独立事件都可以看作是互补事件。

概率与统计事件的互斥与独立的概率计算实例解析

概率与统计事件的互斥与独立的概率计算实例解析

概率与统计事件的互斥与独立的概率计算实例解析概率与统计是数学中的重要分支,广泛应用于各个领域。

在概率与统计的研究中,事件的互斥与独立是两个基本的概念。

本文将通过实例解析,详细介绍互斥事件和独立事件的概率计算方法。

1. 互斥事件的概率计算实例解析互斥事件指的是两个事件之间不可能同时发生的情况。

以抛掷一枚硬币为例,事件A表示硬币正面朝上,事件B表示硬币反面朝上。

由于硬币只有两面,所以事件A和事件B是互斥事件。

当两个事件是互斥事件时,它们的概率计算方法如下:P(A 或 B) = P(A) + P(B)例如,如果硬币是均匀的,则硬币正面朝上的概率P(A) = 1/2,硬币反面朝上的概率P(B) = 1/2。

因此,硬币正面朝上或者反面朝上的概率为:P(A 或 B) = P(A) + P(B) = 1/2 + 1/2 = 1由此可见,两个互斥事件的概率之和等于1。

2. 独立事件的概率计算实例解析独立事件指的是两个事件之间的发生与否互不影响的情况。

以从一副标准扑克牌中抽取一张牌为例,事件A表示抽到红心牌,事件B表示抽到大于等于10的数值牌。

由于抽取一张红心牌与抽取一张大于等于10的数值牌之间没有影响,所以事件A和事件B是独立事件。

当两个事件是独立事件时,它们的概率计算方法如下:P(A 且 B) = P(A) × P(B)例如,一副标准扑克牌中有13张红心牌,一共有52张牌,所以抽到红心牌的概率P(A) = 13/52。

而大于等于10的数值牌有10张,所以抽到大于等于10的数值牌的概率P(B) = 10/52。

因此,抽到一张红心牌且大于等于10的数值牌的概率为:P(A 且 B) = P(A) × P(B) = (13/52) × (10/52) ≈ 0.049由此可见,两个独立事件的概率之积等于它们各自的概率乘积。

综上所述,概率与统计中的事件互斥与独立是两个基本的概念,其概率计算方法分别为P(A 或 B) = P(A) + P(B)和P(A 且 B) = P(A) × P(B)。

