平面与圆锥面的截线(课堂PPT)
圆锥曲线的原理最详细图解(平面与圆锥面的截线)
平面与圆锥面的截线一、直观感受:观察平面截圆锥面的图形,截线是什么图形?改变平面的位置,可得到三种曲线,它们统称为圆锥曲线(下图由软件《立几画板》制作):二、分类探究:从平面图形入手,开始讨论一条直线与等腰三角形的位置关系:将等腰三角形拓广为圆锥,直线拓广为平面。
如果用一平面去截一个正圆锥,而且这个平面不通过圆锥的顶点,会出现哪些情况呢?如下图:归纳提升:定理在空间中,取直线l为轴,直线l'与l相交于O点,其夹角为α,l'围绕l旋转得到以O为顶点,l'为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行,记作β=0),则:(1)β>α,平面π与圆锥的交线为椭圆;(2)β=α,平面π与圆锥的交线为抛物线;(3)β<α,平面π与圆锥的交线为双曲线。
三、证明结论:利用Dandelin双球(这两个球位于圆锥的内部,一个位于平面的上方,一个位于平面的下方,并且与平面及圆锥均相切)证明:β>α,平面与圆锥的交线为椭圆.如图,利用切线长相等,容易证明PF1+PF2=PQ1+PQ2=Q1Q2=定值.下面证明:β=α时,平面与圆锥面的交线为抛物线。
下面讨论当平面与圆锥面的交线为双曲线时准线的及离心率:换个角度看图:容易知道:截得的圆锥曲线的离心率等于截面和圆锥轴的夹角的余弦与圆锥顶角一半的余弦之比.四、知识运用用图霸制作三维直观图:解答参看下图:五、图形制作三种曲线的丹迪林Dandelin双球图可以在《几何图霸》中统一到一幅图中,主要制作步骤如下:1.作全自由点O,过点O作平行于z轴上的点B,过B作平行于x轴上的点C,作点B、C 关于O的对称点B’、C'.2.选取点O、B、C,作圆锥,选取点O、B’、C’,作圆锥.3.在圆B上任取点D,作D关于B对称点,连接OD,OD’,在OD上任取一点E,以E 为圆心画过点D’、D的心点圆,在圆E上任取点F,连EF,它表示截面的位置,可以绕点E转动.4.作角OEF的平分线,与轴BB’交于O1;作角DEF的平分线,与轴BB’交于O2,它们就是双球的球心.5.过球心O1、O2分别作边EF的垂线,垂足分别为F1、F2,它们就是焦点.6.选取点O1、F1,作球O1(图中显示大圆,光照后显示为球),同法作球O2.7.取线EF上的点G、H,作GDO垂线上的伸缩点I,作点I关于点G的对称点I’,按向量GH平称点I、I’,得点I2、I".添加面II2I"I’,连接四边,表示截面.它的长宽可以用点G、H、I控制;点F控制其转动.8.添加下底圆上的点J,连结OJ交截面于点K,选取点J、K,添加轨迹,它就是截线,如上图中的椭圆.9.点E按向量OD’平移得点E’,EE’交圆于点G1,EG1平行于母线OD’,添加点F到点G1的动画,名为“抛物线”.10.参看前面各图添加其它图元.下载图霸文件后在“对象浏览器”中查看各对象.课件下载:共享文件下载中心相关文章:1 利用丹迪林Dandelin双球证明平面与圆锥面的截线定理2平面与圆柱面的截线更多文章:《几何图霸》文章列表几何图霸网站:。
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
[读教材·填要点]
1.平面与圆柱面的截线
(1)椭圆组成元素: F1,F2 叫椭圆的焦点; F1F2 叫椭圆 的焦距;AB叫椭圆的 长轴 ;CD叫椭圆 的 短轴 .
如果长轴为2a,短轴为2b,那么焦 2 a2-b2 . 距2c=
返回
ቤተ መጻሕፍቲ ባይዱ
(2)如图(1),AB、CD是两个等圆的直径,AB∥CD,
AD、BC与两圆相切,作两圆的公切线EF,切点分别为F1、 F2,交BA、DC的延长线于E、F,交AD于G1,交BC于G2. 设EF与BC、CD的交角分别为φ、θ.
