Ex situ bioremediation of oil-contaminated soil-台湾
利用当地分离的好氧生物表面活性剂产生菌高强度降解工业废水中油脂
利用当地分离的好氧生物表面活性剂产生菌高强度降解工业废水中油脂摘要使用食品加工,电子电气和棕榈油(POME)这—产业得到的废水,对潜在的油和油脂(邻)的降解能力的三个当地的细菌菌株进行了评价。
这些细菌的选择是基于其高细菌粘附烃(BATH),文化的浑浊度和最大的生物表面活性剂生产(BSF)能力。
从16S rRNA序列分析,被确定并存放在基因银行中为粘质沙雷氏菌eu555434食品加工分离的,电气和电子(嗜水气单胞菌kf049214)和油椰(蜡样芽孢杆菌kj605415)。
在此之前对其降解能力的评价(接触时间、不同浓度的废水,pH值和初始有机负荷率)、粘质沙雷氏菌适于在地沟油,蜡样芽胞杆菌油椰。
粘质沙雷氏菌,具有最高的BSF和BATH值最大,表明最大油脂降解—氧化能力(91%)在pH值为7,经过12天的培养,初始有机负荷率1.46×10∧-1㎏O&GL-1/天。
蜡状芽孢杆菌,100%(v/v)油椰(3012 mg L∧-1油和油脂)在200转,30℃、pH值为6培养7天的条件下,而嗜水气单胞菌能从电子废水降解O & G100%(v/v)的4.88毫克/升,添加蛋白胨和乳糖后在200转,30℃在PH值7条件下培养2小时。
胰蛋白胨和乳糖完全生物降解作用的嗜水气单胞菌是重要的不仅导致增强油脂的降解能力,相比没有添加蛋白胨或乳糖只有电子和电子废水时。
这一发现表明,潜在的使用当地的有氧细菌分离作为一种替代的解决方案,以消除存在的各种不同的工业废水。
1.前言由于快速城市化和工业的快速发展,排放到环境中的含油和油脂的废水逐年增加。
主要工业来源油性废水包括石油精炼厂、金属制造业和加工,食品加工,电子,电气和棕榈油厂污水(POME)。
不像泄漏在海上石油自由的或漂浮,大部分的工业废水中含有的油包水乳状液,在不同的治疗阶段,这可能导致严重的问题。
水处理装置中的油和油脂的存在将导致工艺设备的污染,水排出复杂困难的等在生物处理阶段的要求和问题。
紫外荧光法和微库仑法测定油品S含量的对比
紫外荧光法和微库仑法测定油品S含量的对比李建国(中韩石化检验计量中心,湖北武汉430000)摘要:S在油品生产和应用中,对设备与环保健康都是非常有害的,测定石油制品中S含量有很多种方式,文中介绍了紫外荧光法及微库仑法,从测定原理、重要影响因素、准确性以及精度等方面进行了分析对比,此2种分析方法测定的结果数据比较,紫外荧光法较微库仑法具有更佳的准确性和重复性,影响因素更少。
关键词:硫含量;紫外荧光;微库仑中图分类号:TE622.1+4文献标识码:B文章编号:1671-4962(2023)02-0059-03 Comparison of ultraviolet fluorescence method and microcoulomb method for determination of Sulfur content in oil productsLi Jianguo(Sinopec ZHSH(Wuhan)Inspection and Testing Center,Wuhan430000,China)Abstract:Sulfur is very harmful to equipment and environmental health in the production and application of oil products.There are many ways to determine the sulfur content in petroleum products.This paper introduced ultraviolet fluorescence method and microcoulomb method,analyzed and compared the two methods from the aspects of measurement principle,important influencing factors,accuracy and pared with the microcoulomb method,ultraviolet fluorescence method had better accuracy and repeatability and fewer influencing factors.Keywords:sulfur content;ultraviolet fluorescence;microcoulombS是石油中常见的组成元素,在石油的炼制加工过程中,通常使用加氢精制装置进行脱硫,S在石油炼制、加工、存贮过程中对设备造成腐蚀,具有高毒性的H2S会给生产带来安全风险,必须进行处理。
橡胶树种子油治血脂的原理
橡胶树种子油治血脂的原理English:The oil extracted from the seeds of the rubber tree, also known as Hevea brasiliensis, has been found to have potential effects on blood lipid levels. The mechanism behind its lipid-lowering effects involves various bioactive compounds present in the oil. One important component is the phytosterols, which are plant-derived sterols that have structural similarities to cholesterol. Phytosterols can compete with cholesterol for absorption in the intestines, thus reducing cholesterol absorption and causing a decrease in blood cholesterol levels. Another mechanism involves the fatty acid profile of the oil. Rubber seed oil is rich in unsaturated fatty acids, particularly polyunsaturated fatty acids like linoleic acid and oleic acid. These fatty acids have been shown to have a positive effect on blood lipid levels by decreasing low-density lipoprotein (LDL) cholesterol levels and increasing high-density lipoprotein (HDL) cholesterol levels. Additionally, the oil contains other bioactive compounds such as tocopherols, phenolic compounds, and saponins, which have antioxidant and anti-inflammatory properties and may contribute to the lipid-lowering effects. Overall, the combination of phytosterols,unsaturated fatty acids, and other bioactive compounds in rubber seed oil work together to improve blood lipid profiles and promote cardiovascular health.Translated content: 从橡胶树种子中提取的油,也被称为帝国橡胶树种子油,已经被发现具有潜在的调节血脂水平的效果。
荧光分光光度法测定土壤中石油类
Vol. 35 Nr. 1Mli ..0201第35卷第1期2021年3月干旱环境监测Arid Environmental Monitoring荧光分光光度法测定土壤中石油类段小燕,吐拉别克•吐逊江,施玉格*,管雪丽(新疆维吾尔自治区生态环境监测总站,新疆乌鲁木齐830211)摘 要:建立了荧光分光光度法测定土壤中石油类。
方法检出限为3 mg/kg ,实际土壤加标回收率为95.5%〜108% ,精密度(RSD ,二6)为0.5% -8.5%。
实验结果表明,该方法准确可靠、灵敏度高、选择性好、操作简便,与红外分光 光度法有较好的可比性,满足土壤中石油类分析要求。
关键词:石油类;荧光分光光度法;土壤中图分类号:X830.2 文献标识码:B 文章编号:1007 -1504(2021)01 -0020 -05Determination of Petroleum Oils in Soils by Fluorescence SpectrophotometryDUAN Xiao-yan , Tula bieke • tuxunjiang , SHI Yu -* , GUAN Xue - li ( Xinjiang Ecological Environmental MonitoringCentre , Urumqi Xinjiang 830011, Chino )AbstrecO : A method was developed fro detection of petrolenm oils in soils by Fluorescence spectrophotometry. Thn detectionlimits of the methoP for soils were 3 m//k/. The recovery ratec were beteween 95.5% and 158% with precision of 0. 5% 〜8.7% RSD (g 二6). The respite show thnt the methoO is sensitive , accurate, highty selective , simple . Ii Ims /oo P comparabiUtywith mfrared specUophotometry and suimnie for the determination of petroleem oils in soils.Key worOc : petroleem oils ; 0x 003(^06 specUophotometry ; soils随着石油的大量开采和广泛使用,石油类对 土壤的污染已成为一个越来越严重的问题。
腐植酸对石油污染土壤特性和生物修复效果的影响
张秀 霞 ' 韩 雨彤 ,张 涵 ,丁 峥
(中 国石 油 大 学 化 学 工 程 学 院 环 境 与 安 全 工 程 系 ,山 东 青 岛 266580)
摘 要 :为 研 究 腐 植 酸 对 石 油 污染 土壤 生 物 修 复 的 影 响 ,考 察 了 不 同腐 植 酸 含 量 对 石 油 污 染 土 壤 特 性 以及 在 低 含 水 条 件 下 对 石 油 污染 土壤 土 著 微 生 物 修 复 效 果 的 影 响 ,探 究 了腐 植 酸 在 干 旱 少 降 水 地 区 修 复 石 油 污 染 土 壤 的 可 行 性 。 结 果 表 明 ,土壤 腐 植酸 质量 分 数 为 100 mg/g时 有 利 于 调 节 土 壤 的 C/N 质 量 比 ,有 利 于 土 著 微 生 物 对 速 效 磷 的 利 用 ,土著 微 生 物 酶 活 性 比对 照 土 壤 样 品 有 显 著 提 高 ;在 低 含 水 率 条 件 下 ,腐 植 酸 质 量 分 数 为 100 mg/g土 壤 样 品 的 3O d石 油 烃 降解 率 达 到 27.7 ,而 对 照 土 壤 样 品 只 有 5.9 。 关 键 词 :石油污染土壤 ;腐植酸含量 ;降解率 ;含水率 ;土著微生物 ;酶活性 中 图 分 类 号 :TE991.3 文 献 标 识 码 :A doi:10.3969/j.issn.1001—8719.2016.01.022
.