随机事件的概率简介

随机事件的概率简介

随机事件的概率简介概率是数学中一个非常重要的概念,它用来描述随机事件发生的可能性大小。

在我们日常生活中,随机事件无处不在,比如抛硬币的结果、掷骰子的点数、抽奖的中奖概率等等。

本文将简要介绍随机事件的概率以及相关概念。

一、基本概念1. 随机事件随机事件指的是在一次试验中,可能发生也可能不发生的结果。

比如抛掷一枚硬币出现正面,就是一个随机事件。

2. 样本空间样本空间是指试验所有可能结果的集合。

以抛硬币为例,样本空间就是{正面,反面}。

3. 事件事件是样本空间的一个子集,表示我们关注的一些结果。

以抛硬币为例,出现正面就是一个事件。

二、概率的定义概率可以通过频率和古典概型来定义。

1. 频率定义频率定义是通过实验结果的频率来计算概率。

当试验次数趋于无穷大时,事件发生的频率将逐渐接近概率。

比如抛硬币,当我们大量重复抛掷硬币,并记录正面朝上的次数,我们就可以得到近似的概率。

2. 古典概型古典概型也称为等可能概型。

它适用于所有的试验结果等可能且有限的情况。

比如抛硬币,正反两面出现的概率都是1/2。

三、概率的性质概率具有以下几个性质:1. 非负性概率值始终大于等于0。

对于任何事件A,P(A) ≥ 0。

2. 规范性对于样本空间Ω,必然发生的概率为1。

即P(Ω) = 1。

3. 加法性对于两个互斥事件A和B,它们的概率之和等于它们分别的概率之和。

即P(A∪B) = P(A) + P(B)。

四、概率的计算方法概率的计算可以通过以下方法进行:1. 经典概型法当试验结果等可能且有限时,可以使用经典概型法计算概率。

比如抛硬币,正反两面的概率均为1/2。

2. 频率法当试验次数无限大时,可以通过频率法计算概率。

即记录实验结果的频率,当试验次数很大时,事件发生的频率接近概率。

3. 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。

条件概率可以表示为P(A|B),读作“在事件B发生的条件下,事件A发生的概率”。

4. 乘法定理乘法定理用于计算多个事件同时发生的概率。

随机事件及其概率知识点整理

随机事件及其概率知识点整理

随机事件及其概率知识点整理1. 什么是随机事件?随机事件是指在某个试验或观察中,可能发生或不发生的事件。

例如,抛一枚硬币,正面朝上和反面朝上都是可能的结果。

2. 随机事件的分类随机事件可以分为互斥事件和非互斥事件。

- 互斥事件:两个事件不能同时发生。

例如,抛硬币时,正面和反面是互斥事件。

- 非互斥事件:两个事件可以同时发生。

例如,掷骰子时,得到奇数和得到小于等于3的数是非互斥事件。

3. 概率的定义概率是用来描述随机事件发生可能性的数值。

概率的范围在0到1之间,其中0表示不可能事件,1表示必然事件。

4. 概率的计算方法根据事件的性质和条件,可以使用以下概率计算方法:- 经典概率:对于等可能的事件,经典概率可以通过事件的数量比上总的可能性数量来计算。

- 相对频率概率:通过观察事实事件发生的频率来计算概率。

- 主观概率:基于主观估计和判断来计算概率。

5. 概率的性质概率具有一些重要的性质,包括:- 加法法则:对于互斥事件,概率可以通过事件的概率求和来计算。

- 乘法法则:对于独立事件,概率可以通过事件的概率相乘来计算。

6. 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。

条件概率可以通过将事件的交集概率除以条件事件的概率来计算。

7. 贝叶斯定理贝叶斯定理是用于计算逆条件概率的定理。

它通过已知条件发生的条件下,计算另一个事件发生的概率。

8. 期望值期望值是一个随机变量可能取值的加权平均值。

它可以通过将每个可能值乘以其概率,然后求和来计算。

以上是对随机事件及其概率知识点的简要整理,希望能对您有所帮助。

如有更多问题,请随时提问。

高考数学概率知识点总结及解题思路方法

高考数学概率知识点总结及解题思路方法

高考数学概率知识点总结及解题思路方法测试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.测试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的根本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生6次的概率.§11.概率知识要点1.概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.2.等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等, 那么,每一个根本领件的概率都是工,如果某个事件A包含的结果有m个,那么事件A的概率P(A)=m. n n 3.①互斥事件:不可能同时发生的两个事件叫互斥事件.如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:P(A i A2*-F A n) =P(A i) P(A2)+-F P(A n).②对立事件:两个事件必有一个发生的互斥事件叫对立事件.例如:从1〜52张扑克牌中任取一张抽到红桃〞与抽到黑璘:耳为互斥事旦不件,由于其中一个不可能同时发生,但又不能保证其中一个必仁故不是对立事件.而抽到红色牌〞与抽到黑色牌互为对立事件,由于其中一个必发生.注意:i.对立事件的概率和等于1:P(A)+P(A)=P(A+M=1.ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A B)=P(A) P(B).由此,当两个事件同时发生的概率P (AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:抽到老K" ;B:抽到红牌〞那么A应与B互为独立事件[看上去A与B有关系很有可能不是独立事件,但P(A)=&=」P(B)=26 J,P(A) P(B)=」.又事件AB表示既52 13 52 2 26抽到老K对抽到红牌〞即抽到红桃老K或方块老K〞有P(A B)=Z=」, 52 26因止匕有P(A) P(B) =P(A B).推广:假设事件A I,A2,…,A n相互独立,那么P(A i A2…A n)=P(A i) P(A2)…P(A n). 注意:i. 一般地,如果事件A与B相互独立,那么A与B,A与B, A 与B也都相互独立.ii.必然事件与任何事件都是相互独立的iii.独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.④独立重复试验:假设n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,那么称这n次试验是独立的.如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:P n(k) Cp k(1—P)n£4.对任何两个事件都有P(A +B) =P(A) +P(B) -P(A B)第十二章-概率与统计测试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.测试要求:(1) 了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布.(3)会用样本估计总体期望值和方差.国2.概率与统计知识要点一、随机变量.1.随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2.离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 .假设E是一个随机变量,a, b是常数.那么n=a2+b也是一个随机变量.一般地,假设已是随机变量,f(x)是连续函数或单调函数,那么f©也是随机变量也就是说, 随机变量的某些函数也是随机变量.设离散型随机变量已可能取的值为:X1,X2,…,X i,…E取每一个值X i(i=l,2,…)的概率P( j)=P i,那么表称为随机变量E的概率分布,简称E 的分布列.有性质①PiM=1,2,…;②P1+P2什+Pi l =1 .注意:假设随机变量可以取某一区间内的一切值, 这样的变量叫做连续型随机变量.例如:3[0,5]即E可以取0〜5之间的一切数,包括整数、小数、无理数.3.⑴二项分布:如果在一次试验中某事件发生的概率是巳那么在n 次独立重复试验中这个事件恰好发生k次的概率是:P(E =k) =c n P k q n〞[其中k =0,1,…,n, q =1 — P]于是得到随机变量2的概率分布如下:我们称这样的随机变量已服从二项分布,记作七~B (np),其中n, P为参数,并记Ckp k q n*=b(k;n P). ⑵二项分布的判断与应用.①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件, 随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比拟小,而每次抽取时又只有两种试验结果, 此时可以把它看作独立重复试验,利用二项分布求其分布列.4.几何分布:2=k 〞表示在第k次独立重复试验时,事件第一次发生, 如果把k 次试验时事件A发生记为A k ,事A不发生记为A k,P(A k)=q , 那么P(\k) =P(8?…A;1AJ .根据相互独立事件的概率乘法分式:P(甘)=P(A I)P(A2)…P(A k^P(A k)才与(k =1,2,3,…)于是得到随机变量已的概率分布列.5.⑴超几何分布:一批产品共有N件,其中有M (M<N)件次品,今抽取n(1 WnEN)件,那么其中的次品数已是一离散型随机变量,分布列k n -k为P k) =£里1 (04MM,0 Mn _k MN _M).〔分子是从M件次品中取k件, C N从N-M件正品中取n-k件的取法数,如果规定m<r时C m r=0,那么k的范围可以写为k=0, 1,…,n.〕⑵超几何分布的另一种形式:一批产品由a件次品、b件正品组成,k n _k今抽取n件(1WnWa+b那么次品数E的分布列为P&=k)=c a c b k=0,1,…,n.. C a b⑶超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数.艮从超几何分布.假设放回式抽取,那么其中次品数〞的分布列可如下求得:把a 他个产品编号,那么抽取n次共有(a+b)n个可能结果,等可能:W=k) 含c n a k b n」个结果, 故k k. n k i -PS =k 〕 =Cna b n- Hk 〔W 〕k 〔1—W 〕n ,k =0,12 …,n,即〞~ B 〔n,a 〕.[我们先为 k 〔a,b 〕a b a- b a b个次品选定位置,共c k 种选法;然后每个次品位置有a 种选法,每个 正品位置有b 种选法]可以证实:当产品总数很大而抽取个数不多时, p 〔、k 〕5t pW=k 〕,因此二项分布可作为超几何分布的近似,无放回抽样 可近似看作放回抽样. 二、数学期望与方差.1.期望的含义:一般地,假设离散型随机变量E 的概率分布为那么称MWP 1%2P 2+…以n P nA 为的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平 2 .⑴随机变量〞=a U+b 的数学期望:E 〞 =E 〔a :+b 〕 =aE 巴+b ①当a=0时,E 〔b 〕 =b ,即常数的数学期望就是这个常数本身. ②当a=1时,E ^+b 〕=E C+b ,即随机变量已与常数之和的期望等于已的期望与这个常数的和.③当b=0时,E 〔a 与=aEj 即常数与随机变量乘积的期望等于这个常数 与随机变量期望的乘积为:(p + q = 1)⑷二项分布:E F.就/飞〞二印其分布列为'~B 〔n ,P 〕.〔P 为发⑵单点分布:P 〔 =1〕 =c .⑶两点分布: Et=c M1 =c其分布列为:E £=0M q +1M p =p ,其分布列生之的概率)⑸几何分布:E』1其分布列为一q(k,p). (P为发生E的概率) P3.方差、标准差的定义:当随机变量E的分布列为P(£=X k) =P k(k =1,2,…)时,那么称2小1上自、1十X2-EE)2P2平-十X n_E〞Pn +•为E的方差. 显然D U之0,故也=乒.v为E的根方差或标准差.随机变量E的方差与标准差都反映了随机变量E取值的稳定与波动,集中与离散的程度.D?越小,稳定性越高,波动越小.4.方差的性质.⑴随机变量〞=a£+b的方差D(n)=D(aE+b) =a2Dj (a、b均为常数) ⑵单点分布:D^=0其分布列为Array P( =1)=P⑶两点分布:D t = Pq其分布列为:(P+ q = 1)⑷二项分布:D ?';=nPq⑸几何分布:D = q2 P5.期望与方差的关系.⑴如果E U和E"者B存在,贝u E(t±n)=E t±E n⑵设已和“是互相独立的两个随机变量, 那么E(5)=E J E B D代+") = D t + D"⑶期望与方差的转化:D U E&(4)E(t-E it)=E(t)-E(E^)(由于E^为一常数)=E -E =0.三、正态分布.(根本不列入测试范围)1.密度曲线与密度函数:对于连续型随机变量总位于X轴上方,S落在任一区间[a,b)内的概率等于它与X轴.直线x=a与直线x=b所围成的曲边梯形的面积图像的函数f(x)叫做E 的密度函数,由于X"芭q ,+a c )b是必然事件,故密度曲线与x 轴所夹局部面积等于1. 2 .⑴正态分布与正态曲线:如果随机变量 S 的概率密度为:(X十)2f(x) = ^― e 24.(x w R, R ,o ■为常数,且仃为0),称E 服从参数为R ,o '的■. 2 二二正态分布,用0〜N(%r 2)表示.f(x)的表达式可简记为N(R Q 2),它的密度 曲线简称为正态曲线.⑵正态分布的期望与方差:假设七〜N(N/),那么已的期望与方差分别为: E -」,D -:,-2. ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线x "对称.③当x =N 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降 低,呈现出 中间高、两边低〞的钟形曲线.④当x <N 时,曲线上升;当x>N 时,曲线下降,并且当曲线向左、 向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当N 一定时,曲线的形状由.确定,.越大,曲线越 矮胖〞表示总 体的分布越分散;灯越小,曲线越 瘦高〞,表示总体的分布越集中. 3 .⑴标准正态分布:如果随机变量 s 的概率函数为x 2平(x)Jr Y x y 妁,那么称 已服从标准正态分布.即.〜N(0,i)有2 二y=f(x)(如图阴影局部)的曲线叫E 的密度曲线,力么其僦 xy邛(x)=p(£wx),中(x)=i_%»)求出,而 P (a< ^Wb)的计算那么是P(a Mb) =④(b) _^(a).注意:当标准正态分布的6(x)的X 取0时,有①(x)=0.5当①(x)的X 取大 于 0 的数时,有二(x) A0.5.比方曲0.5-N ) =0.0793Y0.5 贝U 0.5-. 如图.⑵正态分布与标准正态分布间的关系:假设 之〜用乩仃2)那么E 的分布通ISgg =0.5 Sa=0.5+S常用 F(x)表示,且有 p(?x) =F(x)=5(x -〃).(T4.⑴“金〞原那么.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布 N(N Q 2).②确定一次试 验中的取值a 是否落入范围串-3G T , N+3m .③做出判断:如果 a W (N —3仃,N+3⑴,接受统计假设.如果a a (2—3仃,r+刘,由于这是小概率 事件,就拒绝统计假设.⑵“女〞原那么的应用:假设随机变量 已服从正态分布N (依2)那么已落在 (N-3Q ,N+3⑴内的概率为 99.7% 亦即落在(良-3G出+即之外的概率为 0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合 格(即E 不服从正态分布).▲必然小于0妗x线。

