机械设计-蜗轮蜗杆
机械设计第6章蜗杆蜗轮传动设计
一、蜗杆机构传动的特点
3.蜗杆机构的特点(1)--优点
(1)结构紧凑、传动比大; (2)传动平稳、噪声小;
(3)当蜗杆的导程角1小于轮齿间的当量摩 擦角v时,蜗杆传动具有自锁性;
3
一、蜗杆机构传动的特点
3.蜗杆机构的特点(2)--缺点
(1)相对滑动速度大,摩擦损耗大,易发热, 传动效率低; (2)蜗轮用耐磨材料青铜制造制造,成本高。
2. 主要失效形式
(1)过度磨损(主要失效形式); (2)点蚀(主要失效形式); (3)齿面胶合(主要失效形式); (4)齿根折断。
31
八、蜗杆机构的设计准则
1.闭式蜗杆传动
通常按齿面接触疲劳强度来设计,并校 核齿根弯曲疲劳强度,闭式蜗杆传动还必须 作热平衡计算,以免发生胶合失效。
32
八、蜗杆机构的设计准则
2.开式传动,或载荷变动较大, 或蜗轮齿数Z2大于90
通常只须按齿根弯曲疲劳强度进行设计
33
九、蜗杆机构的材料
1.对材料的总体要求
(1)具有一定的强度; (2)良好的抗摩擦、抗磨损的性能。
34
九、蜗杆机构的材料
2.常用材料
(1)为了减摩,通常蜗杆用钢材,蜗轮用有 色金属(铜合金、铝合金); (2)高速重载的蜗杆常用15Cr、20Cr渗碳淬 火,或45钢、40Cr淬火;
(3)低速中轻载的蜗杆可用45钢调质; (4)蜗轮常用材料有:铸造锡青铜、铸造铝 青铜、灰铸铁等。
35
十、蜗轮齿面接触疲劳强度计算 1.公式
校核
公式
520
KT2
d1d
2 2
520
KT2 m2d1Z22
27
六、蜗杆机构的受力分析
机械设计第七章 蜗轮蜗杆
是考虑强度。变位时,蜗杆相当于齿条刀具,为了保持刀
具尺寸不变,蜗杆尺寸是不能变的,因此,只能对蜗轮变
位。方法是切削时刀具移位。变位与否的几种情况有如下
关系:
六点半机械考研培训
变位的目的(填空、简答): ①为了配凑中心距; ②改变传动比; ③为了提高承载能力及传动效率。 蜗杆传动变位特点(填空、简答): ①只对蜗轮变位,蜗杆不能变位;
ma1 mt2 m a1 t 2 1 2 正确啮合条件
2. 蜗杆的分度圆直径d1和直径系数q 为了限制蜗轮滚刀的数目便于蜗轮刀具标准化,国家
标准对每一标准模数规定了一定数目的蜗杆分度圆直径 d1
d1定为标准值,并与m 有一定的搭配关系
直径系数 q d1 m
3.蜗杆导程角
式是齿面胶合,进行齿面接触疲劳强度计算是条件性的,是通过限
制齿面接触应力 H 的大小来防止发生齿面胶合,因此要根据抗胶合
条件来选择许用接触应力,即根据蜗杆副材料组合及相对滑动速度Vs 的大小来确定。
蜗杆传动的效率、润滑和热平衡计算 六点半机械考研培训
一. 蜗杆传动的效率 啮合损耗 tg
蜗杆
20Cr渗碳淬 40Cr、45表
火
面淬火
蜗轮(按齿 Vs>6m/s Vs≤6m/s
面间的相对 锡青铜
铝青铜
滑动速度Vs 大小来选择)
耐磨性、抗 胶合性好 ,
强度较高, 抗胶合性差
强度差
45调质
Vs≤2m/s 灰铸铁 经济、低速
一、受力分析 普通圆柱蜗杆传动的强度计算和刚六度计点算 半机械考研培训
蜗杆头数 z1通常取为1,2,4,6: z1
加工困难
z1
2、4、或6 :当传动比较小,为了避免根切, 或为了传递较大功率
蜗轮蜗杆设计计算
蜗杆传动的效率计算
总结词
根据蜗轮蜗杆的设计参数和工况,计算出蜗杆传动的效率。
详细描述