The experimental results showed that the addition of humic acid with mass fraction of 1 00 mg/g could help to balance the mass ratio of carbon to nitrogen ( (C) m (N)) in oil—contam inated soil,
鼠李糖脂生物表面活性剂及其在石油污染修复中的应用
Q ig uLa n
(hn f h r E v o m na ev e Taj ) o Ld, a gu30 5 , hn) C iaOf oe n i n e t S ri (i i C . t. n g 0 4 2 C ia s r l c nn , T
Ab ta t hssu ycmpe e sv l e iwe ersac rge so a oii is r ca ticu igc e c t cue , s r c :T i td o rh n ieyrve dt ee rhpo rs f h mn l dbouf tn ,n ldn h mia sr trs h r p a l u
之增加 ,对 转速 的调控 能够通过 改变 发酵液中的溶 解氧 含量 ,进 一步 影 响细菌 的生 长和 鼠李糖 脂 产 量 。另一方面 ,合适的转速能够使细菌菌体保持悬 浮状态 ,有利于提 高 鼠李糖脂发酵产量n 。
多孔介质中柴油的挥发行为
多孔介质中柴油的挥发行为马艳飞;郑西来;冯雪冬;李永霞;梁春【摘要】根据石油污染场地挥发性物质的污染特点,以采集的砂样和土样为下垫面,将柴油均匀覆盖在下垫面表面,然后采用差减法确定含油土柱中石油的挥发量,并系统研究风速和挥发容器尺度对石油挥发速率的影响,以及挥发过程中柴油组分的变化.研究结果表明,柴油在粗砂、细砂和亚黏土中挥发速率依次递增.风速的增大可使粗砂、细砂和亚黏土中柴油挥发速率提高1~2倍,二项式可描述柴油挥发速率与风速的关系.柴油中低碳组分首先挥发,且风对低碳组分的挥发影响明显,而对高碳组分nC16的挥发作用不大.柴油挥发速率系数随挥发容器尺度增大而增加,且两者呈线性正相关.%Based on the pollution characteristics of vaporizing materials in oil-contaminated field, coarse sand, fine sand and loam were collected and loaded in columns respectively firstly. Then diesel oil was spilled on porous media surface. The mass loss of oil was determined by weighing the column before and after oil volatilization on an electronic balance. The effects of wind speed, volatilization vessel diameter on oil volatilization rate and the content change of different oil components were studied. The results show that the volatilization rates of diesel oil on coarse sand, fine sand and loam increase in sequence, they go up with wind speed especially for light components and are 1—2 times higher than that in no wind condition. They are boundary-layer-regulated slightly. A binomial equation can express the relationship between volatilization coefficient and wind speed well. The effect of wind speed on the vaporization of low carbon components is obvious, while on nC16 it can be negligible. Thevolatilization coefficient of diesel oil increases linearly with the volatilization vessel diameter.【期刊名称】《化工学报》【年(卷),期】2011(062)004【总页数】6页(P1097-1102)【关键词】柴油;多孔介质;组分变化;风速;挥发尺度【作者】马艳飞;郑西来;冯雪冬;李永霞;梁春【作者单位】中国海洋大学海洋环境与生态教育部重点实验室,山东,青岛,266100;山东理工大学资源与环境工程学院,山东,淄博,255091;中国海洋大学海洋环境与生态教育部重点实验室,山东,青岛,266100;山东理工大学资源与环境工程学院,山东,淄博,255091;中国海洋大学海洋环境与生态教育部重点实验室,山东,青岛,266100;中国海洋大学海洋环境与生态教育部重点实验室,山东,青岛,266100【正文语种】中文【中图分类】X53石油在炼制和使用过程中,对土壤和地下水环境会产生不同程度的污染。
GC-MS测定不同采收期酸枣仁中脂肪油成分
检测分析—----------------------------------------------------------------------------------161-—D01:10.12161/j.issn.l005-6521.2021.04.027GC-MS测定不同采收期酸枣仁中脂肪汕成分马东来叫李新蕊U司明东U温子帅U郑玉光U邱峰23(1.河北中医学院河北省中药制技术创新中心,河北050200;2.天津中医药大学中药学院,天津300193)摘要:利用气相色谱-质谱联用(gJK chromatography-mass spectrometry*GC-MS)技术分析经甲酯化的不同采收期酸枣仁的脂肪油成分组成及相对质量分数的变化。
结果表明:3个时期酸枣仁的脂肪油成分总含量增加,经过GC-MS 分析共检测出29种脂肪油成分,包括不饱和脂肪酸类、饱和脂肪酸类、碳氢化合物和醇类化合物这4大类组分。
3个时期酸枣仁中均有其特殊的脂肪油成分,同时各时期也有相同的脂肪油成分,其中亚油酸甲酯(33.01%〜34.27%)和油酸甲酯(43.66%〜45.43%)为各个时期中的主要脂肪油物质。
关键词:酸枣仁;脂肪油t气相色谱-质谱联用技术(GC-MS);采收期t亚油酸甲酯Analysis of Fatty Oil of Different Harvesting Stage in Ziziphi Spinosae Semen by GC-MSMA Dong-lai1'2,LI Xin-rui1,SI Ming-dong1,WEN Zi-shuai1,ZHENG Yu-guang1,QIU Feng2*(1.Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province,Hebei Universityof Chinese Medicine,Shijiazhuang050200,Hebei,China;2.School of Chinese Materia Medica,TianjinUniversity of Traditional Chinese Medicine,Tianjin300193,China) Abstract:Using gas chromatography-mass spectrometry(GC-MS)technology to investigate the fatty oil compositions and relative mass fraction of ziziphi spinosae semen in different harvest periods after methyl esterification.The results showed that the total content of fatty oils in ziziphi spinosae semen increased in three periods.A total of29fatty oils were detected by GC-MS analysis,including unsaturated fatty acids,saturated fatty acids,hydrocarbons and alcohol.In three periods,the ziziphi spinosae semen had its special fatty oil component,and the same fatty oils were found in all parts.Among them,methyl linoleate(33.01%-34.27%) and methyl oleate(43.66%-45.43%)were the main volatile substances in each part.Key words:ziziphi spinosae semen;fatty oil;gas chromatography-mass spectrometry(GC-MS);harvesting stage;methyl linoleate引文格式:马东来,李新蕊,司明东,等.GC-MS测定不同采收期酸枣仁中脂肪油成分[几食品研究与开发,2021,42(4):161-164.MA Donglai,LI Xinrui,SI Mingdong,et al.Analysis of Fatty Oil of Different Harvesting Stage in Ziziphi Spinosae Semen by GC-MS[J].Food Research and Development,2021,42(4):161-164.基金项目:河北省重点研发计划项目(19276414D);河北省属高校基本科研业务项目(YXZ201901,、JTZ2020009);河北省高等学校科学技术研究项目(QN2018065);河北省中医药管理局科研计划项目(No.2018105);河北省现代农业技术体系中药材创新团队项目(HBCT2018060205);河北中医学院研究生创新资助项目(XCXZZSS2020003)作者简介:马东来(1979—),男(汉),副教授,博士,研究方向:中药质量控制及其药效物质基础研究。
含油废水生化处理流程
含油废水生化处理流程英文回答:Biological Treatment Process for Oily Wastewater.The biological treatment process for oily wastewater involves several stages to effectively remove oil and organic contaminants. Here is a general overview of the process:1. Pretreatment:Oil-Water Separation: Oily wastewater is subjected to preliminary treatment to remove coarse oil and grease. This can be achieved through gravity separation, flotation, or other physical separation methods.2. Primary Treatment:Biological Oxidation: The partially separatedwastewater enters an aeration tank, where microorganisms (bacteria) consume organic matter present in the water. This process is facilitated by introducing oxygen through aeration or mechanical agitation.Clarification: The mixture then undergoes clarification, where the microorganisms and other solids are allowed to settle or are removed through sedimentation or filtration.3. Secondary Treatment:Activated Sludge Process: The clarified effluent from the primary treatment is subjected to the activated sludge process. This involves keeping a high concentration of microorganisms in suspension, enhancing the biological degradation of pollutants.Biological Filtration: The activated sludge mixture is passed through a biological filter, where microorganisms attached to media surfaces continue to break down organic matter.4. Tertiary Treatment:Sand Filtration: The filtered water from the secondary treatment may undergo additional filtration through sand filters to remove any remaining suspended solids or oil droplets.Disinfection: To meet discharge regulations or reuse requirements, the treated water can be disinfected using chemicals like chlorine or ultraviolet radiation to eliminate pathogens.5. Sludge Management:Sludge Dewatering: The sludge generated during the biological treatment process is dewatered using methods such as centrifugation, filtration, or thickening.Sludge Disposal or Reuse: The dewatered sludge can be disposed of in landfills or incinerators or repurposed for agricultural or industrial applications after propertreatment.中文回答:含油废水生化处理流程。
灵芝孢子油与深海鱼油联合应用对小鼠学习记忆及其大脑海马神经元表达NOS的影响
灵芝孢子油与深海鱼油联合应用对小鼠学习记忆及其大脑海马神经元表达NOS的影响陈穗君1曾园山1*张惠君2张伟1丁英1钟志强1(1.中山大学中山医学院组织胚胎学教研室神经科学研究室; 2.解剖学教研室,广州 510080)[摘要] 目的探讨灵芝孢子油与深海鱼油联合应用对小鼠学习记忆及其大脑海马神经元表达NOS的影响。
方法将受孕小鼠随机分为4组,自受孕第1d起分别胃饲生理盐水、灵芝孢子油、深海鱼油和灵芝孢子油+深海鱼油。
在母鼠分娩后21d改为胃饲其幼鼠,然后将出生后45d的幼鼠处死。
处死前进行Morris水迷宫行为学测试,处死后应用酶组织化学法检测海马神经元NOS的表达。
结果在Morris水迷宫检测中,灵芝孢子油组、深海鱼油组和灵芝孢子油+深海鱼油组小鼠的逃逸潜伏期明显缩短。
灵芝孢子油组和灵芝孢子油+深海鱼油组的小鼠平台象限游泳距离有增加。
灵芝孢子油+深海鱼油组的小鼠大脑海马NOS阳性神经元与其它组的小鼠比较有显著性增加。
结论灵芝孢子油和深海鱼油联合应用能够促进小鼠学习记忆能力及其大脑海马神经元表达NOS。