概率中的互斥事件和排列组合

概率中的互斥事件和排列组合

概率中的互斥事件和排列组合概率是数学中的一个重要分支,它用来描述随机事件发生的可能性。

在概率理论中,常常涉及到互斥事件和排列组合的概念。

本文将介绍互斥事件和排列组合在概率计算中的应用。

一、互斥事件在概率理论中,互斥事件指的是两个或多个事件不可能同时发生的情况。

也就是说,如果一个事件发生了,那么其他事件一定不会发生。

例如,假设有一个骰子,事件A表示投掷结果是奇数,事件B表示投掷结果是偶数。

显然,事件A和事件B是互斥的,因为骰子的结果要么是奇数,要么是偶数,不可能同时是奇数和偶数。

在计算互斥事件的概率时,可以使用加法法则。

假设事件A和事件B是互斥事件,那么它们的概率可以通过以下公式计算:P(A 或 B) = P(A) + P(B)二、排列组合在概率计算中,排列组合是一种常见的概念,用于计算事件之间的可能性。

排列组合分为两种情况:排列和组合。

排列是指从一组物体中选择若干个物体进行排列,考虑它们的顺序。

例如,从数字1、2、3中选择两个数进行排列,可以得到以下6个排列:(1, 2)、(1, 3)、(2, 1)、(2, 3)、(3, 1)、(3, 2)。

计算排列的数量时,可以使用以下公式:P(n, r) = n! / (n - r)!其中,P(n, r)表示从n个物体中选择r个物体进行排列,n!表示n的阶乘,即n * (n-1) * ... * 2 * 1。