蜗杆传动的效率计算是评估蜗杆传动性能的重要指标之一。通过分析蜗轮蜗杆的设计参 数和工况,如蜗杆的导程角、模数、转速和载荷等参数,可以计算出蜗杆传动的效率。
蜗轮齿面接触疲劳强度的计算
总结词
根据蜗轮齿面上的载荷分布和材料属性 ,计算出蜗轮齿面的接触疲劳强度。
刚度分析
进行蜗轮蜗杆的刚度分析, 以减小传动过程中的变形 和振动。
可靠性设计
为确保自动化设备的可靠 性,对蜗轮蜗杆进行可靠 性设计和寿命预测。
THANKS
感谢观看
材料应具备较好的抗疲劳性能,以承受交 变载荷的作用;
04
材料应具有良好的工艺性能,易于加工制 造。
04
蜗轮蜗杆设计计算方法
蜗轮齿面载荷分布计算
总结词
根据蜗杆传动的实际工况,通过分析蜗轮齿面上的受力情况,计算出蜗轮齿面上的载荷分布。
详细描述
在进行蜗轮齿面载荷分布计算时,需要考虑蜗杆传动的实际工况,如传动比、转速、载荷大小和方向 等因素。通过分析蜗轮齿面上的受力情况,可以确定蜗轮齿面上的载荷分布,为后续的设计计算提供 基础。
蜗轮蜗杆设计计算
• 蜗轮蜗杆简介 • 蜗轮蜗杆设计参数 • 蜗轮蜗杆材料选择 • 蜗轮蜗杆设计计算方法 • 蜗轮蜗杆设计实例分析
01
蜗轮蜗杆简介
蜗轮蜗杆的定义
01
蜗轮蜗杆是一种常用的传动装置 ,由两个交错轴线、相互咬合的 齿轮组成,其中一个是蜗杆,另 一个是蜗轮。
02
蜗轮蜗杆具有传动比大、传动效 率高、传动平稳、噪音低等优点 ,因此在各种机械传动系统中得 到广泛应用。
VS
机械设计-蜗轮蜗杆
13
在保证足够强度的条件下,要求材料配对使用。 要求: 具有良好的减摩性、耐磨性、跑合性和抗胶合能力 特点:软硬搭配 蜗杆硬:优质碳素钢、合金结构钢 经表面硬化及调质处理,见表8-5 蜗轮软:铸锡青铜、无锡青铜、灰铸铁, 见表8-6;8-7。
第十章 蜗杆传动
14
第四节 蜗杆传动的强度计算
一、转向(复习)
小齿轮
d
b
斜线
曲线
蜗杆 蜗轮
大齿轮(两侧面往下拉,包住蜗杆)
第十章 蜗杆传动
3
第一节 蜗杆传动的特点和类型
一、特点 集齿轮传动、螺旋传动为一体 1.蜗杆的轮齿——螺旋线 (左、右旋) 单(多)线蜗杆:蜗杆转一周,蜗轮转过一(多)齿 2. i 大,结构紧凑 Z1=1~4 Z2很大 传递动力时:i = 8~80 仅传递运动可达到:i =1000 3.具有自锁性
阿基米德蜗杆:αx=20°
法向直廓蜗杆、渐开线蜗杆:αn=20°
标准值
第十章 蜗杆传动 2.蜗杆导程角γ和分度圆直径d1
pz=zpx1
8γ
s np tanψ = = πd1 πd1
pZ πmZ1 mZ1 tanγ = = = πd1 πd1 d1
Z1 Z1 ∴ d1 = m = qm q= ——蜗杆直径参数 tanγ tanγ 加工蜗轮时需用与蜗杆参数、几何尺寸(除齿顶高 高出一个顶隙外)完全相同的滚刀
解: 1.选类型、精度等级和材料:阿基米德蜗杆;8级精度 蜗杆:45钢,表面淬火,硬度(45-50)HRC
蜗轮:铸锡青铜ZCuSn10Pb1, 砂模铸造
2.确定齿数: 表8-3取: Z1=2,Z2=i Z1=40 初设:η=0.80
见P151
表8-6:[σ]H=200MPa
机械设计基础第12章蜗轮蜗杆
机械设计基础第12章蜗轮蜗杆蜗轮蜗杆是一种常见的传动机构,广泛应用于机械设备中。
蜗轮蜗杆传动具有体积小、传动比大、传动平稳等特点,在机械设计中有着重要的应用价值。
蜗轮蜗杆传动是一种通用型的不可逆传动,典型的结构包括蜗轮和蜗杆两个部分。
