江苏专用2018高考数学一轮复习第九章平面解析几何热点探究课6高考中的圆锥曲线问题教师用书

合集下载

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.椭圆的概念平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M|MF1+MF2=2a},F1F2=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【知识拓展】点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F 1,F 2的距离的和等于常数的点的轨迹叫做椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ )1.(教材改编)椭圆x 210-m +y 2m -2=1的焦距为4,则m =________.答案 4或8 解析 由题意知⎩⎪⎨⎪⎧ 10-m >m -2>0,(10-m )-(m -2)=4或⎩⎪⎨⎪⎧m -2>10-m >0,(m -2)-(10-m )=4,解得m =4或m =8.2.(2016·苏州检测)在平面直角坐标系xOy 内,动点P 到定点F (-1,0)的距离与P 到定直线x =-4的距离的比值为12.则动点P 的轨迹C 的方程为______________.答案 x 24+y 23=1解析 设点P (x ,y ),由题意知(x +1)2+y 2|x +4|=12,化简得3x 2+4y 2=12,所以动点P 的轨迹C 的方程为x 24+y 23=1.3.(2016·全国乙卷改编)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.答案 12解析 如图,由题意得,BF =a ,OF =c ,OB =b , OD =14·2b =12b .在Rt △FOB 中,OF ·OB =BF ·OD ,即cb =a ·12b ,解得a =2c ,故椭圆离心率e =c a =12.4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是________. 答案 (0,1)解析 将椭圆方程化为x 22+y 22k =1,因为焦点在y 轴上,则2k>2,即k <1,又k >0,所以0<k <1.5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题型一 椭圆的定义及标准方程 命题点1 利用定义求轨迹例1 (2016·徐州模拟)如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是________.答案 椭圆解析 由条件知PM =PF , ∴PO +PF =PO +PM =OM =R >OF . ∴P 点的轨迹是以O ,F 为焦点的椭圆. 命题点2 利用待定系数法求椭圆方程例2 (1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为_________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为________________________________________. 答案 (1)x 29+y 2=1或y 281+x 29=1(2)x 29+y 23=1 解析 (1)若焦点在x 轴上, 设方程为x 2a 2+y 2b2=1(a >b >0).∵椭圆过P (3,0),∴32a 2+02b 2=1,即a =3,又2a =3×2b ,∴b =1,∴椭圆方程为x 29+y 2=1.若焦点在y 轴上,设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆过点P (3,0),∴02a 2+32b 2=1,即b =3.又2a =3×2b ,∴a =9,∴椭圆方程为y 281+x 29=1.∴所求椭圆的方程为x 29+y 2=1或y 281+x 29=1.(2)设椭圆方程为mx 2+ny 2=1(m >0,n >0且m ≠n ). ∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.即⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,② ①②两式联立,解得⎩⎨⎧m =19,n =13.∴所求椭圆方程为x 29+y 23=1.命题点3 利用定义解决“焦点三角形”问题例3 已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 答案 3解析 设PF 1=r 1,PF 2=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2, 因为2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, 又因为1221219,2PF F S rr b ===△ 所以b =3. 引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程. 解 由原题得b 2=a 2-c 2=9, 又2a +2c =18,所以a -c =1,解得a =5, 故椭圆方程为x 225+y 29=1.2.在例3中,若将条件“PF 1→⊥PF 2→”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“12PF F S =△,结果如何?解 PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 21+PF 22-2PF 1·PF 2cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4c 2, 所以3PF 1·PF 2=4a 2-4c 2=4b 2, 所以PF 1·PF 2=43b 2,又因为12121··sin 602PF F S PF PF =︒△ =12·43b 2·32 =33b 2=33, 所以b =3.思维升华 (1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式. (3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为________________. (2)(2016·镇江模拟)设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP→+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是______. 答案 (1)x 264+y 248=1 (2)1解析 (1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设PF 1=m ,PF 2=n ,则m +n =4,m 2+n 2=12,2mn =4,121= 1.2F PF S mn ∴=△题型二 椭圆的几何性质例4 (1)已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________.(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________. 答案 (1)2 (2)13解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.(2)设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.思维升华 (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 联立方程组⎩⎨⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎫32a ,b 2,又F (c,0),则FB →=⎝⎛⎭⎫-32a -c ,b 2,FC →=⎝⎛⎭⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得 c 2-34a 2+b 24=0,①又因为b 2=a 2-c 2.代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a =23=63. 题型三 直线与椭圆例5 (2016·天津)设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A .已知1OF +1OA =3eF A ,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围. 解 (1)设F (c,0),由1OF +1OA =3eF A ,即1c +1a =3c a (a -c ),可得a 2-c 2=3c 2. 又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0), 则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0, 解得x =2或x =8k 2-64k 2+3.由题意,得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=⎝ ⎛⎭⎪⎫9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k .因此直线MH 的方程为y =-1k x +9-4k212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k 消去y ,解得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔MA ≤MO ,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64. 所以直线l 的斜率的取值范围为⎝⎛⎦⎤-∞,-64∪⎣⎡⎭⎫64,+∞. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+1k2)[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :x 24+y 2=1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M.