组合是指从一组物体中选择若干个物体,不考虑它们的顺序。

例如,从数字1、2、3中选择两个数进行组合,可以得到以下三个组合:(1, 2)、(1, 3)、(2, 3)。

计算组合的数量时,可以使用以下公式:C(n, r) = n! / (r! * (n - r)!)其中,C(n, r)表示从n个物体中选择r个物体进行组合。

三、互斥事件和排列组合的应用互斥事件和排列组合在概率计算中的应用非常广泛。

通过互斥事件的概率和排列组合的计算,可以解决各种概率问题。

例如,假设有一个扑克牌游戏,牌面上有52张牌。

随机事件的独立性与互斥性知识点

随机事件的独立性与互斥性知识点

随机事件的独立性与互斥性知识点在概率论中,随机事件的独立性与互斥性是两个非常重要的概念。

理解这两个概念对于解决各种概率问题以及理解随机现象的本质具有关键意义。

首先,我们来谈谈互斥事件。

互斥事件指的是两个事件不能同时发生。

比如说,抛一枚硬币,正面朝上和反面朝上就是互斥事件,因为在一次抛硬币的过程中,不可能既正面朝上又反面朝上。

再比如,从一副扑克牌中抽一张牌,抽到红桃和抽到黑桃就是互斥事件,因为一张牌不可能既是红桃又是黑桃。

用数学语言来表示,如果事件 A 和事件 B 是互斥事件,那么它们的交集为空集,即P(A ∩ B) = 0。

这里的 P 表示概率。

互斥事件的概率计算相对简单。

如果事件 A 和事件 B 互斥,那么事件 A 或者事件 B 发生的概率,就等于事件 A 发生的概率加上事件 B 发生的概率,即 P(A ∪ B) = P(A) + P(B)。

举个例子,一个袋子里有 5 个红球和 3 个蓝球,从中随机摸出一个球,摸到红球和摸到蓝球就是互斥事件。

摸到红球的概率是 5/8,摸到蓝球的概率是 3/8,那么摸到红球或者蓝球的概率就是 5/8 + 3/8 = 1。

接下来,我们说说独立事件。

独立事件是指一个事件的发生与否不影响另一个事件发生的概率。

比如说,今天下雨和明天考试成绩好不好就是独立事件,今天下雨不会影响明天考试成绩的好坏。

再比如,你第一次抛硬币正面朝上和第二次抛硬币正面朝上也是独立事件,第一次的结果不会影响第二次的结果。

如果事件 A 和事件 B 是独立事件,那么事件 A 发生且事件 B 发生的概率等于事件 A 发生的概率乘以事件 B 发生的概率,即P(A ∩ B) =P(A) × P(B)。

举个例子,有两个独立的抽奖活动,抽奖活动甲中奖的概率是 02,抽奖活动乙中奖的概率是 03。

那么同时在甲和乙两个抽奖活动中中奖的概率就是 02 × 03 = 006。

那么,互斥事件和独立事件之间有什么区别和联系呢?区别在于,互斥事件关注的是两个事件能否同时发生,而独立事件关注的是一个事件的发生对另一个事件发生概率的影响。

随机事件的概率与互斥事件的概率加法公式

随机事件的概率与互斥事件的概率加法公式
(1)判断事件是否为等可能事件; (2)试验包含的所有结果共有多少种(n); (3)事件A包含了其中的多少种结果(m).
2、运用互斥事件的概率公式解题时:
首先要分清事件是否互斥,同时要学会把 一个事件分拆为几个互斥事件,做到不重不 漏,达到化繁为简的目的。
例1:将骰子抛掷一次,求向上的数小于 3的概率?
例2:将骰子抛掷两次,求向上的 数之和为5的概率?(见教材第1 16页例3)
归纳:(1).判断事件是否为等可能事件;
(2).试验包含的所有结果共有多少 (n);(3).事件A包含了其中的多少种结 果(m).
练习:
1、从3台甲型彩电和2台乙型彩电中
种结果。
故所求概率为:P 78 13 90 15
二:互斥事件
P ( A + B ) = P ( A ) + P ( B )
练习1:
若事件A,B是对立事件,则有 (B)
A. P(AB)0
B. P (A B )0且 P (A+B) =1
C. P(A B)0且 P(A+B) 1D. P (A B )0且 P (A+B) 1
任选2台,其中两种品牌的彩电都齐全
的概率是: A. 1
5
B.
2 5
(C)
C.
3 5
D.
4 5
练习.
2、从数字1,2,3,4,5中随机抽取3
个数字(允许重复)组成一个三位数,其各
位数字之和等于9的概率 (D)
A. 13
125
B. 16
125
C. 1 8
125
D. 1 9
125
练习:
3、 有20个零件,其中16个一等品,4个 二等品,若从20个零件中任取3个,那么 至少有1个是一等品的概率是: (D )

互斥事件的概率公式PPT课件

互斥事件的概率公式PPT课件

在上面5×4种结果中,同时摸出白球的结 果有3×2种.因此,从两个坛子里分别摸出1
个球,都是白球的概率是
PA B 3 2
54
另一方面,从甲坛子里摸出1个球,得到
白球的概率:
PA 3
5
从乙坛子里摸出1个球,得到白球的概率:
PB 2
4
由 3 2 3 2 ,我们看到: 54 5 4
PA B PA PB
从甲坛子里摸出1个球得到黑球与从乙坛子里摸出1个球得到白球同时发生的概率从甲坛子里摸出1个球得到白球与从乙坛子里摸出1个球得到黑球同时发生的概率从两个坛子里分别摸出1个球恰得到一个白球的概率为从两个坛子里分别摸出1个球至少得到一个黑球的概率是什么
各位领导、老师、同学们
大家好!
2006.05.26
复习提问
1 3 1 5 10 2
“从两个坛子里分别摸出1个球,至少
得到一个黑球”的概率是什么?
这就是求至少有一个黑球的概率
P(A·)B +P(A·)+BP( ·B)A
1 3 1 7 5 10 5 10
例题讲解
[例1]甲、乙2人各进行1次射击,如果2 人击中目标的概率都是0.6,计算: (1)2人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中ห้องสมุดไป่ตู้标的概率.
(3)解法一:“2人各射击1次,至少有1人击 中目标”即为“2人都击中目标”与“恰有1人击中 目标”有一发生则事件发生,因此其概率
P=P(A·B)+[P(A·B)+P(A ·B)]
=0.36+0.48=0.84
解法二:“2人各射击1次,至少有1人击中目标” 与“2人都未击中目标”互为对立事件. 而P(A·B)=P(A)·P(B ) =(1-0.6)×(1-0.6)=0.4×0.4=0.16 因此,至少有1人击中目标的概率 P=1-P(A ·B)=1-0.16=0.84.