[关键词]灵芝孢子油;深海鱼油;海马;Morris水迷宫;学习记忆;一氧化氮合酶表达Effects of combination of the ganoderma spore oil and deep sea fish oil on learning and memory ability and NOS expressionof hippocampal neuron in mouseChen Suijun1, Zeng Yuanshan1*, Zhang Huijun2, Zhang Wei 1, Ding Ying1, Zhong Zhiqiang11.Division of Neuroscience, Department of Histology and Embryology;2.Department of Anatomy, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, 510080 China[Abstract] Objective To explore the effects of combination of the ganoderma spore oil and deep sea fish oil on learning and memory ability and NOS expression of hippocampal neurons in mouse. Methods Pregnant mice were divided into four groups. Saline, ganoderma spore oil, deep sea fish oil and combination of ganoderma spore oil+deep sea fish oil was respectively administered to the pregnant mice from E1d, and then to the young mice from P21d after parturition*通讯作者 E-mail: zengysh@ Tel: (020)87331452 of the pregnant mice. The young mice from P45d were sacrificed after the test of Morris water maze finished. NOS expression of hippocampal neurons was detected with enzymohistochemistry. Results The escape latency was obviously shortened on the test of Morris water maze in the ganoderma spore oil group, deep sea fish oil group and ganoderma spore oil+deep sea fish oil group of mice. The swimming distance of platform quadrant was increased in the ganoderma spore oil group and ganoderma spore oil+deep sea fish oil group of mice. Compared with other groups of mice, NOS positive neurons of cerebral hippocampus were enhanced significancely in the ganoderma spore oil+deep sea fish oil group of mice.Conclusion The combination of ganoderma spore oil and deep sea fish oil may promote the learning and memory ability and NOS expression of hippocampal neurons in mouse.[Key words] Ganoderma spore oil;Deep sea fish oil; Hippocampus;Morris water maze;Learning and memory;NOS expression据分析,灵芝孢子油含有18种脂肪酸成分,包括了不饱和脂肪酸、饱和脂肪酸、环链脂肪酸等[1]。
植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展
郭玮,刘苗苗,潘越,等. 植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展[J]. 食品工业科技,2023,44(18):468−475. doi: 10.13386/j.issn1002-0306.2022110175GUO Wei, LIU Miaomiao, PAN Yue, et al. Antimicrobial Effect of Plant Essential Oil Nanoemulsion Against Meat Spoilage Bacteria and Pathogenic Bacteria: A Review[J]. Science and Technology of Food Industry, 2023, 44(18): 468−475. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110175· 专题综述 ·植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展郭 玮1,刘苗苗1, *,潘 越1,冯明星2,姚现琦3,张 欢1,黄峻榕1,曹云刚1,*(1.陕西科技大学食品科学与工程学院,陕西西安 710021;2.运城学院生命科学系,山西运城 044000;3.临沂金锣文瑞食品有限公司,山东临沂 276036)摘 要:植物精油是一类天然的抑菌剂,能够有效抑制多种肉源腐败菌和致病菌,在肉类工业中应用前景广泛。
纳米乳液作为一种纳米级包埋系统,在改善精油的水溶性、稳定性和抑菌活性方面有明显效果,目前已成为肉类防腐保鲜领域的研究热点。
因此,本文介绍了植物精油纳米乳液的构建方法(乳化方式、乳化剂)、基本特性(稳定性和生物利用率),重点探讨了植物精油纳米乳液对肉源腐败菌和致病菌的抑菌活性、影响因素(精油种类、乳化方式、乳化剂、乳液粒径和微生物种类),及其通过靶向结合、持续释放、被动运输等提高纯精油抑菌活性的内在机制,以期为植物精油纳米乳液在肉制品防腐保鲜中的研究及开发利用提供理论参考。
不同溶剂同时蒸馏萃取艾叶挥发油的抑菌活性
不同溶剂同时蒸'萃取艾叶挥发油的抑菌活性葛德鹏,李森,黄凯,管骁*(上海理工大学医疗器械与食品学院,上海200093)摘要:采用二氯甲烷和正己烷2种溶剂,分别进行同时蒸+萃取(SDE)工艺萃取艾叶挥发油,对得物进行气质联用(GC-MS)成分分析,测定其抑菌活性的差异,并通过扫描电镜(SEM)探究艾叶挥发油抑菌作用的机理。
结果表明,SDE比水蒸气蒸+萃取节省时间1h,提取率达1.5%,是后者的3倍。
SDE(正己烷)的得物抑菌活性更强,最低抑菌浓度集中在6.25!L/mL,GC-MS结果可知其成分的92.95%是水蒸气蒸+得物和SDE(二氯甲烷)的公共主要成分,SEM结果显示艾叶挥发油可作用于微生物细胞壁结构,从而达到抑制效果。
关键词:同时蒸+萃取:艾叶挥发油:扫描电镜;抑菌活性中图分类号:TS201.1文章编号:1673-1689(2020)03-0041-08DOI:10.3969/j.issn.1673-1689.2020.03.006Antimicrobial Activities of Artemisia argyi Essential Oils Extracted by Simultaneous Distillation using Different Solvent SystemsGE Depeng,LI Sen,HUANG Kai,GUAN Xiao(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093, China)Abstract:In this study,Artemisia argyi essential oils were extracted by simultaneous distillation (SDE)with dichloromethane and n-hexane,respectively.To explore the differences of antimicrobial activities,components of the oil were analyzed by GC-MS,and scanning electron microscope(SEM) was used to explore the mechanism of antimicrobial pared with the steam distillation, SDE saved one hour and had a three times higher yield(1.5%).SDE(n-hexane)oil had a higher antimicrobial activity with the minimum inhibitory concentration(MIC)being6.25^L/mL.GC-MS results revealed that the SDE(n-hexane)oil had92.95%similarity in the chemical composition with the oils extracted with steam distillation and SDE(dichloromethane).SEM results showed that the antibacterial activity of A rtemisia argyi essential oil could be achieved by disruption of cell wall. Keywords:simultaneous distillation extraction,A rte misia argyi essential oil,scanning electron microscope,antimicrobial activity收稿日期:2018-04-01基金项目:国家自然科学基金项目(31701515)。
术语-生物修复
用于为生物修复过程提供营养物质的制剂,需满足一定的缓释、亲油要求。
9
由两种或两种以上且互不拮抗的微生物组合制成的,能比单一微生物显著提高生物修复效果的复合微生物制剂。
10
同时采用生物刺激、生物强化来修复溢油污染海岸线的生物修复技术。如在溢油污染海岸线生物修复中,同时采用生物修复营养剂和生物修复菌剂方法就叫做复合生物修复。
溢油污染生物修复专业术语中英文对照
1
由于石油的生产、提炼、装卸、储存、运输、使用和处置等不当造成油的流失,从而对水生生物及其他生物造成损害,并且影响视觉和美学的现象。
2
海洋与陆地相结合处所形成的连续线,并包括一定距离内的近海和陆地的区域。
3
指利用生物特别是微生物来催化降解环境污染物,使环境中污染物得以减少或去除的自然或受控过程。生物修复技术手段主要包括生物刺激和生物强化等。
11
原位生物修复
in situ bioremediation
不搅动污染土壤,在原位和易残留部位进行处理。原位生物修复又包括生物培养法、生物通气法等。
12
生物培养法bioculture
向被污染的土壤中定期加入营养盐和氧气或过氧化氢来提高土著微生物的代谢活性,将污染物矿化为二氧化碳和水。
13
生物通气法bioventing
4
人们利用生物对溢油的降解作用,有目的地针对溢油污染的海岸线,采用生物强化、生物刺激或两者共用的技术进行修复,恢复或实现其原有本身生态功能。
5
指通过调节和改善污染环境中微生物生长的限制性条件,刺激(微)生物生长,加快污染物降解的技术。其主要技术手段包括添加氮磷营养物、提供电子受体、通过添加供氧剂和翻耕等手段提高溶解氧、调节pH等。
6
氧弹燃烧-离子色谱法测定油基切削液中的卤素
氧弹燃烧-离子色谱法测定油基切削液中的卤素吴志刚曹璨(辽宁省分析科学研究院,沈阳110015)摘要:建立了氧弹燃烧-离子色谱法测定油基切削液中卤素的分析方法。
通过对氧弹燃烧装置条件优化,采 用胶囊称取〇.2g样品,充氧压力2.5 M Pa,吸收液20m L,静置吸收时间20min。
用离子色谱法测定吸收液中F-、C r、Br^的含量,结果表明,该方法定量检测限为5mg/kg〜9mg/kg,在0.02mg/L〜0_40mg/L线性范围良好,相关系数在〇• 9993〜0• 9996之间,精密度为3. 6%〜9.8%。
不同浓度加标回收率在93. 3%〜104. 0%之间,该方法 快速、准确、回收率高,重复性好,能够满足对切削液质量控制的需求。
关键词:切削液氧弹燃烧离子色谱卤素DOI:10. 3969/j.issn. 1001 —232x.2018. 04. 007Determination of halogens in oil based cutting fluid by oxygen bomb-ion chromatography. W u Zhigang' , C a o C a n iL ia o n in g A n a ly sis S c i e n c e A c a d e m e,S h e n y a n g,C h in a)Abstract:A n oxygen b o m b analytical method for determination of halogen in o i l based cutting fluid by ion chromatography was established.T h e oxygen b o m b combustion conditions were optimized and the results were as follows: 0.2g sample weighed using capsule was adopted.T h e oxygen pressure was2.5 M P a while the volume of the absorption liquid was20m L with a static absorption time of20min.T h e concentrations of F_ ,Cl- and Br_ in the absorption liquid were determined by ion chromatography.T h e results showed that the detection limits of the method were within 5m g/kg-9 m g/kg.T h e linear range was 0.02m g/L—0.40m g/L with favorable linear relationship,and the correlative coefficients were within 0. 9993 —0. 9996. The relative standard deivations were in the range of3.6%—9.8%.The recoveries with different concentrations were between 93. 3%and 104. 0%.I t was a rapid and accurate method with high recovery and good repeatability,which can satisfy the quality control requirement of cutting fluid.Key words:Cutting fluid;Oxygen b o m b combustion;Ion chromatography;Halogen随着装备制造业在我国的迅速发展,金属制品 的长期耐腐性能需求不断提高。
提取方法对百里香精油化学成分和抗氧化活性的影响
刘欢,赵巨堂,罗海涛,等. 提取方法对百里香精油化学成分和抗氧化活性的影响[J]. 食品工业科技,2022,43(19):331−339. doi:10.13386/j.issn1002-0306.2021120146LIU Huan, ZHAO Jutang, LUO Haitao, et al. Effect of Extraction Methods on Chemical Constituents and Antioxidant Activity of Essential Oil from Thymus vulgaris L .[J]. Science and Technology of Food Industry, 2022, 43(19): 331−339. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120146· 分析检测 ·提取方法对百里香精油化学成分和抗氧化活性的影响刘 欢1,赵巨堂1,罗海涛2,任周营2,邵灯寅2,*(1.南昌大学食品科学与技术国家重点实验室,江西南昌 330047;2.江西中烟工业有限责任公司,江西南昌 330096)摘 要:本文分别采用水蒸气蒸馏法(SD )、同时蒸馏萃取法(SDE )、冷等离子体辅助提取法(CPAE )从百里香叶片中提取精油,通过气相色谱-质谱联用(GC-MS )分析了三种精油中的挥发性成分,测定其精油中的总酚、总黄酮、花青素含量,通过DPPH•、ABTS +•、总抗氧化能力三个抗氧化指标评估了其体外抗氧化性,并将精油中的主要活性成分与抗氧化能力进行相关性分析,比较得出得率更高、抗氧化性更好的提取方法。
结果表明,不同提取方法在精油得率上有显著性差异(P <0.05),SDE 法的精油得率最高,达到了1.30%。
经GC-MS 分析,三种精油共检出了36种组分,主要成分均为2-茨醇(32.194%~32.515%)、香芹酚(17.265%~19.998%)、百里香酚(13.031%~15.202%)和α-松油醇(11.296%~12.012%),其中,SDE 法和CPAE 法比SD 法制备得到的精油在以上活性成分上含量更高。
自组装多肽水凝胶对百里香精油的控释作用、抑菌和抗氧化效果的延长作用
自组装多肽水凝胶对百里香精油的控释作用、抑菌和抗氧化效果的延长作用赵梦倩1,张雅丹1,王迎香1,刘 娜1,张 楠1,简家钰1,张 琳1,*,张继红1,2,*(1.特医食品加工湖南省重点实验室,稻谷及副产物深加工国家工程实验室,中南林业科技大学食品科学与工程学院,湖南长沙 410004;2.湖南省食品质量监督检验研究院,湖南长沙 410117)摘 要:为实现百里香精油的控制释放并延长其抑菌和抗氧化效果,本实验利用N-芴甲氧羰基-L-苯丙氨酸(N-FMoc-L-phenylalanine,Fmoc-F)水凝胶包埋百里香精油,对比包埋前后Fmoc-F水凝胶的结构、形态等特征,研究其对百里香精油的包埋机制、控释作用及包埋后Fmoc-F对百里香精油抑菌和抗氧化效果的延长作用。
结果表明:百里香精油的加入可以加速Fmoc-F/百里香精油水凝胶(50 s)的形成,并且显著提高胶体的储能模量;Fmoc-F及Fmoc-F/百里香精油水凝胶主要通过氢键作用形成胶体,其微观结构为纤维状网络结构,且百里香精油可以使Fmoc-F 水凝胶的网络结构更紧密均匀,从而提高其胶体的储能模量。
Fmoc-F水凝胶对百里香精油的包埋率达93.13%。
通过抑菌实验和抗氧化实验发现,在环境pH≥6.5时,Fmoc-F水凝胶可通过包埋有效抑制百里香精油的挥发,而随着环境pH值的降低,Fmoc-F水凝胶会缓慢分解,释放百里香精油,起到对百里香精油抑菌和抗氧化效果的延长作用。
