精选-高考数学二轮复习第二篇专题通关攻略专题4立体几何专题能力提升练十一2-4-2空间中的平行与垂直

合集下载

高考数学(综合提升篇)+专题04+立体几何解答题(理)

高考数学(综合提升篇)+专题04+立体几何解答题(理)

专题四 立体几何解答题(理)空间向量运算与利用向量证明平行、垂直的位置关系【背一背重点知识】1.用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两个不共线向量线性表示.2.面面平行:①证明两个平面的法向量平行;②转化为线面平行,线线平行.3.用向量证明线面垂直的方法有:①证明直线的方向向量与平行的法向量平行;②利用线面垂直的判定定理,转化为线线垂直.4.面面垂直的证明发法:①两个平面的法向量垂直;②转化为线面垂直,线线垂直. 【讲一讲提高技能】 必备技能:1.用向量证明空间中的平行关系①设直线1l 和2l 的方向向量分别为1v 和2v ,则1l ∥2l (或1l 与2l 重合)⇔ 1v ∥2v .②设直线l 的方向向量为v ,与平面α共面的两个不共线向量1v 和2v ,则l ∥α或l ⊂α⇔存在两个实数,x y ,使12v xv yv =+.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . ④设平面α和β的法向量分别为1u ,2u ,则α∥β⇔1u ∥2u . 2.用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为1v 和2v ,则l 1⊥l 2⇔1v ⊥2v ⇔1v .2v =0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u ③设平面α和β的法向量分别为1u 和2u ,则α⊥β⇔1u ⊥2u ⇔1u ·2u =0. 典型例题:例1.【2018广东省中山市】如图,PD 垂直正方形ABCD 所在平面,AB =2,E 是PB 的中点,cos DP <,AE>3=.(I )建立适当的空间坐标系,求出点E 的坐标; (II )在平面PAD 内求一点F ,使EF ⊥平面PCB .【答案】(I )点E 坐标是(1,1,1);(II )点F 的坐标是(1,0,0). 【解析】试题分析:(I )由题意,分别以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间坐标系,结合空间中点的坐标,设P (0,0,2m ),则E (1,1,m ),结合平面向量夹角公式得到关于m 的方程,解方程可得点E 坐标是(1,1,1);(II )由题意,设F (x ,0,z ),结合平面向量的法向量和直线的方向向量得到关于坐标的方程组,求解方程组可得即点F 是AD 的中点. 试题解析:(I )分别以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间坐标系,如图,则 A (2,0,0),B (2,2,0),C (0,2,0),设P (0,0,2m ),则E (1,1,m ), ∴ AE =(-1,1,m ),DP =(0,0,2m )∴ cos DP <,221m AE m >===解得. ∴ 点E 坐标是(1,1,1);(II )∵F ∈平面P AD , ∴ 可设F (x ,0,z )EF =(x -1,-1,z -1), 又EF ⊥平面PCB , ∴ EF CB ⊥⇒ (1x -,-1,1)z - (⋅2,0,0)=0,解得,1x =; 又∵EF PC ⊥ ∴ (1x -,-1,1)(z -⋅0,2,-2)00z =⇒= ∴ 点F 的坐标是(1,0,0),即点F 是AD 的中点.【方法点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (I )证明线面、面面平行,需转化为证明线线平行; (II )证明线面垂直,需转化为证明线线垂直; (III )证明线线垂直,需转化为证明线面垂直.例2.【2018陕西咸阳高三一模】如图,正三棱柱111ABC A B C -的所有棱长均为2,D 为棱1BB 上一点,E 是AB 的中点.(I )若D 是1BB 的中点,证明:平面1ADC ⊥平面1A EC ; (II )若平面1ADC 与平面ABC 的夹角为45,求BD 的长.【答案】(I )见解析;(II )1BD =.【解析】试题分析:(I )证明AD 垂直于面1A EC 中的两条相交直线,则AD ⊥面1A EC .(II )建立空间直角坐标系求解.试题解析:(I )由,AC BC AE BE ==,知CE AB ⊥,又平面ABC ⊥平面11ABB A ,所以CE ⊥平面11ABB A ,而AD⊂≠平面11ABB A ,∴AD CE ⊥,在正方形11ABB A 中,由D E ,分别是1BB 和AB 的中点知1AD A E ⊥,而1A E CE E ⋂=,∴AD ⊥平面1A EC ,∵AD⊂≠平面1ADC ,∴平面1ADC ⊥平面1A EC .(II )取AC 的中点O 为原点,直线,OA OB 分别为,x y 轴,建立如图所示坐标系O xyz -,显然平面ABC 的一个法向量为()10,0,1n =,而()()11,0,0,1,0,2A C -,设()3,(02)D m m <<,则()()12,0,2,3,AC AD m =-=-.设()2,,n x y z =是平面1ADC 的法向量,则()()()()2,0,2,,00{{3,,,030x y z x z m x y z x mz -⋅=-=⇒-⋅=-+=取(23,13n m =-,则()()1220,0,13,13cos ,61m n n m ⋅-=+- ()232261m ==+- 解得1m =,即1BD =【练一练提升能力】1.【2017南京市、盐城市高三二模】如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =3π,E ,F 分别是BC ,A 1C 的中点.(I )求异面直线EF ,AD 所成角的余弦值; (II )点M 在线段A 1D 上,11A MA Dλ=.若CM ∥平面AEF ,求实数λ的值. 【答案】(I )24.(II )23λ=. 【解析】试题分析:(I )由四棱柱1111ABCD A B C D -,证得11,A A AE A A AD ⊥⊥,进而得到AE AD ⊥,以{}1,,AE AD A A 为正交基底建立空间直角坐标系,利用向量坐标运算,即可求解,EF AD 所成角的余弦值;(II )设(),,M x y z ,由点M 在线段1A D 上,得到11A MA Dλ=,得出向量CM 则坐标表示,再求得平面AEF 的一个法向量,利用向量的数量积的运算,即可得到λ的值. 试题解析:因为四棱柱ABCD -A 1B 1C 1D 1为直四棱柱,所以A 1A ⊥平面ABCD . 又AE ⊂平面ABCD ,AD ⊂平面ABCD ,所以A 1A ⊥AE ,A 1A ⊥AD .在菱形ABCD 中∠ABC =,则△ABC 是等边三角形.因为E是BC中点,所以BC⊥AE.因为BC∥AD,所以AE⊥AD.以{,,}为正交基底建立空间直角坐标系.则A(0,0,0),C(,1,0),D(0,2,0),A1(0,0,2),E(,0,0),F(,,1).(I)=(0,2,0),=(-,,1),所以·=1.从而cos<,>==.故异面直线EF,AD所成角的余弦值为.(II)设M(x,y,z),由于点M在线段A1D上,且=λ,则=λ,即(x,y,z-2)=λ(0,2,-2).则M(0,2λ,2-2λ),=(-,2λ-1,2-2λ).设平面AEF的法向量为n=(x0,y0,z0).因为=(,0,0),=(,,1),由n·=0,n·=0,得x0=0,y0+z0=0.取y0=2,则z0=-1,则平面AEF的一个法向量为n=(0,2,-1).由于CM∥平面AEF,则n·=0,即2(2λ-1)-(2-2λ)=0,解得λ=.2.【2018山西晋中市高三1月高考适应性调研】如图,四棱锥中,底面是直角梯形,,,,侧面底面,且是以为底的等腰三角形.(Ⅰ)证明:(Ⅱ)若四棱锥的体积等于.问:是否存在过点的平面分别交,于点,,使得平面平面?若存在,求出的面积;若不存在,请说明理由.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(Ⅰ)取的中,连接,,,由三角形是等腰三角形,则,又,,可得,从而证出平面,可得;(Ⅱ)取,中点,,连接,,,可证明四边形为平行四边形,进一步证明平面平面,可得三角形是直角三角形,由三角形面积公式可得面积.试题解析:(Ⅰ)证明:取的中点,连接,,∵,∴.∵且,∴是正三角形,且,又∵,,平面,∴平面,且平面,∴.(Ⅱ)解:存在,理由如下:分别取,的中点,,连接,,,则;∵是梯形,且,∴且,则四边形为平行四边形,∴.又∵,平面,,平面,∴平面,平面且,平面,,∴平面平面.∵侧面,且平面平面,由(Ⅰ)知,平面,若四棱锥的体积等于,则,所以,,在和中,,∴ ,则 ,∴ 是直角三角形,则. 利用空间向量求空间角【背一背重点知识】1.求两条异面直线所成的角,设b a ,分别是直线21,l l 的方向向量,则21,l l 所成角为θ,b a ,的夹角为><,,则ba b a ⋅>=<=,cos cos θ2.求直线与平面所成的角,设直线l 的方向向量为,平面α的法向量为,直线l 与平面α所成的角为θ,ba n a ⋅=><=,cos sin θ.3.设,是二面角βα-l -的法向量,则,的夹角大小就是二面角的平面角的大小,nm n m ⋅>=<=,cos cos θ,再根据平面是锐角还是钝角,最后确定二面角的平面角的大小.【讲一讲提高技能】 1.必备技能: 用法向量求角(I )用法向量求二面角如图,有两个平面α与β,分别作这两个平面的法向量与,则平面α与β所成的角跟法向量与所成的角相等或互补,所以首先必须判断二面角是锐角还是钝角.(II )法向量求直线与平面所成的角1n 2n 1n 2n 2n要求直线a 与平面α所成的角θ,先求这个平面α的法向量与直线a 的夹角的余弦,易知或者.2.典型例题:例1.【2018河南省豫南九校高三下学期第一次联考】四棱锥P ABCD -中,底面ABCD 为矩形,22,AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(I )证明:PC BD ⊥;(II )设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值. 【答案】(I )见解析(II )10【解析】【试题分析】(I )设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,根据面面垂直的性质定理,有PO ⊥平面ABCD ,以O 为原点,OP 为z 轴,OB 为y 轴,建立空间直角坐标系,计算0PC BD ⋅=可得证.(II )设()0,0,P h ,利用直线BD 和平面PAD 所成角为45,计算3h =平面BPC 和平面DPC 的法向量计算二面角的余弦值. 【试题解析】解:(I )证法一:设AB 中点为O ,连接PO , 由已知PA PB =,所以PO AB ⊥, 而平面PAB ⊥平面ABCD ,交线为AB 故PO ⊥平面ABCDa aa n ,2-π以O 为原点,OP 为z 轴,OB 为y 轴,如图建立空间直角坐标系,并设PO h =,则()())()0,0,,0,1,0,2,1,0,2,1,0P h B CD-所以()()2,1,,2,2,0PC h BD =-=-0PC BD ⋅=,所以PC BD ⊥.证法二:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥, 而平面PAB ⊥平面ABCD ,交线为AB 故PO ⊥平面ABCD ,从而BD PO ⊥ ①在矩形ABCD 中,连接CO ,设CO 与BD 交于M ,则由::CD CB BC BO =知BCD OBC ∆~∆,所以BCO CDB ∠=∠ 所以90BCM CBM CDB CBM ∠+∠=∠+∠=︒,故BD CO ⊥ ② 由①②知BD ⊥平面PCO 所以PC BD ⊥.(II )由AD AB ⊥,平面PAB ⊥平面ABCD ,交线为AB ,可得AD ⊥平面PAB , 所以平面PAB ⊥平面PAD ,交线为PA过B 作BH PA ⊥,垂足为H ,则BH ⊥平面PADBD 与平面PAD 所成的角即为角BDH ∠所以226322BH BD ===从而三角形PAB 为等边三角形,PO =(也可以用向量法求出PO ,设()0,0,P h ,则()())0,1,0,0,1,0,1,0A B D --,可求得平面PAD 的一个法向量为()0,,1p h =-,而()2,2,0BD =-,由cos ,sin45p BD =︒可解得h =设平面BPC 的一个法向量为m ,则0{m BP m BC ⋅=⋅=,()()0,1,3,2,0,0BP BC =-=,可取()0,3,1m =设平面DPC 的一个法向量为n ,则0{n DP n DC ⋅=⋅=,()()2,1,3,0,2,0DP DC =-=,可取(3,0,2n =--,于是10cos ,m n =-,故二面角B PC D --的余弦值为10.