(1)当直线PM 过椭圆的右焦点F 时,求△FBM 的面积; (2)①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1·k 2为定值; ②求PB →·PM →的取值范围.(1)解 由题意知B (0,1),C (0,-1),焦点F (3,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为x 3+y -1=1,即y =33x -1.联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍去),即点M 的坐标为(837,17).连结BF ,则直线BF 的方程为x 3+y1=1, 即x +3y -3=0.又BF =a =2, 点M 到直线BF 的距离为d =|837+3×17-3|12+(3)2=2372=37, 故△FBM 的面积为S △MBF =12·BF ·d =12×2×37=37.(2)方法一 ①证明 设P (m ,-2),且m ≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m ,则直线PM 的方程为y =-1mx -1.联立⎩⎨⎧y =-1mx -1,x24+y 2=1,消去y ,得(1+4m 2)x 2+8mx =0,解得点M 的坐标为(-8mm 2+4,4-m 2m 2+4),所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m=-3m ,所以k 1·k 2=-3m ·14m =-34为定值.②解 由①知,PB →=(-m,3), PM →=(-8m m 2+4-m ,4-m 2m 2+4+2)=(-m 3-12m m 2+4,m 2+12m 2+4),所以PB →·PM →=(-m,3)·(-m 3+12m m 2+4,m 2+12m 2+4)=(m 2+12)(m 2+3)m 2+4.令m 2+4=t >4, 则PB →·PM →=(t +8)(t -1)t=t 2+7t -8t =t -8t+7.因为y =t -8t +7在t ∈(4,+∞)上单调递增,所以PB →·PM →=t -8t +7>4-84+7=9,故PB →·PM →的取值范围为(9,+∞).方法二 ①证明 设点M 的坐标为(x 0,y 0)(x 0≠0), 则直线PM 的方程为y =y 0+1x 0x -1,令y =-2,得点P 的坐标为(-x 0y 0+1,-2),所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 20-1)x 20=3(y 20-1)4(1-y 20)=-34为定值. ②解 由①知,PB →=(x 0y 0+1,3),PM →=(x 0+x 0y 0+1,y 0+2),所以PB →·PM →=x 0y 0+1(x 0+x 0y 0+1)+3(y 0+2)=x 20(y 0+2)(y 0+1)2+3(y 0+2) =4(1-y 20)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.令t =y 0+1∈(0,2),则PB →·PM →=(8-t )(t +1)t =-t +8t +7.因为y =-t +8t +7在t ∈(0,2)上单调递减,所以PB →·PM →=-t +8t +7>-2+82+7=9,故PB →·PM →的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 (2015·福建改编)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是__________.解析 左焦点F 0,连结F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵AF +BF =4, ∴AF +AF 0=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2= a 2-b 2a 2= 4-b 24∈⎝⎛⎦⎤0,32. 答案 ⎝⎛⎦⎤0,32典例2 (14分)(2016·浙江)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此AM =1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. [6分](2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足AP =AQ .记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1,k 2>0,k 1≠k 2.[8分]由(1)知AP =2a 2|k 1|1+k 211+a 2k 21,AQ =2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2), ①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. [12分] 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22].[14分]1.(2016·苏北四市联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为____________. 答案 x 24+y 23=1解析 依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.2.(2016·苏北四市一模)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点A 、B 1、B 2、F 依次为其左顶点、下顶点、上顶点和右焦点.若直线AB 2与直线B 1F 的交点恰在直线x =a 2c 上,则椭圆的离心率为________. 答案 12解析 由题意知直线AB 2:-x a +y b =1,直线B 1F :x c -y b =1,联立解得x =2aca -c ,若交点在椭圆的右准线上,则2ac a -c =a 2c,即2c 2+ac -a 2=0,所以2e 2+e -1=0,解得e =12.3.(2017·青岛月考)已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为________.答案53解析 设P (x 0,y 0),则y 0x 0+a ·y 0x 0-a=-49,化简得x 20a 2+y 204a29=1,则b 2a 2=49,e = 1-(b a )2=1-49=53. 4.(2016·南昌模拟)已知椭圆:y 29+x 2=1,过点P (12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为________________. 答案 9x +y -5=0解析 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减,得y 21-y 229+x 21-x 22=0, 即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P (12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9, 即直线AB 的斜率为-9,所以直线AB 的方程为 y -12=-9(x -12), 即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 2取得最大值的点P 为__________. 答案 (0,1)或(0,-1)解析 由椭圆定义得PF 1+PF 2=2a =4, ∴PF 1·PF 2≤(PF 1+PF 22)2=4,当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.*6.(2016·苏州质检)设A 1,A 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左,右顶点,若在椭圆上存在异于A 1,A 2的点P ,使得PO →·P A 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是____________. 答案 (22,1) 解析 A 1(-a,0),A 2(a,0),设P (x ,y ),则PO →=(-x ,-y ),P A 2→=(a -x ,-y ), ∵PO →·P A 2→=0,∴(a -x )(-x )+(-y )(-y )=0, ∴y 2=ax -x 2>0,∴0<x <a . 将y 2=ax -x 2代入x 2a 2+y 2b2=1,整理得(b 2-a 2)x 2+a 3x -a 2b 2=0,其在(0,a )上有解, 令f (x )=(b 2-a 2)x 2+a 3x -a 2b 2, ∵f (0)=-a 2b 2<0,f (a )=0, 如图,Δ=(a 3)2-4(b 2-a 2)·(-a 2b 2) =a 2(a 4-4a 2b 2+4b 4) =a 2(a 2-2b 2)2≥0,∴对称轴满足0<-a 32(b 2-a 2)<a ,即0<a 32(a 2-b 2)<a ,∴a 22c 2<1,∴c 2a 2>12. 又0<c a <1,∴22<c a<1.7.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·nm=-1,即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.8.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则PM +PN 的最小值为________. 答案 7解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________. 答案 (-263,263)解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①,得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263).10.已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a ,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________. 答案255解析 ∵△AOP 是等腰三角形,A (-a,0),∴P (0,a ). 设Q (x 0,y 0),∵PQ →=2QA →,∴(x 0,y 0-a )=2(-a -x 0,-y 0).