57随机事件的概率互斥事件

57随机事件的概率互斥事件

【2012C 22C 26=415. 答案:4154.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一个产品是正品(甲级)的概率为________.解析:记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级)的概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92. 答案:0.92 5.向三个相邻的军火库各投一枚炸弹.向三个相邻的军火库各投一枚炸弹.击中第一个军火库的概率是击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为________.解析:设A 、B 、C 分别表示击中第一、二、三个军火库,易知事件A 、B 、C 彼此互斥,且P (A )=0.025,P (B )=P (C )=0.1.设D 表示军火库爆炸,则P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225.所以军火库爆炸的概率为0.225. 答案:0.225 6.(2011年镇江调研)已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是1235,现从中任意取出2粒恰好是同一色的概率是________.解析:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子的概率的和,即为17+1235=173535. . 答案:17357.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是________.解析:(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种.高考数学理科苏教版课时精品练】作业57第10章第一节章第一节随机事件随机事件的概率.互斥事件1.某射手在一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.解析:由题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:0.5 2.(2011年常州调研)甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为_______.解析:由对立事件的性质知在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95. 答案:0.95 3.一个袋中有3个红球,2个黄球和1个蓝球,从中随机地取出2个球,则两种颜色相同的概率是________.解析:两球颜色相同包括:①取到两红球,②取到两黄球,故所求概率为P =C 23+答案:13. 答案:3和4 9.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:医生人数 0 1 2 3 45人及以上人及以上 概率 0.1 0.16 x y 0.2 z(1)若派出医生不超过2人的概率为0.56,求x 的值;的值;(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y 、z 的值.的值. 解:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x =0.56,∴x =0.3. (2)由派出医生最多4人的概率为0.96,得0.96+z =1,∴z =0.04. 由派出医生最少3人的概率为0.44,得y +0.2+z =0.44,∴y =0.44-0.2-0.04=0.2. 10.某种油菜籽在相同条件下的发芽试验结果如表:.某种油菜籽在相同条件下的发芽试验结果如表:每批粒数n 2 5 10 70 130 310 7001500 2000 3000 发芽的粒数m 2 4 9 60 116 282 6391339 1806 2715 发芽的频率m n(1)计算表中每批油菜籽发芽的频率(结果保留到小数点后三位);(2)任取一粒油菜籽,在相同条件下发芽的概率是多少?任取一粒油菜籽,在相同条件下发芽的概率是多少?解:(1)由公式可计算出表中每批油菜籽发芽的频率依次为.1.0,000,000.800,,00.900,0.,.857,090.89292,0.91.10,0.90913,0..893,0.903,90.90505.. (2)由(1)知,每批油菜籽在相同条件下发芽的频率虽不相同,但却都在常数0.9左右摆动,所以任取一粒油菜籽,在相同条件下发芽的概率约为0.9. 11.(探究选做)一个袋中装有大小相同的黑球、白球和红球.已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是25;从中任意摸出2个球,至少得到1个白球的概率是79.求:求:(1)从中任意摸出2个球,得到的都是黑球的概率;个球,得到的都是黑球的概率;(2)袋中白球的个数.袋中白球的个数.解:(1)由题意知,袋中黑球的个数为10×25=4. 记“从袋中任意摸出2个球,得到的都是黑球”为事件A ,则P (A )=C 24C 210=215. 28.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为________.解析:事件C n 的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1);当n =3时,落在直线x +y =3上的点为(1,2),(2,1);当n =4时,落在直线x +y =4上的点为(1,3),(2,2);当n =5时,落在直线x +y =5上的点为(2,3);显然当n =3,4时,事件C n 的概率最大为1(2)记“从袋中任意摸出2个球,至少得到1个白球”为事件B ,设袋中白球的个数为x ,则P (B )=1-P (B )=1-C 210-x C 210=79,解得x =5. 即袋中白球的个数为5. 。