【易错点睛】本题主要考查了空间平行判定与性质、二面角的计算、空间想象能力和推理论证能力,考查学生综合应用知识的能力和应变能力,属综合题.其解题过程中最容易出现以下错误:其一是对于第一问不能熟练运用线线平行、线面平行和面面平行的判定定理和性质定理,进而不能正确处理线面平行的问题;其二是对于第二问不能正确运用空间向量求二面角的大小,其关键是正确地求出各面的法向量.例2.【2018天津滨海新区高三上学期八校联考】在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA AB =,::22AB AD CD =.(I )证明BD PC ⊥;(II )求二面角A PC D --的余弦值;(III )设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQPD的值.【答案】(I )见解析(II )(III )23PQ PD = 【解析】试题分析:(I )先根据条件建立空间直角坐标系,设立各点坐标,表示直线方法向量,再根据向量数量积为零进行证明(II )先利用方程组解得各面法向量,再根据向量数量积求两法向量夹角,最后根据二面角与法向量夹角关系得二面角A PC D --的余弦值;(III )根据共线关系设Q 点坐标,利用线面角得等量关系,解方程可得PQPD的值. 试题解析:以A 为坐标原点,建立空间直角坐标系()2,0,0B ,()2,0D ,()0,0,2P ,()2,0C (I )()2,0BD =-,()2,2PC =-, ∵•0BD PC =∴BD PC ⊥(II )()1,2,0AC =,()0,0,2AP =,平面PAC 的法向量为()2,1,0m =-()0,2,2DP =-,()1,0,0AP =,平面DPC 的法向量为()0,2,1n =--.•2cos ,•3m n m n m n ==,二面角B PC D --的余弦值为23.(III )∵AQ AP PQ AP tPD =+=+,[]0,1t ∈ ∴()()()0,0,20,2,20,2,22AQ t t t =+-=- 设θ为直线AQ 与平面PAC 所成的角•2sin cos ,•AQ m AQ m AQ mθ===, ()222222368433222t t t t t t =⇒=-++-,解得2t =(舍)或23.所以,23PQ PD =即为所求.【练一练提升能力】1.【2018浙江省金华、丽水、衢州市十二校高三8月联考】(本小题15分) 如图,已知四棱锥的底面为菱形,且,是中点. (I )证明:平面; (II )若,,求二面角的余弦值.P ABCD -60ABC ∠=E DP //PB ACE 2AP PB ==2AB PC ==A PC D --【答案】(I )详见解析;(II. 平面中,,;设平面的法向量为,则有,即;.......................11分 设平面的法向量为,∵,,则有可取,...................13分∴,∴ 二面角的余弦值为. 2.【2018广东省六校(广州二中,深圳实验,珠海一中,中山纪念,东莞中学,惠州一中)高三下学期第三次联考】如图,在四棱锥 中, 是平行四边形, , , , , , 分别是 , 的中点.APC (1,0,1)AP =-(0,3,1)CP =APC ()1111,,n x y z =1111111301303x x z y z z ⎧⎧=-+=⎪⎪⇒=⎨⎨+=⎪⎪=⎩⎩1(3,13)n =DPC 2222(,,)n x y z =(2,0,0)CD =(0,3,1)CP =2222030x y z =⎧⎪⎨-+=⎪⎩2(0,1,3)n =12121227cos ,7n n n n n n <>==⨯A PC D --277(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.【答案】(I)见解析(II)【解析】试题分析:(Ⅰ)运用几何法和坐标法两种方法进行证明可得结论.(Ⅱ)运用几何法和坐标法两种方法求解,利用坐标法求解时,在得到两平面法向量夹角余弦值的基础上,通过图形判断出二面角的大小,最后才能得到结论.试题解析:解法一:(Ⅰ)取中点,连,∵,∴,∵是平行四边形,,,∴,∴是等边三角形,∴,∵,∴平面,∴.∵分别是的中点,∴∥,∥,∴,,∵,∴平面,∵平面,∴平面平面.(Ⅱ)由(Ⅰ)知,,∴是二面角的平面角.,,,在中,根据余弦定理得,∴二面角的余弦值为.解法二:(Ⅰ)∵是平行四边形,,,∴,∴是等边三角形,∵是的中点,∴,∵∥,∴.以为坐标原点,建立如图所示的空间直角坐标系.则,,,,,设,由,,可得,,,∴,∵是的中点,∴,∵,∴,∵,,∴平面,∵平面,∴平面平面.(Ⅱ)由(Ⅰ)知,,.设是平面的法向量,由,得,令,则,,.又是平面的法向量,∴,,由图形知二面角为钝角,∴二面角的余弦值为.解答题(共10题)1.【2018江西南昌市高三一模】如图,四棱锥中,底面,为直角梯形,与相交于点,,,,三棱锥的体积为9.(I)求的值;(II)过点的平面平行于平面,与棱,,,分别相交于点,,,,求截面的周长.【答案】(Ⅰ).(Ⅱ).【解析】【试题分析】(I)利用体积公式列方程可求得.(II)利用面面平行的性质定理可有,,,利用相似三角形可求得各边长,过点作∥交于,则.所以截面的周长为.【试题解析】(Ⅰ)四棱锥中,底面,为直角梯形,,,,所以,解得.(Ⅱ)【法一】因为平面,平面平面,,平面平面,根据面面平行的性质定理,所以 ,同理 , , 因为 , , 所以 ∽ ,且,又因为 ∽ , ,所以 , 同理 , ,, ,如图:作 , , , ,所以 , , 故四边形 为矩形,即 , (求 长2分,其余三边各1分) 在 中,所以 所以截面 的周长为 . 【法二】因为 平面 ,平面 平面 ,,平面 平面 , 所以 ,同理 , 因为 ∥ , ,所以 ∽ ,且,所以,, .同理,连接 ,则有 ∥ ,所以 , ,所以,同理, ,过点 作 ∥ 交 于 ,则 ,所以截面 的周长为.2.【2018河南豫南九校高三下学期第一次联考】四棱锥P ABCD -中,底面ABCD 为矩形,2AB BC PA PB ===,.侧面PAB ⊥底面ABCD .(I )证明:PC BD ⊥;(II )设BD 与平面PAD 所成的角为45︒,求二面角B PC D --的余弦值. 【答案】(I )见解析(II )10【解析】【试题分析】(I )设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥,根据面面垂直的性质定理,有PO ⊥平面ABCD ,以O 为原点,OP 为z 轴,OB 为y 轴,建立空间直角坐标系,计算0PC BD ⋅=可得证.(II )设()0,0,P h ,利用直线BD 和平面PAD 所成角为45,计算3h =平面BPC 和平面DPC 的法向量计算二面角的余弦值. 【试题解析】解:(I )证法一:设AB 中点为O ,连接PO , 由已知PA PB =,所以PO AB ⊥, 而平面PAB ⊥平面ABCD ,交线为AB 故PO ⊥平面ABCD以O 为原点,OP 为z 轴,OB 为y 轴,如图建立空间直角坐标系,并设PO h =,则()()))0,0,,0,1,0,,1,0P h B CD- 所以()()2,1,,2,2,0PC h BD =-=-0PC BD ⋅=,所以PC BD ⊥.证法二:设AB 中点为O ,连接PO ,由已知PA PB =,所以PO AB ⊥, 而平面PAB ⊥平面ABCD ,交线为AB 故PO ⊥平面ABCD ,从而BD PO ⊥ ①在矩形ABCD 中,连接CO ,设CO 与BD 交于M ,则由::CD CB BC BO =知BCD OBC ∆~∆,所以BCO CDB ∠=∠ 所以90BCM CBM CDB CBM ∠+∠=∠+∠=︒,故BD CO ⊥ ② 由①②知BD ⊥平面PCO 所以PC BD ⊥.(II )由AD AB ⊥,平面PAB ⊥平面ABCD ,交线为AB ,可得AD ⊥平面PAB , 所以平面PAB ⊥平面PAD ,交线为PA过B 作BH PA ⊥,垂足为H ,则BH ⊥平面PADBD 与平面PAD 所成的角即为角BDH ∠所以226322BH BD === 从而三角形PAB 为等边三角形,3PO =(也可以用向量法求出PO ,设()0,0,P h ,则()())0,1,0,0,1,0,2,1,0A B D --,可求得平面PAD 的一个法向量为()0,,1p h =-,而()2,2,0BD =-,由cos ,sin45p BD =︒可解得3h =设平面BPC 的一个法向量为m ,则0{m BP m BC ⋅=⋅=,()()0,1,3,2,0,0BP BC =-=,可取()0,3,1m =设平面DPC 的一个法向量为n ,则0{n DP n DC ⋅=⋅=,()()2,1,3,0,2,0DP DC =-=,可取(3,0,n =-于是10cos ,m n =-,故二面角B PC D --的余弦值为. 3.【2018安徽黄山高三一模】如图,在四棱锥P A B C D -中,底面ABCD 为直角梯形,90ABC BAD ∠=∠=︒,且112PA AB BC AD ====,PA ⊥平面ABCD .(I )求PB 与平面PCD 所成角的正弦值;(II )棱PD 上是否存在一点E 满足90AEC ∠=︒?若存在,求AE 的长;若不存在,说明理由. 【答案】(I )36(II )不存在 【解析】试题分析:(I )建立空间直角坐标系,借助空间向量数量积的坐标形式进行求解;(II )依据题设条件90AEC ∠=︒,运用向量的坐标形式建立方程()()222110AE CE λλλ⋅=-+-=, 即判定方程25410λλ-+=是否有解:解:(I )依题意,以A 为坐标原点,分别以,,AB AD AP 为,,x y z 轴建立空间直角坐标系O xyz -, 则()()()()0,0,1,1,0,0,1,1,0,0,2,0P B C D ,从而()()()1,0,1,1,1,1,0,2,1PB PC PD =-=-=-. 设平面PCD 的法向量为(),,n a b c =,则0n PC ⋅=,且0n PD ⋅=, 即0a b c +-=,且20b c -=,不妨取2c =,则1,1b a ==, 所以平面PCD 的一个法向量()1,1,2n =, 此时3cos ,26PB n ==⨯PB 与平面PCD 3(II )设()01PE PD λλ=≤≤,则()0,2,1E λλ-,则()()1,21,1,0,2,1CE AE λλλλ=---=-,由90AEC ∠=︒得()()222110AE CE λλλ⋅=-+-=,化简得,25410λλ-+=,该方程无解,所以,棱PD 上不存在一点E 满足90AEC ∠=︒.4.【2018全国名校大联考高三第四次联考】在ABC ∆中,90BAC ∠=,60B ∠=,1AB =,D 为线段BC 的中点,,E F 为线段AC 的三等分点(如图1).将ABD ∆沿着AD 折起到AB D ∆'的位置,连接B C '(如图2).(I )若平面AB D '⊥平面ADC ,求三棱锥B ADC '-的体积;(II )记线段B C '的中点为H ,平面B ED '与平面HFD 的交线为l ,求证://HF l . 【答案】(I )18;(II )证明见解析. 【解析】试题分析:(I )由题意可知ABD ∆是等边三角形,取AD 中点O ,连接B O ',则B O AD '⊥.由面面垂直的性质定理可得B O '⊥平面A D C .三棱锥的高32B O '=,其底面积1131322ADC S ∆=⨯⨯=B ADC '-的体积为18. (II )由中位线的性质可得//HF B E ',然后利用线面平行的判断定理可得//HF 平面B ED ',最后利用线面平行的性质定理可得//HF l . 试题解析:(I )在直角ABC ∆中,D 为BC 的中点,所以AD BD CD ==. 又60B ∠=,所以ABD ∆是等边三角形. 取AD 中点O ,连接B O ',所以B O AD '⊥.因为平面AB D '⊥平面ADC ,平面AB D '⋂平面ADC AD =,B O '⊂平面AB D ', 所以B O '⊥平面ADC .在ABC ∆中,90BAC ∠=,60B ∠=,1AB =,D 为BC 的中点,所以AC =2B O '=.所以111224ADC S ∆=⨯⨯=.所以三棱锥B ADC '-的体积为1138ADC V S B O ∆'=⨯⨯=.