蜗轮是一种螺旋状的齿轮,其齿面与蜗杆的蜗杆螺旋面相配合。
蜗杆是一种具有螺旋线形状的轴,其作为传动元件,通过旋转运动驱动蜗轮。
蜗轮齿与蜗杆螺旋线的位置关系使得蜗轮只能顺时针旋转,而无法逆时针旋转。
这种结构特点决定了蜗轮蜗杆传动是一种不可逆传动。
蜗轮蜗杆传动的主要工作原理是靠蜗杆的螺旋面与蜗轮的齿轮面的啮合来实现传动。
在传动过程中,蜗杆通过旋转带动蜗轮转动,从而实现动力传递。
由于蜗杆的螺旋面与蜗轮的齿轮面接触面积小,所以传动效率相对较低。
为了提高传动效率,降低摩擦损失,需要在蜗轮齿面和蜗杆螺旋面之间添加润滑油。
蜗轮蜗杆传动具有很高的传动比,可达到1:40以上,因此在机械设备中常常使用蜗轮蜗杆传动来实现大速比的传动。
例如在起重机构中,通常采用蜗轮蜗杆传动来提高起重高度。
此外,蜗轮蜗杆传动还可以实现两个轴的不同速度传动,例如在机械车床中使用蜗轮蜗杆传动来实现工件的不同转速。
在机械设计中,蜗轮蜗杆传动的设计需要根据实际应用情况确定传动比、工作环境要求等参数。
首先需要确定传动比,在确定传动比的同时要考虑传动效率和传动正反转的能力。
其次,需要根据工作环境来选择蜗杆和蜗轮的材料,以提高传动的可靠性和耐用性。
还需要注意蜗杆和蜗轮的几何尺寸和配合精度,以保证传动的准确性和稳定性。
此外,在设计过程中还需要进行强度校核、轴承选择等工作,以确保传动的安全可靠。
总之,蜗轮蜗杆传动在机械设计中具有重要的应用价值。
它的特点是传动比大、传动平稳,适用于需要大速比、不可逆传动的场合。
在设计蜗轮蜗杆传动时,需要根据实际应用情况,确定传动比、材料、尺寸、配合精度等参数,以保证传动的稳定性和可靠性。
机械设计基础:蜗杆机构
二、蜗杆蜗轮传动的方向判断
蜗轮的转向不仅与蜗杆的转向有关,而且与其螺旋线方向有关 蜗杆同螺旋相似,分为左旋和右旋。为了在车床上加工的方便, 尽可能使用右旋蜗杆。 顺时针旋转时旋入的螺纹,称为右旋螺纹; 逆时针旋转时旋入的螺纹,称为左旋螺纹。
右旋蜗杆
右手法则:四指弯曲方向同螺纹 转动方向一致,拇指 指向螺杆相对螺母的 运动方向。
机械设计基础
蜗杆机构
一、蜗轮蜗杆的形成
蜗杆传动由蜗杆和蜗轮组成,用于传递空间两交错轴间的运动 和动力,通常蜗杆为主动。两轴线的交错角Σ可为任意值,一 般采用Σ=90°
圆弧圆柱蜗杆机构
ห้องสมุดไป่ตู้
蜗杆:
齿数z1特别少(一般 z1=1~4),它的齿可以 绕圆柱一周以上,变成 一个螺旋。
传动比:
i z2 z1
蜗轮回转方向
右旋蜗杆:
右手法则:书P75
左手法则:以左手握住蜗杆, 四指指向蜗杆的转向, 则拇指的指向为啮合 点处蜗轮的线速度方 向。
左旋蜗杆:
左手法则:书P75
右手法则:以右手握住蜗杆, 四指指向蜗杆的转向, 则拇指的指向为啮合 点处蜗轮的线速度方 向。
例题:P86 习题5-1
左旋蜗杆
左手法则:四指弯曲方向同螺纹 转动方向一致,拇指 指向螺杆相对螺母的 运动方向。
两类问题:
1. 已知蜗杆、蜗轮的轮齿旋向和二者之一的转向,确定另一个 的转向;
2. 已知蜗轮、蜗杆的转向,确定二者轮齿的转向。
蜗杆蜗轮机构转向的箭头标注
右旋蜗杆
蜗杆回转方向
蜗杆上一点 线速度方向
机构运 动简图
机械课件第12章蜗轮蜗杆
蜗轮蜗杆的设计流程
确定传动比
根据实际需求确定蜗轮蜗杆的传动比 ,以满足工作要求。
设计蜗轮蜗杆的结构
根据实际应用需求,设计蜗轮蜗杆的 结构,包括蜗杆的长度、直径、螺旋
线方向等。