返回
2.平面与圆锥面的截线
(1)如图,AD是等腰三角形底边BC上的高,∠BAD=α,
直线l与AD相交于点P,且与AD的夹角为β(0<β<),则: ① β>α ,l与AB(或AB的延长线)、AC相交; ② β=α ③ β<α ,l与AB不相交; ,l与BA的延长线、AC都相交.
返回
(2)定理2:在空间中,取直线l为轴,直线l′与l相交于O 点,夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥 面.任取平面π,若它与轴l的交角为β(当π与l平行时,记β=
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
取平面π,若它与轴l的交角为β(当π与l平行时,记β=0), 求证:β=α时,平面π与圆锥的交线是抛 物线.(如图)
返回
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
返回
在 Rt△PBQ1 中,PB=PQ1cos α. PQ1 cos β ∴ = . PA cos α PF1 又∵PQ1=PF1,α=β,∴ =1, PA 即 PF1=PA, 动点 P 到定点 F1 的距离等于它到定直线 m 的距 离,故当 α=β 时,平面与圆锥的交线为抛物线.
返回
本课时考点在高考中很少考查.2012年梅州模拟以
返回
[悟一法]
借助条件中已经建立的直角坐标系,通过相关平面图 形转换确定椭圆的长、短轴的长是关键.
返回
[通一类] 1.平面内两个定点的距离为8,动点M到两个定点的距离 的和为10,求动点M的轨迹方程.
解:以两点的连线段所在的直线为 x 轴,线段的中垂线 为 y 轴建立直角坐标系,则由椭圆的定义知,动点的轨 x2 y2 迹是椭圆,设所求椭圆方程为 2+ 2=1. a b ∵2a=10,2c=8,∴a=5,c=4.则 b2=9. x2 y2 故所求椭圆的方程为 + =1. 25 9
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
[读教材·填要点]
1.平面与圆柱面的截线
(1)椭圆组成元素: F1,F2 叫椭圆的焦点; F1F2 叫椭圆 的焦距;AB叫椭圆的 长轴 ;CD叫椭圆 的 短轴 .
如果长轴为2a,短轴为2b,那么焦 2 a2-b2 . 距2c=
返回
(2)如图(1),AB、CD是两个等圆的直径,AB∥CD,
3.1、3.2、3.3 平行射影 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
6-2 2,
A′B2+A′C2-BC2 6- 3 cos ∠BA′C= = . 3 2A′B· A′C
[例2]
如图,在圆柱O1O2内嵌入双球,使它们
与圆柱面相切,切线分别为⊙O1和⊙O2,并且和圆 柱的斜截面相切,切点分别为F1、F2. 求证:斜截面与圆柱面的截线是以F1、F2为焦 点的椭圆.
[思路点拨]
线射影若是同一条直线,则两直线必共面,这与a、b异
面矛盾,所以③错,故正确答案:①②④.
答案:①②④
2.梯形ABCD中,AB∥CD,若梯形不在α内,则它在α 上的射影是____________. 解析:如果梯形ABCD所在平面平行于投影方向,则梯
形ABCD在α上的射影是一条线段.
如果梯形ABCD所在平面不平行于投影方向,则平行线 的射影仍是平行线,不平行的线的射影仍不平行,则梯 形ABCD在平面α上的射影仍是梯形. 答案:一条线段或梯形
知PF1=PK1,PF2=PK2,
所以PF1+PF2=PK1+PK2=K1K2. 由于K1K2为定值,故点P的轨迹是以F1、F2为焦点的椭圆.
(1)证明平面与圆柱面的截线是椭圆,利用Dandelin
双球确定椭圆的焦点,然后利用椭圆的定义判定曲线的
形状. (2)该题使用了切线长定理的空间推广 (从球外一点 引球的切线,切线长都相等).
为A沿l的方向在平面α上的平行射影.
一个图形上各点在平面α上的平行射影 所组成的图形,叫 做这个图形的平行射影.
