晶体管常用放大电路

合集下载

第六章 晶体管放大电路基础

第六章 晶体管放大电路基础

IE
电子到达基区,少数与空穴复 合形成基极电流 Ibn ,复合掉的 空穴由 VBB 补充。 多数电子在基区继续扩散,到达 集电结的一侧。
晶体管内部载流子的运动
第六章 晶体管放大电路基础
3.集电结加反向电压,漂移 运动形成集电极电流Ic
c
ICBO
IC
Rb
IB
b
集电结反偏,有利于收集基区 扩散过来的电子而形成集电极 电流 Icn。 其能量来自外接电源 VCC 。
理想二极管
利用估算法求解静态工作点,实质上利用了直流模型。
第六章 晶体管放大电路基础
二、 晶体管的h参数等效模型(交流等效模型)
• 在交流通路中可将晶体管看成 为一个二端口网络,输入回路、 输出回路各为一个端口。
u u BE f (iB, CE ) u iC f (iB, CE )
小功率管
图 1.3.1
中功率 三极管的外形
三极管有两种类型:NPN 型和 PNP 型。
大功率
主要以 NPN 型为例进行讨论。
第六章 晶体管放大电路基础
6.2.1 晶体管的结构及类型
常用的三极管的结构有硅平面管和锗合金管两种类型。
二氧化硅
e
b N
b
N 发射区 P 基区 N 集电区
e
P
P
c
c
(a)平面型(NPN)
uCE = 0V uCE 1V CE
iB
uBE - e UBB
uBE /V uBE /V 共射极放大电路
b +
c+
uCE
UCC
第六章 晶体管放大电路基础
i
B
二、输出特性曲线
UBB

晶体管及其基本放大电路

晶体管及其基本放大电路
N(发射区) 发射结
E
BJT示意图
BJT结构特点
• 发射区的掺杂浓度最高 ( N+ );
• 集电区掺杂浓度低于发射区,且面积大;
• 基区很薄,一般在几个微米至几十个微米,且掺杂浓 度最低。
BJT三个区的作用:
CB E
发射区:发射载流子
集电区:收集载流子 基区:传送和控制载流子
P N+ N-Si
7.1.1 BJT的结构简介
基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= INC+ ICBO
动画示意
放大状态下BJT中载流子的传输过程
动画演示
7.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通
过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
以NPN管为例 发射结正偏 VBE≈ 0.7V; 晶体管发射结导通。
共发射极接法,发射极作为公共电极,用CE表示 ;
共基极接法,基极作为公共电极,用CB表示 ;
共集电极接法,集电极作为公共电极,用CC表示。
7.1.3 BJT的特性曲线
输入特性曲线 BJT的特性曲线
输出特性曲线
输入回路
RB VBB
IB
+ VBE
-
IC +
VCE IE
RC VCC
输出回路
试验电路
晶体管特性图示仪
P N
E
VCE IB 0V 1V 10V
VBE 0
随着VCE电压的增大, 基区IB的电流通道变窄, IB 减小。要 获得同样大的 IB , 必需增大VBE 。表现出曲线右移。
当VCE ≥1V时,特性曲线右移的距离很小。通常将VCE=1V

第四章 场效应晶体管及其放大电路

第四章 场效应晶体管及其放大电路

ID
IDSS(1源自U GS U GS(off)
)
2
3. 结型场效应管
结型场效应管的特性和耗尽型绝 缘栅场效应管类似。图4-7 a)、 b) 分别为N沟道和P沟道的结型场效 应管图形符号。
图4-7
使用结型场效应管时,应使栅极与源极间加反偏电压,漏 极与源极间加正向电压。对于N沟道的管子来说,栅源电压应 为负值,漏源电压为正值。
图4-1
(1)工作原理
增强型MOS管的源区(N+)、衬底(P型)和漏区(N+)三者之 间形成了两个背靠背的PN+结,漏区和源区被P型衬底隔开。
当栅-源之间的电压 uGS 0时,不管漏源之间的电源VDD 极 性如何,总有一个PN+结反向偏置,此时反向电阻很高,不能 形成导电通道。
若栅极悬空,即使漏源之间加上电压 uDS,也不会产生漏 极电流 iD ,MOS管处于截止状态。
2) 输出特性曲线 I D f (U DS ) UGS常数
图4-4b)是N沟道增强型MOS管的输出特性曲线,输出特性曲 线可分为下列几个区域。
① 可变电阻区
uDS很小时,可不考虑 uDS 对沟道的影响。于是 uGS一 定时,沟道电阻也一定, 故 iD 与 uDS 之间基本上是 线性关系。
uGS 越大,沟道电阻越
的变化而变化,iD 已趋于饱和, 具有恒流性质。所以这个区域 又称饱和区。
③ 截止区
uGS UGS(th)时以下的区域。
(夹断区)
当uDS增大一定值以后,漏源之间会发生击穿,漏极电流 iD急剧增大。
2. N沟道耗尽型绝缘栅场效应管的结构
上述的增强型绝缘栅场效应管只有当 uGS U GS(th) 时才能形成导电沟道,如果在制造时就使它具有一个原始 导电沟道,这种绝缘栅场效应管称为耗尽型。

