华东师大版八年级下册数学 第17章 函数和图象 单元测试(含答案)

合集下载

华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析

华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析

八年级数学下册第17章《函数及其图象》单元测试一一、选择(每小题3分,共24分)1.下列各点中,在第二象限的点是()(A)(5,3).(B)(5,﹣3).(C)(﹣5,3).(D)(﹣5,﹣3).2.根据下列所示的程序计算y的值,若输入的x值为﹣3,则输出的结果为()(A)5.(B)﹣1.(C)﹣5.(D)1.3.如图,李老师早晨出门去锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()(A).(B).(C).(D).4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()(A).(B).(C).(D).5.下列描述一次函数y=﹣2x+5的图象及性质错误的是()(A)y随x的增大而减小.(B)直线经过第一、二、四象限.(C)当x>0时y<5.(D)直线与x轴交点坐标是(0,5).6.小颖画了一个函数y=﹣1的图象如图,那么关于x的分式方程=1的解是()(A)x=1.(B)x=2.(C)x=3.(D)x=4.=4,则k的值为7.反比例函数y=(x>0)的图象经过△OAB的顶点A,已知AO=AB,S△OAB()(A)2.(B)4.(C)6.(D)8.8.如图,直线y1=kx+b过点A(0,2)且与直线y2=mx交于点P(﹣1,﹣m),则关于x的不等式组mx>kx+b>mx﹣2的解集为()(A)x<﹣1.(B)﹣2<x<0.(C)﹣2<x<﹣1.(D)x<﹣2.二、填空(每小题3分,共24分)9.函数中,自变量x的取值范围是.10.平面直角坐标系内,点M(a+3,a﹣2)在y轴上,则点M的坐标是.11.某快递公司收费标准的部分数据如图所示(其中t表示邮件的质量,P表示每件快递费).依次规律,质量为3.2千克的邮件快递费为元.12.过点P(8,2)且与直线y=x+1平行的一次函数表达式为.13.若两个函数的图象关于y轴对称,我们定义这两个函数是互为“镜面”函数;请写出函数的镜面函数.14.若函数y=的图象在第二、四象限,则函数y=kx﹣1的图象经过第象限.15.如图,直线AB经过点A(0,2)、B(1,0).将直线AB向左平移与x轴、y轴分别交于点C、D.若DB=DC,则直线CD的函数关系式是.16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过A、B两点,A、B两点的横坐标分别为1和4,直线AB与y轴所夹锐角为45°.则k=.三、解答(6个小题,共52分)17.(8分)已知y=y1﹣y2,y1与x成反比例,y2与(x﹣2)成正比例,并且当x=3时,y=5,当x=1时,y=﹣1;(1)求y与x之间的函数关系式.(2)当x=时,求y的值.18.(8分)某机动车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据如图回答问题:(1)机动车行驶几小时后加油?加了多少油?(2)试求加油前油箱余油量Q与行驶时间t之间的关系式;(3)如果加油站离目的地还有230km,车速为40km/h,要到达目的地,油箱中的油是否够用?请说明理由.19.(8分)已知直线y1=﹣x+1与y2=2x﹣2交于点P,它们与y轴分别交于点A、B.(1)同一坐标系中画出这两个函数的图象;(2)求出这两个函数图象的交点坐标;(3)观察图象,当x取什么范围时,y1>y2?(4)求△ABP的面积.20.(8分)如图,点A(m,m+1),B(m+3,m﹣1)为第一象限内的点,并且都在反比例函数y=(k≠0)的图象上,直线AB与y轴交于点C.(1)求m,k值;(2)求△BOC的面积.21.(10分)如图,已知在平面直角坐标系xOy中,O是坐标原点,双曲线y1=mx与直线y2=﹣x+b交于A,D两点,直线y2=﹣x+b交x轴于点C,交y轴于点B,点B的坐标为(0,3),S△AOB=S△DOC=3.(1)求m和b的值;(2)求y1>y2时x的取值范围.22.(10分)虽然近几年无锡市政府加大了太湖水治污力度,但由于大规模、高强度的经济活动和日益增加的污染负荷,使部分太湖水域水质恶化,富营养化不断加剧.为了保护水资源,我市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:月用水量(吨)单价(元/吨)不大于10吨部分 1.5大于10吨不大于m吨部分(20≤m≤50)2大于m吨部分3(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数关系式;(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.参考答案一、1.C 2.B 3.D 4.B 5.D 6.C7.B8.C二、9.x≤510.(0,﹣5)11.4712.y=x﹣613.y=﹣14.二、三、四15.y=﹣2x﹣216.4三、17.解:(1)解:设y1=,y2=b(x﹣2),∵y=y1﹣y2,∴y=﹣b(x﹣2),把x=3,y=5和x=1,y=﹣1代入得:,解得:a=3,b=﹣4,∴y与x之间的函数关系式是:y=+4x﹣8;(2)把x=代入y=+4x﹣8中得:y=6+2﹣8=0.18.解:(1)由横坐标看出,5小时后加油,由纵坐标看出,加了36﹣12=24(L)油(2)设表达式为Q=kt+b,将(0,42),(5,12)代入函数表达式,得,解得642 tb=-⎧⎨=⎩.∴函数表达式为Q=42﹣6t(3)够用,理由如下:36L的油还可以行驶6小时,∵车速为40km/h,∴36L的油可以行驶240千米,240>230.故油够用.19.解:(1)∵当x=0时,y1=1.y1=0时,x=1.∴直线y1=﹣x+1经过点(0,1),(1,0).同理,y2=2x﹣2经过点(0,﹣2),(1,0).则其图象如图所示:;(2)由(1)中的两直线图象知,这两个函数图象的交点坐标是(1,0);(3)由(1)中的两直线图象知,当<1时,y1>y2;(4)∵A(0,1),P(1,0).B(0,﹣2),∴AB=3,OP=1,∴△ABP的面积是:AB•OP=×3×1=.20.解:(1)∵点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=(k≠0)的图象上,∴k=m(m+1)=(m+3)(m﹣1),解得m=3,k=12;(2)∵m=3,∴A(3,4),B(6,2).设直线AB的表达式为y=ax+b,,解得,∴直线AB的表达式为y=﹣x+6,∴C(0,6),∴△BOC的面积=×6×6=18.21.解:(1)∵点B在直线y2=﹣x+b上,∴b=3,∴y2=﹣x+3,设A点的坐标为(x,n),∵S△AOB=3,∴|x|=3,x<0,∴x=﹣2,n=﹣(﹣2)+3=5,∴A(﹣2,5),∵y1=mx过点A,∴m=(﹣2)×5=﹣10,所以,m=﹣10,b=3,(2)∵y2=﹣x+3,易得C点坐标为(3,0),同(1)可得,D点坐标为(5,﹣2),由图象可知,当y1>y2时,﹣2<x<0或x>522.解:(1)∵18<m,∴此时前面10吨每吨收1.5元,后面8吨每吨收2元,10×1.5+(18﹣10)×2=31,(2)①当x≤10时,y=1.5x,②当10<x≤m时,y=10×1.5+(x﹣10)×2=2x﹣5,华东师大版八年级数学下册第17章《函数及其图象》单元测试一及答案解析③当x>m时,y=10×1.5+(m﹣10)×2+(x﹣m)×3=3x﹣m﹣5,∴(3)∵10≤x≤50,∴当用水量为40吨时就有可能是按照第二和第三两种方式收费,①当40≤m≤50时,此时选择第二种方案,费用=2×40﹣5=75,符合题意,②当10≤m<40时,此时选择第三种方案,费用=3x﹣m﹣5,则:70≤3x﹣m﹣5≤90,∴25≤m≤45,∴此状况下25≤m<40,综合①、②可得m的取值范围为:25≤m≤50.11。