3.正射影与平行射影的联系与区别 正射影与平行射影的投影光线与投影方向都是平行
的.因此,正射影也是平行射影,不同的是正射影的光
线与投影面垂直.而平行射影的投影光线与投影面斜 交.平面图形的正射影与原投影面积大小相等.而一般 平行射影的面积要小于原投影图形的面积.
平面与圆锥面的截线 课件
证明:如图所示,当 β<α 时,平面 π 与圆锥的两部 分相交.在圆锥的两部分分别嵌入 Dandelin 球,与平面 π 的两个切点分别是点 F1、F2,与圆锥两部分截得的圆分 别为 S1、S2.
在截口上任取一点 P,连接 PF1、PF2,过点 P 和圆 锥的顶点 O 作母线,分别与两个球相切于点 Q1、Q2,
则 PF1=PQ1,PF2=PQ2, 所以|PF1-PF2|=|PQ1-PQ2|=Q1Q2. 由于 Q1Q2 为两圆 S1、S2 所在平行 平面之间的母线段长, 因此 Q1Q2 的长为定值.
由上述可知,双曲线的结构特点是:双曲线上任意一 点到两个定点(即双曲线的两个焦点)的距离之差的绝对 值为常数.
解:连接 O1F1、O2F2、O1O2 交 F1F2 于 O 点, 在 Rt△O1F1O 中,
OF1=tanO∠O1F1O1 F1=tanr
. β
在 Rt△O2F2O 中,
OF2=tanO∠O2F2O2 F2=tanR
. β
所以 F1F2=OF1+
R+r
OF2= tan
. β
R+r
同理,O1O2= sin
归纳升华 判断平面与圆锥面的截线形状的方法如下: 1.求圆锥面的母线与轴线的夹角 α,截面与轴的夹 角 β; 2.判断 α 与 β 的大小关系; 3.根据定理 2 判断交线是什么曲线.
类型 2 圆锥曲线的几何性质
[典例 2] 如图所示,已知圆锥母线 与轴的夹角为 α,平面 π 与轴线夹角为 β, Dandelin 球的半径分别为 R、r,且 α<β, R>r,求平面 π 与圆锥面交线的焦距 F1F2, 轴长 G1G2.
2.圆锥曲线的几何性质
(1)焦点:Dandelin 球与平面 π 的切点. (2)准线:截面与 Dandelin 球和圆锥交线所在平面的 交线.
圆锥曲线的原理最详细图解(平面与圆锥面的截线).
平面与圆锥面的截线一、直观感受:观察平面截圆锥面的图形,截线是什么图形?改变平面的位置,可得到三种曲线,它们统称为圆锥曲线(下图由软件《立几画板》制作):二、分类探究:从平面图形入手,开始讨论一条直线与等腰三角形的位置关系:将等腰三角形拓广为圆锥,直线拓广为平面。
如果用一平面去截一个正圆锥,而且这个平面不通过圆锥的顶点,会出现哪些情况呢?如下图:归纳提升:定理在空间中,取直线l为轴,直线l'与l相交于O点,其夹角为α,l'围绕l旋转得到以O为顶点,l'为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行,记作β=0),则:(1)β>α,平面π与圆锥的交线为椭圆;(2)β=α,平面π与圆锥的交线为抛物线;(3)β<α,平面π与圆锥的交线为双曲线。
三、证明结论:利用Dandelin双球(这两个球位于圆锥的内部,一个位于平面的上方,一个位于平面的下方,并且与平面及圆锥均相切)证明:β>α,平面与圆锥的交线为椭圆.如图,利用切线长相等,容易证明PF1+PF2=PQ1+PQ2=Q1Q2=定值.下面证明:β=α时,平面与圆锥面的交线为抛物线。