常用放大电路

常用放大电路

常用放大电路
电子电路中,放大电路是一种将输入信号放大为更高幅度的电路。

它广泛应用于各种电子设备,如音频放大器、无线电发射器、电视和电脑显示器等。

下面介绍常用的放大电路及其特点。

1. 电压跟随器放大电路
电压跟随器也称为共集电极放大电路,是一种基于晶体管的放大电路。

它的输入信号通过晶体管的基极驱动,通过晶体管的集电极输出。

该电路的主要特点是输出电压与输入电压相同,电路的输入阻抗较高,输出阻抗较低。

2. 共射极放大电路
3. 交流耦合放大电路
交流耦合放大电路是一种常用的放大电路,其输入端是通过一个电阻与晶体管的基极相连,输出端则是通过一个电容与电路的载荷相连。

该电路主要特点是稳定性较好,但因为需要使用电容,所以成本较高。

5. 模拟电负反馈放大电路
模拟电负反馈放大电路是一种常用的放大电路,它通过添加反馈回路将输出信号返回到输入端,从而减小电路的放大倍数,并提高电路的稳定性和线性度。

这种电路通常用于音频功率放大器和放大灵敏的测量信号。

总之,以上这些放大电路都有各自的特点和应用场景,其选择取决于电路的具体要求和应用环境。

电子技术基础: 晶体管放大电路

电子技术基础: 晶体管放大电路
二、性能分析 1、静态 2、动态
输入电压为零时, 电路输出电压会偏离 初始值,随时间作缓慢、
无规则地变动。
Vcc
三、电路特点
ui
uo
6.4 功率放大电路
6.4.1 功率放大电路的基本特点
一、输出功率足够大
输出足够大的信号电压、足够大的信号电流。
二、转换效率尽可能高
效率:交流输出功率与电源提供的直流功率之比。
6.2.4 稳定静态工作点的放大电路
1.温度对静态工作点的影响 T↑→ICBO↑,温度每升高10oC, ICBO↑一倍 T↑→UBE↓,温度每升高1oC, UBE↓2.5mv T↑→β↑,温度每升高1oC,β↑ 0.5%—1%
100℃ 27℃
0℃
温度扫描分析
6.2.4 稳定静态工作点的放大电路
2. 典型的稳定静态工作点电路 一、电路构成
三、非线性失真尽可能小
工作在大信号状态,难免带来非线性失真。
四、重视功率管的散热和保护
功率放大电路的分类 分类:
1、甲类状态:晶体管在整个信号周期内导通。
2、乙类状态:晶体管只在信号半个周期内导通。 3、甲乙类状态:晶体管导通时间略大于半个周期。
6.4.2 互补对称功率放大电路
1.互补对称乙类功放电路(OCL电路)