(II )因为H 为B C '的中点,F 为CE 的中点,所以//HF B E '. 又HF ⊄平面B ED ',B E '⊂平面B ED ',所以//HF 平面B ED '. 因为HF ⊂平面HFD ,平面B ED '⋂平面HFD l =,所以//HF l .5.【2018甘肃高三第一次诊断性考试】四棱台被过点 , , 的平面截去一部分后得到如图所示的几何体,其下底面四边形 是边长为2的菱形, , 平面 , . (Ⅰ)求证:平面 平面 ;(Ⅱ)若 与底面 所成角的正切值为2,求二面角 的余弦值.【答案】(I )详见解析;(II ).【解析】试题分析:(Ⅰ)易证 , ,进而可得 平面 ,从而证得;(Ⅱ) 与底面 所成角为 ,从而可得 ,设 , 交于点 ,以 为坐标原点建立空间直角坐标系,分别求平面 和平面 的法向量,利用法向量求解二面角即可. 试题解析:(Ⅰ)∵ 平面 ,∴ . 在菱形 中, ,又 ,∴ 平面 , ∵ 平面 ,∴平面 平面 . (Ⅱ)∵ 平面∴ 与底面 所成角为 ,∴ ,∴ 设 , 交于点 ,以 为坐标原点,如图建立空间直角坐标系.则 , , , , , , , , , , , ., , ,同理,, ,, , , , , , , , .设平面 的法向量 , , , ∴, , 则 , , ,设平面 的法向量 , , , ,, 则 , , , 设二面角 为 ,.6.【2018四川乐山四校第三学期半期联考】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==.(I )若D 为线段AC 的中点,求证AC ⊥平面PDO ; (II )求三棱锥P ABC -体积的最大值;(III )若BC =E 在线段PB 上,求CE OE +的最小值.【答案】(I )见解析(II )13(III )2.【解析】试题分析:(I )由等腰三角形三线合一可得C D O A ⊥,由线面垂直的定义可得C PO ⊥A ,最后利用线面垂直的判断定理可得C A ⊥平面D P O .(II )当底面ABC 面积最大时,三棱锥体积由最大值,由几何关系可得当C O ⊥AB 时,C ∆AB 面积的最大值为12112⨯⨯=,结合三棱锥体积公式可得三棱锥C P -AB 体积的最大值为13. (3)将将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,由平面几何的知识可知O ,E ,'C 共线时,C E +OE 取得最小值.结合筝形的性质计算可得C E +OE 26+ 试题解析:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点,所以C D A ⊥O . 又PO 垂直于圆O 所在的平面,所以C PO ⊥A . 因为D O⋂PO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以22112PB =+=同理C 2P =C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,'C 共线时,C E +OE 取得最小值.又因为OP =OB ,''C C P =B ,所以'C O 垂直平分PB ,即E 为PB 中点.从而''222C C O =OE +E =+=,亦即C E +OE 的最小值为2. 7.【2017天津市河西区高三二模】如图,已知梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =EDCF ⊥平面ABCD .(Ⅰ)求证://DF 平面ABE ;(Ⅱ)求平面ABE 与平面EFB 所成锐二面角的余弦值;(Ⅲ)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 3若存在,求出线段BP 的长;若不存在,请说明理由. 【答案】(I )见解析(II )53131(III )2BP = 【解析】试题分析:(I )利用空间向量证明线面平行,一般转化为对应平面法向量与直线垂直,先建立空间直角坐标系,设立各点坐标,利用方程组解出平面法向量,根据向量数量积证明垂直,最后根据线面平行判定定理证明,(II )求二面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间相等或互补关系求解(III )研究线面角,一般利用空间向量进行列式求解参数,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据线面角与向量夹角之间互余关系列式求解参数.试题解析:(Ⅰ)证明:取D 为原点,DA 所在直线为x 轴,DE 所在直线为z 轴建立空间直角坐标系,如图,则()1,0,0A ,()1,2,0B ,(E ,(F -,∴(1,BE =--,()0,2,0AB =,设平面ABE 的法向量(),,n x y z =,∴20,{20,x y y --==不妨设()3,0,1n =,又(1,DF =-,∴30DF n ⋅=-+=,∴DF n ⊥,又∵DF ⊄平面ABE ,∴//DF 平面ABE . (Ⅱ)解:∵(1,3BE =--,(3BF =-,设平面BEF 的法向量(),,m x y z =, ∴230,{230,x y z x z --+=-=不妨设()23,3,4m =,∴531cos 231m n m n θ⋅===⋅⋅∴平面ABE 与平面EFB 所成锐二面角的余弦值为53131. (Ⅲ)设(3DP DF λλ==- (),23λλλ=-,[]0,1λ∈,∴(),23P λλλ-, ∴()1,23BP λλλ=---,又∵平面ABE 的法向量()3,0,1n =,∴()()2223333sin cos ,21223BP n λλθλλλ--+===++-+,∴28610λλ-+=,∴12λ=或14λ=. 当12λ=时,33,2BP ⎛=-- ⎝⎭,∴2BP =;当14λ=时,533,42BP ⎛=-- ⎝⎭,∴2BP =. 综上,2BP =.8.【2018全国名校大联考高三第四次联考】如图所示,PA ⊥平面ABC ,点C 在以AB 为直径的O 上,30CBA ∠=︒,2PA AB ==,点E 为线段PB的中点,点M 在弧AB 上,且//OM AC .(I )求证:平面//MOE 平面PAC ;(II )求证:平面PAC ⊥平面PCB ;(III )设二面角M BP C --的大小为θ,求cos θ的值. 【答案】(I )证明见解析;(II )证明见解析;(3) 15. 【解析】试题分析:(I )由△ABC 中位线的性质可得//OE PA ,则//OE 平面PAC .由线面平行的判断定理可得//OM 平面PAC .结合面面平行的判断定理可得//MOE 平面PAC .(II )由圆的性质可得BC AC ⊥,由线面垂直的性质可得PA BC ⊥,据此可知BC ⊥平面PAC .利用面面垂直的判断定理可得平面PAC ⊥平面PCB .(III )以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,建立空间直角坐标系C xyz -.结合空间几何关系计算可得平面PCB 的法向量()2,0,1m =-,平面PMB 的一个法向量()1,3,1n =,则1,5m n cosm n m n⋅==-⋅.由图可知θ为锐角,故15cos θ=.试题解析:(I )证明:因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以//OE PA ,因为PA ⊂平面PAC ,OE ⊄平面PAC ,所以//OE 平面PAC . 因为//OM AC ,且AC ⊂平面PAC ,OM ⊄平面PAC ,所以//OM 平面PAC . 因为OE ⊂平面MOE ,OM ⊂平面MOE ,OE OM O ⋂=, 所以平面//MOE 平面PAC . (II )证明:因为点C 在以AB 为直径的O 上,所以90ACB ∠=︒,即BC AC ⊥.因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥.因为AC ⊂平面PAC ,PA ⊂平面PAC ,PA AC A ⋂=,所以BC ⊥平面PAC . 因为BC ⊂平面PBC ,所以平面PAC ⊥平面PCB .(III )解:如图,以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,建立空间直角坐标系C xyz -.因为30CBA ∠=︒,2PA AB ==,所以230CB cos =︒=1AC =. 延长MO 交CB 于点D .因为//OM AC ,所以MD CB ⊥,13122MD =+=,122CD CB ==.所以()1,0,2P ,()0,0,0C ,()3,0B,32M ⎛⎫⎪ ⎪⎝⎭.所以()1,0,2CP =,()3,0CB =. 设平面PCB 的法向量(),,m x y z =.因为0{ 0m CP m CB ⋅=⋅=,所以()()()(),,1,0,20{,,3,00x y z x y z ⋅=⋅=,即20{ 30x z +==. 令1z =,则2x =-,0y =. 所以()2,0,1m =-.同理可求平面PMB 的一个法向量()1,3,1n =. 所以1,5m n cosm n m n⋅==-⋅.由图可知θ为锐角,所以15cos θ=.9.【2018湖北宜昌市高三1月调研】如图,在四棱锥 中,平面 平面 , , , , ,点 在棱 上,且 .(Ⅰ)求证: ;(Ⅱ)是否存在实数 ,使得二面角 的余弦值为?若存在,求出实数 的值;若不存在,请说明理由.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(I )由边长和勾股定理得 ,又平面 平面 ,由定理证得 平面(II)建立空间直角坐标系,得出平面的一个法向量为,,,设平面的一个法向量为,由题意计算得出结果解析:(Ⅰ)过点作交于,,,四边形为正方形,且,在△中,,在△中,,又平面平面,平面平面平面,平面,且平面(Ⅱ)又平面平面,平面平面平面,以点为坐标原点,、、所在直线为坐标轴建立空间直角坐标系,,,,,,,,,,,,,,,,,,假设存在实数使得二面角的余弦值为,令点在棱上,,.设,,,,,,,,,,则,,,平面,平面的一个法向量为,,.设平面的一个法向量为,,,由得令得, , , , ,取 , , , ,化简得 又 ,,存在实数使得二面角 的余弦值为. 10.【2018安徽全椒中学第一学期期中考试】如图,在底面是菱形的四棱锥P —ABCD 中,∠ABC=60°,PA=AC=a ,PB=PD=2a ,点E 是PD 的中点.(Ⅰ)求证:PA ⊥平面ABCD ; (Ⅱ)求二面角E —AC —D 的余弦值; (Ⅲ)求点P 到平面EAC 的距离. 【答案】(I )见解析;(II )217;(III )217a . 【解析】试题分析:(I )证明PA ⊥AB ,PA ⊥AD ,AB 、AD 是平面ABCD 内的两条相交直线,即可证明PA ⊥平面ABCD ;(Ⅱ)如图,建立空间直角坐标系A —xyz ,()()()3131A 0,0,0,0,0,,0,,0,,,0,,,022P a D a C a AC a ⎫⎛⎫=⎪ ⎪⎪⎪⎝⎭⎝⎭则,11110,,,0,,2222PD E a a AE a a ⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭中点 求出平面EAC 的法向量为(1,3,3n =-,平面ACD 的法向量为()0,0,AP a =,321cos ,77n AP a ==⋅即得二面角的余弦值;(Ⅲ)由(II )问得,点P 平面EAC 的距离n AP d n⋅=代入计算即得解.试题解析:(Ⅰ)证明:因为底面ABCD 是菱形,∠ABC=60°,所以AB=AD=AC=a , 在△PAB 中,可证PA 2+AB 2=2a 2 = PB 2,∴PA ⊥AB .同理,PA ⊥AD ,所以PA ⊥平面ABCD . (II )如图,建立空间直角坐标系A —xyz ,则汇聚名校名师,奉献精品资源,打造不一样的教育!31 3AC ⎛= 11110,,,0,,2222PD E a a AE a a ⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭中点. 设平面EAC 的法向量为(),,n x y z =,31110,0222n AC ax ay n AE ay az ∴⋅=+=⋅=+=,(3,1,3,3y x y z n ∴=-=-=-取,又平面ACD 的法向量为()0,0,?AP a =∴ 321,77a cosn AP a ==⋅,即二面角E —AC —D 的大小为217. (III )点P 平面EAC 的距离32177n AP a d n ⋅===.。