随机事件及其概率、互斥事件

随机事件及其概率、互斥事件

随机事件及其概率、互斥事件导学目标: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.自主梳理1.事件的分类(1)在一定的条件下,________________的事件,叫做必然事件.(2)在一定条件下,肯定不会发生的事件叫做________________.(3)在一定条件下,可能发生也可能不发生的事件,叫做____________.事件一般用大写字母A,B,C…表示.2.频率与概率(1)在相同的条件下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n An为事件A出现的频率.(2)在相同条件下,随着实验次数的增加,事件A发生的频率会在某个________附近摆动.并趋于稳定,这个常数称为随机事件A的________.3.互斥事件、对立事件在同一次试验中,________________的两个事件称为互斥事件,若A、B为互斥事件,则A+B表示事件A、B至少有一个发生.两个互斥事件________________,则称这两个事件为对立事件,事件A的对立事件记为A.4.概率的几个基本性质(1)概率的取值范围:____________.(2)必然事件的概率:P(E)=____.(3)不可能事件的概率:P(F)=____.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=__________________.(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=____,P(A)=________.自我检测1.下列事件:①当x是实数时,x-|x|=2;②某班一次数学测试,及格率低于75%;③从分别标有0,1,2,3,…,9这十个数字的纸团中任取一个,取出的纸团是偶数;④体育彩票某期的特等奖号码.其中是随机事件的是________(填序号).2.一人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是________(填序号).①至多有一次中靶;②两次都中靶;③两次都不中靶;④只有一次中靶.3.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是________(将正确说法的序号填在横线上).①3个都是正品;②至少有1个是次品;③3个都是次品;④至少有1个是正品.4.袋中装有白球3个,黑球4个,从中任取3个,①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为________(填序号).5.从一批羽毛球中任取一个,质量小于4.8克的概率是0.3,质量不小于4.85克的概率是0.32,那么质量在[4.8,4.85)克范围内的概率是________.探究点一事件的判断例1(1)一个口袋内装有5个白球和3个黑球,从中任意取出一只球.①“取出的球是红球”是什么事件,它的概率是多少?②“取出的球是黑球”是什么事件,它的概率是多少?③“取出的球是白球或是黑球”是什么事件,它的概率是多少?(2)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是________(填序号).①至少有1个白球,都是白球;②至少有1个白球,至少有1个红球;③恰有1个白球,恰有2个白球;④至少有1个白球,都是红球.变式迁移1 某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.探究点二随机事件的频率与概率例2某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答:(1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?(结果保留分数)变式迁移2(1)补全上表.(2)这位运动员投篮一次,进球的概率约是多少?探究点三 互斥事件与对立事件的概率例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.变式迁移3 一个箱子内有9张票,其号数分别为1,2,…,9,从中任取2张,其号数至少有一个为奇数的概率是多少?1.随机事件在相同条件下进行大量试验时,呈现规律性,且频率mn总是接近于常数P(A),称P(A)为事件A的概率.2.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A 的对立事件A 的概率,然后利用P(A)=1-P(A )可得解.(满分:90分)一、填空题(每小题6分,共48分) 1.(2018·广州模拟)下列说法:①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn就是事件A 发生的概率;③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ④当试验次数很大时,可以将事件发生的频率作为概率的近似值. 其中正确的个数为________.2.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是________(填序号).①恰好有1件次品和恰好有两件次品; ②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品; ④至少1件次品和全是正品. 3.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是________(填序号). ①至多有1次中靶; ②2次都中靶; ③2次都不中靶; ④只有1次中靶.4.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是________(填序号).5.(2009·安徽)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率为________.6.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g): 492 496 494 495 498 497 501 502 504 496 497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g ~501.5 g 之间的概率约为________.7.(2018·福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率为________.8.(2018·上海)随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为________(默认每个月的天数相同,结果精确到0.001).二、解答题(共42分)9.(14分)(2018·南京一模)某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.10.(14分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.(14分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.学案57 随机事件及其概率、互斥事件答案自主梳理1.(1)必然会发生 不可能事件 (3)随机事件2.(2)常数 概率 3.不能同时发生 必有一个发生 4.(1)0≤P(A)≤1 (2)1 (3)0 (4)P(A)+P(B) (5)1 1-P(B) 自我检测1.②③④ 2.③ 3.④ 4.② 5.0.38 课堂活动区例1 解题导引 解决(1)这类问题的方法主要是弄清每次试验的意义及每个基本事件的含义,正确把握各个事件的相互关系,判断一个事件是必然事件、不可能事件、随机事件,主要是依据在一定条件下,所要求的结果是否一定出现、不可能出现、可能出现也可能不出现,它们的概率(范围)分别为1,0,(0,1).要准确解答(2)这类问题,必须搞清对立事件与互斥事件的联系与区别,二者的联系与区别主要体现在以下三个方面:①两事件对立,必定互斥,但互斥未必对立;②互斥的概念适用于多个事件,但对立概念只适用于两个事件;③两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.解 (1)①由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率是0. ②由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是38.③由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或是黑球”是必然事件,它的概率是1.(2)①②中的两个事件不互斥,当然也不对立,③的两个事件互斥而不对立,④的两个事件不但互斥而且对立,所以本题正确答案应为③.变式迁移1 解 (1)由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A 与事件C 有可能同时发生,故A 与C 不是互斥事件.(2)事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B 与E 是互斥事件.由于事件B 发生可导致事件E 一定不发生,且事件E 发生也会导致事件B 一定不发生,故B 与E 还是对立事件.(3)事件B“至少订一种报纸”中有可能“只订乙报纸”,即有可能“不订甲报纸”,即事件B 发生,事件D 也可能发生,故B 与D 不是互斥事件.(4)事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B 与C 不是互斥事件.(5)由(4)的分析,事件E“一种报纸也不订”是事件C 的一种可能,故事件C 与事件E 有可能同时发生,故C 与E 不是互斥事件.例2 解题导引 本题利用直方图求出获奖的频率,作为概率的近似值.通过大量的重复试验,用这个事件发生的频率近似地作为它的概率是求一个事件的概率的基本方法.注意频率是随机的、变化的,而概率是一个常数,频率在其附近摆动.解 (1)由频数分布直方图可知,参加本次数学竞赛的学生有4+6+8+7+5+2=32(人). (2)90分以上的人数为7+5+2=14(人),∴获奖的频率为1432=716,即本次竞赛获奖的概率大约是716.变式迁移2 解 (1)频率是在试验中事件发生的次数与试验总次数的比值,由此得,进球频率依次是68,810,1215,1720,2530,3240,3850,即0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)因为频率是概率的近似值,所以这位运动员投篮一次,进球的概率约是0.8.例3 解题导引 用互斥事件和对立事件的概率公式解题,关键是分清所求事件是由哪些事件组成的,然后结合互斥事件与对立事件的定义分析出是否是互斥事件与对立事件,再决定用哪一个公式.利用互斥事件求概率体现了分类讨论的思想,利用对立事件求概率体现了“正难则反”的策略.解 方法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P(A 1)=512,P(A 2)=412,P(A 3)=212,P(A 4)=112,根据题意知,事件A 1、A 2、A 3、A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为 P(A 1∪A 2)=P(A 1)+P(A 2) =512+412=34. (2)取出1球为红球或黑球或白球的概率为 P(A 1∪A 2∪A 3)=P(A 1)+P(A 2)+P(A 3) =512+412+212=1112. 方法二 (利用对立事件求概率) (1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P(A 1∪A 2)=1-P(A 3∪A 4)=1-P(A 3)-P(A 4)=1-212-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P(A 1∪A 2∪A 3)=1-P(A 4)=1-112=1112.变式迁移3 解 方法一 从9张任取2张共有36种,记为(1,2),(1,3),…,(8,9),记事件A 为任取2张,号数至少有一个为奇数,则A ={(1,2),…,(1,9),(2,3),(2,5),(2,7),(2,9),(3,4),…,(3,9),…,(8,9)}.共有8+4+6+3+4+2+2+1=30.∴P(A)=3036=56.方法二 事件A 的对立事件为任取2张,号数都为偶数, ∴A ={(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)}共6种. ∴P(A)=1-P(A )=1-636=56. 课后练习区 1.3解析 由概率的相关定义知①③④正确. 2.①④ 3.③解析 由互斥事件定义可知,如果两事件互斥,两个事件不能同时发生.“至少有一次中靶”包括“恰有一次中靶”或“两次都中靶”.故①、②、④都能同时发生.4.③ 5.1解析 由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.6.0.257.35解析 从5个球中任取2个球有C 25=10(种)取法,2个球颜色不同的取法有C 13C 12=6(种),故所求概率为610=35. 8.0.985解析 9位同学出生月份的所有可能种数为129,9人出生月份不同的所有可能种数为A 912,故P =1-A 912129≈1-0.015 47≈0.985.9.解 (1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P(A)=1220=35.(7分)(2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率为P(B)=1-220=910.(14分)10.解 设事件A 、B 、C 、D 分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”,则由已知得P(A)=13,P(B∪C)=P(B)+P(C)=512,P(C∪D)=P(C)+P(D)=512,P(B∪C∪D)=1-P(A)=P(B)+P(C)+P(D)=1-13=23.(10分)解得P(B)=14,P(C)=16,P(D)=14.故得到黑球,得到黄球,得到绿球的概率分别为 14,16,14.(14分) 11.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}共18个基本事件组成.(4分)由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}, 事件M 由6个基本事件组成,因而P(M)=618=13.(7分)(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件N表示“B1、C1全被选中”这一事件,由于N={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件N由3个基本事件组成,(9分)所以P(N)=318=16,由对立事件的概率公式得:P(N)=1-P(N)=1-16=56.(14分)。