∴⎩⎪⎨⎪⎧x 0=-2a -2x 0,y 0-a =-2y 0,解得⎩⎨⎧x 0=-23a ,y 0=a3,代入椭圆方程化简,可得b 2a 2=15,∴e =1-b 2a 2=255. 11.(2016·南京模拟)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且AB =52BF . (1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知AB =52BF , 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2, ∴e =c a =32.(2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717.x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.12.(2015·安徽)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b , 又k OM =510,从而b 2a =510, 进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +yb=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72, 则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧54b +x 125b+-14b +74b =1,72+12b x 1-52b = 5.解得b =3.所以a =35,故椭圆E 的方程为x 245+y 29=1.13.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,上顶点为B ,O 为坐标原点,M 为椭圆上任意一点.过F ,B ,A 三点的圆的圆心坐标为(p ,q ). (1)当p +q ≤0时,求椭圆的离心率的取值范围;(2)若点D (b +1,0),在(1)的条件下,当椭圆的离心率最小时,(MF →+OD →)·MO →的最小值为72,求椭圆的方程.解 (1)设椭圆半焦距为c .由题意AF ,AB 的中垂线方程分别为x =a -c 2,y -b 2=a b (x -a2),于是圆心坐标为(a -c 2,b 2-ac2b ).所以p +q =a -c 2+b 2-ac2b≤0,整理得ab -bc +b 2-ac ≤0,即(a +b )(b -c )≤0, 所以b ≤c ,于是b 2≤c 2,即a 2=b 2+c 2≤2c 2. 所以e 2=c 2a 2≥12,即22≤e <1.(2)当e =22时,a =2b =2c , 此时椭圆的方程为x 22c 2+y 2c 2=1,设M (x ,y ),则-2c ≤x ≤2c ,MF →=(-c -x ,-y ),OD →=(b +1,0),MO →=(-x ,-y ), 所以(MF →+OD →)·MO →=12x 2-x +c 2=12(x -1)2+c 2-12.当c ≥22时,上式的最小值为c 2-12,即c 2-12=72,得c =2; 当0<c <22时,上式的最小值为12(2c )2-2c +c 2, 即12(2c )2-2c +c 2=72, 解得c =2+304,不合题意,舍去. 综上所述,椭圆的方程为x 28+y 24=1.。

2018年高考新课标数学(理)一轮考点突破练习第九章平面解析几何Word版含答案

2018年高考新课标数学(理)一轮考点突破练习第九章平面解析几何Word版含答案

第九章平面解析几何1.平面解析几何初步(1)直线与方程①在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③能根据两条直线的斜率判定这两条直线平行或垂直.④掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤能用解方程组的方法求两相交直线的交点坐标.⑥掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.2.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、顶点、离心率、渐近线).(4)了解曲线与方程的对应关系.(5)理解数形结合的思想.(6)了解圆锥曲线的简单应用.9.1 直线与方程1.平面直角坐标系中的基本公式 (1)数轴上A ,B 两点的距离:数轴上点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 两点间的距离|AB |=____________.(2)平面直角坐标系中的基本公式: ①两点间的距离公式:在平面直角坐标系中,两点A (x 1,y 1),B (x 2,y 2)之间的距离公式为d (A ,B )=|AB |=_____________________.②线段的中点坐标公式:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x = ,y = . 2.直线的倾斜角与斜率(1)直线的倾斜角:当直线l 与x 轴相交时,取x 轴作为基准,x 轴____________与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴________或________时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为__________________.(2)斜率:一条直线的倾斜角α的____________叫做这条直线的斜率,常用小写字母k 表示,即k =______(α≠______).当直线平行于x 轴或者与x 轴重合时,k ______0;当直线的倾斜角为锐角时,k ______0;当直线的倾斜角为钝角时,k ______0;倾斜角为______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示直线的倾斜程度.(3)经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =.3.直线方程的几种形式(1)截距:直线l 与x 轴交点(a ,0)的____________叫做直线l 在x 轴上的截距,直线l 与y 轴交点(0,b )的____________叫做直线l在y 轴上的截距.注:截距____________距离(填“是”或“不是”).(2)直线方程的五种形式:________的特例.(3)过点P 1(x 1,y 1),P 2(x 2,y 2)的直线方程 ①若x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为____________;②若x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为____________;③若x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为____________;④若x 1≠x 2,且y 1=y 2=0,直线即为x 轴,方程为____________.自查自纠: 1.(1)|x 2-x 1| (2)①()x 2-x 12+()y 2-y 12②x 1+x 22y 1+y 222.(1)正向 平行 重合 0°≤α<180°(2)正切值 tan α 90° = > < 90° (3)y 2-y 1x 2-x 13.(1)横坐标a 纵坐标b 不是 (2)①y -y 0=k (x -x 0) ②y =kx +b ③y -y 1y 2-y 1=x -x 1x 2-x 1 ④x 1≠x 2且y 1≠y 2 ⑤x a +y b=1 ⑥Ax +By +C =0(A ,B 不同时为0) 点斜式 两点式(3)①x =x 1 ②y =y 1 ③x =0 ④y =0直线x tan π3+y +2=0的倾斜角α是( )A.π3 B.π6 C.2π3 D .-π3解:由已知可得tan α=-tanπ3=-3,因为α∈;⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.(2)如图所示,直线l 1的倾斜角α1=30°,直线l 1与l 2垂直,则直线l 1的斜率k 1=________,直线l 2的斜率k 2=________.解:由图可知,α2=α1+90°=120°,则直线l 1的斜率k 1=tan α1=tan30°=33,直线l 2的斜率k 2=tan α2=tan120°=- 3.故填33;- 3. 点拨:①直线的倾斜角与斜率均是反映直线倾斜程度的量.倾斜角是从“形”的角度刻画直线的倾斜程度,而斜率是从“数”的角度刻画直线的倾斜程度,两者由公式k =tan α联系.②在使用过两点的直线的斜率公式k =y 2-y 1x 2-x 1时,注意同一直线上选取的点不同,直线的斜率不会因此而发生变化,同时还要注意两点横坐标是否相等,若相等,则直线的倾斜角为90°,斜率不存在,但并不意味着直线的方程也不存在,此时直线的方程可写为x =x 1.③在已知两点坐标,求倾斜角α的值或取值范围时,用tan α=k =y 2-y 1x 2-x 1转化,其中倾斜角α∈时,直线l 不经过第四象限,所以k ≥0.③由l 的方程,得A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0. 因为S =12·|OA |·|OB |=12·⎪⎪⎪⎪⎪⎪1+2k k ·|1+2k | =12·(1+2k )2k=12⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,当且仅当4k =1k 且k>0,即k =12时等号成立,所以S min =4,此时直线l 的方程为x -2y +4=0.1.直线的倾斜角和斜率的关系,可借助k =tan α的图象(如图)来解决.这里,α∈2+(y -3)2=25上,从而圆(x -6)2+(y -7)2=25与圆2+(y -3)2=25有公共点,所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221.因此,实数t 的取值范围是. 点拨:直线与圆中三个定理:切线的性质定理,切线长定理,垂径定理;两个公式:点到直线的距离公式及弦长公式,其核心都是将问题转化到与圆心、半径的关系上,这是解决与圆有关的综合问题的根本思路.对于多元问题,也可先确定主元,如本题以P 为主元,揭示P 在两个圆上运动,从而转化为两个圆有交点这一位置关系,这也是解决直线与圆问题的一个思路,即将问题转化为直线与圆、圆与圆的位置关系.