2024届高三数学二轮复习策略课件

2024届高三数学二轮复习策略课件

1.离心率的计算 2.圆锥曲线与三角形内心、重心相关的 问题
3.圆锥曲线与内接三角形 4.圆锥曲线中常用的二级结论

1.函数的图像与性质 2.利用导数研究函数的性质
题 函数与导数 3.导数与恒成立问题

4.导数与不等关系 5.导数与函数的零点
1.抽象函数的性质 2.切线与公切线 3.以指数、对数为载体的情景题 3.导数中的构造问题 4.端点效应问题
【分析】当x 时0 , xf (x) ,f (x即) 0 [xf (x)] 0
构造函数 g(x) xf (x)
A 【例 1】(2020 新课标Ⅱ理11)若 2x 2y 3x 3y ,则 (
)
A. ln(y x 1) 0 B. ln(y x 1) 0
C. ln | x y | 0
二轮复习六大专题:
大专题
专 三角函数、 题 解三角形 一 和平面向量
专 题 数列 二
专 题 立体几何 三
子专题
微专题
1.三角恒等变换 2.三角函数的图像与性质 3.解三角形
1.平面向量数量积的求解策略 2.三角函数中与 相关的问题探究 3.三角形中的特殊线段 4.三角中的数学建模与情景题
1.数列的通项求法
【案例3】 微专题:同构式
【引例】(2015 年理12 改编)设函数 f (x) 是奇函数 f (x)(x R)的导
函数, f (1) 0 ,当 x 0 时,xf '(x) f (x) 0 ,则使得 xf (x) 0
成立的 x 的取值范围是(