2019-2020学年度华东师大版数学八年级下册第十七章 《函数及其图像》(含解析)第17章 单元测试

2019-2020学年度华东师大版数学八年级下册第十七章    《函数及其图像》(含解析)第17章  单元测试

第十七章函数及其图像单元测试班级:姓名:学号:成绩:一、选择题1.对于圆的面积公式S=πR2,下列说法中,正确的为()A. π是自变量B. R是常量C. R是自变量D. π和R是都是常量.其中y是x函数的是() 2.关于变量x,y有如下关系:①x−y=5;②y2=2x;③:y=|x|;④y=3xA. ①②③B. ①②③④C. ①③D. ①③④3.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.4.如图,是反比例函数y1=k和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是()xA. 1<x<6B. x<1C. x<6D. x>15.关于函数y=−2x+1,下列结论正确的是()A. 图象必经过点(−2,1)B. 图象经过第一、二、三象限C. 图象与直线y=−2x+3平行D. y随x的增大而增大6.已知反比例函数y=−2,下列结论不正确的是()xA. 图象经过点(−2,1)B. 图象在第二、四象限C. 当x<0时,y随着x的增大而增大D. 当x>−1时,y>27.当x=−3时,函数y=x2−3x−7的函数值为()A. −25B. −7C. 8D. 11(k≠0)的图象经过点(2,−3),则k的值为()8.若反比例函数y=kxA. 5B. −5C. 6D. −69.若反比例函数y=2k+1的图象位于第一、三象限,则k的取值可以是()xA. −3B. -2C. -1D. 010.在平面直角坐标系中,点P(-2,3-π)所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A. 前2分钟,乙的平均速度比甲快B. 5分钟时两人都跑了500米C. 甲跑完800米的平均速度为100米/分D. 甲乙两人8分钟各跑了800米12.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后,用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.二、填空题13. 王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______. 14. 在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组{y −k 1x =b 1y −k 2x =b 2的解是______.15. 若一次函数y =−2x +b(b 为常数)的图象经过第二、三、四象限,则b 的值可以是 (写出一个即可).16. 已知点P(x,y)在第四象限,且到y 轴的距离为3,到x 轴的距离为5,则点P 的坐标是 . 17. 已知y =(k −1)x +k 2−1是正比例函数,则k = . 18. 函数y =√x+2−√3−x 中自变量x 的取值范围是 .19. 如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,−1)和(−3,1),那么“卒”的坐标为 .20.如图,在平面直角坐标系中,A是x轴上的任意一点,BC平行于x轴,分别交y=4x (x>0),y=kx(x<0)的图象于B,C两点若△ABC的面积为3,则k的值为______.三、解答题21.已知一次函数图象经过点(3,5),(−4,−9)两点.(1)求一次函数解析式.(2)若图象与x轴交与点A,与y轴交与点B,求出点A、B的坐标,并画出图象。