下面讨论当平面与圆锥面的交线为双曲线时准线的及离心率:换个角度看图:容易知道:截得的圆锥曲线的离心率等于截面和圆锥轴的夹角的余弦与圆锥顶角一半的余弦之比.四、知识运用用图霸制作三维直观图:解答参看下图:五、图形制作三种曲线的丹迪林Dandelin双球图可以在《几何图霸》中统一到一幅图中,主要制作步骤如下:1.作全自由点O,过点O作平行于z轴上的点B,过B作平行于x轴上的点C,作点B、C 关于O的对称点B’、C'.2.选取点O、B、C,作圆锥,选取点O、B’、C’,作圆锥.3.在圆B上任取点D,作D关于B对称点,连接OD,OD’,在OD上任取一点E,以E 为圆心画过点D’、D的心点圆,在圆E上任取点F,连EF,它表示截面的位置,可以绕点E转动.4.作角OEF的平分线,与轴BB’交于O1;作角DEF的平分线,与轴BB’交于O2,它们就是双球的球心.5.过球心O1、O2分别作边EF的垂线,垂足分别为F1、F2,它们就是焦点.6.选取点O1、F1,作球O1(图中显示大圆,光照后显示为球),同法作球O2.7.取线EF上的点G、H,作GDO垂线上的伸缩点I,作点I关于点G的对称点I’,按向量GH平称点I、I’,得点I2、I".添加面II2I"I’,连接四边,表示截面.它的长宽可以用点G、H、I控制;点F控制其转动.8.添加下底圆上的点J,连结OJ交截面于点K,选取点J、K,添加轨迹,它就是截线,如上图中的椭圆.9.点E按向量OD’平移得点E’,EE’交圆于点G1,EG1平行于母线OD’,添加点F到点G1的动画,名为“抛物线”.10.参看前面各图添加其它图元.下载图霸文件后在“对象浏览器”中查看各对象.课件下载:共享文件下载中心相关文章:1 利用丹迪林Dandelin双球证明平面与圆锥面的截线定理2平面与圆柱面的截线更多文章:《几何图霸》文章列表几何图霸网站:。
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
曲线的形状,尤其是焦点的确定更加不容易,但可以采 用与上节中定理1的证明相同的方法,即Danelin双球法, 这时较容易确定椭圆的焦点,学生也容易入手证明,使 问题得到解决.
返回
[通一类] 2.在空间中,取直线l为轴,直线l′与l相交于O点,夹角
为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任
返回
[研一题]
[例1] 已知圆柱底面半径为,平面β与圆柱母线夹
角为60°,在平面β上以G1G2所在直线为横轴,以 G1G2中点为原点,建立平面直角坐标系,求平面β与
圆柱截口椭圆的方程.
返回
分析:本题考查平面与圆柱面的截线.解答本题需要根
据题目条件确定椭圆的长轴和短轴.
解:过 G1 作 G1H⊥BC 于 H. ∵圆柱底面半径为 3, ∴AB=2 3. ∵四边形 ABHG1 是矩形, ∴AB=G1H=2 3. G1H 2 3 在 Rt△G1G2H 中,G1G2= = =4. sin∠G1G2H 3 2 又椭圆短轴长等于底面圆的直径 2 3, x2 y2 ∴椭圆的标准方程为 + =1. 4 3
截交线ppt课件
成的
该组合 体与原 基本体 画法的 区别在 于截切 后该正 垂面与 基本体 表面的
交线
交线--截交线
截切类组合体 重点问题
9.3截交线的画法
截切:
各种位置面
用一个平面与立体相交,截去立体的一
部分。
平面体
曲面体
• 截平面 —— 用以截切物体的平面。 • 截交线 —— 截平面与物体表面的交线。
正三棱锥截切
正三棱拄截切
正垂面
水平面
空间分析 投影分析 画图(找点) 分析棱线投影 检查截交先投影特 性(类似性)
画全正六棱拄截切体三视图
正垂面
k’
水平面 p’
哪个视图画完全了?哪个 没画全?哪个没画出?
画图步骤
•对未画出的视图
先画出完整的正六棱拄 的视图
再根据截交线的画法画 出截切体的视图
•补全没画全的视图
• 截交线的每条边是截平面与棱面的交线。
求截交线的实质是 求两平面的交线
交线的端点
立体表面的点
二、平面截切体的画图
关键是正确地画出截交线的投影。
⒈ 求截交线的两种方法:
★ 求各棱线与截平面的交点→棱线法。
★ 求各棱面与截平面的交线→棱面法。
⒉ 求截交线的步骤: ★ 空间及投影分析
☆ 截平面与体的相对位置
截平面与圆柱面的截交线的形状取决于 截平面与圆柱轴线的相对位置
PV
PV PV
P
垂直 圆
P
P
倾斜 椭圆
平行 两平行直线
截平面是什么位置面?