A.,1 0,1
B.1,0 0,1
C.,1 1,0 D.0,1 1,
3.确定备考策略
(1)对数列的概念及表示方法的理解和应用; (2)等差数列、等比数列的性质、通项公式、递推公式、前项和公式中基本量的运算或者利用它们之 间的关系式通过多角度观察所给条件的结构,深入剖析其特征,利用其规律进行恰当变形与转化求解 数列的问题; (3)会利用等差、等比数列的定义判断或证明数列问题; (4)通过转化与化归思想利用错位相减、裂项相消、分组求和等方法求数列的前项和; (5)数列与不等式、函数等的交汇问题; (6)关注数学课本中有关数列的阅读与思考、探究与发现的学习材料,有意识地培养学生的阅读能力 和符号使用能力,也包括网络资料中与数列有关的数学文化问题,与实际生活有关的数列的应用问题; (7)关注结构不良试题、举例问题等创新题型。

2022届高考数学二轮复习解答题满分专题04 二面角(含探索性问题)(解析版)

2022届高考数学二轮复习解答题满分专题04 二面角(含探索性问题)(解析版)

2022届高考数学二轮复习解答题满分专题立体几何专题四:二面角一、必备秘籍1、二面角的平面角定义:从二面角棱上任取一点P ,在二面角的两个半平面内分别作 棱的垂线PA 、PB ,则APB ∠称为二面角的平面角。

2、二面角的范围:[0,]π3、向量法求二面角平面角(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n 分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:121212cos ,||||n n n n n n ⋅<>=;12cos cos ,n n θ=±<>(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角。

)二、例题讲解1.(2021·湖北高三月考)如图,在三棱柱111ABC A B C ﹣中,点E ,F 分别在棱1BB ,1CC 上(均异于端点),AB AC =,ABE ACF ∠=∠,1BB ⊥平面AEF .(1)求证:四边形BEFC 是矩形; (2)若2AE EF ==,33BE =,求平面ABC 与平面AEF 所成锐二面角的余弦值. 【答案】(1)证明见解析;(2)31010.EF,,GF GA GH分别为公式,即得解【详解】)证明:因为三棱柱1BB⊥平面AEF,所以AE,CCACF=∠,且BE CF=,为平行四边形,,所以1BB⊥平面BBH,HG EF∴⊥为坐标原点,,,GF GA GH分别为AEF中,因为AE AF=且AE EF=所以AEF为等边三角形,所以AG(0,3,0) A,3(1,0,)3B-,(1,0,C(1,AB =-(1,AC =-设平面ABC 的一个法向量为(,,n x y z =00n AB n AC ⎧⋅=⎨⋅=⎩,即3333303y z y z +=+=1,则3z =(0,1,3)n =, 因为平面AEF 的一个法向量为(0,0,1),m =cos n <33,|||||10191n m m n m ⋅>===+⨯ABC 与平面AEF 所成锐二面角的余弦值为感悟升华(核心秘籍)121212,||||n n n n n n ⋅>=,12cos ,n n <>本题特别说明了,求锐二面角余弦值,所以最后答案是正的。

高考数学二轮复习第二部分突破热点分层教学专项二专题四4高考解答题的审题与答题示范四立体几何类解答题课

高考数学二轮复习第二部分突破热点分层教学专项二专题四4高考解答题的审题与答题示范四立体几何类解答题课

12
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。

一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物
理课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
22x+y-
22z=0,可取
n=(0,-1,-
2).⑥
2x=0,
设 m=(x′,y′,z′)是平面 PAB 的法向量,则
mm··PA→→AB==00,,即y2′2x=′0-,22z′=0,可取 m=(1,0,1).⑦
则 cos〈n,m〉=|nn|·|mm|=- 33, ⑧
由图知二面角 A-PB-C 为钝二面角,
(1)写全得分步骤:对于解题过程中是得分点的步骤,有则给 分,无则没分,所以对于得分点步骤一定要写全.如第(1)问 中 AB⊥PD,第(2)问中两向量的坐标. (2)写明得分关键:对于解题过程中的关键点,有则给分,无 满分 则没分,所以在答题时一定要写清得分关键点,如第(1)问中 心得 一定要写出结论平面 PAB⊥平面 PAD;过程中的三个条件, 写不全则不能得全分,否则就不得分,再者 AB⊂平面 PAB 这 一条件也一定要有,否则要扣 1 分;第(2)问中不写出 cos〈n, m〉=|nn|·|mm|而得出余弦值则要扣 1 分.
四、听方法。

在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”
的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

高考数学二轮复习立体几何题型解题技巧

高考数学二轮复习立体几何题型解题技巧

高考数学二轮复习立体几何题型解题技巧知识整合1.有关平行与垂直(线线、线面及面面)的效果,是在处置平面几何效果的进程中,少量的、重复遇到的,而且是以各种各样的效果(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总温习中,首先应从处置〝平行与垂直〞的有关效果着手,经过较为基本效果,熟习公理、定理的内容和功用,经过对效果的剖析与概括,掌握平面几何中处置效果的规律--充沛应用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思想才干和空间想象才干。

2. 判定两个平面平行的方法:(1)依据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:(1)由定义知:〝两平行平面没有公共点〞。

(2)由定义推得:〝两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:〞假设两个平行平面同时和第三个平面相交,那么它们的交线平行〝。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只要一个平面战争面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为〞性质定理〝,但在解题进程中均可直接作为性质定理援用。

解答题分步骤处置可多得分1. 合理布置,坚持清醒。

数学考试在下午,建议半夜休息半小时左右,睡不着闭闭眼睛也好,尽量抓紧。

然后带齐用具,提早半小时到考场。

2. 通览全卷,摸透题情。

刚拿到试卷,普通较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。

这样能提示自己先易后难,也可防止漏做题。

3 .解答题规范有序。

普通来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。

关于解答题中的容易题和中档题,要留意解题的规范化,关键步骤不能丢,如三种言语(文字言语、符号言语、图形言语)的表达要规范,逻辑推理要严谨,计算进程要完整,留意算理算法,运用题建模与恢复进程要明晰,合理布置卷面结构……关于解答题中的难题,得总分值很困难,可以采用〝分段得分〞的战略,由于高考(微博)阅卷是〝分段评分〞。

人教版新高考数学二轮复习课件--专项突破四 立体几何解答题

人教版新高考数学二轮复习课件--专项突破四 立体几何解答题
设平面 A1C1C 的法向量为 m=(x,y,z),
+ = 0,


令 x=1,则 y=-1,z=1,所以 m=(1, = 0,
·1 1 = 0,
A1C1C 的一个法向量.
因为1 ·m=0×1+2×(-1)+2×1=0,所以1 ⊥m.
(2)线面垂直:l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2(k≠0).
(3)面面平行:α∥β⇔μ∥v⇔μ=λv⇔a2=λa3,b2=λb3,c2=λc3(λ≠0).
(4)面面垂直:α⊥β⇔μ⊥v⇔μ·v=0⇔a2a3+b2b3+c2c3=0.
5.利用空间向量求空间角
(1)两条异面直线所成的角:设异面直线l,m的方向向量分别为a,b,且它们所
(2)BE∥平面PAD;
(3)平面PCD⊥平面PAD.
证明 (方法一)(1)如图,取PD的中点F,连接AF,EF,
因为E为PC的中点,所以FE∥DC,且FE=
1
2
DC,
又因为DC=2AB,AB∥DC,所以FE∥AB,且FE=AB,
所以四边形ABEF是平行四边形,所以BE∥AF.
又因为PA=AD,F为PD的中点,所以AF⊥PD,
3,QC=2,
3
2
2
2
=1,