(1 )RL rbe (1 )RL
RL = Re // RL
输入电阻Ri
Ri
Ui Ii

Rb
// [rbe
(1 )RL ]
输出电阻Ro
Ro
Uo Io

Re
// (rbe
RS // Rb )
1
特点:Au略小于1;Uo与Ui同相;Ri大,Ro小; 有电流、功率放大作用。

MOS管放大电路

MOS管放大电路
详细描述
同相放大器的特点是输入阻抗低、输出阻抗高,因此具有良好的驱动能力。它通 常由一个运算放大器和两个电阻构成,其输出电压与输入电压成比例,且放大倍 数由两个电阻的比值决定。
差分放大器
总结词
差分放大器是一种用于放大差分信号的电路,其输出信号与两个输入信号之差成正比。
详细描述
差分放大器的特点是抑制共模信号、放大差分信号,因此具有较高的抗干扰性能。它通 常由两个对称的放大电路组成,分别对两个输入信号进行放大,然后通过减法器得到差
易于集成
由于MOSFET是平面结构,易 于集成到集成电路中,有利于 减小放大电路的体积和重量。
MOS管放大电路的应用场景
音频放大
用于放大音频信号,如扬声器、 耳机等。
电源管理
用于调整和放大电源电压,如直流 /直流转换器等。
信号放大
用于放大各种传感器输出的微弱信 号,如压力、温度、光等传感器。
ቤተ መጻሕፍቲ ባይዱ
02
输出阻抗匹配的目的是使放大电路的输出信号能够有效地传输到负载,同时避免信号的损失或失真。通过选择适 当的输出阻抗元件,可以使得放大电路的输出阻抗与负载阻抗相匹配。
带宽与增益的权衡
带宽
带宽是指放大电路能够处理的信号频 率范围。在设计和优化MOS管放大电 路时,需要考虑所需的带宽,并选择 适当的元件和电路拓扑以实现所需的 频率响应。
的调节。
电容器
01
电容器是一种储能元件, 由两个平行板中间填充 绝缘介质构成。
02
它具有隔直流通交流的 特性,常用于滤波、耦 合、旁路等电路中。
03
根据介质类型和结构, 电容器可分为固定电容 器和可变电容器两大类。
04
在MOS管放大电路中, 主要使用固定电容器, 用于实现信号耦合和滤 波等功能。