(2015·广东)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解:(1)C 1:(x -3)2+y 2=4,圆心C 1(3,0). (2)由垂径定理知,C 1M ⊥AB ,故点M 在以OC 1为直径的圆上,即⎝ ⎛⎭⎪⎫x -322+y 2=94.故线段AB 的中点M 的轨迹C 的方程是⎝ ⎛⎭⎪⎫x -322+y 2=94在圆C 1:(x -3)2+y 2=4内部的部分,即⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3.(3)联立⎩⎪⎨⎪⎧x =53,⎝ ⎛⎭⎪⎫x -322+y 2=94,解得⎩⎪⎨⎪⎧x =53,y =±253.不妨设其交点为P 1⎝ ⎛⎭⎪⎫53,253,P 2⎝ ⎛⎭⎪⎫53,-253, 设直线L :y =k (x -4)所过定点为P (4,0), 则1PP k =-257,2PP k =257.当直线L 与圆C 相切时,⎪⎪⎪⎪⎪⎪32k -4k k 2+1=32,解得k =±34.故当k ∈⎩⎨⎧⎭⎬⎫-34∪⎝⎛⎭⎪⎫-257,257∪⎩⎨⎧⎭⎬⎫34时,直线L 与曲线C 只有一个交点.1.注意应用圆的几何性质解题圆的图形优美,定理、性质丰富,在学此节时,重温圆的几何性质很有必要,因为使用几何性质,能简化代数运算的过程,拓展解题思路.2.圆的方程的确定由圆的标准方程和圆的一般方程,可以看出方程中都含有三个参数,因此必须具备三个独立的条件,才能确定一个圆,求圆的方程时,若能根据已知条件找出圆心和半径,则可用直接法写出圆的标准方程,否则可用待定系数法.3.求圆的方程的方法(1)几何法:即通过研究圆的性质,以及点和圆、直线和圆、圆和圆的位置关系,求得圆的基本量(圆心坐标和半径长),进而求得圆的方程.确定圆心的位置的方法一般有:①圆心在过切点且与切线垂直的直线上;②圆心在圆的任意弦的垂直平分线上;③圆心在圆的任意两条不平行的弦的中垂线的交点上;④两圆相切时,切点与两圆圆心共线.确定圆的半径的主要方法是构造直角三角形(即以弦长的一半,弦心距,半径组成的三角形),并解此直角三角形.(2)代数法:即设出圆的方程,用“待定系数法”求解.1.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为( )A.2 B.22C.1 D. 2解:已知圆的圆心是(1,-2),则圆心到直线x-y=1的距离是|1+2-1|12+(-1)2=22= 2.故选D.2.(2016·山西模拟)若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限解:圆x2+y2-2ax+3by=0的圆心为⎝⎛⎭⎪⎫a,-32b,则a<0,b>0.直线y=-1ax-ba,则k=-1a>0,-ba>0,所以直线不经过第四象限.故选D.3.(2015·北京西城期末)若坐标原点在圆(x -m)2+(y+m)2=4的内部,则实数m的取值范围是( )A.(-1,1) B.(-3,3)C.(-2,2) D.⎝⎛⎭⎪⎫-22,22解:因为(0,0)在(x-m)2+(y+m)2=4的内部,所以(0-m)2+(0+m)2<4,解得-2 <m< 2.故选C.4.(2016·安徽模拟)若圆x2+y2-2x+6y +5a=0关于直线y=x+2b成轴对称图形,则a -b的取值范围是( )A.(-∞,4) B.(-∞,0)C.(-4,+∞) D.(4,+∞)解:将圆的方程变形为(x-1)2+(y+3)2=10-5a,可知,圆心为(1,-3),且10-5a>0,即a<2.因为圆关于直线y=x+2b对称,所以圆心在直线y=x+2b上,即-3=1+2b,解得b=-2,所以a-b<4.故选A.5.(2016·南阳模拟)已知圆C与直线y=x 及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为( )A.(x+1)2+(y-1)2=2B.(x+1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x-1)2+(y+1)2=2解:由题意知直线x-y=0 和x-y-4=0之间的距离为|4|2=22,所以圆C的半径r=2,又因为y=-x与x-y=0,x-y-4=0均垂直,所以由y=-x和x-y=0联立得交点坐标为(0,0),由y =-x 和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),则圆C 的标准方程为(x -1)2+(y +1)2=2.故选D.6.(2015·沈阳联考)已知点A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+ kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,若M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是( )A .3- 2B .4C .3+ 2D .6 解:依题意得圆x 2+y 2+kx =0的圆心⎝ ⎛⎭⎪⎫-k 2,0位于直线x -y -1=0上,于是有-k 2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB |=22,直线AB 的方程是x -2+y2=1,即x -y +2=0,圆心(1,0)到直线AB 的距离为|1-0+2|2=322,点P 到直线AB 的距离的最大值是322+1,所以△PAB 面积的最大值为12×22×32+22=3+ 2.故选C.7.(2016·柳州模拟)若方程x 2+y 2-2x +2my +2m 2-6m +9=0表示圆,则m 的取值范围是____________;当半径最大时,圆的标准方程为____________.解:原方程可化为(x -1)2+(y +m )2= -m 2+6m -8,则r 2=-m 2+6m -8=-(m -2)(m -4)>0,所以2<m <4.当m =3时,r 最大为1,此时圆的方程为 (x -1)2+(y +3)2=1.故填(2,4);(x -1)2+ (y +3)2=1.8.(2015·全国Ⅰ)一个圆经过椭圆x216+y24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为__________.解:依题意,可知该圆过椭圆的三个顶点(0,-2),(0,2),(4,0).设圆心为(a ,0),其中a>0,由4-a =a 2+4,解得a =32,所以该圆的方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.故填⎝ ⎛⎭⎪⎫x -322+y 2=254.9.已知圆经过A (2,-3)和B (-2,-5)两点,若圆心在直线x -2y -3=0上,求圆的方程.解法一:线段AB 中垂线的方程为2x +y + 4=0,它与直线x -2y -3=0的交点(-1,-2)为圆心,由两点间的距离公式得r 2=10,所以圆的方程为(x +1)2+(y +2)2=10.解法二:设方程(两种形式均可以),由待定系数法求解.10.已知圆C 和直线x -6y -10=0相切于点(4,-1),且经过点(9,6),求圆C 的方程.解:因为圆C 和直线x -6y -10=0相切于点(4,-1),所以过点(4,-1)的直径所在直线的斜率为-116=-6,其方程为y +1=-6(x -4),即y = -6x +23.又因为圆心在以(4,-1),(9,6)两点为端点的线段的中垂线y -52=-57⎝ ⎛⎭⎪⎫x -132上,即5x+7y -50=0上,所以由⎩⎪⎨⎪⎧y =-6x +23,5x +7y -50=0,解得⎩⎪⎨⎪⎧x =3,y =5,即圆心为(3,5),从而半径为(9-3)2+(6-5)2=37, 故所求圆的方程为(x -3)2+(y -5)2=37. 11.已知定点A (4,0),P 点是圆x 2+y 2=4上一动点,Q 点是AP 的中点,求Q 点的轨迹方程.解:设Q 点坐标为(x ,y ),P 点坐标为(x P ,y P ),则x =4+x P 2且y =0+y P2,即x P =2x -4,y P=2y,又点P在圆x2+y2=4上,所以x2P+y2P=4,将x P=2x-4,y P=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.故所求轨迹方程为(x-2)2+y2=1.在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.(1)求实数b的取值范围;(2)求圆C的方程;(3)圆C是否经过定点(与b的取值无关)?证明你的结论.解:(1)令x=0,得抛物线与y轴的交点是(0,b).令f(x)=0,得x2+2x+b=0,由题知b≠0,且Δ>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x+b=0是同一个方程,故D=2,F=b.令x=0,得y2+Ey+b=0,此方程有一个根为b,代入得E=-b-1.所以圆C的轨迹方程是x2+y2+2x-(b+1)y+b=0.(3)圆C过定点,证明如下:假设圆C过定点(x0,y0)(x0,y0不依赖于b),将该点的坐标代入圆C的方程,并变形为x20+y20+2x0-y0+b(1-y0)=0.(*)为使(*)式对所有满足b<1且b≠0的b都成立,必须有1-y0=0,结合(*)式得x20+2x0=0,解得⎩⎪⎨⎪⎧x0=0,y0=1,或⎩⎪⎨⎪⎧x0=-2,y0=1.经检验知,点(0,1),(-2,1)均在圆C上.因此,圆C过定点.9.4 直线、圆的位置关系1.0 d>r 1 两组相同实数解 d <r 两组不同实数解2.d>R +r d =R +r R -r <d <R +rd =R -r d <R -r(2015·安徽联考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l的方程为ax +y -1=0,则直线l 与圆C 的位置关系是( )A .相离B .相交C .相切D .相切或相交解:圆C 的标准方程为x 2+(y +1)2=4,直线l 过定点(0,1),易知点(0,1)在圆C 上,所以直线l 与圆C 相切或相交.故选D.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离 解:两圆圆心分别为O 1(-2,0),O 2(2,1),半径长分别为r 1=2,r 2=3.因为||O 1O 2=[2-(-2)]2+(1-0)2=17,3-2<17< 3+2,所以两圆相交.故选B.