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案

华东师大版八年级数学下册《第17章函数及其图像》单元测试卷-带有答案一、单选题1.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S (千米)与离家的时间t (分钟)之间的函数关系的是( )A .B .C .D .2.已知函数 225y x =-,不在该函数图象上的点是( )A .(3,4)B .(4,-3)C .(4,3)D .(-3,4)3.下列关系式中,y 不是x 的函数的是( )A .2x y =B .22y x =C .(0)y x x =D .||(0)y x x =4.如果点A 在直线y=x-1上,则A 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,-1)D .(1,0)5.若一次函数的y =kx+b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( )A .y 1<y 2B .y 1>y 2C .y 1≤y 2D .y 1≥y 26.下列函数中,当x <0时y 随x 的增大而增大的是( )A .y=﹣3x+4B .1243y x =-- C .2y x =- D .23y x= 7.如图60MAN ∠=︒ ,点B 在射线 AN 上, 2AB =点P 在射线 AM 上运动(点P 不与点A 重合),连接 BP ,以点B 为圆心, BP 为半径作弧交射线 AN 于点Q ,连接 PQ .若AP x PQ y ==, ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .8.已知点()2A m -,,点()31B m +,,且直线AB x 轴,则m 的值为( ) A .1- B .1 C .3- D .39.当5x =时一次函数2y x k =+和3y kx =-4的值相同,则k 和y 的值分别为( )A .1,11B .19-,C .5,15D .3,3 10.关于反比例函数y=4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称 二、填空题11.已知2()1f x x =-,那么(1)f -的值是 . 12.如图所示,一次函数y=kx+b (k≠0)与反比例函数y= m x (m≠0)的图象交于A 、B 两点,则关于x 的不等式kx+b < m x的解集为 .13.已知点 ()21A -,在正比例函数的图象上,则这个函数的解析式为 . 14.一次函数y=kx+b 的图象如图所示,则关于x 的方程4kx+4b=0的解为 ;方程kx+b+3=5的解为15.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:“水平底” a :任意两点横坐标差的最大值,“铅垂高” h :任意两点纵坐标的最大值,则“矩面积” S ah = .例如:三点坐标分别为A (1,2)、B (-3,1)、C (2,-2),则“水平底” a =5,“铅垂高” h =4,“矩面积”S=20.若D (1,2)、E (-2,1),F (0,t )三点的“矩面积”S=15,则的 t 值为 .三、解答题16.如图,直线PA 是一次函数y=x+1的图象,直线PB 是一次函数y=﹣2x+2的图象.(1)求A 、B 、P 三点的坐标;(2)求四边形PQOB 的面积.17.乐乐从家出发骑自行车去上学,当他以往常的速度骑了一段路后,突然想起要买文具,于是又折回到刚经过的文具店,买到文具后继续骑车去学校.如图是他本次上学所用的时间与离家的距离之间的关系图.根据图中提供的信息,解答下列问题:(1)乐乐在文具店停留了 分钟,文具店到学校的距离是 米;(2)在整个上学途中,哪个时间段乐乐骑车速度最快?最快的速度是多少?(3)如果乐乐不买文具,以往常的速度去学校,需要多长时间?18.2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.19.国际上广泛使用“身体体重指数(BMI )”作为判断人体健康状况的一个指标:这个指数B 等于人体的体重G (kg )除以人体的身高h (m )的平方所得的商,即B =2G h .身体体重指数范围身体属型 B <18不健康瘦弱 18≤B <20偏瘦 20≤B <25正常 25≤B <30超重 B ≥30 不健康肥胖(1)上表是国内健康组织提供的参考标准,若林老师体重G =81kg ,身高h =1.80m ,请问他的体型属于哪一种,请说明理由.(2)赵老师的身高为1.6m ,那么他的体重在什么范围内时体型属于正常?四、综合题20.2022年翻开序章,冬奥集结号已经吹响,冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为32000元.十二月售出了“冰墩墩”300个和“雪容融”200个,销售总额为52000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.进入2022年一月后,这两款毛绒玩具持续热销,于是旗舰店再购进了这两款毛绒玩具共600个,其中“雪容融”的数量不超过“冰墩墩”数量的2倍,且购进总价不超过43200元.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份购进的这两款毛绒玩具全部售出,则“冰墩墩”购进多少个时该旗舰店当月销售利润最大,并求出最大利润.21.阅读下列材料:现给如下定义:以x 为自变量的函数用y=f (x )表示,对于自变量x 取值范围内的一切值,总有f (﹣x )=f (x )成立,则称函数y=f (x )为偶函数.用上述定义,我们来证明函数f (x )=x 2+1是偶函数.证明:∵f (﹣x )=(﹣x )2+1=x 2+1=f (x )∴f (x )是偶函数.根据以上材料,解答下面的问题:已知函数 ()1(0)212x a f x x x ⎛⎫=+≠ ⎪-⎝⎭(1)若f (x )是偶函数,且 ()312f = ,求f (﹣1); (2)若a=1,求证:f (x )是偶函数.22.如图,函数y 1=﹣x+4的图象与函数y 2= k x(x >0)的图象交于A (a ,1)、B (1,b )两点.(1)求k 的值;(2)利用图象分别写出当x >1时①y 1和y 2的取值范围;②y 1和y 2的大小关系.23.如图,一次函数()20y kx k =+≠的图象与反比例函数()00m y m x x=≠>,的图象交于点()2A n ,,与y 轴交于点B ,与x 轴交于点()40C -,.(1)求k 与m 的值;(2)点P 是x 轴正半轴上一点,若BP BC =,求PAB 的面积.24.如图,在平面直角坐标系 xoy 中,函数 (0)k y x x=< 的图象经过点(-6,1),直线 y mx m =+ 与y 轴交于点(0,-2).(1)求k ,m 的值;(2)过第二象限的点P(n ,-2n)作平行于x 轴的直线,交直线y =mx+m 于点A ,交函数(0)k y x x=< 的图象于点B. ①当n =-1时判断线段PA 与PB 的数量关系,并说明理由;②若PB≥2PA ,结合函数的图象,直接写出n 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵小李距家3千米,∴离家的距离随着时间的增大而增大.∵途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合.故答案为:C.【分析】根据小李距家3千米,路程随着时间的增大而增大即可确定合适的函数图象。