PV
水平面
P
垂直 圆
截平面是什么位置面?
正垂面
圆锥曲线 课件
利用线性代数知识求解圆锥曲线问题
线性方程组
线性方程组是线性代数中的基础内容, 它可以用来求解与圆锥曲线相关的问题 。例如,通过解线性方程组,可以找到 满足特定条件的点的坐标。
VS
特征值与特征向量
特征值和特征向量在解析几何中也有广泛 应用。通过计算圆锥曲线的特征值和特征 向量,可以深入了解曲线的性质,从而更 好地解决相关问题。
椭圆离心率的范围是0<e<1,双曲线的离心率范围是e>1。
圆锥曲线的光学性质
01
光线经过圆锥曲线上的点时,其 方向会发生改变,这种现象叫做 圆锥曲线的光学性质。
02
光线经过椭圆时,会沿着椭圆的 主轴方向折射;经过双曲线时, 会沿着双曲线的副轴方向折射。
圆锥曲线的对称性
圆锥曲线具有对称性,即如果将圆锥 曲线沿其对称轴旋转180度,它仍然 与原来的曲线重合。
02 圆锥曲线的性质
焦点与准线
焦点
圆锥曲线上的点到曲线的两个焦 点的距离之和等于常数,这个常 数等于椭圆的长轴长,等于双曲 线的实轴长。
准线
与圆锥的母线平行的线,在平面 内与准线相交的直线与圆锥相切 于一点,这个点叫做切点。
离心率
离心率:是描述圆锥曲线形状的一个重要参数,它等于圆锥顶点到曲线的距离与 圆锥的半径之比。离心率越大,圆锥曲线越扁平,反之则越接近于球形。
双曲线的极坐标 方程
$frac{rho^2}{a^2} frac{rho^2}{b^2} = 1$
圆锥曲线在极坐 标下的表…
将圆锥曲线问题转化为极 坐标形式,便于理解和求 解。
利用极坐标求解圆锥曲线问题
利用极坐标求解圆锥曲线问题的步骤
首先将问题转化为极坐标形式,然后利用极坐标的性质和公式进行求解。
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
选择题的形式考查了平面与圆柱面的截线的形状,是
高考模拟命题的一个新动向.
返回
[考题印证]
(2012· 梅州模拟)已知半径为 2 的圆柱面, 一平面与圆 柱面的轴线成 45° 角,则截线椭圆的焦距为 A.2 2 C.4 B.2 D.4 2 ( )
[命题立意]
本题主要考查平面与圆柱面的截线问题,
同时考查椭圆的相关性质.
返回
①G2F1+G2F2= AD;②G1G2= AD; G2F1 =cosφ=sinθ. ③ G2E (3)如图(2),将两个圆拓广为球面,将矩形 ABCD 看 成是圆柱面的轴截面,将 EB、DF 拓广为两个平面 α、β, EF 拓广为平面 γ,则平面 γ 与圆柱面的截线是 椭圆 .即 得定理 1:圆柱形物体的斜截口是椭圆.
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
[研一题] [例2] 证明:定理2的结论(1),即β>α时,平面π与圆 锥的交线为椭圆. 分析:本题考查平面与圆锥面的截线.解答本题需要 明确椭圆的定义,利用椭圆的定义证明.
人教版高中数学选修3.3平面与圆锥面的截线ppt课件
由上所述可知, 椭圆的 准线为m, 椭圆上任一 点到焦点的距离与到 准线的距离之比为常
A
m
S Q1 B
F1
`
cos P 数 ,因此椭圆的 cos 图3 12 cos 离心率为e , cos 即椭圆的离心率等于截 面和圆锥的轴的交角 的余弦与圆锥的母线和 轴所成角的余弦之比 .