选择设计参数
根据工作条件和强度要求,选择合适 的模数、压力角、蜗杆直径等设计参 数。
蜗轮蜗杆传动由两个交错轴线、相互咬合的蜗轮 02 和蜗杆组成,通过蜗轮的旋转带动蜗杆的旋转。
蜗轮蜗杆传动具有传动比大、结构紧凑、传动平 03 稳、自锁等特点,广泛应用于各种机械传动系统
中。
蜗轮蜗杆的传动比计算
01 蜗轮蜗杆的传动比等于蜗轮的齿数除以蜗杆的齿 数,即i=z2/z1。
02 传动比的大小取决于蜗轮和蜗杆的齿数比,可以 根据实际需求选择合适的齿数比来满足不同的传 动要求。
02 传动比的计算是蜗轮蜗杆设计中的重要参数,对 于确定传动系统的性能和尺寸至关重要。
蜗轮蜗杆的效率分析
1
蜗轮蜗杆的效率受到多种因素的影响,包括润滑 条件、齿面摩擦、齿面磨损、制造精度等。
2
在理想情况下,蜗轮蜗杆的传动效率可以达到 90%以上,但在实际应用中,由于各种因素的影 响,效率可能会降低。
校核强度和稳定性
根据设计参数和实际工况,对蜗轮蜗 杆进行强度和稳定性的校核,确保其 能够满足工作要求。
蜗轮蜗杆的制造工艺
01
02
03
铸造工艺
通过铸造方法制造蜗轮蜗 杆的毛坯,常用的铸造工 艺有砂型铸造、金属型铸 造等。
切削加工
对铸造毛坯进行切削加工 ,以获得精确的外形和尺 寸,包括车削、铣削、磨 削等加工方式。
机械设计蜗杆知识点
机械设计蜗杆知识点机械设计的蜗杆是一种常见且重要的传动装置,它具有较高的传动效率和承载能力。
蜗杆传动是通过蜗杆与蜗轮的啮合传递动力和运动的。
本文将介绍机械设计中关于蜗杆的一些重要知识点,包括蜗杆的结构、工作原理以及设计注意事项。
一、蜗杆的结构蜗杆是一种具有斜交螺旋线的轴,通常与蜗轮配合在一起使用。
它由蜗齿、蜗纹、中心孔等部分组成。
蜗齿是用来传递动力和运动的关键部件,蜗纹则是蜗杆的表面特征,用来增加啮合面积和提高传动效率。
蜗杆通常由金属材料制成,如钢材等,以保证其强度和耐磨性。
二、蜗杆传动的工作原理蜗杆传动是一种螺旋面与螺旋面之间的啮合传动方式。
在传动过程中,蜗齿与蜗轮齿槽进行啮合,蜗杆通过旋转带动蜗轮转动。
由于蜗杆的螺旋线的角度通常较小,所以在传动过程中产生一个大的齿轮减速比,从而实现传动的扭矩放大和速度减小。
蜗杆传动一般用于低速大扭矩的场合,如起重机械、车辆传动系统等。
三、蜗杆传动的设计要点1. 蜗杆与蜗轮的啮合角度:蜗杆的螺旋线与蜗轮齿槽的啮合角度应控制在一定范围内,过大或过小都会影响传动的效果。
通常蜗杆的螺旋线角度为5°-30°之间。
2. 蜗齿的尺寸设计:蜗齿的几何参数是设计中的关键要素,包括蜗齿高度、蜗齿厚度、蜗齿间隙等。
这些参数的选择需要考虑到传动功率、载荷大小、转速等因素。
3. 轴向力的控制:蜗杆传动会产生轴向力,对机械零件的支撑和结构稳定性提出了要求。
设计时需要合理选择轴承和支撑结构,以保证传动的正常运行。
4. 润滑和散热:蜗杆传动由于摩擦和啮合,会产生较多的热量和磨损。
因此,在设计中应考虑到润滑和散热的问题,采取适当的措施来降低传动的温度和减少磨损。
综上所述,机械设计中蜗杆的知识点包括蜗杆的结构、工作原理和设计要点。
蜗杆的结构由蜗齿、蜗纹和中心孔等组成,它与蜗轮配合,通过螺旋线的啮合传递动力和运动。
设计蜗杆传动需要注意蜗杆与蜗轮的啮合角度、蜗齿尺寸、轴向力和润滑散热等问题。
《机械设计基础》第12章 蜗杆传动
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。