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)

华东师大版八年级数学下册《第17章函数及其图形》单元检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.若点()12,y -,()21,y 和()33,y 在反比例函数22k y x+=的图像上,则1y ,2y 和3y 的大小关系是( ) A .123y y y >> B .321y y y >> C .132y y y >> D .231y y y >>2.下列函数中,正比例函数有( ).(1)2y x =-(2)y x =3)1y x =-(4)2v =5)213y x =-(6)2y r π=(7)22y x = A .1个 B .2个 C .3个 D .4个3.如图,在平面直角坐标系中,矩形OABC 的面积为6,点A ,C 分别在x 轴,y 轴上,点B 在第三象限,对角线,OB AC 交于点D ,若反比例函数(0)k y x x=<的图象经过点D ,则k 的值为( )A .32-B .32C .3-D .34.一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(3,4)-B .(1,2)--C .(3,3)D .(3,2)5.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R =B .蓄电池的电压是18VC .当10A I ≤时 3.6R ≥ΩD .当6R =Ω时4A I = 6.如果当0x >时,反比例函数(0)k y k x =≠的函数值随x 的增大而增大,那么一次函数123y kx k =-的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.已知蓄电池的电压为定值.使用电池时,电流I (A )与电阻R (Ω)是反比例函数关系,图象如图所示.如果以此蓄电池为电源的电器的限制电流不能超过3A ,那么电器的可变电阻R (Ω)应控制在( )A .R≥1B .0<R≤2C .R≥2D .0<R≤18.如图①,在矩形ABCD 中,动点P 从A 出发,以恒定的速度,沿A B C D A →→→→方向运动到点A 处停止.设点P 运动的路程为x .PAB 面积为y ,若y 与x 的函数图象如图①所示,则矩形ABCD 的面积为( )A .36B .54C .72D .819.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)和y =mx +n (m ≠0)相交于点(2,﹣1),则关于x ,y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩10.如图,在平面直角坐标系中,点P 是反比例函数y=(x >0)图象上的一点,分别过点P 作PA①x 轴于点A ,PB①y 轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A .3B .﹣3C .32D .﹣3211.已知ΔABC 各顶点坐标为()()()1,1,4,11,3A B C ,,若反比例函数()0k y k x =≠的图象与ABC 有交点,则k 的最大值为( )A .5B .12124C .4D .1212512.如图,在长方形ABCD 中,动点P 从A 出发,以一定的速度,沿A B C D A →→→→方向运动到点A 处停止(提示:当点P 在AB 上运动时,点P 到DC 的距离始终等于AD 和BC ).设点P 运动的路程为x ,PCD 的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .6B .9C .15D .18二、填空题(本大题共8小题,每小题3分,共24分)13.某水果店以2.5元/kg 的价格批发了 k g x 苹果,以4元/kg 的价格销售,销售这 k g x 苹果的总利润为y (元),则y 与x 的函数关系式为14.一直线y=-5x -m 过点A (x 1,-2)和P(x 2,4),则x 1,x 2大小关系为 ;15.科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2100米的地方,空气含氧量约为229克/立方米.已知某山的海拔高度为1200米,该山山顶处的空气含氧量约为 克/立方米.16.在平面直角坐标系中111,4P ⎛⎫ ⎪⎝⎭ ()22,1P 393,4P ⎛⎫ ⎪⎝⎭ ()44,4P 5255,4P ⎛⎫ ⎪⎝⎭…按照此规律排列下去,点10P 的坐标为 .17.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,若正方形的边长是2,则图中阴影部分的面积等于 .18.如图,图中的折线OABC 反映了圆圆从家到学校所走的路程()m S 与时间()min t 的函数关系,其中,OA 所在直线的表达式为()110y k x k =≠,BC 所在直线的表达式为()220y k x b k =+≠,则21k k -= .19.如图,A 为反比例函数k y x=上一动点,C 为OA 中点,过点C 作CB x ∥轴,交反比例函数于点B ,连接AB ,若三角形ABC 面积为1.8,则k =20.如图,在平面直角坐标系中,直线y=﹣kx+m与双曲线y=(x>0)交于A、B两点,点A的横坐标为1,点B的横坐标为4,则不等式﹣kx+m>的解集为.三、解答题(本大题共5小题,每小题8分,共40分)21.已知y是关于x的一次函数,如表列出了部分对应值:x⋯2-1-01b⋯y⋯8-a2-14⋯(1)求此一次函数的表达式;(2)求a,b的值.22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走,如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是米;(2)小颖本次从学校回家的整个过程中,走的路程是多少米?(3)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.请你用学习“一次函数”中积累的经验和方法研究函数2y x =-的图像和性质,并解决问题.(1)①当2x =时2y x =-=______;①当2x >时2y x =-=______;①当2x <时2y x =-=______;显然,①和①均为某个一次函数的一部分.(2)在平面直角坐标系xOy 中,作函数2y x =-的图像.(3)结合图像,不等式24x -<的解集为______.24.在平面直角坐标系中,点()0,A m 和(),0C n .(1)若m ,n 满足24212m n m n -=⎧⎨+=⎩. ①直接写出m =______,n =______.①如图1,D 为点A 上方一点,连接CD ,在y 轴右侧作等腰Rt BDC ∆,=90BDC ∠︒连接BA 并延长交x 轴于点E ,当点A 上方运动时,求ACE ∆的面积;(2)如图2,若m n =,点D 在边OA 上,且11AD =,G 为OC 上一点,且8OG =,连接CD ,过点G 作CD 的垂线交CD 于点F ,交AC 于点H .连接DH ,当ADH ODC ∠=∠,求点D 的坐标.25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股点.(1)已知点M 、N 是线段AB 的勾股点,若AM=1,MN=2,求BN 的长;(2)如图2,点P (a ,b )是反比例函数y=2x(x >0)上的动点,直线y=﹣x +2与坐标轴分别交于A 、B 两点,过点P 分别向x 、y 轴作垂线,垂足为C 、D ,且交线段AB 于E 、F .证明:E 、F 是线段AB 的勾股点;(3)如图3,已知一次函数y=﹣x +3与坐标轴交于A 、B 两点,与二次函数y=x 2﹣4x +m 交于C 、D 两点,若C 、D 是线段AB 的勾股点,求m 的值.参考答案:1.D2.C3.B4.A5.C6.B7.C8.C9.B10.A11.B12.D13. 1.5y x =14.12x x >15.25916.()10,2517.118.5019. 4.8-20.14x <<21.(1)32y x =-;(2)5a =- 2b =. 22.(1)2600(2)3400米(3)90米/分23.(1)0,2x 2x - (2)略;(3)26x -<<. 24.(1)①4m n ==;①16;(2)()0,3.25.(1(2)11;(3。