D
G A
P
E
B
F
l
C
(1)
(2) (3)
,
D , 与AB( l 或AB的延长线)、AC都相交。 与AB l 不相交。
, 与BA l 的延长线、AC都相交。
是(
1.圆锥的顶角为60°,截面与母线所成的角为60°,则截面所截得的截线 ) A A.圆 C.双曲线 B.椭圆 D.抛物线 )
2.圆锥的顶角为50°,圆锥的截面与轴线所成的角为30°,则截线是( A.圆 C.双曲线 B B.椭圆 D.抛物线
3.一平面截圆锥的截线为椭圆,椭圆的长轴为 8,长轴 的两端点到顶点的距离分别是 6 和 10,则椭圆的离心率为 ( C )
在RtABP中, APB , 所以PB PAcos . 1
设过 P的母线与圆 S交于 点 Q1 , 则在 RtPQ1 B 中 , Q1 PB , 所以 2 PB PQ1 cos .
A
m
S Q1 B
F1
`
P
图3 12
PF1 cos 由 1 2 得 . 因为 PA cos PF1 cos 0 , 故 cos cos , 则 1. 2 PA cos
S1
Q1 F1 F2
S2
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
2.平面与圆锥面的截线
(1)如图,AD是等腰三角形底边BC上的高,∠BAD=α,
直线l与AD相交于点P,且与AD的夹角为β(0<β<),则: ① β>α ,l与AB(或AB的延长线)、AC相交; ② β=α ③ β<α ,l与AB不相交; ,l与BA的延长线、AC都相交.
返回
(2)定理2:在空间中,取直线l为轴,直线l′与l相交于O 点,夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥 面.任取平面π,若它与轴l的交角为β(当π与l平行时,记β=
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
返回
[研一题] [例2] 证明:定理2的结论(1),即β>α时,平面π与圆 锥的交线为椭圆. 分析:本题考查平面与圆锥面的截线.解答本题需要 明确椭圆的定义,利用椭圆的定义证明.
返回
证明:如图,与定理1的证明相同,在圆锥内部嵌入 Dandelin双球,一个位于平面π的上方,一个位于平面π的 下方,并且与平面π及圆锥均相切.
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
返回
在 Rt△PBQ1 中,PB=PQ1cos α. PQ1 cos β ∴ = . PA cos α PF1 又∵PQ1=PF1,α=β,∴ =1, PA 即 PF1=PA, 动点 P 到定点 F1 的距离等于它到定直线 m 的距 离,故当 α=β 时,平面与圆锥的交线为抛物线.
返回
本课时考点在高考中很少考查.2012年梅州模拟以
返回
[研一题]
[例1] 已知圆柱底面半径为,平面β与圆柱母线夹
角为60°,在平面β上以G1G2所在直线为横轴,以 G1G2中点为原点,建立平面直角坐标系,求平面β与
圆柱截口椭圆的方程.
返回
分析:本题考查平面与圆柱面的截线.解答本题需要根
据题目条件确定椭圆的长轴和短轴.
解:过 G1 作 G1H⊥BC 于 H. ∵圆柱底面半径为 3, ∴AB=2 3. ∵四边形 ABHG1 是矩形, ∴AB=G1H=2 3. G1H 2 3 在 Rt△G1G2H 中,G1G2= = =4. sin∠G1G2H 3 2 又椭圆短轴长等于底面圆的直径 2 3, x2 y2 ∴椭圆的标准方程为 + =1. 4 3
返回
[研一题] [例2] 证明:定理2的结论(1),即β>α时,平面π与圆 锥的交线为椭圆. 分析:本题考查平面与圆锥面的截线.解答本题需要 明确椭圆的定义,利用椭圆的定义证明.
返回
证明:如图,与定理1的证明相同,在圆锥内部嵌入 Dandelin双球,一个位于平面π的上方,一个位于平面π的 下方,并且与平面π及圆锥均相切.
选择题的形式考查了平面与圆柱面的截线的形状,是
高考模拟命题的一个新动向.
返回
[考题印证]
(2012· 梅州模拟)已知半径为 2 的圆柱面, 一平面与圆 柱面的轴线成 45° 角,则截线椭圆的焦距为 A.2 2 C.4 B.2 D.4 2 ( )
平面与圆锥面的截线 课件
同理,另一分支上的点也具有同样的性质,
综上所述,双曲线的准线为 m,离心率 e=
cos
.
cos
反思讨论圆锥曲线的几何性质时,要注意结合图形进行.