关键词:百里香精油;N-芴甲氧羰基-L-苯丙氨酸;水凝胶;控释;抑菌;抗氧化Controlled Release and Maintained Antibacterial and Antioxidant Effects of Thyme Essential Oil Encapsulated inSelf-Assembled Peptide HydrogelZHAO Mengqian1, ZHANG Yadan1, WANG Yingxiang1, LIU Na1, ZHANG Nan1, JIAN Jiayu1, ZHANG Lin1,*, ZHANG Jihong1,2,* (1. Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory of Rice and By-products Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;2. Hunan Institute of Food Quality Supervision Inspection and Research, Changsha 410117, China)Abstract: In order to achieve the controlled release of thyme essential oil and prolong its bacteriostatic and antioxidant effects, N-FMoc-L-phenylalanine (Fmoc-F) hydrogel was used to encapsulate thyme essential oil. The structure and morphology of the hydrogel were comparatively evaluated before and encapsulation, and the mechanism of encapsulation was studied as well as the controlled release of the encapsulated oil and the effect of Fmoc-F on maintaining its antibacterial and antioxidant activities. The results indicated that the addition of thyme essential oil could significantly decrease the gelation time of Fmoc-F to 50 s, and increase the storage modulus (G’) of the hydrogel. Fmoc-F interacted with itself and with thyme essential oil mainly through hydrogen bonds, both contributing to the formation of hydrolgels with a fibrous network microstructure. The essential oil made the structure denser, thereby resulting in higher storage modulus of the hydrogel. The encapsulation rate of Fmoc-F hydrogel for thyme essential oil was 93.13%. At pH above 6.5, the hydrogel inhibited the volatilization of the encapsulated oil, and it was slowly broken down with the decrease of pH, thus maintaining the antibacterial and antioxidant activities of the essential oil.Keywords: thyme essential oil; N-FMoc-L-phenylalanine (Fmoc-F); hydrogel; controlled release; bacteriostasis; antioxidationDOI:10.7506/spkx1002-6630-20190725-327中图分类号:TS201.7 文献标志码:A 文章编号:1002-6630(2020)15-0008-07收稿日期:2019-07-25基金项目:国家自然科学基金青年科学基金项目(81501619);长沙市科技计划重点项目(kq1907096);湖南省科技创新平台与人才计划项目(2017TP1021);湖南省自然科学基金面上项目(2018JJ2232);中南林业科技大学大学生研究性学习和创新性实验计划项目(2017)第一作者简介:赵梦倩(1994—)(ORCID: 0000-0002-9954-5080),女,硕士研究生,研究方向为食品营养。
油橄榄叶提取物对海洛因依赖小鼠肺组织结构及IL-1β和TNF-α表达的影响
油橄榄叶提取物对海洛因依赖小鼠肺组织结构及IL-1β和TNF-α表达的影响王昱;王胜青【摘要】将100只健康小鼠皮下注射海洛因(10 mg/kg)40 d,然后分别用不同剂量的(50、100、200 mg/kg)油橄榄叶提取物(OLE)进行皮下注射治疗,观察肺脏组织结构的变化,检测肺脏中白介素-1β(interleukin-β,IL-β)和肿瘤坏死因子-α(tumor necrosis factor-A,TNF-α)的表达情况。
结果表明:与模型对照组相比,OLE使海洛因依赖小鼠肺泡直径、肺泡隔厚度减小,肺脏中 IL-1β和TNF-α的表达明显减弱,且呈较好的量效关系,表明 OLE能够对海洛因造成的肺损害起到保护作用,其作用机制可能是 OLE抑制了 IL-1β和TNF-α的在肺中的表达。
%One hundred mice were subcutaneously given heroin (10 mg/kg)for 40 days,and then re-spectively treated with different doses (50,100,200mg/kg)of olive leaf extract (OLE).The changes of lung histological structure were observed.The expression of IL-1βand TNF-αin lung was also measured. The results showed that the diameter of alveolous,thickness of interalveolar septum decreased in OLE-treated groups compared with the model group.The expression of IL-1βand TNF-αwas also diminished with dose-effect relationship.It is suggested that OLE can protect heroin-induced lung inj ury,inhibit ex-pression of IL-1βand TNF-α,which may be one of the mechanisms for OLE on the liver function protection in heroin dependence mice.【期刊名称】《甘肃农业大学学报》【年(卷),期】2014(000)006【总页数】6页(P19-24)【关键词】油橄榄叶提取物;海洛因;肺脏;白介素-1β;肿瘤坏死因子-α;小鼠【作者】王昱;王胜青【作者单位】陇南师范高等专科学校生化系,甘肃成县 742500;陇南师范高等专科学校生化系,甘肃成县 742500【正文语种】中文【中图分类】Q954.57海洛因来源于鸦片,学名二乙酰吗啡,是吗啡二乙酰的衍生物,海洛因滥用已成为严重的社会问题和医学问题.海洛因及其代谢产物能损坏肺功能,引起肺部感染[1],增加肺中与凋亡相关活性物质的表达、降低抗氧化能力等病理反应[2].海洛因脱毒治疗常用的药物主要为美沙酮、丁丙诺啡和可乐宁等,但是这些药物本身有成瘾性,若使用不当又会成为新的毒品.因此,研制出一种既能够对肺脏具有保护作用,又能减轻戒断反应的中药已成为当前研究的一个热点问题.研究表明,TNF-α和 IL-1β是最常见的促炎细胞因子,在炎症性疾病中,TNF-α可诱发IL-1β、IL-6等炎症介质的合成,导致多器官功能障碍综合征和多器官功能衰竭[3-4].油橄榄叶提取物(olive leaf extract,OLE)是从油橄榄叶中提取的组分,主要成分为黄酮类和萜类内酯化合物[5-8],近年来药理研究发现具有很好的抗氧化、降血脂等作用[9-11].前期试验中已经证明,OLE对铅中毒小鼠有较好的清除自由基和排铅作用[12-14].但OLE对海洛因依赖小鼠的肺损伤是否具有保护作用,到目前为止尚未见文献报道.本研究拟以海洛因依赖小鼠为模型,观察OLE对海洛因依赖小鼠肺组织结构及其肺中细胞因子IL-1β和TNF-α表达的影响,分析OLE对海洛因造成肺损伤保护作用的可能机制,以期为油橄榄叶提取物基础研究和临床应用提供更多的试验依据.1 材料与方法1.1 试验材料盐酸海洛因(纯度≥98%,成县公安局提供);油橄榄叶提取物由陇南田园油橄榄科技开发有限公司提供;出生20 d昆明小鼠100只购于兰州大学实验动物中心,体质量18~20 g,雌雄各半;兔抗IL-1β、鼠抗TNF-α、SP免疫组化试剂盒和DAB显色剂购自北京中杉金桥生物技术有限公司.1.2 模型建立与给药100只小鼠试验前适应性饲养1周,随机分为5组(正常对照组及模型对照组、Ⅰ、Ⅱ、Ⅲ油橄榄叶提取物治疗组4个试验组,每组20只)[12-14].参照文献[15-16]对模型对照组、Ⅰ、Ⅱ、Ⅲ组采用皮下注射海洛因(10 mg/kg)40 d建立海洛因依赖小鼠模型(观察海洛因诱发的症状30 min,进行评分以确定模型建成[17]),正常对照组注射等量的生理盐水.建模后,Ⅰ、Ⅱ、Ⅲ组分别用50、100、200mg/kg OLE进行皮下注射[9-10],每日1次,共50 d,正常对照组和模型对照组每天注射等量生理盐水.1.3 组织学观察取小鼠肺脏组织数块,用预冷的生理盐水冲洗干净,迅速投入15%的中性福尔马林液固定24 h,常规石蜡包埋切片(6 μm),H E染色,在光学显微镜(Olympus,FX-35WA,Japan)下观察并拍照.1.4 免疫组织化学免疫组化SP法(链霉菌抗生物素蛋白-过氧化物酶试剂盒).将肺脏石蜡切片脱蜡、PBS冲洗后,微波处理进行抗原修复,用3% H2O2室温孵育10 min,正常兔血清室温封闭30 min以封闭非特异性反应位点;一抗用兔抗IL-1β 多克隆抗体、鼠抗TNF-α 单克隆抗体(均为1∶400),置4 ℃冰箱过夜;滴加生物素标记的二抗(羊抗兔IgG抗血清),37 ℃孵育30 min;滴加SABC工作液,37 ℃孵育30 min;DAB显色,苏木素复染;空白对照以PBS代替一抗,常规脱水,透明、封片,在显微镜下观察并拍照(不同组别的免疫组化切片为同批次制作完成).1.5 图像分析用美国Image-proplus 5.0专业图像分析软件进行图像分析.从IL-1β、TNF-α阳性反应的切片中各选3 张,检测活性物质在肺脏中表达的强度.测量时保证光源的稳定,并且取图之前预热20 min以上,采图时各项设置包括光源、光圈大小、白平衡、曝光强度、敏感度、对比度等均改为手动调节且固定,以保证每次取图系统的设置值一样.取平均光密度和积分光密度2个指标,测量值的平均值为最终灰度值.1.6 数据处理用SPSS 13.0软件进行统计学分析处理,数据用表示;t检验,显著水平α=0.05,极显著水平α=0.01.2 结果与分析2.1 OLE对海洛因依赖小鼠肺脏组织结构的影响正常对照组小鼠的肺泡形态正常(图1-A),排列有序,肺泡间隔无增厚;模型对照组小鼠肺泡直径明显增大,肺泡隔明显增厚(图1-B);经OLE治疗后,Ⅰ、Ⅱ、Ⅲ处理治疗组小鼠肺脏的病理学改变较模型对照组减轻,肺泡直径和肺泡隔厚度减小(图1-C~E).SPSS统计分析显示,模型对照组小鼠肺泡直径和肺泡隔厚度显著高于正常对照组(P<0.01).Ⅰ、Ⅱ、Ⅲ治疗组小鼠肺泡直径和肺泡隔厚度明显低于模型对照组(P<0.05或P<0.01),且OLE浓度越高,对小鼠肺泡直径和肺泡隔厚度的作用越明显(表1).A:正常对照组肺脏组织结构,肺泡(AL),肺泡囊(ALS);B:模型对照组肺脏组织结构;C:Ⅰ组肺脏组织结构;D:Ⅱ组肺脏组织结构;E:Ⅲ组肺脏组织结构.图1 小鼠肺脏组织结构Fig.1 Lung structure of mice表1 小鼠肺脏组织结构的变化(n=10)Tab.1 Changes of histological structureof mouse lung(n=10)治疗组与模型组比较时,*表示差异显著(P<0.05),**表示差异极显著(P<0.01);模型组与正常组比较时,▲▲表示差异极显著(P<0.01).组别肺泡直径/μm肺泡隔厚度/μm正常对照组31.15±2.112.88±0.17模型对照组40.01±3.79▲▲6.44±0.39▲▲Ⅰ处理治疗组36.27±1.05∗5.14±0.36∗Ⅱ处理治疗组34.81±1.55∗∗4.66±0.49∗∗Ⅲ处理治疗组33.03±2.14∗∗3.33±0.73∗∗2.2 OLE对海洛因依赖小鼠肺脏IL-1β表达的影响免疫组织化学法显示,阳性表达部位被染成棕黄色.IL-1β在正常对照组中有少量的阳性表达(图2-A),而在模型对照组中呈强阳性表达(图2-B).分别采用不同剂量(50、100、200 mg/kg)OLE处理小鼠后发现,OLE能明显减弱IL-1β在小鼠肺脏中的表达(图2-C~E).阴性对照组无IL-1β阳性表达(图2-F).SPSS统计分析显示,模型对照组小鼠肺脏IL-1β阳性表达的平均光密度及积分光密度显著高于正常对照组(P<0.01).OLE治疗后,Ⅰ、Ⅱ、Ⅲ处理治疗组肺脏IL-1β阳性表达的平均光密度及积分光密度明显低于模型对照组(P<0.05或P<0.01),且呈剂量依赖性,OLE浓度越高,对IL-1β表达的抑制作用越明显(表2).2.3 OLE对海洛因依赖小鼠肺脏TNF-α表达的影响正常对照组小鼠肺中有少量的TNF-α阳性表达(图3-A);模型对照组小鼠肺脏TNF-α表达呈强阳性(图3-B);与模型对照组相比,Ⅰ、Ⅱ、Ⅲ处理治疗组肺脏中TNF-α阳性表达明显减弱(图3-C~E);阴性对照组无TNF-α阳性表达(图3-F). SPSS统计分析显示,模型对照组小鼠肺脏TNF-α阳性表达的平均光密度及积分光密度显著高于正常对照组(P<0.01).与模型对照组相比,Ⅰ、Ⅱ、Ⅲ处理治疗组肺脏TNF-α阳性表达的平均光密度及积分光密度明显降低(P<0.05或P<0.01),且OLE浓度越高,对TNF-α表达的抑制作用越显著(表3).A:正常对照组肺脏中IL-1β的表达,肺泡(AL);B:模型对照组肺脏中IL-1β的表达;C:Ⅰ组肺脏中IL-1β的表达;D:Ⅱ组肺脏中IL-1β的表达;E:Ⅲ组肺脏中IL-1β的表达;F:阴性对照.图2 IL-1β在小鼠肺脏中的表达Fig.2 Expression of IL-1β in lung of miceA:正常对照组肺脏中TNF-α的表达,肺泡(AL);B:模型对照组肺脏中TNF-α的表达;C:Ⅰ组肺脏中TNF-α的表达;D:Ⅱ组肺脏中TNF-α的表达;E:Ⅲ组肺脏中TNF-α的表达;F:阴性对照.图3 TNF-α在小鼠肺脏中的表达Fig.3 Expression of TNF-α in lung of mice表2 IL-1β在肺脏表达的平均光密度和积分光密度(n=10)Tab.2 The average optical density and integral optical density of IL-1β in the lung(n=10)治疗组与模型组比较时,*表示差异显著(P<0.05),**表示差异极显著(P<0.01);模型组与正常组比较时,▲▲表示差异极显著(P<0.01).指标正常对照组模型对照组Ⅰ处理治疗组Ⅱ处理治疗组Ⅲ处理治疗组平均光密度0.037 7±0.001 70.089 4±0.004 1▲▲0.070 5±0.001 7∗0.063 2±0.002 1∗∗0.048 9±0.002 9∗∗积分光密度387.658 0±88.205 0878.626 0±90.302 0▲▲651.352 0±60.474 0∗∗527.321 0±58.258 0∗∗442.553 0±47.754 0∗∗表3 TNF-α在肺脏表达的平均光密度和积分光密度(n=10)Tab.3 The average optical density and integral optical density of TNF-α in the lung(n=10)治疗组与模型组比较时,*表示差异显著(P<0.05),**表示差异极显著(P<0.01);模型组与正常组比较时,▲▲表示差异极显著(P<0.01).指标正常对照组模型对照组Ⅰ处理治疗组Ⅱ处理治疗组Ⅲ处理治疗组平均光密度0.038 1±0.002 20.0993±0.003 5▲▲0.079 6±0.002 5∗0.060 8±0.001 9∗∗0.047 0±0.002 2∗∗积分光密度390.584 0±72.502 0888.807 0±65.555 0▲▲623.949 0±57.2810∗∗505.333 0±54.414 0∗∗446.693 0±50.707 0∗∗3 讨论在阿片类毒品成瘾中,海洛因成瘾是我国发病最高、危害最大的一种.海洛因成瘾可引起动物、人类多种脏器的损害,而在海洛因成瘾患者中,几乎有一半的患者最终会发展为肺功能衰竭.研究表明,肺泡是肺进行气体交换的功能单位,一旦肺泡结构出现异常,就会直接影响肺的呼吸功能,肺泡直径增大会影响单位面积内肺泡的数量,在一定程度上减少了肺泡表面积,即减少了肺呼吸面积,降低了肺内氧的利用率,而肺泡隔的增厚则影响到肺泡与肺毛细血管间的气体交换率[18],因此,肺泡直径的增大和肺泡隔的增厚减少了肺气体扩散容量.本试验显示,海洛因小鼠肺组织呈现肺泡直径变大、肺泡隔增厚等病理学特点.朱辉等[19]研究认为,海洛因侵入肺脏后,引起的肺炎、慢性支气管炎、肺脓疡等并发症,是导致组织受损的主要原因之一.炎症和脓毒症的发生发展与促炎细胞因子的合成、过度释放及内源性抗炎细胞因子的释放不足密切相关.促炎细胞因子/抗炎细胞因子的失衡是加重炎症和脓毒症的重要因素[3,20].TNF-α和IL-1B为最重要的促炎细胞因子,在肺脏炎症中起级联放大作用[21].TNF-α是一种主要由单核-巨噬细胞产生的前炎症细胞因子,它能刺激单核-巨噬细胞合成IL-1β、IL-6、IL-8等细胞因子,同时TNF-α具有巨噬细胞和中性粒细胞的趋化作用,能诱导肺血管内皮细胞活化及中性粒细胞脱颗粒释放氧自由基、脂质代谢产物、溶酶体酶等介质,引起白细胞迁移,损害肺泡表面活性物质系统,损伤血管内皮细胞造成毛细血管渗漏,积聚的水肿液进一步阻碍肺泡细胞的灌流和氧气交换[22].此外,TNF-α又能激活巨噬细胞和中性粒细胞,使其细胞毒性增加,生成更多的促炎症基因以及IL-1β等细胞因子,从而介导肺脏的病理过程[23].IL-1β能促进骨髓释放中性粒细胞,诱导单核细胞和多核粒细胞趋化浸润炎症局部,在局部释放溶酶体酶和其他细胞因子,还能引起粒细胞脱颗粒释放炎症介质,进一步导致细胞损害[24].本试验通过免疫组化技术证实,模型对照组小鼠肺组织中TNF-α和IL-1β的表达水平明显升高,与正常对照组比较,差异非常显著,说明海洛因依赖小鼠的肺损伤与细胞因子分泌异常增高有关,有效抑制TNF-α和IL-1β的表达可能是海洛因康复治疗的有效措施.OLE中含有大量的活性成分,已有大量的试验证实OLE有明显的抗炎、抗氧化、抗菌等作用[5-10].本试验证实,连续给海洛因依赖小鼠用药50 d,可以使海洛因依赖小鼠肺组织病理形态明显得到改善,表现在肺泡直径变小、肺泡隔厚度减少,同时使肺组织中IL-1β和TNF-α的表达水平显著降低.由此推测OLE可能是通过抑制TNF-α和IL-1β在肺中的表达,从而达到改善海洛因依赖小鼠的病理形态的治疗效果.