(2015·山东)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解:点A (-2,-3)关于y 轴的对称点为A ′(2,-3),因此可设反射光线所在直线的方程为y + 3=k (x -2),化为kx -y -2k -3=0.因为反射光线与圆(x +3)2+(y -2)2=1相切,所以圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,即12k 2+25k +12=0,解得k =-43或-34.故选D.(2016·郑州模拟)已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有____________个.解:由题意知圆的标准方程为(x +2)2+(y -3)2=42,可知圆心为(-2,3),半径为4,则圆心到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,又d <4+2,则满足题意的点P 有2个.故填2.(2016·山东模拟)过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是____________.解:点M 在圆C 内,依题意,当∠ACB 最小时,圆心C (3,4)到直线l 的距离最大,此时直线l 与直线CM 垂直,又直线CM 的斜率k =4-23-1=1,因此所求的直线l 的方程是y -2= -(x -1),即x +y -3=0.故填x +y -3=0.类型一 直线与圆的位置关系(1)已知点M (x 0,y 0)为圆x 2+y 2=a 2(a >0)内异于圆心的一点,则直线x 0x +y 0y = a 2与该圆的位置关系是( )A .相切B .相交C .相离D .相切或相离解:因为M (x 0,y 0)为圆x 2+y 2=a 2(a >0)内异于圆心的一点,所以x 20+y 20<a 2.又圆心到直线x 0x +y 0y =a 2的距离d =|a 2|x 20+y 20>|a 2||a |=a ,所以直线与圆相离.故选C.(2)直线y =-33x +m 与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是( )A .(3,2)B .(3,3)C.⎝⎛⎭⎪⎫33,233D.⎝⎛⎭⎪⎫1,233解:联立⎩⎪⎨⎪⎧y =-33x +m ,x 2+y 2=1,得43x 2-233mx +m 2-1=0,设直线与圆在第一象限内交于A (x 1,y 1),B (x 2,y 2)两点,则有⎩⎪⎪⎨⎪⎪⎧Δ=⎝ ⎛⎭⎪⎫-233m 2-4×43×(m 2-1)>0,x 1+x 2=--233m 43>0,x 1x 2=m 2-143>0,得1<m <233.故选D.点拨:在处理直线与曲线的位置关系时,一般用二者联立所得方程组的解的情况进行判断(即代数方法),但若曲线是圆,则属例外情形,此时我们一般用圆心到直线的距离与半径的大小关系进行判断(即几何方法),判断的具体方法详见“考点梳理”栏目.另外,近几年高考中考查直线与圆的位置关系的题目有所增多,应予以重视.(1)在同一坐标系下,直线ax +by =ab 和圆(x -a )2+(y -b )2=r 2(ab ≠0,r>0)的图象可能是( )解:直线方程可化为x b +ya=1,且由A ,B ,C ,D 选项知a>0,b <0,满足圆心()a ,b (a>0,b <0)的只有选项D.故选D.(2)(2014·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎥⎤0,π6B.⎝ ⎛⎦⎥⎤0,π3C.⎣⎢⎡⎦⎥⎤0,π6D.⎣⎢⎡⎦⎥⎤0,π3 解:由题意可知直线l 的斜率存在,设其为k ,则直线l 的方程为y =k (x +3)-1,要使直线l 与圆x 2+y 2=1有公共点,只需圆心(0,0)到直线l 的距离d =|3k -1|k 2+1≤1,解得0≤k ≤ 3.所以直线l 的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π3.故选D. 类型二 圆的切线已知圆C :(x -1)2+(y -2)2=2,点P (2,-1),过P 点作圆C 的切线PA ,PB ,A ,B为切点.(1)求PA ,PB 所在直线的方程; (2)求切线PA 的长.解:(1)如图,易知切线PA ,PB 的斜率存在,设切线的斜率为k .由于切线过点P (2,-1),所以可设切线的方程为y +1=k (x -2),即kx -y -2k -1=0.又因为圆心C (1,2),半径r =2, 所以由点到直线的距离公式,得 2=||k -2-2k -1k 2+(-1)2,解得k =7或k =-1.故所求切线PA ,PB 的方程分别是x +y -1=0和7x -y -15=0.(2)连接AC ,PC ,则AC ⊥AP .在Rt △APC 中,||AC =2,||PC =(2-1)2+(-1-2)2=10,所以||PA =|PC |2-|AC |2=10-2=2 2.点拨:求过定点的圆的切线方程时,首先要判断定点在圆上还是在圆外,若在圆上,则该点为切点,切线仅有一条;若在圆外,切线应该有两条;若用切线的点斜式方程,不要忽略斜率不存在的情况.求切线长要利用切线的性质:过切点的半径垂直于切线.(2016·绥化模拟)已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a2+1b2的最小值为( )A .2B .4C .8D .9解:圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a ,0),半径为2.圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2内切,所以(-2a -0)2+(0-b )2=2-1,得4a 2+b 2=1,所以1a 2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a2=4a2b 2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.故选D.类型三 圆的弦长(1)(2015·全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解:因为k AB =-13,k BC =3,所以k AB ·k BC =-1,即AB ⊥BC ,所以AC 为圆的直径.所以圆心为(1,-2),半径r =|AC |2=102=5,圆的标准方程为(x-1)2+(y +2)2=25.令x =0,得y =±26-2,所以|MN |=4 6.故选C .(2)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为____________.解:最短弦为过点(3,1),且垂直于点(3,1)与圆心(2,2)的连线的弦,易知弦心距d =(3-2)2+(1-2)2=2,所以最短弦长为l =2r 2-d 2=222-(2)2=2 2.故填2 2.点拨:(1)一般来说,直线与圆相交,应首先考虑圆心到直线的距离、弦长的一半、圆的半径构成的直角三角形,由此入手求解.(2)圆O 内过点A 的最长弦即为过该点的直径,最短弦为过该点且垂直于直径的弦.(3)圆锥曲线的弦长公式为1+k2·||x 1-x 2,运用这一公式也可解此题,但运算量较大.(1)(2014·江苏)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为____________.解:因为圆心(2,-1)到直线x +2y -3=0的距离d =|2+2×(-1)-3|12+22=35,所以直线被圆截得的弦长为l =222-⎝ ⎛⎭⎪⎫352=2555.故填2555.(2)已知圆的方程为x2+y2-6x-8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为( )A.10 6 B.20 6C.30 6 D.40 6解:易知过点(3,5)的最长弦AC为圆的直径,过点(3,5)的最短弦BD为垂直于直径AC的弦,所以点(3,5)为AC与BD的交点.将圆的一般方程化为标准方程(x-3)2+(y-4)2=25,得圆心(3,4),半径r=5,圆心到直线BD的距离d=1,||BD=2r2-d2=252-12=46,||AC=2r=10,所以四边形ABCD的面积S=12|| AC·||BD=20 6.故选B.类型四圆与圆的位置关系已知圆C1:x2+y2-2mx+4y+m2- 5=0,圆C2:x2+y2+2x-2my+m2-3=0,问:m 为何值时,(1)圆C1和圆C2相外切?(2)圆C1和圆C2内含?解:易知圆C1,C2的标准方程分别为C1:(x -m)2+(y+2)2=9,C2:(x+1)2+(y-m)2=4,(1)如果圆C1与圆C2相外切,则两圆圆心距等于两圆半径之和,即有(m+1)2+(m+2)2=3+2,解得m=-5或2.故当m=-5或2时,圆C1和圆C2相外切.(2)如果圆C1与圆C2内含,则只可能是较大圆C1含较小圆C2,此时两圆圆心距小于两圆半径之差,即(m+1)2+(m+2)2<3-2,解得-2<m<-1.当-2<m<-1时,圆C1和圆C2内含.点拨:与判断直线与圆的位置关系一样,利用几何方法判定两圆的位置关系比用代数方法要简捷些.其具体方法是:利用圆的方程及两点间距离公式求出两圆圆心距d和两圆的半径R和r,再根据d与R+r,d与R-r的大小关系来判定(详见“考点梳理”栏目).(2014·湖南)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( ) A.21 B.19 C.9 D.-11解:圆心C1(0,0),半径r1=1,圆心C2(3,4),半径r2=25-m,因为圆C1与圆C2外切,所以32+42=r1+r2=1+25-m,解得m=9.故选C.类型五两圆的公共弦及圆系方程求以相交两圆C1:x2+y2+4x+y+1=0及C2:x2+y2+2x+2y+1=0的公共弦为直径的圆的方程.解:两个圆的方程相减,得2x-y=0,即为公共弦所在的直线方程,显然圆C2的圆心(-1,-1)不在此直线上,故可设所求圆的方程为x2+y2+4x+y+1+λ(x2+y2+2x+2y+1)=0(λ∈R,λ≠-1),即(1+λ)x2+(1+λ)y2+2(2+λ)x+(1+2λ)y+(1+λ)=0,其圆心O的坐标为⎝⎛⎭⎪⎫-2+λ1+λ,-1+2λ2(1+λ).因为点O在直线2x-y=0上,所以-2(2+λ)1+λ+1+2λ2(1+λ)=0,解得λ=-72.故所求方程为-52x2-52y2-3x-6y-52=0,即5x2+5y2+6x+12y+5=0.