QO
+CO
=QC
,
2
∴BC⊥QO.又 AO∩QO=O,∴BC⊥平面 AQO.
又 AQ⊂平面 AQO,∴BC⊥AQ.
(2)解 由题意易知AO=1,AQ= 2,QO=1,
∴AO2+QO2=AQ2,∴AO⊥QO.
以O为原点,OC,OA,OQ所在直线分别为x轴、y轴、z轴,建立空间直角坐标

高考数学二轮复习提高题专题复习立体几何多选题练习题含答案

高考数学二轮复习提高题专题复习立体几何多选题练习题含答案

高考数学二轮复习提高题专题复习立体几何多选题练习题含答案一、立体几何多选题1.已知正方体1111 ABCD A B C D -的棱长为2,M 为1DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列命题正确的有( )A .若2MN =,则MN 的中点的轨迹所围成图形的面积为πB .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线C .若1D N 与AB 所成的角为3π,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为3π,则N 的轨迹为椭圆【答案】BC 【分析】对于A ,连接MN ,ND ,DP ,得到直角MDN △,且P 为斜边MN 的中点,所以1PD =,进而得到P 点的轨迹为球面的一部分,即可判断选项A 错误;对于B ,可知1NB BB ⊥,即NB 是点N 到直线1BB 的距离,在平面ABCD 中,点N 到定点B 的距离与到定直线DC 的距离相等,利用抛物线定义知B 正确;对于C ,建立空间直角坐标系,设(,,0)N x y ,利用空间向量求夹角知122121cos3224D N AB y x y D N ABπ⋅===⨯++⋅,化简可知N 的轨迹为双曲线;对于D ,MN 与平面ABCD 所成的角为3MND π∠=,3ND =,可知N 的轨迹是以D 为圆心,33为半径的圆周; 【详解】对于A ,如图所示,设P 为MN 的中点,连接MN ,ND ,DP ,由正方体性质知MDN △为直角三角形,且P 为MN 的中点,2MN =,根据直角三角形斜边上的中线为斜边的一半,知MDN △不管怎么变化,始终有1PD =,即P 点的轨迹与正方体的面围城的几何体是一个以D 为球心,1为半径的球的18,其面积214182S ππ=⨯⨯=,故A 错误;对于B ,由正方体性质知,1BB ⊥平面ABCD 由线面垂直的性质定理知1NB BB ⊥,即NB 是点N 到直线1BB 的距离,在平面ABCD 中,点N 到定点B 的距离与到定直线DC 的距离相等,所以点N 的轨迹是以点B 为焦点,直线DC 为准线的抛物线,故B 正确; 对于C ,如图以D 为直角坐标系原点,建立空间直角坐标系,(,,0)N x y ,1(0,0,2)D ,(0,2,0)A ,(2,2,0)B ,则1(,,2)D N x y =-,(0,2,0)AB =,利用空间向量求夹角知122121cos3224D N AB y x y D N ABπ⋅===⨯++⋅,化简整理得:2234y x -=,即221443y x -=,所以N 的轨迹为双曲线,故C 正确;对于D ,由正方体性质知,MN 与平面ABCD 所成的角为MND ∠,即3MND π∠=,在直角MDN △中,3ND =,即N 的轨迹是以D 3D 错误; 故选:BC 【点睛】关键点睛:本题考查立体几何与解析几何的综合,解题的关键是抓住解析几何几种特殊曲线的定义,考查学生的逻辑推理能力,转化与划归能力与运算求解能力,属于难题.2.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F ∠==22C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.3.如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -2【答案】CD 【分析】利用反证法可得A 、B 错误,取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,可证明//MB 平面1A DE ,当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值,利用公式可求得此时体积为24. 【详解】如图(1),取DE 的中点为F ,连接1,A F CF , 则45CDF ∠=︒,22DF =,故212254222222CF =+-⨯⨯=, 故222DC DF CF ≠+即2CFD π∠≠.若1CA DE ⊥,因为11,A D A E DF FE ==,故1A F DE ⊥,而111A F A C A ⋂=, 故DE ⊥平面1A FC ,因为CF ⊂平面1A FC ,故DE CF ⊥,矛盾,故A 错. 若BM ⊥平面1A DC ,因为DC ⊂平面1A DC ,故BM DC ⊥, 因为DC CB ⊥,BM CB B ⋂=,故CD ⊥平面1A CB ,因为1AC ⊂平面1A CB ,故1CD A C ⊥,但1A D CD <,矛盾,故B 错. 当平面1A DE ⊥平面BCDE 时,四棱锥1A BCDE -体积最大值, 由前述证明可知1A F DE ⊥,而平面1A DE平面BCDE DE =,1A F ⊂平面1A DE ,故1A F ⊥平面BCDE ,因为1A DE △为等腰直角三角形,111A D A E ==,故122A F =, 又四边形BCDE 的面积为13211122⨯-⨯⨯=, 故此时体积为13223224⨯⨯=D 正确. 对于C ,如图(2),取M 为1A C 的中点,取1A D 的中点为I ,连接,MI IE ,则1//,2IM CD IM CD =,而1//,2BE CD BE CD =, 故//,IM BE IM BE =即四边形IEBM 为平行四边形,故//IE BM ,因为IE ⊂平面1A DE ,BM ⊄平面1A DE ,故//MB 平面1A DE , 故C 正确. 故选:CD.【点睛】本题考查立体几何中的折叠问题,注意对于折叠后点线面的位置的判断,若命题的不成立,往往需要利用反证法来处理,本题属于难题.4.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a ,023a ⎡⎤∈⎣⎦,,(2,23,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,3,22)R λλλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,23,2)D R λλλ=--,12(22)2D R CQb λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,23,22)(2,23,2)412440AR AC λλλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时122328232(,,)(,,)0555555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则4234(,,)333R ,14232(,,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,1,3)n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.5.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN ∴=,故D 错误.故选:ABC 【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.6.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为217D .三棱锥C BEF -5π 【答案】ABC 【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 21,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,3BF =,22312CF CB BF =+=+=,22112DF DA AF =+=+=,2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高22222142222DF CF ⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, 11472222CDF S =⨯⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC 平面ADF ,点C 到平面ADF 的距离为3BF =, 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,111733232h ⨯⨯=⨯⨯, 所以217h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以21512ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -5,三棱锥C BEF -外接球的体积为334433V r ππ==⨯=⎝⎭,故D 错误, 故选:ABC. 【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.7.在长方体1111ABCD A B C D -中,AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=,14λ=,此时113313,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误;113AC A R =,则4433R ⎛⎫ ⎪ ⎪⎝⎭,14233D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.8.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A 2B .侧棱与底面所成的角为4π C 2 D .侧棱与底面所成的角为3π 【答案】AB 【分析】设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧242108a a+32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a⨯'=- 令()233210840f a a a⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB 【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.9.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面1111D C B A 上的动点,给出下列四个结论中正确结论为( )A .若3PD =,则满足条件的P 点有且只有一个B .若3PD =,则点P 的轨迹是一段圆弧C .若PD ∥平面1ACB ,则DP 长的最小值为2D .若PD ∥平面1ACB ,且3PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94π 【答案】ABD 【分析】若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()313PD =∈,,则12PD =,即点P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为3=,可判断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为32=,可得D . 【详解】 如图:∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =11AA =, ∴()2212213DB =+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;∵()313PD =,,11DD =,则12PD P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为()22213+=C 错误;由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接2221322122++=,面积为94π,故D 正确. 故选:ABD . 【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.10.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D D B .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2 D .过点1A 与异面直线AD 与1CB 成60角的直线有2条 【答案】ABD 【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D . 【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥, 由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m zCB m CB my z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =± 因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确. 故选:ABD. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

高考数学二轮复习第2部分专题4立体几何解密高考4立体几何问题重在“建”“转”__建模转换课件文

高考数学二轮复习第2部分专题4立体几何解密高考4立体几何问题重在“建”“转”__建模转换课件文

解得
h=
36,故三棱锥
C-PAB
的高等于
6 3.
Thank you for watching !
母题示例:2019 年全国卷Ⅰ,本小题满分 12 分
如图,直四棱柱
本题考查:线面平行的证明,
ABCD-A1B1C1D1 的底面是菱
点到平面距离的计算、体积
形,AA1=4,AB=2,∠BAD
的计算,考生的直观想象、
=60°,E,M,N 分别是 BC,BB1,A1D 转化化归、数学运算能力,
的中点.
[构建模板·三步解法] 有关立体几何综合问题的解题步骤
母题突破:2019 年唐山五校摸底 如图,在四棱锥 P-ABCD 中,PC⊥底面 ABCD,四边形 ABCD 是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E 是 PB 的 中点.
(1)求证:平面 EAC⊥平面 PBC; (2)若 PC= 2,求三棱锥 C-PAB 的高.
[规范解答·评分标准] (1)连接 ME,B1C. ∵M,E 分别为 BB1,BC 中点, ∴ME 为△B1BC 的中位线, ∴ME∥B1C 且 ME=12B1C.2 分
又 N 为 A1D 中点,且 A1D 綊 B1C,
∴ND∥B1C 且 ND=12B1C, ∴ME 綊 ND,∴四边形 MNDE 为平行四边形.·········4 分
考生的直观想象和数学运算
(1)证明:MN∥平面 C1DE;
的核心素养.
(2)求点 C 到平面 C1DE 的距离.
[审题指导·发掘条件] (1)看到证明 MN∥平面 C1DE,想到线面平行的判定定理,需证 明 MN 与平面 C1DE 内的某一直线平行,看到 E,M,N 为 BC,BB1, A1D 的中点,想到利用三角形的中位线寻找平行关系. (2)看到找点 C 到平面 C1DE 的距离,想到作高或等体积转换.