本试验仅从肺组织结构及TNF-α和IL-1β表达的变化角度来探讨其机制,可能还存在其它方面的机制,有关这方面的研究将继续进行.参考文献[1] 余红胜,杨桂菊,龚国如,等.静脉滥用海洛因致肺部感染的临床及影像学分析[J].中华医院感染学杂志,2011,21(12):2473-2474[2] 俞诗源,王悦,郭婷婷,等.海洛因对母鼠体重、行为及肺中相关活性物质表达的影响[J].西北师范大学学报:自然科学版,2010,46(2):94-100[3] 陈亮,白静慧,张凯,等.大黄素对脓毒症急性肺损伤大鼠肿瘤坏死因子-α及白细胞介素-1β水平的影响[J].广东医学,2013,34( 13):1992-1994[4] 贺立立,陈勤,彭申明,等.桔梗皂苷对慢性支气管炎小鼠肺细胞中的IL-1β和TNF-α表达的影响[J].中国细胞生物学学报,2013,35(1):17-23[5] Turkez H,Togar B,Polat E.Olive leaf extract modulates permethrin induced genetic and oxidative damage inrats[J].Cytotechnology,2012,64(4):459-464[6] Lee O H,Lee B Y.Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract[J].Bioresour Technol,2010,101(10):3751-3754[7] Kontogianni V G,Gerothanassis I P.Phenolic compounds and antioxidant activity of olive leaf extracts[J].Nat Prod Res,2012,26(2):186-189[8] Goulas V,Papoti VT,Exarchou V,et al.Contribution of falconoid to the overall radical scavenging activity of olive (Olea europaea L.) leaf polar extracts[J].J Agric Food Chem,2010,58(6):3303-3308[9] Kaeidi A,Esmaeili-Mahani S,Sheibani V,et al.Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis:in vitro and in vivo studies[J].J Ethnopharmacol,2011,136(1):188-196[10] Esmaeili-Mahani S,Rezaeezadeh-Roukerd M,Esmaeilpour K,et al.Olive (Olea europaea L.) leaf extract elicits antinociceptive activity,potentiates morphine analgesia and suppresses morphine hyperalgesia in rats[J].J Ethnopharmacol,2010,132(1):200-205[11] 季崇敏,吴国球,沈子龙.橄榄叶提取物对正常及糖尿病小鼠血糖和血脂水平的影响[J].东南大学学报:医学版,2003,22(4):236-238[12] Wang Y,Wang S Q,Cui WH,et al.Olive leaf extract inhibits lead poisoning-induced brain injury[J].Neural RegenerationResearch,2013,8(22):2021-2029[13] 王昱.油橄榄叶提取物对铅中毒小鼠海马组织抗氧化酶及NO与NOS的影响[J].甘肃农业大学学报,2012,47(2):21-24[14] 王昱,王胜青.油橄榄叶提取物对染铅小鼠肾功能的影响[J].甘肃农业大学学报,2013,48(6):23-28[15] Zheng Q H,Zhang Y T,Zheng R L,et al.Effects of verbascoside and luteolin on oxidative damage in brain of heroin treatedmice[J].Pharmazie,2005,60(7):539-543[16] Pu L,Bao G B,Xu N J,et al.Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates[J].The Journal of Neuroscience,2002,22(5):1914-1921[17] Pan G S,Xu G Q,Li S F,et al Establishment of the model of heroin addicted rats[J].J Guiyang Med Coll,1997,22(suppl):46[18] 王昱,何九军,杨小录,等.盐酸克伦特罗对小鼠肺脏组织结构及抗氧化能力的影响[J].西北农林科技大学学报:自然科学版,2012,40(1):29-36[19] 朱辉,沙丽君,查云,等.海洛因成瘾者的肺功能-附100例分析[J].中国药物依赖性通报,1993,2(2):134-134[20] Wang J L,Wong H R.Pathophysiology and treatment of septic shock in neonates[J].Clin Perinatol,2010,37(2):439-479[21] 朱桂军,于占彪,胡振杰,等.二烯丙基三硫对脂多糖诱导急性肺损伤小鼠肺组织TNF-α和IL-1β的影响[J].河北医科大学学报,2007,28(4):248-251[22] 孙中吉,卢青.急性呼吸窘迫综合征发病中的细胞因子和炎症介质[J].中国危重病急救医学,2003,15(3):186-189[23] Desai D,Brightling C.Cytokines and cytokine-specific therapy in asthma[J].Adv Clin Chem,2012,57:57-97[24] Goodman R B,Strieter R M,Martin D P,et al.Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome[J].Am J Respir Crit Care Med,1996,154(3pt 1):602-611。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Hazardous Materials 176 (2010) 27–34Contents lists available at ScienceDirectJournal of HazardousMaterialsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j h a z m atEx situ bioremediation of oil-contaminated soilTa-Chen Lin a ,Po-Tsen Pan b ,Sheng-Shung Cheng b ,c ,∗aDepartment of Biological Science and Technology,Meiho Institute of Technology,Pingtung County,912,Taiwan bDepartment of Environmental Engineering,National Cheng Kung University,Tainan City 701,Taiwan cSustainable Environment Research Center,National Cheng Kung University,Tainan City 701,Taiwana r t i c l e i n f o Article history:Received 22May 2009Received in revised form 24September 2009Accepted 19October 2009Available online 30 October 2009Keywords:Hydrocarbon Landfarming Bioremediation Bioaugmentation Biostimulationa b s t r a c tAn innovative bioprocess Systematic Environmental Molecular Bioremediation Technology (SEMBT)that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip,was developed as an integrated bioremediation technology to treat S-and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency.After 28days of the bioremediation process,diesel oil (TPH C10–C28)and fuel oil (TPH C10–C40)were degraded up to approximately 70%and 63%respectively in the S-series biopiles.When the bioaugmentation and bios-timulation were applied in the beginning of bioremediation,the microbial concentration increased from approximately 105to 106CFU/g dry soil along with the TPH biodegradation.Analysis of microbial diver-sity in the contaminated soils by microarray biochips revealed that Acinetobacter sp.and Pseudomonas aeruginosa were the predominant groups in indigenous consortia,while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation.Microbial respiration as influenced by the microbial activity reflected directly the active microbial popu-lation and indirectly the biodegradation of TPH.Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500mg TPH/kg dry soil.The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil.Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.1.IntroductionSoil and groundwater contamination with petroleum hydrocar-bon compounds causes environmental and health concerns.This has led to increased attention to develop innovative technologies for remediation [1].Bioremediation of petroleum hydrocarbons is an effective,economical,and environmentally friendly technol-ogy,which is considered a feasible method for treating petroleum hydrocarbon-contaminated soils [2,3].Bioremediation is generally achieved via bioaugmentation or biostimulation or both,depend-ing on soil conditions and the microbial community structure.The guidelines of the US EPA suggest that bioremediation is feasible when there is about 103CFU/g soil of the microbial population.However,a low microbial population and insufficient microbial diversity affect bioremediation efficiency.According to Alexan-der [2],bioremediation efficiency is a function of the ability of the inoculated microbial degraders to remain active in the natu-∗Corresponding author at:Department of Environmental Engineering,National Cheng Kung University,Tainan City 701,Taiwan.Tel.:+88662757575x65827;fax:+88662752790.E-mail addresses:sscheng@.tw ,robin6989@ (S.-S.Cheng).ral environment.Therefore,increasing the ability of the inoculated microbial degraders by bioaugmentation or promoting the activity of indigenous microbial degraders by biostimulation could improve bioremediation efficiency.Microbial communities should thus be monitored to promise the efficiency of bioremediation.Bioaug-mentation is the introduction of exogenous microorganisms into environments to accelerate bioremediation [4].Bioaugmentation can increase pollutant removal rates by increasing the bacte-rial population [5,6].In biostimulation,the soil is amended with nutrient mainly containing nitrogen and phosphorous source or biosurfactant known to enhance the TPH bioavailability at the site,thereby increasing the bioremediation efficiency [1,7].Hence,the application of bioaugmentation and biostimulation is needed to improve bioremediation efficiency which is affected by the con-centration and component of hydrocarbon pollution [8,9].The oil removal efficiency in a bioremediation process is mainly determined by microbial activity,which can be monitored by using molecular tools or rapid assessment packages [10].Molecular tech-niques for identifying hydrocarbon-degrading bacteria have been widely used in environmental studies,especially for microarrays that rapidly grow in number.Microarray biochips,a novel technol-ogy that has been applied in the environmental field,could offer great accuracy and sensitivity for analysis of microbial diversity [10].0304-3894/$–see front matter.Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.doi:10.1016/j.jhazmat.2009.10.08028T.