高考数学总复习 114随机事件的概率、互斥事件的概率课件 北师大版

高考数学总复习 114随机事件的概率、互斥事件的概率课件 北师大版

[解析] 本小题考查等可能事件的概率. 从 20 张卡片中取一张共 20 种方法,其中数字和不小于 14 的共 5 张,∴P=250=14.
6.抛掷一粒骰子,观察掷出的点数,设事件 A 为出现奇
数点,事件 B 为出现 2 点,已知 P(A)=12,P(B)=16,则出现
奇数点或 2 点的概率之和为________.
故得到黑球,得到黄球,得到绿球的概率分别为14,16,14.
事件的概念及判断
[例 1] 在 10 件产品中有 8 件正品、2 件次品,从中任取 3 件:
(1)“三件都是次品”是什么事件? (2)“三件都是正品”是什么事件? (3)“至少有一件是正品”是什么事件?
(4)“恰有 1 件次品”和“恰有 2 件次品”是互斥事件 吗?
[解析] (1)依据公式 P=mn ,可以依次计算出表中击中靶心 的频率.
f(1)=180=0.8,f(2)=1290=0.95, f(3)=4540=0.88, f(4)=19000=0.9,f(5)=127080=0.89,f(6)=455050=0.91, f(7)=1900060=0.906.
[分析] 当任取一球时,得到红球,则不可能得到黑球,也 不可能得到绿球和黄球,故摸到不同颜色的球是对立的.由对 立事件概率公式求.
[解析] 从袋中任取一球,记事件 A=“得到红球”,B= “得到黑球”,C=“得到黄球”,D=“得到绿球”,则事件 A、B、C、D 两两互斥,由已知 P(A)=13,P(B+C)=P(B)+P(C) =152.
• (2)从这乒乓球产品中任取一个,质量检查 为优等品的概率是多少?(结果保留到小数 点后三位)
[解析] (1)依据公式 fn(A)=mn ,可以算出表中乒乓球优等 品的频率依次是:0.900,0.920,0.970,0.940,0.954,0.951.

互斥事件的概率公式

互斥事件的概率公式

互斥事件的概率公式互斥事件是指两个或多个事件不能同时发生的情况。

在概率论中,互斥事件的概率可以通过以下公式来计算:P(A or B) = P(A) + P(B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A or B)表示事件A或事件B发生的概率。

这个公式的基本思想是通过将两个互斥事件的概率相加来计算它们的并集概率。

由于两个互斥事件不能同时发生,因此它们的并集就是两个事件中任意一个发生的情况。

需要注意的是,互斥事件的概率公式只适用于互斥事件,如果事件A和事件B不是互斥的,则需要使用更复杂的概率计算公式来计算它们的并集概率。

下面通过一个例子来说明互斥事件的概率公式。

假设有一批产品,分别从A工厂和B工厂生产,在这批产品中,有10%来自A工厂,有15%来自B工厂,而且产品的质量不合格的概率是互斥事件,即两个工厂同时生产的产品不可能同时质量不合格。

现在我们想计算这批产品中至少有一个质量不合格的概率。

首先,我们计算出A工厂产生的产品质量不合格的概率为P(A)=0.10,B工厂产生的产品质量不合格的概率为P(B)=0.15、根据互斥事件的概率公式,我们可以得到:P(A or B) = P(A) + P(B) = 0.10 + 0.15 = 0.25这就表示这批产品中至少有一个质量不合格的概率为0.25,即25%。