高三数学二轮复习第二编考前冲刺攻略1.4立体几何理

高三数学二轮复习第二编考前冲刺攻略1.4立体几何理

【金版教程】2016届高三数学二轮复习第二编考前冲刺攻略 1.4立体几何理1.若直线a⊥平面α,直线b∥平面α,则a与b的关系是( )A.a⊥b,且a与b相交B.a⊥b,且a与b异面C.a⊥b,且a与b可能相交也可能异面D.a与b不一定垂直答案 C解析过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.故选C.2.如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD-A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为( )答案 A解析在画几何体的正视图时,要按照平行投影的方式,先将点投影,再确定棱.按照平行投影的方式,几何体的6个顶点投影得到的平面为正方形,其中A1、D1的投影点重合,A、D的投影点重合;再确定棱,A1B能看见,画成实线,C1D在正视图中看不见,画成虚线.3.[2015·河北名校联盟联考]多面体的三视图如图所示,则该多面体的表面积为(单位:cm)( )A .(28+45) cm 2B .(30+45) cm 2C.(30+410) cm 2 D .(28+410) cm 2答案 A解析 由三视图可知该几何体是一个三棱锥,如图所示,在三棱锥D -ABC 中,底面是等腰三角形且底AB 及底边上的高CE 均为4,侧棱AD ⊥平面ABC ,所以AC =BC =⎝ ⎛⎭⎪⎫AB 22+CE 2=22+42=25,所以S △ABC =12×4×4=8,S △ABD =12×4×4=8,S △ACD =12×4×25=4 5.过A 作AF ⊥BC ,垂足为F ,连接DF ,因为AD ⊥平面ABC ,BC ⊂平面ABC ,所以AD ⊥BC ,所以BC ⊥平面ADF ,又因为DF ⊂平面ADF ,所以BC ⊥DF ,在△ABC 中,AB ·CE =BC ·AF ,所以AF =AB ·CE BC =4×425=855,DF =AF 2+AD 2=⎝ ⎛⎭⎪⎫8552+42=1255,所以S △BCD =12×BC ×DF =12×25×1255=12,所以三棱锥的表面积S =S △ABC +S △ABD +S △ACD +S △BCD =8+8+45+12=28+45(cm 2),故选A.4.已知m ,n 是两条不同的直线,α,β是两个不同的平面,且m ∥α,n ⊂β,则下列叙述正确的是( )A.若α∥β,则m ∥n B .若m ∥n ,则α∥β C.若n ⊥α,则m ⊥β D .若m ⊥β,则α⊥β答案 D解析 A 中m ,n 有可能异面;B 中α,β有可能相交;C 中有可能m ∥β,故选D. 5.下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面β,直线a ⊂α,则a ⊥βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ 答案 C解析 对于A ,如果平面α⊥平面β,那么在平面α内作出与两平面交线平行的直线,则该直线与平面β平行,故A 正确;对于B ,若平面α内存在一条直线垂直于平面β,由面面垂直的判定定理可知,平面α一定垂直于平面β,与已知矛盾,故B 正确;对于C ,在平面α内作一直线平行于交线,则该直线平行于平面β,而不垂直于平面β,故C 错误;对于D ,可以证明l ⊥平面γ,故D 正确,故选C.6.设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,则S△ABC+S △ABD +S △ACD 的最大值是( ) A.4 B .8 C.16 D .32答案 B解析 因为AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,所以以AC 、AB 、AD 为长、宽、高,做长方体如图所示,可得长方体的外接球就是三棱锥D -ABC 的外接球.因为球的半径为2,可得球的直径为4,所以长方体的体对角线长为4,得AB 2+AC 2+AD 2=16.因为S △ABC =12AB ·AC ,S △ABD=12AB ·AD ,S △ACD =12AC ·AD ,所以S △ABC +S △ABD +S △ACD =12(AB ·AC +AB ·AD +AC ·AD ),因为AB ·AC +AB ·AD +AC ·AD ≤AB 2+AC 2+AD 2=16,当且仅当AB =AC =AD 时,等号成立,所以当且仅当AB =AC =AD 时,S △ABC +S △ABD +S △ACD 取得最大值,且最大值为8.故选B.7.[2015·西安八校联考]某空间几何体的三视图及尺寸如图,则该几何体的体积是________.答案 2解析 根据三视图可知该几何体为三棱柱,其体积V =12×1×2×2=2.8.已知某几何体由正方体和直三棱柱组成,其三视图和直观图如图所示.记直观图中从点B 出发沿棱柱的侧面到达PD 1的中点R 的最短距离为d ,则d 2=________.答案252+6 2解析 将由正方体与直三棱柱构成的五棱柱沿侧棱BB 1展开,如图所示.由图易知BR 为从点B 出发沿棱柱的侧面到达PD 1的中点R 的最短距离,即d =BR .由三视图知A 1B 1=BB 1=2,A 1P =PD 1=2,所以PR =12PD 1=22,所以B 1R =A 1B 1+A 1P +PR =2+322,故d 2=BR 2=B 1R 2+BB 21=⎝ ⎛⎭⎪⎫2+3222+22=252+6 2.9.已知侧棱与底面垂直的三棱柱的底面是边长为23的正三角形,该三棱柱存在一个与上、下底面和所有侧面都相切的内切球,则该三棱柱的外接球与内切球的半径之比为________.答案5∶1解析 由题意,三棱柱的内切球的半径r 等于底面内切圆的半径,即r =1,此时棱柱的高为2r =2,底面外接圆的半径为2,所以三棱柱的外接球的半径R =22+12= 5.所以三棱柱的外接球与内切球的半径之比为Rr=5∶1.10.已知点P ,A ,B ,C ,D 是球O 表面上的点,且球心O 在线段PC 上,PA ⊥平面ABCD ,E 为AB 的中点,∠BCD =90°.(1)求证:OE ∥平面PAD ;(2)若PA =AB =4,AD =3,求三棱锥O -ADE 的体积.解 (1)证明:连接BD ,设BD 的中点为O ′,连接OO ′,O ′E , 因为∠BCD =90°,所以OO ′⊥平面ABCD ,又PA ⊥平面ABCD , 所以OO ′∥PA ,又PA ⊂平面PAD ,所以OO ′∥平面PAD . 又E 为AB 的中点,所以O ′E ∥AD ,即O ′E ∥平面PAD . 又OO ′∩O ′E =O ′, 所以平面OO ′E ∥平面PAD . 又OE ⊂平面OO ′E , 所以OE ∥平面PAD .(2)因为E 为AB 的中点,所以AE =12AB =2.因为点P ,A ,C 在球面上,O 为球心,OO ′⊥平面ABCD ,PA ⊥平面ABCD , 所以OO ′=12PA =2.又AD =3,所以V 三棱锥O -ADE =13×OO ′×S △ADE =13×OO ′×12×AD ×AE =13×2×12×3×2=2.11.如图,直线PA ,QC 都与正方形ABCD 所在的平面垂直,AB =PA =2CQ =2,AC 与BD 相交于点O ,E 在线段PD 上,且CE ∥平面PBQ .(1)求证:OP ⊥平面QBD ; (2)求二面角E -BQ -P 的余弦值.解 (1)证法一:∵PA ⊥平面ABCD ,∴PA ⊥AB ,PA ⊥AD .又AB =AD ,∴Rt △PAB ≌Rt △PAD ,∴PB =PD . ∵O 是BD 的中点,∴OP ⊥BD .连接OQ ,OQ 2=OC 2+CQ 2=(2)2+12=3,OP 2=OA 2+AP 2=(2)2+22=6,PQ 2=AC 2+(AP -CQ )2=(22)2+(2-1)2=9,即PQ 2=OP 2+OQ 2,∴OP ⊥OQ .又BD ∩OQ =O ,BD ,OQ ⊂平面QBD ,∴OP ⊥平面QBD.证法二:建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,2,0),Q (2,2,1),O (1,1,0),∴OP →=(-1,-1,2),BD →=(-2,2,0),BQ →=(0,2,1),∴⎩⎪⎨⎪⎧OP →·BD →=2-2+0=0OP →·BQ →=0-2+2=0,∴OP ⊥BD ,OP ⊥BQ ,又BD ∩BQ =B ,BD ,BQ ⊂平面QBD ,∴OP ⊥平面QBD .(2)由(1)中的证法二知,设PE →=λED →,则E ⎝ ⎛⎭⎪⎫0,2λ1+λ,21+λ,CE →=⎝ ⎛⎭⎪⎫-2,-21+λ,21+λ. 又BP →=(-2,0,2),BQ →=(0,2,1),设平面PBQ 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·BP →=0m ·BQ →=0,即⎩⎪⎨⎪⎧-2x +2z =02y +z =0,令y =1,得x =z =-2,∴平面PBQ 的一个法向量为m =(-2,1,-2).由CE ∥平面PBQ ,得C E →·m =0,即4-21+λ-41+λ=0,解得λ=12,∴E ⎝ ⎛⎭⎪⎫0,23,43. ∴QE →=⎝ ⎛⎭⎪⎫-2,-43,13,又BQ →=(0,2,1), 设平面EBQ 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·QE →=0n ·BQ →=0,即⎩⎪⎨⎪⎧-2x 1-43y 1+13z 1=02y 1+z 1=0,令y 1=-1,得x 1=1,z 1=2,∴平面EBQ 的一个法向量为n =(1,-1,2).∴cos 〈m ,n 〉=m ·n |m ||n |=-736=-7618,观察图知二面角E -BQ -P 为锐角, 故二面角E -BQ -P 的余弦值为7618.12.如图,三棱柱ABC -A 1B 1C 1所有的棱长均为2,B 1在底面上的射影D 在棱BC 上,且A 1B ∥平面ADC 1.(1)求证:平面ADC 1⊥平面BCC 1B 1;(2)求平面ADC 1与平面A 1AB 所成的角的正弦值.解 (1)证明:连接A 1C 交AC 1于点O ,连接OD ,则平面A 1BC ∩平面ADC 1=OD .∵A 1B ∥平面ADC 1, ∴A 1B ∥OD ,又O 为A 1C 的中点,∴D 为BC 的中点,则AD ⊥BC , 又B 1D ⊥平面ABC , ∴AD ⊥B 1D ,BC ∩B 1D =D , ∴AD ⊥平面BCC 1B 1,又AD ⊂平面ADC 1,从而平面ADC 1⊥平面BCC 1B 1.(2)以D 为坐标原点,DC ,DA ,DB 1所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则D (0,0,0),B (-1,0,0),A (0,3,0),B 1(0,0,3),C 1(2,0,3),易知BA →=(1,3,0),BB 1→=(1,0,3),设平面A 1AB 的法向量为m =(x ,y ,z ),则 ⎩⎪⎨⎪⎧BA →·m =0BB 1→·m =0,即⎩⎨⎧x +3y =0x +3z =0,取x =-3,则m =(-3,1,1).易知DA →=(0,3,0),DC 1→=(2,0,3),同理可得平面ADC 1的一个法向量为n =(-3,0,2).∴cos 〈m ,n 〉=m ·n |m ||n |=55×7=357,sin 〈m ,n 〉=147,那么平面ADC 1与平面14 7.A1AB所成角的正弦值为。