-C.Lin et al./Journal of Hazardous Materials176 (2010) 27–34The landfarming method used in the bioremediation of oil-contaminated soil is an effective,economic and promising tech-nology for cleaning up hydrocarbon-contaminated soil[3].Turning the soil regularly,provides oxygen transportation needed for bios-timulation and increases the opportunity of contact by mixing microbes with oil-pollutants and water.Since microorganisms play a vital role in bioremediation process,they should be monitored with an accurate molecular biotechnology.Therefore,in this study an innovative bioprocess technology,Systematic Environmental Molecular Biotechnology(SEMBT),was developed forfield applica-tions in treating petroleum oil-contaminated soil.This bioprocess included bioaugmentation and biostimulation using the landfarm-ing procedure with the operational strategy of reseeding previous biopile soils in series.Molecular microarray biotechnology was used for monitoring during the bioremediation process.The inte-grated operational strategy of SEMBT improves the biodegradation of hydrocarbon as well as bioremediation efficiency.2.Materials and methods2.1.KH-100site descriptionThe KH-100site is located near the harbor of Kaohsiung City, southern Taiwan.The site has a storage tank station that has had an oil leak from the past ten years,mainly diesel oil and fuel oil.The mean daily temperature of the operational time was30±10◦C dur-ing bioremediation.Total average rainfall was1800mm in per year, and mostly concentrated from May to August.The annual mean air humidity was approximately77%.2.2.Soil biopileExperimental soil was collected from two sites and divided into two series of biopiles(S-and T-series)with different levels of TPH concentration containing diesel oil and fuel oil.Each series con-sisted of four small-scale biopiles(S0,S1,S2,S3and T0,T1,T2, T3),three treated biopiles,and one control or untreated biopile (S0and T0).The biopile size was approximately4m(L)×3m (W)×2m(H)with a soil volume of approximately20m3.Exper-imental soil biopiles werefirst analyzed and were then subjected to treatment using bioaugmentation with strains of Gordonia alka-nivorans CC-JG39,Rhodococcus erythropolis CC-BC11,Acinetobacter junii CC-FH2and Exiguobacterium aurantiacum CC-LSH4-1,as well as biostimulation with biosurfactant Rhamnolipid(RL)produced by Pseudomonas aeruginosa.The biopiles were sampled by using a composite sampling method.Measurement of soil moisture(%)and pH followed the procedures of soil analysis[11].2.3.Microbial assayA bioassay was carried out by using the total plate count as the quantitative estimation of enumeration,while a qualitative assay was accomplished by monitoring molecular DNA using microarray biochips with intergenic spacers(ITS)[12].Enumeration of the bac-terial plate count for soil samples followed the methods described in Gallego et al.[13].The microarray biochips method consisted of the amplification by nested PCR of the ribosomal DNA inter-genic spacers(ITS)regions of DNA extracted from contaminated soil.An oligonucleotide array was applied to directly detect bacteria in diesel and fuel oil-contaminated soil.2.4.Total petroleum hydrocarbon analysisTotal petroleum hydrocarbons(TPH)were extracted from the soil samples by using dichloromethane following the procedure recommended in US EPA test methods3550B[11].The organic phase was passed through a cartridgefilled with anhydrous sodium sulfate(Na2SO4,Sigma)to remove residual water and concentrated to near-dryness under a vacuum.The concentrate was re-dissolved with2ml dichloromethane and then concentrated to1ml by a N2 purge.The samples were quantified by using a gas chromatograph with an Agilent DB-1fused silica capillary column(type RTX-5; 30m long,I.D.0.53mm,D.F.1.5m;Restek,Bellefonte,USA)and flame ionization detector(GC-FID,PerkinElmer GC model no.8310) as described by Mohn and Stewart[14].2.5.Biogas analysisBiogases were measured by using a gas chromatograph(model GC-8A,Shimadzu,Japan)equipped with a stainless steel column (3m×1/8in.I.D.;stationary phase:Carbosieve SII)and a thermal conductivity detector(TCD).Gases were sampled by using1l col-lection bag(CAT#232-01,SKC)per week before turning over the biopiles periodically.After the biopiles were turned over,a2m porous pile was inserted into the bottom of each biopile to collect soil biogas randomly.The analytical method is referred to the litera-ture[15].Soil temperature in the soil was measured simultaneously with microbial respiration.2.6.Bioremediation process designThe concept of the proposed bioremediation process was based on the combination of bioaugmentation and biostimulation with operational strategy using a landfarming procedure by reseed-ing previous4m3biopile soil input biopiles in the beginning to enhance the increase in bacterial population.Our experiment was conducted in the biopile,which is1.8–2.0m high at the center, by using landfarming strategy with a plough machine per week. The biopile soil was periodically turned over with approximately volume of0.5m3by landfarming.The bacterial community was monitored by a microarray biochip during the operational period.2.7.Statistical analysisAn analysis of variance(ANOVA)was performed to test the dif-ference of initial andfinal TPH concentrations between the treated experiment biopiles and untreated control biopiles.3.Results and discussion3.1.Characterization of contaminated soilThe characterization of soil is presented in Table1.Two series of biopiles(S0,S1,S2,S3and T0,T1,T2,T3)had different TPH levels,in which the THP concentrations in the S-series biopiles were half of that in the T-series biopiles.TPH C10–C28and TPH C10–C40 are regulated under the Taiwan EPA guideline.According to the carbon number of hydrocarbons,the components of TPH C10–C40 basically can be divided into low molecular weight as diesel oil (TPH C10–C28)and high molecular weight as heavy oil(TPH C28–C40), the data of TPH C28–C40can be approximately estimated by sub-tracting the concentration.The concentrations of diesel oil were similar in both the S-and T-series biopiles.Therefore,there were more fractions of high-molecular-weight heavy oil in the T-series biopiles.The microbial populations in both series of biopiles were about105CFU/g dry soil and the microbial diversities were similar. Among them,Pseudomonas putida only appeared in the T-series biopiles.Many of these are well known to be efficient fuel oil or diesel-degraders[4,6,16,17].T.-C.Lin et al./Journal of Hazardous Materials 176 (2010) 27–3429Table 1Characterization of contaminated soils.ParametersS-series soilT-series soilTPH C10–C28(mg/kg)1020–22001800–2790TPH C10–C40(mg/kg)2200–42605850–7580Soil texture Sandy Loamy sandy Total N (%)0.030±0.0020.052±0.005Total P (%)0.046±0.0040.049±0.007Total organic matter (%) 1.9±0.5 2.1±0.4Total organic carbon (%) 1.1±0.3 1.3±0.2EC (dS/m)0.54±0.04 1.4±0.3pH7.0±0.37.2±0.2Total plate count (CFU/g dry soil)(2.2–6.3)×105(3.3–6.7)×105Bacterial diversityAcinetobactor junii ,Gordonia alkanivorans ,Rhodococcu erythropolis ,Acinetobacter sp.,Gordonia desulfuricans ,Pseudomonas sp.,Pseudomonas aeruginosa ,Ralstonia picketti Acinetobactor junii ,Gordonia alkanivorans ,Rhodococcu erythropolis ,Acinetobacter sp.,Gordonia desulfuricans ,Pseudomonas sp.,Pseudomonas aeruginosa ,Pseudomonaspudita ,Ralstonia picketti3.2.TPH biodegradationThere are some differences between S-and T-series biopiles in the biodegradationcurves of TPH including TPH C10–C28and TPH C10–C40as shown in Figs.1and 2.There seems to be two different biodegradation mechanisms that might involve the concentration and components of TPH [6,18].In the S-series biopiles,two dis-tinct phases are present in the bioremediation process,whereas a directly decreasing trend is present in the T-series biopiles.For both diesel and fuel oil,the biodegradation curves of TPH in the S-series biopiles rapidly decrease before 60days in the first phase of bioremediation followed by a slow decrease phase,which remained stable from then on up to 240days in the second phase of biore-mediation.As shown in Fig.1,the first phase occurred between days 0and 60,and after day 60the second phase was seen.ThereFig.1.The biodegradation curves of (A)TPH C10–C40and (B)TPH C10–C28in the S-series biopiles.were two different degradation efficiencies in both the S1and S2biopiles.The degradation efficiency in the first phase was higher and the degradation curve in second phase became flat after day 60.This is due to low-molecular-weight diesel oil being easily biode-graded in the first phase,whereas high-molecular-weight heavy oil was difficult to biodegrade in the second phase.The percent-ages of diesel in the S-series biopiles were higher than those in the T-series biopiles,leading to fast biodegradation in the first phase of bioremediation.Due to an initially low TPH concentration in the S3biopile,the biodegradation curve of TPH showed a directly decreas-ing trend similar to those of the T-series biopiles,in which the percentages of diesel were relatively low.Therefore,it is reasonable to assume that the biodegradation time and degree were effected by the fraction of TPH components and concentration [6].Two phases of biodegradation efficiencies occurred in S-series biopiles which contain high fraction of diesel,whereas only single phase occurredFig.2.The biodegradation curves of (A)TPH C10–C40and (B)TPH C10–C28in the T-series biopiles.30T.