晶体管放大电路的原理

晶体管放大电路的原理

晶体管放大电路的原理介绍晶体管放大电路是现代电子设备中广泛应用的一种电路结构。

它利用晶体管的放大特性来增加输入信号的幅度,并输出一个放大后的信号。

晶体管放大电路有着许多优点,例如高增益、低噪声等,因此在放大、调节和传输信号方面发挥着重要作用。

本文将深入探讨晶体管放大电路的原理。

三极管基本原理三极管是一种常用的晶体管,它由三个掺杂不同类型材料的半导体层构成:发射区、基区和集电区。

三极管常用的两种工作方式是共射极和共基极。

共射极放大电路共射极放大电路是最常见的三极管放大电路之一。

它的特点是输入信号接在基极上,输出信号从集电极上取出。

这种电路常用于需要较大电压增益的应用。

共射极放大电路的工作原理1.基极-发射区电流控制:输入信号通过耦合电容C1进入基极,使得基极电压发生变化。

当输入信号为正半周时,与基极相连的电容C1充电,基极电流增大,发射区电流也随之增大;当输入信号为负半周时,电容C1放电,基极电流减小,发射区电流也随之减小。

2.集电极电流变化:发射区电流的变化会导致集电区电流的变化。

当发射区电流增大时,集电区电流也会增大;反之,当发射区电流减小时,集电区电流也会减小。

3.输出信号增强:由于晶体管的放大特性,集电极电流的变化会引起输出信号的放大,即得到了较大幅度的输出信号。

共射极放大电路的特点•高输入电阻:晶体管的基极-发射极之间电流极小,所以输入电阻较高,可以减小输入信号源的负载效应。

•低输出电阻:输出信号是取集电极电流,因此输出电阻较低。

•相位反转:输入信号和输出信号之间相位存在180度的反转。

共基极放大电路共基极放大电路是另一种常用的三极管放大电路,它的特点是输入信号接在发射区上,输出信号从集电极上取出。

这种电路常用于需要较大电流增益的应用。

共基极放大电路的工作原理1.输入信号作用:输入信号通过耦合电容C1进入发射区,使得发射区电流发生变化。

2.集电极电流控制:发射区电流的变化会导致集电区电流的变化。

常见的放大电路

常见的放大电路

常见的放大电路常见的放大电路是指通过放大器将输入信号放大的一种电路。

放大电路可以分为直流放大电路和交流放大电路两种类型。

直流放大电路是指将直流信号放大的电路。

直流放大电路主要应用于放大直流电压或电流,常见的直流放大电路有共射放大电路、共基放大电路和共集放大电路等。

共射放大电路是一种常见的直流放大电路,它的基本组成是晶体管、电阻和电源。

共射放大电路的输入信号是施加在晶体管的基极上,输出信号是从晶体管的集电极上获取。

当输入信号施加在基极上时,晶体管将放大输入信号,并将放大后的信号输出到集电极上。

共射放大电路的特点是电压增益高、输入阻抗低,适用于放大小信号。

共基放大电路是一种常见的直流放大电路,它的基本组成也是晶体管、电阻和电源。

共基放大电路的输入信号是施加在晶体管的发射极上,输出信号是从晶体管的集电极上获取。

共基放大电路的特点是电流增益高、输入阻抗低,适用于放大大信号。

共集放大电路是一种常见的直流放大电路,它的基本组成也是晶体管、电阻和电源。

共集放大电路的输入信号是施加在晶体管的基极上,输出信号是从晶体管的发射极上获取。

共集放大电路的特点是电压增益低、输入阻抗高,适用于放大小信号。

交流放大电路是指将交流信号放大的电路。

交流放大电路主要应用于放大音频信号或射频信号,常见的交流放大电路有共射放大电路、共基放大电路和共集放大电路等。

共射放大电路是一种常见的交流放大电路,它的基本组成和直流放大电路的共射放大电路相同。

共射放大电路适用于放大音频信号,具有较高的电压增益和较低的输入阻抗。

共基放大电路是一种常见的交流放大电路,它的基本组成和直流放大电路的共基放大电路相同。

共基放大电路适用于放大射频信号,具有较高的电流增益和较低的输入阻抗。

共集放大电路是一种常见的交流放大电路,它的基本组成和直流放大电路的共集放大电路相同。

共集放大电路适用于放大音频信号,具有较低的电压增益和较高的输入阻抗。

总结起来,常见的放大电路包括直流放大电路和交流放大电路。

晶体管放大电路

晶体管放大电路

2、晶体管放大电路原理2.1 晶体管和FET 的工作原理2.1.1晶体管和FET 的放大工作的理解晶体管和FET 的放大作用:晶体管或FET 的输入信号通过器件而出来,晶体管或FET 吸收此时输入信号的振幅信息,由电源重新产生输出信号,由于该输出信号比输入信号大,可以看成将输入信号放大而成为输出信号。

这就是放大的原理。

2.1.2晶体管和FET 的工作原理1、双极型晶体管的工作原理晶体管内部工作原理:对流过基极与发射极之间的电流进行不断地监视,并控制集电极-发射极间电流源使基极-发射极间电流的β倍的电流流在集电极与发射极之间。

就是说,晶体管是用基极电流来控制集电极-发射极电流的器件。

电源电源输入输出输出(a )双极型晶体管(以NPN 型为例) (b )FET (以N 型JFET 为例)A被基极电流控制的电流源检测基极电流的电流计集电极(输出端)基极(输入端)发射极(公共端)双极型晶体管的内部原理2、FET 的工作原理FET 内部工作原理:对加在栅极与源极之间的电压进行不断地监视,并控制漏极-源极间电流源使栅极-源极间电压的g m 倍的电流流在漏极与源极之间。

就是说,FET 是用栅极电压来控制漏极-源极电流的器件。

2.1.3分立元件放大电路的组成原理放大电路的组成原理(应具备的条件)1放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置;结型FET 与耗尽型MOSFET 可采用自偏压方式或分压式偏置或混合偏置方式,增强型MOSFET 则一定要采用分压式偏置或混合偏置 方式)即要保证合适的直流偏置; (2):输入信号能输送至放大器件的输入端; (3):有信号电压输出。

判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。

2.1.4晶体管放大电路的直流工作状态分析(以晶体管电路为例)直流通路:在没有信号输入时,估算晶体管的各极直流电流和极间直流电压,将放大电路中的电容视为开路,电感视为短路即得。

第六章晶体放大电路

第六章晶体放大电路

IB =80uA
集电极电流通过集
IB =60uA
电结时所产生的功耗,
IB =40uA
PC= ICUCE < PCM
IB =20uA
IB=0
u
CE
(V)
(3)反向击穿电压
BJT有两个PN结,其反向击穿电压有以下几种:
① U(BR)EBO——集电极开路时,发射极与基极之间允许的最大 反向电压。其值一般1伏以下~几伏。 ② U(BR)CBO——发射极开路时,集电极与基极之间允许的最大 反向电压。其值一般为几十伏~上千伏。
当UB > UE , UB > UC时,晶体管处于饱和区。
当UB UE , UB < UC时,晶体管处于截止区。
C
晶体管
C
T1 T2 T3
T4
N
基极直流电位UB /V 0.7 1 -1 0
B
B
P
发射极直流电位UE /V 0 0.3 -1.7 0
N
集电极直流电位UC /V 5 0.7 0
15
E
工作状态
(2)V1=3V, V2=2.7V, V3=12V。 鍺管,1、2、3依次为B、E、C
符号规定
UA 大写字母、大写下标,表示直流量。 uA 小写字母、大写下标,表示全量。
ua 小写字母、小写下标,表示交流分量。
uA
全量
ua
交流分量
UA直流分量
t
6.3 双极型晶体三极管放大电路
6.3.1 共发射极基本放大电路
能够控制能量的元件
放大的基本要求:不失真——放大的前提
判断电路能否放大的基本出发点
放大电路的主要技术指标 1.放大倍数——表示放大器的放大能力