机械设计-蜗杆习题与参考答案
机械设计-蜗杆习题与参考答案习题与参考答案一、选择题1 与齿轮传动相比较, 不能作为蜗杆传动的优点。
A. 传动平稳,噪声小B. 传动效率高C. 可产生自锁D. 传动比大2 阿基米德圆柱蜗杆与蜗轮传动的 模数,应符合标准值。
A. 法面B. 端面C. 中间平面3 蜗杆直径系数q = 。
A. q=d l /mB.q=d l mC. q=a /d lD.q=a /m4 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q ,将使传动效率 。
A. 提高B.减小C. 不变D.增大也可能减小5 在蜗杆传动中,当其他条件相同时,增加蜗杆头数1z ,则传动效率 。
A. 提高B. 降低C. 不变D. 提高,也可能降低6 在蜗杆传动中,当其他条件相同时,增加蜗杆头数1z ,则滑动速度 。
A. 增大B.减小C. 不变D.增大也可能减小7 在蜗杆传动中,当其他条件相同时,减少蜗杆头数1z ,则 。
A. 有利于蜗杆加工B. 有利于提高蜗杆刚度C. 有利于实现自锁D.有利于提高传动效率8 起吊重物用的手动蜗杆传动,宜采用 的蜗杆。
A. 单头、小导程角B. 单头、大导程角C. 多头、小导程角D. 多头、大导程角9 蜗杆直径d 1的标准化,是为了 。
A. 有利于测量B. 有利于蜗杆加工C. 有利于实现自锁D. 有利于蜗轮滚刀的标准化10 蜗杆常用材料是 。
A. 40CrB.GCrl5C. ZCuSnl0P1D. LY1211 蜗轮常用材料是 。
A. 40Cr B .GCrl5C. ZCuSnl0P1D. LYl212 采用变位蜗杆传动时 。
A. 仅对蜗杆进行变位B. 仅对蜗轮进行变位C. 同时对蜗杆与蜗轮进行变位13 采用变位前后中心距不变的蜗杆传动,则变位后使传动比 。
A. 增大B. 减小C. 可能增大也可能减小。
14 蜗杆传动的当量摩擦系数f v 随齿面相对滑动速度的增大而 。
A. 增大B. 减小C. 不变D. 可能增大也可能减小15 提高蜗杆传动效率的最有效的方法是 。
机械设计-蜗轮蜗杆斜齿锥齿轮传动受力分析例题
机械设计---蜗轮蜗杆、斜齿轮、锥齿轮传动机构受力分析例题【例题1】如图所示为一蜗杆—圆柱斜齿轮—直齿圆锥齿轮三级传动。
已知蜗杆1为主动件,且按图示方向转动。
试在图中绘出:
(1)各轴转向。
(2)使II、III轴轴承所受轴向力较小时的斜齿轮轮齿的旋向。
(3)各轮所受诸轴向分力的方向。
【解】
(1)各轴转向如图所示(4分)。
(2)斜齿轮轮齿的旋向如图(2分)。
(3)各轮所受诸轴向分力的方向如图。
(8分)
【解析】
蜗轮蜗杆传动受力分析:
径向力F r:由啮合点指向各自的回转中心。
圆周力F t:主动轮所受圆周力与啮合点切向速度
方向相反(阻力);
从动轮所受圆周力与啮合点切向速度方向相同(动力)。
轴向力F a:主动轮(蜗杆)受力方向用左右手螺旋法则。
从动轮受力方向与F t1相反。
斜齿圆柱齿轮传动受力分析
径向力F r:由啮合点指向各自齿轮的回转中心。
圆周力F t:主动轮所受圆周力与啮合点切向速度方向相反(阻力)。
从动轮所受圆周力与啮合点切向速度方向相同(动力)。
轴向力F a:主动轮受力方向用左右手螺旋法则判定,从动轮受力方向与主动轮相反。
锥齿轮受力分析
径向力F r:由啮合点指向各自的回转中心。
轴向力F a:由啮合点指向各自齿轮的大端(与齿轮转向无关,方常作为隐含条件)。