-C.Lin et al./Journal of Hazardous Materials176 (2010) 27–34Table2Profiles of TPH removal in the S-and T-series biopiles on day28in thefirst phase of bioremediation.Biopile Day0Day28Removal Removal Removal ratemg/kg dry soil%mg/kg dry soil-dayTPH C10–C40S03690257011203040S13560148020805874S24260156027006396S3220014207803528T0631053509601534T17580556020202772T27380503023503284T3585049209301633TPH C10–C28S0220012809204233S1178072010606038S2215064015107054S310206004204115T0252020105102018T1279018009903535T22550142011304440T3180014203802114in the T-series biopile with low fraction of diesel.The TPH biodegra-dation of two phases in our experiments coincides with the level of the TPH concentration,as reported by Thomassin-Lacroix[6].As shown in Table2,during thefirst28days when about60% of the total amount of TPH C10–C40was removed,the TPH C10–C40 removal rates in the S1and S2biopiles were approximately74 and96mg TPH/kg of dry soil per day,respectively.In contrast, the TPH C10–C40removal rate of the S0control biopile was approx-imately40mg TPH/kg of dry soil per day during thefirst28days when approximately30%of the total amount of TPH was removed. The results show that bioaugmentation and biostimulation with reseeding strategy performed well in thefirst month.The total amounts of TPH C10–C40removed(%)in the S-series biopiles were about twice compared with those in the T-series biopiles,while the TPH removal rates were similar.This shows that landfarming technology performed more efficiently in the S-series biopiles with a high fraction of diesel,than in the T-series biopile with a low fraction of diesel.The TPH C10–C40removal rate of S3biopiles was approximately28mg TPH/kg of dry soil per day during thefirst 28days,giving a35%removal of TPH.Although the TPH C10–C40 removal rate in biopile S3was less than that in the biopile S0, the TPH C10–C40removals(%)of biopile S3was higher than that in the biopile S0during the28days.This might be due to the low biodegradation and high fraction of high-molecular-weight heavy oil in biopile S3resisting to microbial attack.Consequently,the biodegradation curve of TPH shows a slowly decreasing trend as shown in Fig.1[19].Due to both limited factors of the initial con-centration and high fraction of high-molecular-weight heavy oil, the degradation efficiency of biopile S3was found to be a little bet-ter than that of biopile S0.When the TPH C10–C40peak of S3biopile at initial(no.S30727)and the62th(no.S30927)day of bioremedia-tion were compared,we observed that the dieselwas biodegraded while the heavy oil was not.As shown in Fig.3(B),the TPH C28–C40 was hardly degradable and the biodegrading curve in the second phase of S-series becameflat after62days(Fig.1).A possible expla-nation for the phenomenon is the inability of inoculation to degrade the particular hydrocarbons present in the contaminated soil such as an unresolved complex mixture(UCM)[20].Another reason is the inability of inoculation to attack the pollutant adsorption on the soil,because hydrocarbons bind strongly to humic substances and to clay minerals[21,22].Therefore,the degradation efficiencies of biopiles S1and S2were better than that in the S3biopile or in parison of the TPH chromatogram showing TPH C10–C40portions in S3 biopile at(A)0th day(no.S30727)and(B)62th day(no.S30927).The TPH C10–C28 peaks refer to low-molecular-weight hydrocarbons and the TPH C28–C40peaks refer to high-molecular-weight hydrocarbons.trol biopile(S0).Hence,landfarming technology using the strategy with reseeding process can shorten treatment time and improve the bioremediation efficiency.ANOVA refers to an analysis of variance,which is frequently used in statistics.The removal rates were higher in the treated biopiles (S1and S2)than the control S0in thefirst phase of bioremedia-tion at5%level of significance.There were significant differences in thefinal TPH C10–C40concentrations between treated experiment biopiles and untreated control biopiles in both series of biopiles (ANOVA with˛=0.05).There was a significant effect of bioaug-mentation and biostimulation in thefirst phase of bioremediation. Althoughfinal TPH C10–C40concentrations of all treated S-series biopiles were in the range of200–600mg/kg of dry soil at the end of the treatment period(240days),the level of TPH C10–C40in the treated S-series biopiles reduced below the legal TPH concentra-tion(1000mg/kg dry soil)regulated by the Taiwan government after100days.More than150days were needed for the untreated control of the S-series biopiles to reduce to less than1000mg/kg dry soil.This shows that SEMBT can shorten treatment time by half(Fig.1).ANOVA was also applied to test variability among the all biopiles for TPH C10–C40biodegradation.Results of this statis-tical analysis indicated that there were significant differences in thefinal TPH C10–C40concentrations between treated experiment biopiles and untreated control biopiles in both series of biopiles (˛=0.05)[6].Hence,the achieved end point TPH in S-series biopiles of this experiment was within limitations of Taiwan EPA regulation.3.3.Microbial investigations on bioremediation biopile3.3.1.Enumeration of microbial populationAs shown in Table1,the populations were in the range of 2.2–6.7×105CFU/g soil at the beginning of bioremediation in both the series of bipoles.The supplement of bioaugmentation and bios-timulation at thefirst phase of bioremediation resulted in a higher count(106–107CFU/g soil)in the experiment group,compared to that within the control group(105CFU/g soil),as shown in Fig.4.T.-C.Lin et al./Journal of Hazardous Materials176 (2010) 27–3431Fig.4.Number profiles of microbial population in(A)S-series and(B)T-series soil during bioremediation.In both series of biopiles,the initial population counts were about 2.2×105CFU/g dry soil then increased to6.3×107CFU/g dry soil when supplemented with bioaugmentation and biostimulation at thefirst phase of bioremediation.The bacterial number in the S2 biopile was higher than that in the S1biopile due to the reseeding approach at the beginning;the similar results were also obtained in T1and T2biopiles.The growth profiles of the microbial population reflected the TPH biodegradation compared to the control biopiles, as shown especially in S1,S2,T1,and T2biopiles.Microbial popu-lation seems to be lower and constant in the S-series biopiles after 150days of bioremediation,which is owing to the limited available carbon source in the soil.Thefluctuation of microbial population was small after150days of bioremediation.Similar changes in microbial population were found in T-series biopile.The T0biopile (control)showed the lowest bacterial number when compared with other biopiles,which corresponded to the TPH biodegradation efficiency.Thus,an immediate increase in the population density of indigenous microbes could ensure rapid degradation of the pol-lutants[23].Hence,the best bioaugmentation performance can be achieved by using pre-selected bacteria that increase in abundance. With the increase of a specific microbial community and biosurfac-tant addition,this approach could improve TPH biodegradation and reduce the cleanup time substantially.In the statistical analysis,the bacterial numbers in biopile S1and S2were one order of magnitude (P<0.05)higher than that in biopile S0after supplementation with bioaugmentation and biostimulation at the beginning.The micro-bial population of biopile S2increased half an order of magnitude (P<0.05)higher than that of biopile S1mainly due to the reseeding of4m3soil from biopile S1in the beginning.This phenomenon also occurred in the T-series biopiles T1and