第3章 场效晶体管及场效晶体管放大电路

第3章 场效晶体管及场效晶体管放大电路

3.3 场效晶体管的比较
场效晶体 管的分类
FET 场效晶体管
JFБайду номын сангаасT 结型
MOSFET (IGFET) 绝缘栅型
N沟道 P沟道 增强型
(耗尽型)
N沟道 P沟道
耗尽型
N沟道 P沟道
3.3 各种场效晶体管的比较
N


绝增
缘 栅
强 型
场P
效沟
应道 管增


N 沟 道 耗
绝尽 缘型

场P 效沟 应道 管耗
UDS
UGS
iD
++++ + +++
电沟M道O,SF在EUT是DS的利作用用栅下源形电成压i的D.
----
大 电小荷当,的UG来 多S>改少U变,GS(半从th)导而时体控, 沟表制道面漏加感极厚生电, 沟流道的电大阻小减。少,在相同UDS的作 用下,iD将进一步增加。
反型层
开始时无导电沟道,当在UGSUGS(th)时才形成沟 道,这种类型的管子称为增强型MOS管
iD(mA)
漏极饱和电流,用IDSS表示。
当UGS>0时,将使iD进一步增加。
当UGS<0时,随着UGS的减小漏
极电流逐渐减小,直至iD=0,对应
iD=0的UGS称为夹断电压,用符号
UP表示。
UP
UGS(V)
N沟道耗尽型MOS管可工作在UGS0或UGS>0
N沟道增强型MOS管只能工作在UGS>0
3. N沟道耗尽型MOS场效应管特性曲线
)2
(
UGS(off)
uGS
0)

电子技术-基本放大电路

电子技术-基本放大电路
20
60
80
4
Q
2
6
0
uCE/V
iC / mA
0
t
uCE/V
UCEQ
iC
输出回路工作情况分析
失真分析:
为了得到尽量大的输出信号,要把Q设置在交流负载线的中间部分。如果Q设置不合适,信号进入截止区或饱和区,造成非线性失真。
失真——输出波形较输入波形发生畸变,称为 失真
RL
ui
uo
简单的共射极放大器
电容开路,画出直流通道
内容回顾
RB
+EC
RC
用估算法求静态工作点
Ic= IB
IE= Ic + IB = (+1)IB IC
内容回顾
电容短路,直流电源短路,画出交流通道
RB
RC
RL
ui
uo
内容回顾
用晶体管的微变等效电路代替晶体管,画出该电路的微变等效电路,并计算电压放大倍数、输入电阻、输出电阻
iC
uCE
uo
可输出的最大不失真信号
合适的静态工作点
ib
静态工作点过低,引起 iB、iC、uCE 的波形失真
ib
ui
结论:iB 波形失真
O
Q
O
t
t
O
uBE/V
iB / µA
uBE/V
iB / µA
IBQ
—— 截止失真
截止失真时的输出 uo 波形。
uo = uce
O
iC
t
O
O
Q
t
uCE/V
uA
小写字母、大写下标,表示全量。
ua
小写字母、小写下标,表示交流分量。

第2章 基本放大电路(1)

第2章 基本放大电路(1)

广东水利电力职业技术学院电力工程系WXH
7 第7页
第 2 章 基本放大电路
2.1.2 放大器的工作原理
(1) 静态和动态
放大电路建立正确的静态, 放大电路建立正确的静态,是保证动态工作 的前提。 的前提。分析放大电路必须要正确地区分静态和 动态,正确地区分直流通路和交流通路。 动态,正确地区分直流通路和交流通路
间的传递称 为耦合)
偏置电路V 偏置电路 CC 、Rb 提供电源,并使三极管 工作在线性区。
三极管 T
起放大作用。 起放大作用。
图2.1.2 共发射极基本放大电路的组成
第6页
广东水利电力职业技术学院电力工程系WXH
第 2 章 基本放大电路
组成放大电路时必须遵守以下几个原则: 组成放大电路时必须遵守以下几个原则: 第一, 第一,外加直流电源的极性必须使三极管的发射结正向 偏置,而集电结反向偏置, 保证三极管工作在放大区。 偏置,而集电结反向偏置,以保证三极管工作在放大区。 第二,输入回路的接法应该使输入电压的变化量△ 第二,输入回路的接法应该使输入电压的变化量△ui 能够传送到三极管的基极回路, 能够传送到三极管的基极回路,并使基极电流产生相应的 变化量△ 变化量△iB。 第三,输出回路的接法应该使集电极电流的变化量△ 第三,输出回路的接法应该使集电极电流的变化量△iC 能够转化为集电极电压的变化量△ 能够转化为集电极电压的变化量△uCE ,并传送到放大电路 的输出端。 的输出端。
b RB UBE(on) βI BQ - UCEQ UCC ICQ c + RC
故有
e (b)
广东水利电力职业技术学院电力工程系WXH
13 第 13 页
第 2 章 基本放大电路
2.1.4 放大电路的主要性能指标 1. 放大倍数(放大倍数又称为增益)定义为放大器的输 (放大倍数又称为增益) 出量与输入量的比值。 出量与输入量的比值。 (1)电压放大倍数 (1)电压放大倍数 (2)电流放大倍数 (2)电流放大倍数