华师大版八年级下册数学第17章 函数及其图象含答案(参考答案)

华师大版八年级下册数学第17章 函数及其图象含答案(参考答案)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x (s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C.D.2、把的图象沿轴向下平移5个单位后所得图象的关系式是()A. B. C. D.3、已知正比例函数y=(2m-1)x的图象上两点A(x1, y1)、B(x2,y 2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<B.m>C.m<2D.m>24、下列函数中,是的一次函数的是()A. B. C. D.5、如图,在平面直角坐标系中,等腰直角三角形 OA1A2的直角边 OA1在 y轴的正半轴上,且 OA1=A1A2=1,以 OA2为直角边作第二个等腰直角三角形OA₂ A3,以 OA3为直角边作第三个等腰直角三角OA3A4,…,依此规律,得到等腰直角三角形 OA2017A2018,则点 A2017的坐标为()A.(0,2 1008)B.(2 1008, 0)C.(0,2 1007)D.(2 1007, 0)6、张老师出门散步时离家的距离y与时间x之间的函数图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A. B. C. D.7、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个8、函数中自变量x的取值范围是()A.x≠﹣1B.x>﹣1C.x=﹣1D.x<﹣19、如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6﹣D.3 ﹣110、如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线于点C,则△ADC的面积为()A.9B.10C.12D.1511、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m 3B.小于m 3C.不小于m 3D.小于m 312、如图,下列各曲线中能够表示y是x的函数的是().A. B. C. D.13、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)14、已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.15、如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a 满足﹣3≤a<0时,k的取值范围是()A.﹣1≤k<0B.1≤k≤3C.k≥1D.k≥3二、填空题(共10题,共计30分)16、如图,点A、B是双曲线y= 上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为________17、在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为________.18、写出一个图象在第二、四象限的反比例函数解析式:________.19、如图,在平面直角坐标中,D是正方形ABCO的边AB上一点,以OD为边的等边△ODE,点E在x轴正半轴上,若点B的坐标为(3,3),则点E的坐标为________.20、在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;21、若函数y=(m-2)x+5是一次函数,则m满足的条件是________.22、如图,点P是反比例函数y=图象上的一点,则矩形PEOF的面积是________.23、若点在轴上.则点的坐标为________.24、使函数有意义的自变量x的取值范围是________.25、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是________三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、已知实数a , b满足a-b=1,a2-ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值28、一次函数y=2x-a与x轴的交点是点(-2,0)关于y轴的对称点,求一元一次不等式2x-a≤0的解集.29、已知函数y=中,当x=a时的函数值为1,试求a的值.30、已知y=y1+y2,其中y1与x成反比例,y2与(x﹣2)成正比例.当x=1时,y=﹣1;x=3时,y=3.求:(1)y与x的函数关系式;(2)当x=﹣1时,y的值.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、B5、A6、D7、B8、A9、B10、A11、C12、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