最新高考数学二轮复习解题思维提升专题立体几何大题部分训练手册

最新高考数学二轮复习解题思维提升专题立体几何大题部分训练手册

专题12 立体几何大题部分【训练目标】1、掌握三视图与直观图之间的互换,会求常见几何体的体积和表面积;2、掌握空间点线面的位置关系,以及位置关系的判定定理和性质定理;并能依此判断命题的真假;3、掌握空间角即异面直线所成角,直线与平面所成角,二面角的求法;4、掌握等体积法求点面距;5、掌握几何体体积的几种求法;6、掌握利用空间向量解决立体几何问题。

7、掌握常见几何体的外接球问题。

【温馨小提示】立体几何素都是高考的一个中点,小题,大题都有,一般在17分到22分之间,对于大多数人说,立体几何就是送分题,因为只要有良好的空间感,熟记那些判定定理和性质定理,然后熟练空间角和距离的求法,特别是掌握了空间向量的方法,更觉得拿分轻松。

【名校试题荟萃】1、已知直三棱柱中,,为中点,,.⑴求证:平面;⑵求三棱锥的体积.【答案】(1)见解析(2)【解析】(1)证明:连结交于点,连结,则和分别为和的中点,所以,而平面,平面,所以平面.(2)因为平面,所以点和到平面的距离相等,从而有.-中,底面ABCD是直角梯形,,2、如图,四棱锥P ABCD∆是正三角形,E是PD的中点.PAD⊥;(1)求证:AD PC(2)判定CE是否平行于平面PAB,请说明理由.【答案】(1)见解析(2)平行(2)CE平行于平面PAB,EF BF.理由如下:取PA的中点为F,连接,可知,又,CE BF.所以四边形BCEF为平行四边形,故//PAB CE⊄平面PAB,又BF⊂平面,所以//CE平面PAB.3、在四棱锥P ABCD∠=︒,2BAD-中,PD⊥平面ABCD,且底面ABCD为边长为2的菱形,60PD=.(1)证明:面PAC⊥面PDB;(2)在图中作出点D在平面PBC内的正投影M(说明作法及其理由),并求四面体PBDM的体积.【答案】(1)见解析(2)21【解析】(1)因为PD⊥平面ABCD,,所以PD AC⊥,在菱形ABCD中,AC BD⊥,且,所以,又因为,所以面.(2)取BC的中点E,连接DE,PE,易得BDC⊥,△是等边三角形,所以BC DE又因为PD⊥平面ABCD,所以PD BC⊥,又,所以,在面PDE中,过D作DM PE⊥于M,即M是点D在平面PBC内的正投影,则DM BC△中,2⊥,又,所以,经计算得DE,在Rt PDEPD=,,,,.4、如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OAB ∆,△OAC ,△ODE ,△ODF 都是正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力提升练十一空间中的平行与垂直
(45分钟80分)
一、选择题(每小题5分,共30分)
1.已知直线a与直线b平行,直线a与平面α平行,则直线b与α的关系为
() A.平行B.相交
C.直线b在平面α内
D.平行或直线b在平面α内
【解析】选D.依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.
2.设m,n是两条不同的直线,α,β是两个不同的平面,则()
A.若m⊥n,n∥α,则m⊥α
B.若m∥β,β⊥α,则m⊥α
C.若m⊥β,n⊥β,n⊥α,则m⊥α
D.若m⊥n,n⊥β,β⊥α,则m⊥α
【解析】选C.对A,若m⊥n,n∥α,则m⊂α或m∥α或m⊥α,错误;
对B,若m∥β,β⊥α,则m⊂α或m∥α或m⊥α,错误;
对C,若m⊥β,n⊥β,n⊥α,则m⊥α,正确;
对D,若m⊥n,n⊥β,β⊥α,则m⊥α或m⊂α或m∥α,错误.故选C.
3.若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为
()
A.过点P垂直于平面α的直线平行于平面β
B.过点P垂直于直线l的直线在平面α内
C.过点P垂直于平面β的直线在平面α内
D.过点P且在平面α内垂直于l的直线必垂直于平面β
【解析】选B.由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确;过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确;根据面面垂直的性质定理,知选项C,D正确.
4.在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是()
A. B.
C. D.
【解析】选D.设M,N分别为BB1,B1C1中点,则F轨迹为线段MN,所以A1F与平面BCC1B1所成角
的正切值范围为=,选D.
5.如图,在四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,
AC⊥BD,则下列结论不一定成立的是()
A.PB⊥AC
B.PD⊥平面ABCD
C.AC⊥PD
D.平面PBD⊥平面ABCD
【解析】选B.取BP的中点O,连接OA,OC,则BP⊥OA,BP⊥OC,又因为OA∩OC=O,所以BP⊥平面OAC,所以BP⊥AC,故选项A正确;又AC⊥BD,BP∩BD=B,得AC⊥平面BDP,又PD⊂平面BDP,所以AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确,故选B.
6.(2016·全国卷Ⅰ)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,
α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()
A. B. C. D.
【解析】选A.如图所示:
因为α∥平面CB1D1,所以若设平面CB1D1∩平面ABCD=m1,则m1∥m.
又因为平面ABCD∥平面A1B1C1D1,
结合平面B1D1C∩平面A1B1C1D1=B1D1,
所以B1D1∥m1,故B1D1∥m.
同理可得:CD1∥n.故m,n所成角的大小与B1D1,CD1所成角的大小相等,即∠CD1B1的大小.
而B1C=B1D1=CD1(均为面对角线),
因此∠CD1B1=,即sin∠CD1B1=.
【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.
【加固训练】
(2018·荆州三模)已知底面是直角三角形的直三棱柱ABC-A1B1C1的所有顶点都在球O的球面上,且AB=AC=1,若球O的表面积为3π,则这个直三棱柱的体积是__
______.
【解析】设直三棱柱的侧棱(高)为h,外接球的球心为O,因为外接球的表面积为3π,即4πR2=3π,解得R=,在底面Rt△ABC中,由AB=AC=1,所以BC=,取BC的中点O1,则OO1
⊥平面ABC,在Rt△BOO1中,由勾股定理得R2=B+O⇒=+,解得h=1,所以直三棱柱的体积为V=Sh=×1×1×1=.。

相关文档
最新文档