晶体管放大电路的三种接法

晶体管放大电路的三种接法

晶体管放大电路的三种接法晶体管作为一种重要的电子元件,广泛应用于各种电路中。

其中,晶体管放大电路是晶体管应用的一种重要方式。

晶体管放大电路可以将输入信号放大后输出,起到放大作用。

晶体管放大电路有三种常见的接法,分别是共射极放大电路、共基极放大电路和共集电极放大电路。

一、共射极放大电路共射极放大电路是晶体管放大电路中最常见的一种接法。

在共射极放大电路中,输入信号通过输入电容C1耦合到晶体管的基极,晶体管的发射极接地,而负载电阻RL则连接在晶体管的集电极与电源之间。

当输入信号施加在基极上时,晶体管的发射极电流发生变化,导致集电极电流的变化,从而在负载电阻上产生放大后的输出信号。

共射极放大电路具有电压放大和功率放大的特点,适用于输出阻抗较高的场合。

二、共基极放大电路共基极放大电路是另一种常见的晶体管放大电路接法。

在共基极放大电路中,输入信号通过输入电容C1耦合到晶体管的发射极,晶体管的基极接地,而负载电阻RL则连接在晶体管的集电极与电源之间。

与共射极放大电路相比,共基极放大电路的输入输出特性相反,即输入电流增加时,输出电流减小。

共基极放大电路具有电流放大和高频放大的特点,适用于低输入阻抗和高频放大的场合。

三、共集电极放大电路共集电极放大电路又称为电压跟随器或者阻容耦合放大电路。

在共集电极放大电路中,输入信号通过输入电容C1耦合到晶体管的基极,晶体管的发射极与电源相连,而负载电阻RL则连接在晶体管的集电极与电源之间。

共集电极放大电路具有电压放大和阻抗转换的特点,输入输出阻抗较低,适用于信号源阻抗较高的场合。

三种晶体管放大电路各有特点,适用于不同的应用场合。

共射极放大电路适用于需要电压放大和功率放大的场合;共基极放大电路适用于低输入阻抗和高频放大的场合;共集电极放大电路适用于信号源阻抗较高的场合。

在实际应用中,根据具体的需求和电路特性选择合适的晶体管放大电路接法,可以有效地实现信号的放大和处理。

晶体管放大电路

晶体管放大电路

U CEQ VCC I CQ Rc
列晶体管输入、输出回路方程,将UBEQ作为已知
条件,令ICQ=βIBQ,可估算出静态工作点。
15
阻容耦合共射放大电路的直流通路和交流通路
直流通路
I
=VCC-U
BQ
Rb
BEQ
I CQ I BQ
U CEQ VCC I CQ Rc
当VCC>>UBEQ时,
I BQ
Re起直流负反馈作用,其值越大,反馈越强,Q点越稳定。
32
3. Q 点分析
分压式电流负反馈工作点稳定电路
VBB IBQ Rb U BEQ IEQ Re
VBB
Rb1 Rb1 Rb2
VCC
Rb Rb1 ∥ Rb2
U BQ
Rb1 Rb1 Rb2
VCC
I EQ
U BQ
U BEQ Re
判断方法: Rb1 ∥ Rb2 (1 )Re ?
以N沟道为例
单极型管∶噪声小、抗辐射能力强、低电压工作
场效应管有三个极:源极(s)、栅极(g)、漏极(d),对应于晶体
管的e、b、c;有三个工作区域:截止区、恒流区、可变电阻区,对应于
晶体管的截止区、放大区、饱和区
1. 结型场效应管
结构示意图
3. 通频带
衡量放大电路对不同频率信号的适应能力
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低
和较高时电压放大倍数数值下降,并产生相移。
下限频率
f bw f H f L
上限频率
4. 最大不失真输出电压Uom:交流有效值 5. 最大输出功率Pom和效率η:功率放大电路的参数
6
§2 基本共射放大电路的工作原理