华东师大版八年级下册数学第17章 函数及其图像 单元测试卷(Word版,含答案)

华东师大版八年级下册数学第17章 函数及其图像 单元测试卷(Word版,含答案)

华东师大版八年级下册数学第17章函数及其图像单元测试卷一、选择题(本大题共10个小题,每题3分,共30分)中,自变量x的取值范围是() 1.函数y=xx+3A.x>-3B.x≠0C.x>-3且x≠0D.x≠-32.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度(℃)-20-100102030声速(m/s)318324330336342348下列说法错误的是() A.在这个变化中,自变量是温度,因变量是声速 B.温度越高,声速越快C.当空气温度为20 ℃时,声音5 s可以传播1 740 mD.温度每升高10 ℃,声速增加6 m/s3.若点M(1-2m,m-1)关于y轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A B C D4.若m是负整数,且一次函数y=(m+2)x-4的图象不经过第二象限,则m可能是()A.-3B.-2C.-1D.-4,当1<x<3时,y的取值范围是() 5.已知反比例函数y=-6xA.0<y<1B.1<y<2C.-2<y<-1D.-6<y<-26.如果点A(x1,y1)和点B(x2,y2)是直线y=-kx+b上的两点,且当x1<x2时,y1 <y2,那么函数y=k x的图象位于()A.第一、四象限B.第二、四象限C.第三、四象限D.第一、三象限7.一次函数y1=k1x+b和反比例函数y2=k2x(k1·k2≠0)的图象如图所示.若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<1第7题图第8题图第9题图8.如图,一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为( ) A.x<1 B.x>1 C.x<3 D.x>3(x>0)的图象经过直角边AC的中点D, 9.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=kx且S△AOC=3,则k的值为()A.2B.3C.4D.610.甲、乙两名同学进行登山比赛,甲同学和乙同学沿相同的路线同时在早上8:00从山脚出发前往山顶,甲同学到达山顶后休息1 h,沿原路以6 km/h的速度下山.在这一过程中,甲、乙两名同学各自行进的路程s (km)随所用时间t (h)变化的图象如图所示.根据图中提供的信息得出以下四个结论:①甲同学从山脚到达山顶的路程为12 km;②乙同学登山共用4 h;③甲同学在14:00返回山脚;④甲同学返回山脚过程中与乙同学相遇时,乙同学距登到山顶还有1.4 km的路程.其中正确的个数是()A.1B.2C.3D.4二、填空题(本大题共5个小题,每题3分,共15分)11.平面直角坐标系中,点P(3,-4)到x轴的距离是.12.已知直线l经过点A(0,1),B(-2,0),若将这条直线向下平移,恰好经过原点,则平移后的直线的函数表达式为.。