圆周力F t:主动轮所受圆周力与啮合点切向速度方向相反(阻力)。
从动轮所受圆周力与啮合点切向速度方向相同(动力)。
机械设计题库蜗轮蜗杆
D. 增大蜗杆直径系数 q
6. 用 D 计算蜗杆传动比是错误的。
A. i=ω1/ω2 C. i= n1 / n2 7. 蜗杆传动中较为理想的材料组合是
B. i= z2 / z1 D. i= d 1/ d 2 B。
A. 钢和铸铁
B. 钢和青铜
C. 铜和铝合金
D. 钢和钢
8. 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数 q,将使传动
B. 有利于提高蜗杆刚度
C. 有利于实现自锁
D. 有利于提高传动效率
4. 蜗轮常用材料是 C 。
A. 40Cr
B.GCrl5
C. ZCuSnl0P1
D. LYl2
5. 在润滑良好的条件下,为提高蜗杆传动的啮合效率,可采用的方法为 C 。
A. 减小齿面滑动速度υs
B. 减少蜗杆头数 Z1
C. 增加蜗杆头数 Z1
(√ )
四、 简答题
14. 蜗杆传动的主要失效形式是什么?为什么?(4 分) 答:蜗杆传动类似螺旋传动,效率低,相对滑动速度较大,发热量大,易产生 胶合和磨损,主要失效形式有齿面胶合,点蚀,磨损和轮齿折断。
15. 说明闭式蜗杆传动的主要失效形式与设计准则。(4 分) 答:主要失效形式有:齿面胶合和点蚀;其设计准则是按齿面接触疲劳
的平面。
6. 在蜗杆传动中,蜗杆头数越少,则传动的效率越 低 ,自锁性越 好 。
7. 在蜗杆传动中,蜗轮螺旋线的旋向与蜗杆螺旋线的旋向应该 相同 。
8. 阿基米德蜗杆和蜗轮在中间平面相当于直齿条与斜齿轮相啮合。因此蜗杆的
轴向 模数应与蜗轮的 端面 模数相等。
三、 判断题
9. 蜗杆传动的正确啮合条件之一是蜗杆端面模数和蜗轮的端面模数相等。 (×)
机械设计基础之蜗轮蜗杆详解
压力角: α=20° 动力传动,推荐:α=25° 分度传动,推荐用 α=15°
蜗轮蜗杆轮齿旋向相同. 蜗轮右旋 蜗杆右旋 若 ∑ =90° =β1+β2 β1 t ∵ γ1+β1 =90° ∑ β2 ∴ γ 1=β 2 s=e的圆柱称为蜗杆的分度圆柱。 为了减少加工蜗轮滚刀的数量,规定d1 只能取标准值。 e s d1
于是有: d1 = mq tgγ1 = px z1 /π d1 = mz1 / d1 = z1 / q
表12-1 蜗杆分度圆直径与其模数的匹配标准系列 mm
m d1 18 20 22.4 2.5 m d1 (22.4) 28 (35.5) 45 m d1 m 6.3 d1 (80) 112 (63) 80 (100) 140
第12章 蜗杆传动
§12-1 §12-2 §12-3 §12-4 §12-5 §12-6 蜗杆传动的特点和类型 圆柱蜗杆传动的主要参数和几何尺寸 蜗杆传动的失效形式、材料和结构 圆柱蜗杆传动的受力分析 圆柱蜗杆传动的强度计算 圆柱蜗杆传动的效率、润滑和热平衡计算
§12-1
蜗杆传动的特点和类型
作用: 用于传递交错轴之间的回转运动和动力。 蜗杆主动、蜗轮从动。 ∑=90°
设计:潘存云
表12-2 蜗杆头数z1与蜗轮齿数z2的推荐值
传动比i 蜗杆头数z1 蜗轮齿数z2 7~13 4 28~52 14~27 2 28~54 28~40 2、 1 28~80 >40 1 >40