晶体三极管及其放大电路

晶体三极管及其放大电路

能量转换
在放大过程中,电能转换 为信号能量,实现信号的 放大。
晶体三极管放大电路的特性
电压放大倍数
晶体三极管放大电路的电压放大倍数取决于电路参数和晶体三极 管特性。
输入电阻与输出电阻
适当选择电路参数,可以提高放大电路的输入电阻和降低输出电阻, 提高电路性能。
稳定性与失真
在实际应用中,需要考虑放大电路的稳定性,避免自激振荡和失真 现象。
晶体三极管及其放大 电路
目 录
• 晶体三极管基础 • 晶体三极管放大电路 • 晶体三极管放大电路的应用 • 晶体三极管放大电路的调试与优化
01
晶体三极管基础
晶体三极管的结构
晶体三极管由三个半导体区域组 成,分别是发射区、基区和集电
区。
晶体三极管内部有两个PN结, 分别是集电极-基极PN结和发射
视频放大
总结词
视频放大电路利用晶体三极管的高频放大性能,对视频信号进行放大,以驱动 显示屏等输出设备。
详细描述
视频放大电路主要用于电视机、显示器等视频设备的信号处理。它能够将微弱 的视频信号放大并传输到显示屏上,确保图像清晰、色彩鲜艳。视频放大电路 对提高视频设备的性能和图像质量具有重要作用。
信号放大
பைடு நூலகம்
03
晶体三极管放大电路的 应用
音频放大
总结词
音频放大是晶体三极管放大电路的重要应用之一,用于将微 弱的音频信号放大,满足扬声器等输出设备的驱动需求。
详细描述
音频放大电路通常采用音频信号作为输入,通过晶体三极管 将信号放大后驱动扬声器或其他音频输出设备。这种电路广 泛应用于音响设备、麦克风、耳机等音频产品中,提供清晰 、动态的音质效果。
总结词

几种常用的放大电路

几种常用的放大电路

在传感器信号采集电路中,由于共集 放大电路具有高输入阻抗和低噪声的 特点,可以用于采集微弱的传感器信 号。
在音频信号处理中,共集放大电路可 以用于前置理
差分放大电路利用两个参数相 同、极性相反的放大元件,将
输入信号差值放大。
它能够抑制零点漂移,提高 放大电路的共模抑制比。
在共基放大电路中,输入信号通过电容耦合到三极管的基极,而输出信号则从集电极通过电阻耦合到负 载。
共基放大电路的放大倍数主要由三极管的电流放大倍数决定,而与输入信号的频率和幅度无关。
电路特点
01
共基放大电路具有高电压放大倍数、低输入阻抗和 高输出阻抗等特点。
02
由于输入信号加在基极和发射极之间,因此输入信 号的相位与输出信号的相位相同。
自动控制系统
在自动控制系统中,互补 对称功率放大电路可用于 驱动执行机构,如电机、 电磁阀等。
THANKS FOR WATCHING
感谢您的观看
电路特点
01 共集放大电路具有电压跟随的特点,适用于需要 高输入阻抗和低输出阻抗的场合。
02 由于其输入阻抗高,可以减小信号源的负担,同 时输出阻抗低,可以减小负载的负担。
03 共集放大电路的增益较低,通常在20dB以下,但 其噪声系数较小,稳定性较好。
应用场景
共集放大电路广泛应用于音频信号处 理、传感器信号采集、模拟电路等领 域。
03
共基放大电路适用于高频信号的放大,因为其频率 响应较好。
应用场景
共基放大电路在音频信号处理、 无线通信、测量仪器等领域有广
泛应用。
由于其高电压放大倍数和高输出 阻抗的特点,共基放大电路常用 于需要高电压输出的场合,如音
频功率放大器等。
在高频信号处理中,共基放大电 路也常被用于信号的放大和传输。

晶体管基本放大电路的基本原理(一)

晶体管基本放大电路的基本原理(一)