题型二
圆锥曲线几何性质应用
【例2】 已知双曲线两个顶点间的距离为2a,焦距为2c,求两条准
线间的距离.
解:如图,l1,l2是双曲线的准线,F1,F2是焦点,A1,A2是顶点,O为中心.
∵PB平行于圆锥的轴,∴∠BPA=β,∠BPQ2=α.
.
cos
Rt△BPQ2 中,PQ 2=
.
cos
在 Rt△BPA 中,PA=
在
由切线长定理,得 PF2=PQ2,
2
cos
∴PF2= cos.∴e= = cos.
π
∵0<β<α< 2 , ∴ cos β>cos α.∴e>1.
时的交线叫做双曲线
在空间中,取直线 l 为轴,直线 l'与 l 相交于 O 点,夹角为 α,l'
符号
语言
围绕 l 旋转得到以 O 为顶点,l'为母线的圆锥面.任取平面 π,
若它与轴 l 的交角为 β(当 π 与 l 平行时,记 β=0),则
(1)β>α,平面 π 与圆锥的交线为椭圆;
(2)β=α,平面 π 与圆锥的交线为抛物线;
由离心率定义知
1 1
1 1
= ,
∴A1H1= 11.
又 A1F1=OF1-OA1=c-a,
(-)
∴A1H1= . ∴ 1 = 1 − 11,
(-)
2
∴OH1=a− = .
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
返回
[研一题]
[例1] 已知圆柱底面半径为,平面β与圆柱母线夹
角为60°,在平面β上以G1G2所在直线为横轴,以 G1G2中点为原点,建立平面直角坐标系,求平面β与
圆柱截口椭圆的方程.
返回
分析:本题考查平面与圆柱面的截线.解答本题需要根
据题目条件确定椭圆的长轴和短轴.
解:过 G1 作 G1H⊥BC 于 H. ∵圆柱底面半径为 3, ∴AB=2 3. ∵四边形 ABHG1 是矩形, ∴AB=G1H=2 3. G1H 2 3 在 Rt△G1G2H 中,G1G2= = =4. sin∠G1G2H 3 2 又椭圆短轴长等于底面圆的直径 2 3, x2 y2 ∴椭圆的标准方程为 + =1. 4 3
2 解:由题意知,椭圆的长半轴长 a= =2 2, sin 45° 短半轴长 b=2,则半焦距 c= a2-b2= 8-4=2. 所以焦距 2c=4.
返回
点击下图进入“创新演练”
返回
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.圆
B.椭圆
C.双曲线
D.抛物线
2.圆锥的顶角为50°,圆锥的截面与轴线所成的角为 30°,则截线是( B )
A.圆
B.椭圆
C.双曲线
D.抛物线
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
3.一平面截圆锥的截线为椭圆,椭圆的长轴为 8,长轴
的两端点到顶点的距离分别是 6 和 10,则椭圆的离心率为
1.(1)β>α (2)β=α (3)β<α
2.(1)β>α (2)β=α (3)β<α 金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
研究圆锥的截线,说明双曲线为β<α时,平面 π与圆锥的交线.
金品质•高追求 我们让你更放心!
在 Rt△ACB 中,AC=PA=4,BC= 2 PB=4 2 ,从而
AB=4 3 ,OP=2. 在 Rt△POF 中,
OF= 1 BC=2 2 ,OP=2,PF= 3 PA=2 3 ,
2
2
由面积关系,得 OH= OF OP = 2 6 .
PF
3
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
又∵圆锥的半顶角与截面与轴线的夹角相等,故截面
CDE 与圆锥的截线为一抛物线. 金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
1.圆锥的顶角为60°,截面与母线所成的角为60°, 则截面所截得的截线是( A )
(1)________,l与AB(或AB的延长线)、AC相交. (2)________,l与AB不相交. (3)________,l与BA的延长线、AC都相交. 2.在空间中,取直线l为轴,直线l′与l相交于点O,夹 角为α,l′围绕l旋转得到以O为顶点.l′为母线的圆锥面.任 取平面π,若它与轴l的交角为β(当π与l平行时,记β=0),则 (1)________,平面π与圆锥的交线为椭圆. (2)________,平面π与圆锥的交线为抛物线. (3)________,平面π与圆锥的交线为双曲线.