4. 蜗杆的导程角γ 将分度圆柱展开得: tgγ1=l/π d1 = z1 px1/π d1 = mz1/d1
蜗杆中圆直径,蜗轮分度圆直径 齿顶高 齿根高 顶圆直径 根圆直径 蜗杆轴向齿距、蜗轮端面齿距 径向间隙 中心距
机械设计基础第12章蜗轮蜗杆分析
机械设计基础第12章蜗轮蜗杆分析蜗轮蜗杆传动是一种常见的传动结构,具有传动比大、传动平稳、结构紧凑等优点。
在机械设计中,蜗轮蜗杆传动的分析和设计至关重要。
本文将详细介绍蜗轮蜗杆传动的原理、分析方法和设计要点。
1.原理蜗轮蜗杆传动是由蜗轮和蜗杆组成的一对斜面传动。
蜗轮有多个齿槽,蜗杆有一根螺旋斜面。
当蜗杆旋转时,通过螺旋斜面与蜗轮的齿槽作用,产生转动传递。
由于蜗杆螺旋斜面的斜度较大,所以每转动一圈,蜗轮只转动少量的角度,这就实现了较大的传动比。
2.分析方法蜗轮蜗杆传动的分析主要包括力学分析和几何分析。
力学分析:(1)传动比计算:蜗轮蜗杆传动的传动比可以根据蜗轮的齿数和蜗杆的斜度来计算,传动比=(蜗轮的齿数)/(蜗杆的斜度)。
(2)传动效率计算:蜗轮蜗杆传动的传动效率通常较低,主要受到摩擦损失和滑动损失的影响。
传动效率可以根据摩擦系数和滑动速度来计算。
(3)定位力计算:蜗轮蜗杆传动中,由于蜗轮与蜗杆之间的斜面接触,会产生一定的定位力。
定位力会严重影响传动的稳定性和精度,需进行合理计算和设计。
几何分析:(1)蜗轮参数计算:根据给定的传动比和蜗杆参数,可以计算蜗轮的齿数和齿轮分度圆直径。
(2)蜗杆参数计算:根据给定的传动比和蜗轮参数,可以计算蜗杆的斜度和蜗杆的导程。
(3)轴距计算:蜗轮和蜗杆的轴距是影响传动稳定性和效率的重要参数,需进行合理计算和确定。
3.设计要点(1)选取合适的材料:蜗轮蜗杆传动通常承受较大的扭矩和摩擦力,所以需选取能够承受高载荷和高摩擦的材料,如合金钢等。
(2)控制传动误差:蜗轮蜗杆传动的传动准确性较低,会产生一定的传动误差。
为了减小传动误差,需进行合理的加工和装配,并采用合适的润滑和控制措施。
(3)考虑安装和维修:蜗轮蜗杆传动通常安装在机械设备内部,为方便安装和维修,在设计时需要考虑蜗轮蜗杆传动的拆卸和装配便捷性。
总结:蜗轮蜗杆传动是一种重要的传动结构,在机械设计中具有广泛应用。
通过对蜗轮蜗杆传动的深入分析和合理设计,可以提高传动的效率和稳定性,满足机械设备的传动需求。
机械设计蜗轮蜗杆
机械设计蜗轮蜗杆蜗轮蜗杆是一种常见的传动装置,常用于机械中的减速装置。
它由蜗轮和蜗杆两部分组成,通过它们之间的啮合作用来实现传动。
蜗轮蜗杆传动具有传动比大、传动平稳、紧凑结构等优点,广泛应用于机械中。
首先介绍蜗杆的设计。
蜗杆是一种旋转的锥面,并且蜗杆的螺旋线与轴线呈一定的螺距,以便与蜗轮进行啮合。
蜗杆的设计中,需要确定螺距和蜗杆的压力角。
螺距决定了蜗杆传动时的速比,一般情况下,蜗杆的螺距越小,速比越大。
压力角则是蜗杆传动的另一个重要参数,它决定了蜗轮蜗杆传动的传动效率。
一般情况下,蜗杆的压力角应该选择在20°~30°之间。
其次是蜗轮的设计。
蜗轮是一个圆柱形的齿轮,蜗轮的齿数一般比蜗杆的螺旋线的圈数少一个。
蜗轮的设计需要确定齿数、齿轮模数和齿形等参数。
齿数决定了蜗轮的啮合角,一般情况下,蜗轮的啮合角应该在15°~25°之间。
齿轮模数则是决定蜗轮齿形的重要参数,一般情况下,模数应该选择在蜗轮齿高的0.3~0.5倍之间。
在蜗轮蜗杆传动的设计中,还需要考虑到蜗轮和蜗杆的材料选择以及传动装置的润滑和冷却等问题。