点拨:具有某些共同性质的圆的集合称为圆系,它们的方程叫做圆系方程,常见的圆系方程有以下几种:①同心圆系方程:(x-a)2+(y-b)2=r2(r>0).其中的a,b是定值,r是参数.②半径相等的圆系方程:(x-a)2+(y-b)2=r2(r>0).其中r是定值,a,b是参数.③过直线Ax+By+C=0与圆x2+y2+Dx+Ey +F=0交点的圆系方程:x2+y2+Dx+Ey+F +λ(Ax+By+C)=0(λ∈R).④过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,因此应用时注意检验C2是否满足题意,以防丢解).当λ=-1时,圆系方程表示直线l:(D1-D2)x+(E1-E2)y+(F1-F2)=0.若两圆相交,则l为两圆相交弦所在直线;若两圆相切,则l为公切线.在以k为参数的圆系:x2+y2+2kx+(4k+10)y+10k+20=0中,试证两个不同的圆相内切或相外切.证明:将原方程转化为(x+k)2+(y+2k+5)2=5(k+1)2.设两个圆的圆心分别为O1(-k1,-2k1-5),O2(-k2,-2k2-5),半径分别为5|k1+1|,5|k2+1|,由于圆心距|O1O2|=(k2-k1)2+4(k2-k1)2=5|k2-k1|.当k1>-1且k2>-1或k1<-1且k2<-1时,两圆半径之差的绝对值等于5|k2-k1|,即两圆相内切.当k1>-1且k2<-1或k1<-1且k2>-1时,两圆半径之和的绝对值等于5|k2-k1|,即两圆相外切.类型六圆的综合应用(2016·黑龙江双鸭山模拟) 已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被y 轴截得的弦长为23,圆C的面积小于13.(1)求圆C的标准方程;(2)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB(O 为坐标原点).是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.解:(1)设圆C:(x-a)2+y2=R2(a>0),R为半径,由题意知⎩⎪⎨⎪⎧|3a+7|32+42=R,a2+3=R,解得a=1或a =138,又S=πR2<13,所以a=1,R=2,所以圆C的标准方程为(x-1)2+y2=4.(2)当斜率不存在时,直线l为x=0,不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又l与圆C相交于不同的两点,联立得⎩⎪⎨⎪⎧y=kx+3,(x-1)2+y2=4,消去y得(1+k2)x2+(6k-2)x+6=0,所以Δ=(6k-2)2-24(1+k2)=12k2-24k-20>0,解得k<1-263或k>1+263,且x1+x2=-6k-21+k2,则y1+y2=k(x1+x2)+6=2k+61+k2.OD →=OA →+OB →=(x 1+x 2,y 1+y 2),MC →=(1,-3),假设OD →∥MC →,则-3(x 1+x 2)=y 1+y 2,即3×6k -21+k 2=2k +61+k 2,解得k =34∉⎝ ⎛⎭⎪⎫-∞,1-263∪⎝ ⎛⎭⎪⎫1+263,+∞,故假设不成立,所以不存在这样的直线l .点拨:处理圆的综合问题,首先考虑数形结合及应用圆的几何性质,在必要时联立方程,涉及的主要问题有:最值(范围)、定值(定点)、弦长(距离、面积)、平行(垂直)及轨迹等问题,注意借助向量工具.(2016·河南六市一联)如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x + 3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等.试求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,则d =22-(3)2=1.由点到直线的距离公式得d =|-3k -1-4k |1+k 2,即|7k +1|1+k 2=1,化简得k (24k +7)=0,所以k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-b +k (3+a )|1+k2=|5-b +1k (4-a )|1+1k2, 整理得|1+3k +ak -b |=|5k +4-a -bk |, 从而1+3k +ak -b =5k +4-a -bk 或1+ 3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =52,b =-12或⎩⎪⎨⎪⎧a =-32,b =132,这样的点P 的坐标为⎝ ⎛⎭⎪⎫52,-12或⎝ ⎛⎭⎪⎫-32,132.经检验,上述坐标均满足题中条件.1.在解决直线和圆的位置关系问题时,一定要联系圆的几何性质,利用有关图形的几何特征以简化运算;讨论直线与圆的位置关系时,一般不讨论Δ>0,Δ=0,Δ<0,而用圆心到直线的距离d 与圆的半径r 之间的关系,即d <r ,d =r ,d>r ,分别确定相交、相切、相离.2.两圆相交,易只注意到d <R +r 而遗漏掉d >R -r .3.要特别注意利用圆的性质,如“垂直于弦的直径必平分弦”“圆的切线垂直于过切点的半径”“两圆相切时,切点与两圆圆心三点共线”等等.可以说,适时运用圆的几何性质,将明显减少代数运算量,请同学们切记.4.涉及圆的切线时,要考虑过切点与切线垂直的半径,过圆x 2+y 2+Dx +Ey +F =0外一点M (x 0,y 0)引圆的切线,T 为切点,切线长公式为||MT =x 20+y 20+Dx 0+Ey 0+F .5.计算弦长时,要利用半径、弦心距(圆心到弦所在直线的距离)、半弦长构成的直角三角形.当然,不失一般性,圆锥曲线的弦长公式|AB |= 1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2](A (x 1,y 1),B (x 2,y 2)为弦的两个端点)也应重视.6.已知⊙O 1:x 2+y 2=r 2;⊙O 2:(x -a )2+(y -b )2=r 2; ⊙O 3:x 2+y 2+Dx +Ey +F =0.若点M (x 0,y 0)在圆上,则过M 的切线方程分别为x 0x +y 0y =r 2;(x -a )(x 0-a )+(y -b )(y 0-b )=r 2;x 0x +y 0y +D ·x 0+x2+E ·y 0+y2+F =0.若点M (x 0,y 0)在圆外,过点M 引圆的两条切线,切点为M 1,M 2,则切点弦(两切点的连线段)所在直线的方程分别为x 0x +y 0y =r 2;(x -a )(x 0-a )+(y -b )(y 0-b )=r 2;x 0x +y 0y +D ·x 0+x 2+E ·y 0+y2+F =0.圆x 2+y 2=r 2的斜率为k 的两条切线方程分别为y =kx ±r 1+k 2.掌握这些结论,对解题很有帮助. 7.研究两圆的位置关系时,要灵活运用平面几何法、坐标法.两圆相交时可由两圆的方程消去二次项求得两圆公共弦所在的直线方程.8.对涉及过直线与圆、圆与圆的交点的圆的问题,可考虑利用过交点的圆系方程解决问题,它在运算上往往比较简便.1.(2015·安徽)直线3x +4y =b 与圆x 2+y 2-2x -2y +1=0相切,则b 的值是( )A .-2或12B .2或-12C .-2或-12D .2或12解:圆的标准方程为(x -1)2+(y -1)2=1,依题意得圆心(1,1)到直线3x +4y =b 的距离d =|3+4-b |32+42=1,即|b -7|=5,解得b =12或b =2.故选D .2.(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解:圆C 的标准方程为(x -2)2+(y -1)2=22,圆心为C (2,1),半径r =2,由直线l 是圆C 的对称轴,可知直线l 过点C ,所以2+a ×1-1=0,即a =-1,所以A (-4,-1),于是 |AC |2=40,所以|AB |=|AC |2-22=40-4=6.故选C.3.(2016·南昌模拟)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定 解:因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,从而圆心O 到直线ax +by =1的距离d =1a 2+b2<1,即直线与圆相交.故选B.4.(2016·武汉模拟)过点P (3,1)作圆 (x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解:如图,令圆心坐标为C (1,0),易知A (1,1).又k AB ·k PC =-1,且k PC =1-03-1=12,则k AB =-2.故直线AB 的方程为y -1=-2(x -1), 即2x +y -3=0.故选A.5.与直线x -y -4=0和圆x 2+y 2+2x - 2y =0都相切的半径最小的圆的方程是( )A .(x +1)2+(y +1)2=2 B .(x +1)2+(y +1)2=4 C .(x -1)2+(y +1)2=2 D .(x -1)2+(y +1)2=4解:由已知圆的圆心C (-1,1)向直线x -y -4=0作垂线,垂足为H ,当所求圆的圆心位于CH 上时,所求圆的半径最小,此时所求圆与直线和已知圆都外切.易知垂线CH 的方程为 x +y =0,分别求出垂线x +y =0与直线x -y - 4=0的交点(2,-2)及与已知圆的交点(0,0),所以要求的圆的圆心为(1,-1),半径r = 2.所求圆的方程为(x -1)2+(y +1)2=2.故选C.6.(2016·浙江丽水模拟)若过点A (a ,a )可作圆x 2+y 2-2ax +a 2+2a -3=0的两条切线,则实数a 的取值范围是( )A .(-∞,-3)B.⎝ ⎛⎭⎪⎫1,32 C .(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32 D .(-3,+∞)解:圆的方程可化为(x -a )2+y 2=3-2a ,则3-2a>0,①,因为过点A (a ,a )可作圆的两条切线,所以点A 在圆外,即(a -a )2+a 2>3-2a ,②,由①②解得a <-3或1<a <32,即a 的取值范围为(-∞,-3)∪⎝ ⎛⎭⎪⎫1,32.故选C.7.(2016·浙江六校联考)已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为____________;若直线ax -y +4=0与该圆相交于A ,B 两点,且|AB |=23,则a =__________.解:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x + 4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0.由4a 2+1=4-(3)2得a =±15.故填x =2或3x +4y -10=0;±15.8.(2016·云南名校联考)已知圆O :x 2+y 2=1,直线x -2y +5=0上有一动点P ,过点P作圆O 的一条切线,切点为A ,则|PA |的最小值为____________.解:过O 作OP 垂直于直线x -2y +5=0,再过P 作圆O 的切线PA ,连接OA ,易知此时|PA |的值最小.由点到直线的距离公式得|OP |=|1×0-2×0+5|12+(-2)2=5,又|OA |=1,所以 |PA |=|OP |2-|OA |2=2.故填2.9.过点P (-3,-4)作直线l ,当斜率为何值时,直线l 与圆C :(x -1)2+(y +2)2=4有公共点.解:由题意可设直线l 的方程为y +4=k (x +3),即kx -y +3k -4=0.要使直线l 与圆C 有公共点,只须d ≤r ,即圆心(1,-2)到直线l 的距离d =|k +2+3k -4|1+k 2≤2,整理得3k 2-4k ≤0,解得0≤k ≤43.10.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切; (2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切, 则有|4+2a |a 2+1=2,解得a =-34.(2)设圆心C (0,4)到直线l 的距离为d , 则有⎝ ⎛⎭⎪⎫|AB |22+d 2=r 2, 即(2)2+d 2=4,得d = 2. 又d =|2a +4|a 2+1,所以|2a +4|a 2+1=2,解得a =-1或a =-7.所以直线l 的方程为x -y +2=0或7x -y +14=0.(2014·全国卷Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解:(1)圆C 的方程可化为x 2+(y -4)2=16,圆心C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →= (2-x ,2-y ).由题设知CM →·MP →=0,有x (2-x )+(y -4)(2-y )=0, 变形得(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2. (2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故点O 在线段PM 的垂直平分线上.又点P 在圆N 上,所以ON ⊥PM . 因为ON 的斜率为3, 所以直线l 的斜率为-13.所以直线l 的方程为y =-13x +83.又|OM |=|OP |=22,点O 到直线l 的距离d =83⎝ ⎛⎭⎪⎫-132+12=4105,|PM |=2|OP |2-d 2=4105, 所以S △POM =12×|PM |×d =12×4105×4105=165. 所以△POM 的面积为165.1.(2016·四川模拟)圆x 2+y 2-2x -2y + 1=0上的点到直线x -y =2的距离的最大值是。

2018版高考数学文江苏专用大一轮复习讲义文档 第九章 平面解析几何 9.7 含答案 精品

2018版高考数学文江苏专用大一轮复习讲义文档 第九章 平面解析几何 9.7 含答案 精品

1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离PF =x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a 4.3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长AB =x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长AB =x 1+x 2+p .( √ )1.(2016·四川改编)抛物线y 2=4x 的焦点坐标是______. 答案 (1,0)解析 ∵对于抛物线y 2=ax ,其焦点坐标为⎝⎛⎭⎫a 4,0, ∴对于y 2=4x ,焦点坐标为(1,0).2.(2017·苏州模拟)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,AF =54x 0,则x 0=______. 答案 1解析 由抛物线的定义,可得AF =x 0+14,∵AF =54x 0,∴x 0+14=54x 0,∴x 0=1.3.(2016·苏州模拟)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →=________. 答案 -34解析 设A (x 1,y 1),B (x 2,y 2), 由题意知过焦点的直线斜率不为0, 设其直线方程为x =ky +12,则由⎩⎪⎨⎪⎧x =ky +12,y 2=2x , 得y 2-2ky -1=0,y 1y 2=-1,OA →·OB →=x 1x 2+y 1y 2 =(y 1y 2)24+y 1y 2=14-1=-34.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________________. 答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0)或x 2=2py (p ≠0). 将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .5.(2017·南京月考)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为___. 答案 2解析 抛物线y 2=2px (p >0)的准线为x =-p 2,圆x 2+y 2-6x -7=0,即(x -3)2+y 2=16, 则圆心为(3,0),半径为4.又因为抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,所以3+p2=4,解得p =2.题型一 抛物线的定义及应用例1 设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则PB +PF 的最小值为________.答案 4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则P1Q=P1F.则有PB+PF≥P1B+P1Q=BQ=4.即PB+PF的最小值为4.引申探究1.若将本例中的B点坐标改为(3,4),试求PB+PF的最小值.解由题意可知点(3,4)在抛物线的外部.因为PB+PF的最小值即为B,F两点间的距离,所以PB+PF≥BF=42+22=16+4=25,即PB+PF的最小值为2 5.2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1+d2的最小值.解由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1=PF-1,所以d1+d2=d2+PF-1.易知d2+PF的最小值为点F到直线l的距离,故d2+PF的最小值为|1+5|12+(-1)2=32,所以d1+d2的最小值为32-1.思维升华与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距离与点P到直线x =-1的距离之和的最小值为________.答案 5解析如图,易知抛物线的焦点为F(1,0),准线是x=-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小,显然,连结AF 与抛物线相交的点即为满足题意的点, 此时最小值为[1-(-1)]2+(0-1)2= 5. 题型二 抛物线的标准方程和几何性质 命题点1 求抛物线的标准方程例2 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为__________. 答案 x 2=16y解析 ∵x 2a 2-y 2b2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴b 2a 2=3,ba= 3. x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,即y =±3x .由题意得p21+(3)2=2,∴p =8.故C 2的方程为x 2=16y .命题点2 抛物线的几何性质例3 已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)1AF +1BF为定值; (3)以AB 为直径的圆与抛物线的准线相切. 证明 (1)由已知得抛物线焦点坐标为(p2,0).由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝⎛⎭⎫my +p2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2, 所以x 1x 2=y 21y 224p 2=p 44p 2=p 24.(2)1AF +1BF =1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=AB -p ,代入上式,得1AF +1BF =AB p 24+p 2(AB -p )+p 24=2p(定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则MN =12(AC +BD )=12(AF +BF )=12AB .所以以AB 为直径的圆与抛物线的准线相切.思维升华 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.(1)(2016·全国乙卷改编)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C的准线于D ,E 两点.已知AB =42,DE =25,则C 的焦点到准线的距离为________. (2)若抛物线y 2=4x 上一点P 到其焦点F 的距离为3,延长PF 交抛物线于Q ,若O 为坐标原点,则S △OPQ =________. 