晶体管基本放大电路的基本原理(一)晶体管基本放大电路的基本什么是晶体管基本放大电路?晶体管基本放大电路是一种常见的电子放大器电路,通过晶体管来放大电信号的幅度。

晶体管的基本原理•晶体管是一种半导体器件,由三个区域组成:发射区、基区和集电区。

•发射区负责控制电流的注入,基区负责控制电流的传导,而集电区负责控制电流的输出。

•晶体管的工作原理主要是通过控制基极电流来调节集电极电流,从而实现电信号的放大。

NPN型晶体管基本放大电路原理1.输入信号通过电容耦合的方式传入晶体管的基极。

2.当输入信号的电压大于晶体管的基极-发射极压差时,基极-发射极结极的二极管会导通。

3.当基极-发射极二极管导通后,电流会从基极流入基区,并将集电极电流放大到较大的数值。

4.放大后的电流通过电容耦合方式输出到下一级电路或负载。

PNP型晶体管基本放大电路原理1.输入信号通过电容耦合的方式传入晶体管的基极。

2.当输入信号的电压小于晶体管的基极-发射极压差时,基极-发射极结极的二极管会导通。

3.当基极-发射极二极管导通后,电流会从集电极流入基区,并将基极电流放大到较大的数值。

4.放大后的电流通过电容耦合方式输出到下一级电路或负载。

晶体管基本放大电路的特点•可以实现电信号的放大。

•晶体管工作在放大区,具有一定的放大倍数。

•可以调节偏置电流和增益来满足不同应用场景的需求。

晶体管基本放大电路的应用•音频放大器:将微弱的音频信号放大到足够驱动扬声器的幅度。

•射频放大器:将微弱的射频信号放大到足够驱动天线的幅度。

总结晶体管基本放大电路是一种常见的电子放大器电路,利用晶体管的放大特性可以将微弱的电信号放大到合适的幅度。

通过控制偏置电流和增益,可以满足不同应用场景的需求。

在音频放大器和射频放大器等领域有广泛的应用。

晶体管的工作模式晶体管在放大电路中有三种工作模式:放大区、截止区和饱和区。

放大区(Active Region)放大区是晶体管的工作状态,在这个状态下,晶体管的基极电流和集电极电流都存在,且集电极电流大于零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率放大电路(大信号放大电路)
➢ 输入信号幅度大,输出大功率
3.1.2 放大电路的主要性能指标
1ii
RS +
+ ui
us –
– 1
放大 电路
us — 信号源电压 Rs — 信号源内阻 RL — 负载电阻
io 2
+
RL
uo

2
ui — 输入电压 uo — 输出电压 ii — 输入电流 io — 输出电流
二、放大的概念
放大电路的放大作用是针对变化量而言,是在输入信号的作用下, 利用有源器件的控制作用,将直流电源提供的部分能量转换为与输 入信号成比例的输出信号,实质上是一个受控能量转换器。
三、放大电路的类型
电压放大电路(小信号放大电路)
➢ 输入信号幅度较小,不失真放大电压信号
电流放大电路
➢ 输入信号幅度较小,不失真放大电流信号
RS +
+ ui
Ri
us –

1
Ru+oot RL

+ uo

2
uo
uot RL Ro RL
Ro
( uot uo
1)RL
uot — 负载开路时的输出电压; uo — 带负载时的输出电压,Ro 越小,uot 和 uo 越接近。
1 ii
RS +
+ ui
us –

一、 放大倍数 1
电压放大倍数
Au = uo/ui 电流放大倍数
Ai = io/ ii 功率放大倍数
Ap = po/ pi
放大 电路
io 2
+
Hale Waihona Puke RLuo–
2
电压增益 Au (dB) = 20lg |Au| 电流增益 Ai (dB) = 20lg |Ai| 功率增益 Ap (dB) = 10lg Ap
第3章 晶体管常用放大电路
• 3.1 放大电路的基本知识
3.1.1 放大电路的组成与放大的概念 3.1.2 放大电路的主要性能指标
3.1.1 放大电路的组成与放大的概念
一、放大电路组成
+ RS us

信 号 源
放大 电路
负 载 RL
is
RS
直流电源
多级放大电路
信号输入
第第第 一 二 三 信号输出 级级级
二、输入电阻
输入电阻:放大电路输出端接负载电阻RL后,从输入 端1-1′,向放大电路内看进去的等效动态电阻。
1ii
RS +
+ ui
us –

1
Ri
Ri
ui ii
ui
us
Ri RS
Ri
Ri 越大, ui 与 us 越接近
例 3.1.1 us = 20 mV,Rs = 600 ,比较不同 Ri 时的 ii 、ui。
Ri 6 000
ii 3 A
ui 18 mV
600 16.7 A 10 mV
60
30 A 1.82 mV
三、输出电阻
1
输出电阻:放大电路输入信号 RS
源电压短路(uS=0),保留RS,负 us=0
载RL开路时,由输出端2-2′两端向
1
放大电路看进去的等效动态电阻
1
放大 2 电路
2 Ro
2
放大电路的输出相当于负载 的信号源,该信号源的内阻即为 电路的输出电阻。
相关文档
最新文档