一般情况下,蜗轮和蜗杆的材料应该选择强度高、硬度大的材料,以保证传动装置的使用寿命。
传动装置的润滑和冷却则可以采用润滑油和冷却水等方式进行。
在实际的机械设计中,蜗轮蜗杆传动常常用于对转速要求较低、扭矩要求较大的场合。
例如,蜗轮蜗杆传动常用于一些矿山、冶金、化工等行业的设备中,用来实现减速装置的功能。
总的来说,蜗轮蜗杆传动是一种常用的传动装置,其优点包括传动比大、传动平稳、紧凑结构等。
在设计过程中需要考虑到蜗杆和蜗轮的参数选择、润滑和冷却等问题,以保证传动装置的性能和使用寿命。
机械设计课件 03 蜗轮蜗杆
r/n1、minn2。——蜗杆、蜗轮的转速,
传动比 :
i = --nn-21 = --zz-12
≠
--d-2d1
∵ d1= m q , d2= m z2 z1= q tanγ= d1 /m tanγ
的Z1是否一致,查表3-3。
*计算主要的几何尺寸。 *蜗轮分度圆直径,蜗杆导程角,蜗轮齿宽,传动中心距
*计算蜗轮的圆周速度并校核传动效率 *校核接触强度、弯曲强度 *刚度验算,热平衡计算 *其他几何尺寸计算(轮毂参数)
*
*设计蜗杆传动时,应根据各种蜗杆传动的特点,考虑传动
的要求和使用条件,从满足功能要求出发,合理选择蜗杆 传动的类型。以下介绍蜗杆传动类型选择的原则。
2 2
K AKv Kβ
≤ σ HP
*
*弯曲强度设计公式:
m 2 d1
≥
600
σ FP z2
KT2YFS
*弯曲强度校核公式:
σF
=
666T2 K A KV K β d1d 2 m
YFS Yβ
≤动:粘度较高的齿轮油或润滑脂
*采用油池润滑时: 应采用下置蜗杆; 如受结构上的限制时——上置蜗杆。 *若速度高于10m/s——必须采用压力喷油润滑。
a
=
1 2
(d1′
+
d2′ )
=
1 2
m(q
+
z′2
+
2x2 )
=
1 2
m(q
+
z2
)
机械设计-蜗轮蜗杆
许用弯曲应力 =KFN× ,
查表11-8 由ZCuSn10P1制造的蜗轮的基本许用弯曲应力 ,=56MPa。
寿命系数KFN= =0.6281
=KFN× ,=35.17 MPa
= ×YFa2×
所以弯曲疲劳强度满足,合格。
6、验算效率η
η=(0.95~0.96)×
3、按齿面接触疲劳强度进行设计
根据闭式蜗杆传动的设计准则,先按齿面接触疲劳强度进行设计,再校核齿根弯曲疲劳强度。传动中心距:
a
(1)确定作用在蜗轮上的转矩T2
按z1=2, 估取效率η=0.8,则
T2=9.5×106× =9.55×106× =9.55×106× =889589N.mm
(2)确定载荷系数
,=268MPa
a=200mm
m=8
d1=80mm
z1=2
q=10.00
=11°18′36″
z2=41
x2=-0.500
《机械设计》
作
业
设计题目:蜗轮蜗杆传动
学 院:____机械电气化工程学院______
专业班级:_机械设计制造及其自动化15-1_
****************_______________
蜗轮齿根圆直径df2=d2-2df2=328-2×1.2×8=308.8mm
蜗轮咽喉母圆半径rg2=a- da2=200- ×344=28mm
5、校核齿根弯曲疲劳强度
= ×YFa2×
当量齿数 zv2= = =43.48
根据x2=-0.5,zv2=43.48,
查图11-19得齿形系数YFa2=2.85
因工作载荷较稳定,故取载荷分布不均系数Kβ=1.0,