华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC 方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少2、如图,在平面直角坐标系中,点P(,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是()A.2<a<4B.1<a<3C.1<a<2D.0<a<23、若M(-,y1)、N(-,y2)、P(,y3)三点都在函数y=(k<0)的图象上,则y1、y2、y3的大小关系为()A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y14、如图,已知点A在反比例函数的图象上,点B,C分别在反比例函数的图象上,且AB∥x轴,AC∥y轴,若AB=2AC,则点A的坐标为()A.(1,2)B.(2,1)C.(,)D.(3,)5、“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()A.2小时B.2.2小时C.2.25小时D.2.4小时6、如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)7、如图,在反比例函数y= (x>0)的图象上,有点P1, P2, P3,P4,它们的横坐标依次为1,2,3,4,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1, S2, S3,则S1+S2+S3=()A.1B.C.D.28、如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A. B. C. D.9、在平面直角坐标系中,点(3,﹣2)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、如图,△ABC.的三个顶点分别为A(1,2),B(5,2),C(5,5).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤25B.2≤k≤10C.1≤k≤5D.10≤k≤2511、已知点(1,-1)在直线y=kx-2上,则k的值是( )A.1B.3C.-3D.-112、已知反比例函数y (k≠0),当x 时y=﹣2.则k的值为()A.﹣1B.﹣4C.D.113、已知变量x,y满足下面的关系:x …-3 -2 -1 1 2 3 …y …1 1.5 3 -3 -1.5 -1 …则x,y之间的关系用函数表达式表示为( )A.y=B.y=-C.y=-D.y=14、已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m 的值是()A.2B.-2C.±2D.15、y=﹣的比例系数是()A.4B.﹣4C.D.﹣二、填空题(共10题,共计30分)16、双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是________.17、下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y= (x≥0),具有函数关系(自变量为x)的是________.18、如图,在平面直角坐标系中,将直线向下平移后与反比例函数在第一象限内的图象交于点,且的面积为2,则平移后的直线的解析式是________.19、沿河岸有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y 1、y2(km),y1、y2与x的函数关系如图所示.考察下列结论:①甲船的速度是25km/h;②从A港到C港全程为120km;③甲船比乙船早1.5小时到达终点;④图中P点为两者相遇的交点,P点的坐标为();⑤如果两船相距小于10km能够相互望见,那么,甲、乙两船可以相互望见时,x的取值范围是<x<2.其中正确的结论有________.20、如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用________表示C点的位置.21、在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C至多有一个公共点,则a的取值范围为________.22、已知y轴上的点P到原点的距离为5,则点P的坐标为________.23、如图,正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(,2 ),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是________.24、下列语句:①11排6号;②解放路112号;③南偏东36°;④东经118°,北纬40°.其中能确定物体具体位置的是________(填序号).25、如图,点A在双曲线y=第三象限的分支上,连结AO并延长交第一象限的图象于点B,画BC∥x轴交反比例函数y=的图象于点C,若△ABC的面积为6,则k的值是________三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、已知正比例函数y=(3k﹣1)x,若y随x的增大而增大,求k的取值范围.28、下图中标明了小红家附近的一些地方,建立平面直角坐标系如图.(1)写出游乐场和糖果店的坐标;(2)某星期日早晨,小红同学从家里出发,沿着(1,3),(3,﹣1),(0,﹣1),(﹣1,﹣2),(﹣3,﹣1)的路线转了一下,又回到家里,写出路上她经过的地方.29、已知直线y=2x+2平移后过点A(3,2),请你求出平移后的直线的解析式,并通过计算判断点P(2a,4a﹣4)是否在这条直线上.30、某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、C6、B7、C8、D9、D10、A11、A12、A13、C14、B15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17章 函数及其图象 单元测试一.选择题1.函数y =3212x x x ---+的自变量取值范围是( ) A.-2≤x ≤2 B.x ≥-2且x ≠1 C.x >-2 D.-2≤x ≤2且x ≠12.已知反比例函数y=(b 为常数且不为0 )的图象在二、四象限,则一次函数y=x+b 的图象不经过第几象限( )A .一B .二C .三D .四3.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( )A .x <-1B .x > -1C . x >1D .x <14.如图所示,双曲线(0)k y k x=>经过矩形OABC 的边BC 的中点E ,交AB 于点D .若梯形ODBC 的面积为3,则双曲线的解析式为( ).A .1y x =B .2y x =C .3y x =D .6y x= 5.已知点(M a ,)b ,过M 作MH x ⊥轴于H ,并延长到N ,使NH MH =, 且N 点坐标为(2-,3)-,则()a b += .A .0B .1C .—1D .—56.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点,一边平行于x 轴的正方形:边长为1的正方形内部有一个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点……,则边长为8的正方形内部的整点的个数为 ( ) .A .64B .49C .36D .257.正比例函数y 1=k 1x 的图象与反比例函数y 2=的图象相交于A ,B 两点,其中点B 的横坐标为﹣2,当y 1<y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2 8.如图,点按→→→的顺序在边长为1的正方形边上运动,是边上的 中点.设点经过的路程为自变量,△ 的面积为,则函数的大致图像是( ).二.填空题9.如果点(0A ,1),(3B ,1),点C 在y 轴上,且ABC △的面积是5,则C 点坐标____.10.已知点A 在双曲线6y x上,且OC =3,AC =2,过A 作AC ⊥x 轴于C ,OA 的垂直平分线交OC 于B .(1)则△AOC 的面积= ,(2)△ABC 的周长为11.如图,点A 在双曲线上,点B 在双曲线y=上,且AB∥x 轴,C 、D 在x 轴上,若四边形ABCD 为长方形,则它的面积为 .12.如图,直线y kx b =+经过A (2,1),B (-1,-2)两点,则不等式122x kx b >+>-的解集为__________.13.已知一次函数的图象与轴的交点的横坐标等于2,则的取 值范围是________.14.下列函数:①;②;③;④; ⑤中,一次函数是________,正比例函数有________.(填序号)15.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10 吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,则y 关于x 的关系式___________.16.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.三.解答题17.如图,在平面直角坐标系xOy 中,一次函数y=﹣ax+b 的图象与反比例函数y=的图象相交于点A (﹣4,﹣2),B (m ,4),与y 轴相交于点C .(1)求反比例函数和一次函数的表达式;(2)求点C 的坐标及△AOB 的面积.18.如图所示,在平面直角坐标系中,直线443y x =-+分别交x 轴、y 轴于点A 、B ,将△AOB 绕点O 顺时针旋转90°后得到A OB ''△.(1)求直线A B ''的解析式;(2)若直线A B ''与直线l 相交于点C ,求A BC '△的面积.19.在平面直角坐标系中,一动点P (x 、y )从M (1,0)出发,沿由A (-1,1),B (-1,-1),C (1,-1),D (1,1)四点组成的正方形边线(如图①)按一定方向运动。