T2.Therefore,the strategy with reseeding process performed well due to increasing microbial population.Hence,bioaugmentation and biostimulation increased the microbial population in the beginning,which resulted in rapid TPH biodegradation in thefirst phase of bioremediation[23,24].With bioaugmentation and biostimulation,the population count was above5.0×106CFU/g dry soil in thefirst phase of biore-mediation.In the second phase,however,it decreased to below 5.0×106CFU/g dry soil due to the easily biodegradable diesel con-sumed and left the difficult biodegradable heavy oil.Microbial inoculation was deemed necessary since suitable HC-degrading bacteria were not found in sufficient numbers in the on-site sam-ples prior to landfarming[6].The TPH biodegradation was slower in the T-series because the microbial population could not utilize the lower quantity of diesel(32–37%of TPH)as a potential nutri-ent source;the S-series microbial population successfully utilized the more abundant diesel(46–60%of TPH)as a potential nutri-ent source.In the second phase,the TPH biodegradations were slower in all S-series biopiles.There might be a certain threshold for microbial populations to utilize TPH C28–C40[25].For example,iso-prenoids pristane,phytane,and cyclo-alkanes like resin composed of UCM ware partially or completely resistant to microbial attack [19,26].3.3.2.Microbial community analysis with microarrayidentificationThe microbial community was monitored by a microarray biochip and revealed the abundance of microbial diversity in the primitive soil in both series of biopiles.As shown in Table3,five indigenous bacteria(i.e.Acinetobactor sp.,G.desulfuricans,Pseu-domonas sp.,P.aeruginosa,and R.Picketti)and four augmented ones(i.e.A.junii,G.alkanivorans,and R.erythropolis)were initially detected in both series of biopiles.Microbial diversity was high during thefirst phase of bioremediation and microbial growth was prosperous due to bioaugmentation and biostimulation with the reseeding strategy.Therefore,TPH was rapidly removed by bacte-ria in thefirst phase of bioremediation.During thefirst4months of bioremediation,thefive indigenous bacteria and four augmented bacteria monitored by the microarray biochip were still detected to a larger extent in the S-series biopiles,lasting to the ending of bioremediation,with the exception of S0and S3biopiles,in which E. aurantiacum and G.desulfuricans disappeared at the end.The strain E.aurantiacum beingfirst screened from oil-contaminated soil,is here reported as a hydrocarbon assimilator capable of degrading heavy oil hydrocarbons,and disappeared in the S-series biopiles at last might be due to less fraction of heavy oil.Both bacteria with oil degrading activities disappeared at thefinal stage and this might affect the efficiency of bioremediation.As carbon is the key factor governing microbial growth in soil and produces functional diver-sity of soil microbes[27].We found both bacteria with oil degrading activities disappeared at thefinal stage when the available carbon has depleted and this might affect the efficiency of bioremediation (Fig.1).Acinetobacter sp.and P.aeruginosa were the predominant groups in indigenous consortia,while the augmented consortia were G.alkanivorans and R.erythropolis in the S-series of biopiles during bioremediation.Six indigenous bacteria(i.e.Acinetobacter sp.,G.desulfaricans, Pseudomonas sp.,P.aeruginosa,P.pudita and R.picketti)and four augmented bacteria(i.e.A.junii,G.alkanivorans,R.erythropolis and E.aurantiacum)monitored by the mircroarray biochip were found in the T-series biopile on sites(Table3).Most of them have been reported as hydrocarbon degraders[28].There were some differ-ences between the S-and T-series biopiles.For instance,P.putida as a PAH-degrading bacterium[29],was a distinct species found32T.-C.Lin et al./Journal of Hazardous Materials176 (2010) 27–34Table3Microbial diversity detected by microarray in both series of biopiles during bioremediation.Bacteria Day0Day120Day240S0/T00S1/T1S2/T2S3/T3S0/T00S1/T1S2/T2S3/T3S0/T0S1/T1S2/T2S3/T3Augmented bacteriaA.junii+/++/++/++/++/++/++/++/++/−+/++/++/+E.aurantiacum+/++/++/++/+−/++/++/+−/+−/−+/++/+−/+G.alkanivorans+/++/++/++/++/++/++/++/++/++/++/++/+R.erythropolis+/++/++/++/++/++/++/++/++/++/++/++/+Indigenous bacteriaAcinetobacter sp.+/++/++/++/++/++/++/++/++/++/++/++/+G.desulfuricans+/++/++/++/+−/−+/++/+−/+−/−+/++/+−/+Pseudomonas sp.+/++/++/++/++/++/++/++/+−/++/++/+−/−P.aeruginosa+/++/++/++/++/++/++/++/++/++/++/++/+ R.picketti+/++/++/++/+−/++/++/++/+−/−+/++/++/−P.pudita−/+−/+−/+−/+−/+−/+−/+−/+−/−−/+−/+−/+Note:+,Detectable;−,non-detectable.in the T-series biopiles.Hence,we expected the biodegradation curves of TPH to be different for the biopiles since the fractions of TPH component and the microbial communities were different. The predominant groups of indigenous and augmented consortia in the T-series biopiles were the same as those in the S-series biopiles during bioremediation[30].Among them,bacteria from the genus Acinetobacter are one of the most active strains in the assimilation of saturates and aromatics[19].Bacteria from the genus Gordonia with the dioxygenase gene have been reported to degrade polyaromatic hydrocarbon compounds[29].Bacteria of the genus Rhodococcus have been reported to assimilate n-alkanes and more than90%of the branched alkanes[19].These bacterial strains represent hydro-carbon(HC)-degrading genera[19].3.4.Microbial respirationThe microbial respiration as influenced by the microbial activ-ity reflects directly the microbial population and indirectly the biodegradation of TPH[30].The observed oxygen concentration first decreased with time as oxygen was consumed by microbial respiration,while the carbon dioxide concentration increased with time as carbon dioxide was produced by the microbial respiration in soil(Fig.5).The biogas analysis shows only a small different trend in both S-and T-series of biopiles.On day60,the S-series biopiles were relatively higher in CO2concentration and lower in O2concentra-tion,and this phenomenon was similar to that on day90in the T-series biopiles.These results reflect directly the microbial popu-lation and indirectly the biodegradation of TPH(Figs.1,2and4). Thebiodegradation model consisting of two phases in S1and S2 biopiles leads to the highest CO2production at day60,and it was proposed that higher fractions of diesel might be present in thepollutants in these two biopiles.Another biodegradation model consisting of only one phase was seen in S0and S3biopiles,which leads to the delay of the highest CO2production at day90.This phenomenon can also be found in the CO2production patterns in T-series biopiles,owing to the lower fractions of diesel in the pollutants in these biopiles.The entrapped air was utilized for oxygen uptake and CO2 release due to microbial respiration during the period of ndfarming method provided aerobic conditions to microbial consortium for TPH degradation.The degradation of TPH involves the oxidation of hydrocarbon by oxygenase,for which oxygen is required[31].Therefore,the degradation of TPH was directly related to the respiration of microbial populations in the soil[32]. Only one phase was observed in the T-series during bioremediation, which might be due to a mass transfer limitation of the oxygen diffusion[33].The effect of oxygen limitation on the microbial Fig.5.Biogas profiles of microbial respiration in(A)S-series and(B)T-series soil during bioremediation.Symbol:(—),Carbon dioxide production;(---),oxygen con-sumption.activity led to a slow biodegradation of TPH during the bioreme-diation.This indicates that the activities of bacteria were hindered in the T-series biopiles.At the middle stage of the landfarming pro-cess,when most of the easily biodegradable hydrocarbons present in the soil have been degraded by the microorganisms existing in the soil,the ratio of CO2concentration to O2concentration gradually decreased and then leveled off.This implies that the effi-ciency of the TPH minimization involves the component of TPH, and the microbial respiration reflects the bioremediation efficiency. Microorganisms prefer the more easily available component of TPH over the less easily degradable heavy oil[34].Some differences。