这个例子中使用了互斥事件的概率公式来计算两个互斥事件的并集概率。

通过这个公式,我们可以很方便地计算互斥事件的概率。

不过需要注意的是,该公式只适用于互斥事件,如果事件不是互斥的,我们就需要使用其他的概率计算方法来计算它们的并集概率。

概率的互斥事件

概率的互斥事件

概率的互斥事件互斥事件是指两个或多个事件同时发生的概率为零。

在概率论中,互斥事件是指两个或多个事件不可能同时发生的情况。

在本文中,我将讨论互斥事件的概念、性质和示例,以及如何计算互斥事件的概率。

首先,让我们来了解互斥事件的定义。

互斥事件是指两个或多个事件之间没有共同的结果,也就是说,如果一个事件发生了,那么另一个事件就不可能发生。

例如,抛一枚硬币时,正面朝上和反面朝上是互斥事件,因为硬币不可能既正面朝上又反面朝上。

互斥事件具有以下性质:1. 互斥事件的概率为零:由于互斥事件不可能同时发生,所以它们的概率为零。

2. 互斥事件的和事件:如果A和B是两个互斥事件,那么它们的和事件是指A或B中发生的任意一个事件。

和事件的概率等于两个事件各自的概率之和。

3. 互斥事件的差事件:如果A和B是两个互斥事件,那么它们的差事件是指只发生A而不发生B的事件。

差事件的概率等于A的概率减去B的概率。

接下来,让我们来看一些互斥事件的示例。

除了硬币的示例之外,还有很多其他互斥事件。

例如,在一副扑克牌中,从一个完整的牌组中抽取一张红桃牌和一张方块牌是互斥事件,因为一张牌不能既是红桃牌又是方块牌。

在计算互斥事件的概率时,我们可以使用加法法则。

如果A和B是两个互斥事件,它们的概率分别为P(A)和P(B),那么它们的和事件的概率为P(A或B) = P(A) + P(B)。

例如,在抛一枚硬币时,正面朝上和反面朝上是互斥事件,它们的概率分别为0.5,所以它们的和事件的概率为0.5 + 0.5 = 1。

另一种计算互斥事件的概率的方法是使用条件概率。

如果A和B是两个互斥事件,那么它们的和事件的概率可以表示为P(A或B) = P(A) + P(B|A)。

其中,P(B|A)表示在已知A发生的条件下,B发生的概率。

由于A和B是互斥事件,所以在A发生的情况下,B不可能发生,因此P(B|A) = 0。

在实际应用中,互斥事件的概率计算对于决策和预测非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2012高考数学理科苏教版课时精品练】作业57第10章第一节随机事件的概率.互斥事件
1.某射手在一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.
解析:由题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:0.5
2.(2011年常州调研)甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为_______.
解析:由对立事件的性质知在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95.
答案:0.95
3.一个袋中有3个红球,2个黄球和1个蓝球,从中随机地取出2个球,则两种颜色相同的概率是________.
解析:两球颜色相同包括:①取到两红球,②取到两黄球,故所求概率为P =C 23+C 2
2
C 26

415
. 答案:4
15
4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一个产品是正品(甲级)的概率为________.
解析:记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级)的概率为P (A )=1-P (B )-P (C )=1-5%-3%=92%=0.92.
答案:0.92
5.向三个相邻的军火库各投一枚炸弹.击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为________.
解析:设A 、B 、C 分别表示击中第一、二、三个军火库,易知事件A 、B 、C 彼此互斥,且P (A )=0.025,P (B )=P (C )=0.1.设D 表示军火库爆炸,则P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225.所以军火库爆炸的概率为0.225.
答案:0.225
6.(2011年镇江调研)已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,
已知从中取出2粒都是黑子的概率是17,从中取出2粒都是白子的概率是12
35,现从中任意取
出2粒恰好是同一色的概率是________.
解析:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与取2粒黑子
的概率的和,即为17+1235=17
35.
答案:1735
7.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是________.
解析:(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种.
答案:12
8.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为________.
解析:事件C n 的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1);
当n =3时,落在直线x +y =3上的点为(1,2),(2,1); 当n =4时,落在直线x +y =4上的点为(1,3),(2,2); 当n =5时,落在直线x +y =5上的点为(2,3);
显然当n =3,4时,事件C n 的概率最大为1
3
.
答案:3和4
9
(1)若派出医生不超过2人的概率为0.56,求x 的值;
(2)若派出医生最多4人的概率为0.96,最少3人的概率为0.44,求y 、z 的值. 解:(1)由派出医生不超过2人的概率为0.56, 得0.1+0.16+x =0.56, ∴x =0.3.
(2)由派出医生最多4人的概率为0.96, 得0.96+z =1,∴z =0.04.
由派出医生最少3人的概率为0.44, 得y +0.2+z =0.44,
∴y =0.44-0.2-0.04=0.2.
(1)计算表中每批油菜籽发芽的频率(结果保留到小数点后三位); (2)任取一粒油菜籽,在相同条件下发芽的概率是多少? 解:(1)由公式可计算出表中每批油菜籽发芽的频率依次为1.000,0.800,0.900,0.857,0.892,0.910,0.913,0.893,0.903,0.905. (2)由(1)知,每批油菜籽在相同条件下发芽的频率虽不相同,但却都在常数0.9左右摆动,所以任取一粒油菜籽,在相同条件下发芽的概率约为0.9.
11.(探究选做)一个袋中装有大小相同的黑球、白球和红球.已知袋中共有10个球,
从中任意摸出1个球,得到黑球的概率是2
5
;从中任意摸出2个球,至少得到1个白球的概
率是7
9
.求:
(1)从中任意摸出2个球,得到的都是黑球的概率; (2)袋中白球的个数.
解:(1)由题意知,袋中黑球的个数为10×2
5
=4.
记“从袋中任意摸出2个球,得到的都是黑球”为事件A ,则P (A )=C 24
C 210=215
.
(2)记“从袋中任意摸出2个球,至少得到1个白球”为事件B ,设袋中白球的个数为x ,则
P (B )=1-P (B )=1-C 210-x
C 210=79,解得x =5.
即袋中白球的个数为5.。

相关文档
最新文档