图②是P 点运动的路程s (个单位)与运动时间(秒)之间的函数图象,图③是P 点的纵坐标y 与P 点运动的路程s 之间的函数图象的一部分.图①) (图②) (图③)(1)s 与之间的函数关系式是:__________________;(2)与图③相对应的P 点的运动路径是:_____________;P 点出发______秒首次到达点B ;(3)写出当3≤s ≤8时,y 与s 之间的函数关系式.20.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10吨以内(包括10吨)的用户,每吨收水费元;一个月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元()收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?参考答案一.选择题1. 【答案】B ;【解析】x -1≠0,且x +2≥0.2. 【答案】B ;【解析】解:∵反比例函数y=(b 为常数且不为0)的图象在二、四象限,∴b<0,∵一次函数y=x+b 中k=1>0,b <0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.故选B .3. 【答案】A ;【解析】一次函数y ax b =+的图象过第一、二、四象限,所以a <0,将(2, 0)代入y ax b =+,得20a b +=,所以()()1210a x b ax a a a x --=-+=+>,所以10,1x x +<<-.4.【答案】B ;【解析】设点E 的坐标为(a b ,),则点D 的坐标为1,22a b ⎛⎫⎪⎝⎭. ∴ 1122BD AB AD a a a =-=-=.∵ 梯形ODBC 的面积为3, ∴ 112322a a b ⎛⎫+= ⎪⎝⎭g .∴ 332ab =.∴2k ab ==. 5. 【答案】B ;【解析】由题意知: 点M (a ,b )与点N (-2,-3)关于x 轴对称,所以M(-2,3) .6. 【答案】B ;【解析】边长为奇数的正方形内所含整点个数为奇数的平方,而边长为偶数的正方形内所含整点个数与边长比此偶数少1的奇数的正方形内所含整点个数相同.7.【答案】B ;【解析】解:∵正比例和反比例均关于原点O 对称,且点B 的横坐标为﹣2,∴点A 的横坐标为2.观察函数图象,发现:当x <﹣2或0<x <2时,一次函数图象在反比例函数图象的下方,∴当y 1<y 2时,x 的取值范围是x <﹣2或0<x <2.故选B .8. 【答案】A ;【解析】P 点在AB 上时,12y x =;P 点在BC 上时,1344y x =-+;P 点在CM 上时,1524y x =-+,故选A. 二.填空题9. 【答案】(0,133)或(0,-73); 【解析】3AB =,由ABC △的面积是5,可得ABC △的边AB 上的高为103,又点 C 在y 轴上,所以0C x =,101371-333C y =±=或. 10.【答案】(1)3,(2)5;【解析】AB =BO ,△ABC 的周长为OC +AC=5.11.【答案】2;【解析】解:过A 点作AE⊥y 轴,垂足为E ,∵点A 在双曲线上,∴四边形AEOD 的面积为1,∵点B 在双曲线y=上,且AB∥x 轴,∴四边形BEOC 的面积为3,∴四边形ABCD 为长方形,则它的面积为3﹣1=2.故答案为:2.12.【答案】-1<x <2;【解析】由于直线y kx b =+经过A (2,1),B (-1,-2)两点,那么把A 、B 两点的坐标代入y kx b =+,用待定系数法求出k 、b 的值,然后解不等式组122x kx b >+>-,即可求出解集. 13.【答案】;【解析】将(2,0)代入得2(3m -2)-6m +4=0恒成立,但一次项系数320m -≠.14.【答案】①③⑤ ,①⑤;【解析】⑤化简后为y x =.15.【答案】;【解析】由题意y =1.2×10+1.8(x -10)=1.8x -616.【答案】36;【解析】由图象可知,以每千克1.6元卖了40千克西瓜,以每千克1.2元卖了10千克西瓜,赚了76-50×0.8=36元.三.解答题17.【解析】解:(1)∵点A (﹣4,﹣2)在反比例函数y=的图象上,∴k=﹣4×(﹣2)=8,∴反比例函数的表达式为y=;∵点B (m ,4)在反比例函数y=的图象上,∴4m=8,解得:m=2,∴点B (2,4).将点A (﹣4,﹣2)、B (2,4)代入y=﹣ax+b 中, 得:,解得:,∴一次函数的表达式为y=x+2.(2)令y=x+2中x=0,则y=2,∴点C 的坐标为(0,2).∴S △AOB =OC ×(x B ﹣x A )=×2×[2﹣(﹣4)]=6.18.【解析】解:(1)由直线交x 轴,y 轴于点A 、B ,可求得A(3,0),B(0,4).∵ △AOB 绕点O 顺时针旋转90°后得到A OB ''△.∴ △AOB ≌△A OB '',∴ A '(0,-3),B '(4,0).设直线A B ''的解析式为y kx b =+(0k ≠,k 、b 为常数).则340b k b =-⎧⎨+=⎩,解得343k b ⎧=⎪⎨⎪=-⎩.∴ 直线A B ''的解析式为334y x =-. (2)由443334y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,得84251225x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴ 8412,2525C ⎛⎫- ⎪⎝⎭. 又A B '=7,∴ 184294722525A BC S '=⨯⨯=△. 19.【解析】解:(1)S =12t (t ≥0) (2)M →D →A →N ,10;由图形可知P 点的速度是每秒0.5个单位,首次到达B 点走了5个单位,故需10秒.(3)当3≤s <5,即P 从A 到B 时,4y s =-;当5≤s <7,即P 从B 到C 时,1y =-;当7≤s ≤8,即P 从C 到M 时,8y s =-.20.【解析】解: (1)∴ 当时 令x =8 得∴ 应收水费12元(2)设x >10时. 将(10,15)代入得∴∴ (3)设乙用x 吨,甲用(x +4)吨i )当时,舍ii)当时舍iii)当x>10时∴乙用水12吨,甲用水16吨.。

相关文档
最新文档