返回
◆数学•选修4-1•(配人教A版)◆
解析:当β<α时,平面π与圆锥的两部分相交.在圆锥 的两部分分别嵌入Dandelin球,与平面π的两个切点分别是F1、 F2,与圆锥两部分截得的圆分别为S1、S2.
在截口上任取一点P,连接PF1、PF2.过点P和圆锥的顶 点O作母线,分别与两个球相切于点Q1、Q2,则PF1=PQ1, PF2=PQ2,所以|PF1-PF2|=|PQ1-PQ2|=Q1Q2.
◆数学•选修4-1•(配人教A版)◆
三 平面与圆锥面的截线
金品质•高追求 我们让你更放心 !
◆数学•选修4-1•(配人教A版)◆
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
1.理解圆锥面的概念. 2.了解圆锥面被平面截得的圆锥曲线的各种情况.
金品质•高追求 我们让你更放心!
又 AD= 3 PA=2 3 ,DE= 1 PB=2,在△ADE 中,由余弦
2
2
定理,得 cos∠ADE=- 3 . 3
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
(2)取 AC 的中点 F,连接 PF、OF,则 AC⊥平面 POF, 从而平面 PAC⊥平面 POF.
过点 O 作 OH⊥PF,垂足为 H,则 OH⊥平面 PAC,故 OH 的长为点 O 到平面 PAC 的距离.
是圆锥的轴截面,已知∠APC=60°,∠BPC=90°,PA=4. (1)求二面角A-PC-B的余弦值. (2)求正截面圆圆心O到平面PAC的距离.
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
解析:(1)∵∠APC=60,∴△APC 为等边三角形. 如图所示,分别取 PC、BC 的中点 D、E,连接 AD、DE, 则 AD⊥PC,DE∥PB. 又 PB⊥PC,∴DE⊥PC. 故∠ADE 为二面角 A-PC-B 的平面角. 连接 AE,在 Rt△ACE 中,求得 AE2=24.
返回
◆数学•选修4-1•(配人教A版)◆
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
1.如图1,AD是等腰三角形底边BC上的高,∠BAD=α,
直线l与AD相交于点P,且与AD的夹角为β
0
π 2
,则:
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
由于Q1Q2为两圆S1、S2所在平行平面之间的母线段长, 因此Q1Q2的长为定值.
由上述可知,双曲线的结构特点是:双曲线上任意一 点到两个定点(即双曲线的两个焦点)的距离之差的绝对值为 常数.
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆ 如图所示,平面ABC是圆锥面的正截面,PAB
已知,圆锥侧面展开图扇形的中心角为 2 π,AB、CD是圆锥面的正截面上互相垂直的两条直径,过 CD和母线VB的中点E作一截面,求截面与圆锥的轴线所夹角 的大小,并说明截线是什么圆锥曲线.
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
解析:设⊙O 的半径为 R,母线 VA=l,则侧面展开图的
(C )
A. 3
B. 4
5
5
C. 1
D. 2
2
2
金品质•高追求 我们让你更放心!
返回
◆数学•选修4-1•(配人教A版)◆
4.用一个平面去截一个正圆锥,而且这个平面不通 过圆锥的顶点,则会出现四种情况:________、________、 ________和________.
5.用平面截球面和圆柱面所产生的截线形状分别是 ______、________.
中心角为 2πR = 2 ,∴圆锥的半顶角= π .
lB、VB 的中点,
∴OE∥VA,
∴∠VOE=∠AVO= π . 4
又∵AB⊥CD,VO⊥CD,
∴CD⊥平面 VAB,
∴平面 CDE⊥平面 VAB,即平面 VAB 为截面 CDE 的轴
面,
∴∠VOE 为截面与轴线所夹的角,即为 π . 4