答案 (1)4 (2)322解析 (1)不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝⎛⎭⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,②点D ⎝⎛⎭⎫-p2,5在圆x 2+y 2=r 2上, ∴5+⎝⎛⎭⎫p 22=r 2,③联立①②③,解得p =4,即C 的焦点到准线的距离为4. (2)如图所示,由题意知,抛物线的焦点F 的坐标为(1,0).又PF =3,由抛物线定义知:点P 到准线x =-1的距离为3, ∴点P 的横坐标为2.将x =2代入y 2=4x ,得y 2=8, 由图知点P 的纵坐标y =22,∴P (2,22),∴直线PF 的方程为y =22(x -1).方法一 联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =2 2.由图知Q (12,-2),∴S △OPQ =12·OF ·|y P -y Q |=12×1×|22+2|=322. 方法二 将y =22(x -1)代入y 2=4x , 得2x 2-5x +2=0,∴x 1+x 2=52,∴PQ =x 1+x 2+p =92,O 到PQ 的距离d =223,∴S △OPQ =12·PQ ·d =12×92×223=32 2.题型三 直线与抛物线的综合问题 命题点1 直线与抛物线的交点问题例4 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =________. 答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2. 命题点2 与抛物线弦的中点有关的问题例5 (2016·全国丙卷)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b ,R ⎝⎛⎭⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =b -0-12-12=k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0), 则S △ABF =12|b -a |·FD =12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0), 所以所求轨迹方程为y 2=x -1(x ≠1).思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.(2016·南京、盐城、徐州二模)在平面直角坐标系xOy 中,已知抛物线C :x 2=4y的焦点为F ,定点A (22,0),若射线F A 与抛物线C 相交于点M ,与抛物线C 的准线相交于点N ,则FM ∶MN =________. 答案 1∶3解析 由题意得F (0,1), ∴直线AF 的方程为x 22+y1=1,将它与抛物线方程联立解得⎩⎪⎨⎪⎧x =2,y =12或⎩⎨⎧x =-22,y =2,又交点在第一象限,∴M (2,12),准线方程为y =-1.故易求得N (42,-1).∴由三角形相似性质得FM MN =1-1212-(-1)=13.7.直线与圆锥曲线问题的求解策略典例 (16分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.思维点拨 (3)中证明QA →·QB →=0. 规范解答解 (1)∵抛物线C :x 2=1m y ,∴它的焦点F (0,14m).[2分] (2)∵RF =y R +14m ,∴2+14m =3,得m =14.[4分](3)存在实数m ,使△ABQ 定以Q 为直角顶点的直角三角形.联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y ,得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0⇒m >-12. [7分]设A (x 1,mx 21),B (x 2,mx 22),则⎩⎨⎧x 1+x 2=2m,x 1·x 2=-2m. (*)∵P 是线段AB 的中点,∴P (x 1+x 22,mx 21+mx 222),即P (1m ,y P ),∴Q (1m ,1m).[9分]得QA →=(x 1-1m ,mx 21-1m ),QB →=(x 2-1m ,mx 22-1m), 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则QA →·QB →=0, 即(x 1-1m )·(x 2-1m )+(mx 21-1m )(mx 22-1m )=0,[12分]结合(*)化简得-4m 2-6m+4=0,即2m 2-3m -2=0,∴m =2或m =-12,而2∈(-12,+∞),-12∉(-12,+∞).∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[16分]解决直线与圆锥曲线的位置关系的一般步骤 第一步:联立方程,得关于x 或y 的一元二次方程;第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点); 第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果; 第四步:反思回顾,查看有无忽略特殊情况.1.(2017·盐城模拟)若抛物线y =ax 2的焦点坐标是(0,1),则a =________. 答案 14解析 因为抛物线的标准方程为x 2=1ay ,所以其焦点坐标为(0,14a ),则有14a =1,a =14.2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为______________. 答案 x =-1解析 ∵y 2=2px (p >0)的焦点坐标为(p2,0),∴过焦点且斜率为1的直线方程为y =x -p2,即x =y +p2,将其代入y 2=2px ,得y 2=2py +p 2,即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.3.(2016·淮安模拟)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为________. 答案 2解析 直线l 2:x =-1是抛物线y 2=4x 的准线, 抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF , 过点F 作直线l 1:4x -3y +6=0的垂线, 和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2.4.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则y 1y 2x 1x 2的值一定等于________. 答案 -4解析 ①若焦点弦AB ⊥x 轴, 则x 1=x 2=p 2,∴x 1x 2=p 24,∴y 1=p ,y 2=-p ,∴y 1y 2=-p 2,∴y 1y 2x 1x 2=-4. ②若焦点弦AB 不垂直于x 轴, 可设AB 的直线方程为y =k (x -p2),联立y 2=2px ,得k 2x 2-(k 2p +2p )x +p 2k 24=0,则x 1x 2=p 24,x 1+x 2=p +2pk 2,∴y 1y 2=-p 2.故y 1y 2x 1x 2=-4.5.(2016·苏州一模)过抛物线y 2=8x 的焦点F 的直线交抛物线于A ,B 两点,交抛物线的准线于点C ,若AF =6,BC →=λFB →,则λ的值为________. 答案 3解析 设A (x 1,y 1)(y 1>0),B (x 2,y 2),C (-2,y 3), 则x 1+2=6,解得x 1=4,则y 1=42, 则直线AB 的方程为y =22(x -2),令x =-2,得C (-2,-82),联立⎩⎨⎧y 2=8x ,y =22(x -2),解得⎩⎨⎧ x =4,y =42或⎩⎨⎧x =1,y =-22,则B (1,-22),∴BF =1+2=3,BC =9,∴λ=3.6.(2016·镇江模拟)已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若F A =2FB ,则k 的值为________. 答案223解析 抛物线C 的准线为l :x =-2, 直线y =k (x +2)恒过定点P (-2,0),如图,过A ,B 分别作AM ⊥l 于M ,BN ⊥l 于N ,由F A =2FB ,得AM =2BN ,从而点B 为AP 的中点,连结OB ,则OB =12AF ,所以OB =BF ,从而点B 的横坐标为1,点B 的坐标为(1,22), 所以k =22-01-(-2)=223.7.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则AB =________. 答案 12解析 焦点F 的坐标为⎝⎛⎭⎫34,0. 方法一 直线AB 的斜率为33, 所以直线AB 的方程为y =33⎝⎛⎭⎫x -34, 即y =33x -34,代入y 2=3x ,得13x 2-72x +316=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=212,所以AB =x 1+x 2+p =212+32=12.方法二 由抛物线焦点弦的性质可得AB =2p sin 2θ=3sin 230°=12.8.(2016·宿迁模拟)已知抛物线的方程为y 2=2px (p >0),过抛物线上一点M (p ,2p )和抛物线的焦点F 作直线l 交抛物线于另一点N ,则NF ∶FM =________. 答案 1∶2解析 由题意知直线l 的方程为y =22(x -p 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,y =22(x -p2),得4x 2-5px +p 2=0,∴N (p 4,-22p ),∴NF =p 4+p 2=34p ,MF =p +p 2=32p ,∴NF ∶FM =1∶2.9.(2016·徐州、连云港、宿迁三检)已知点F 是抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为5,则直线AF 的斜率为________.答案 43解析 抛物线y 2=4x 的准线为x =-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以y 20=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率为k =4-04-1=43.10.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB =________. 答案 6解析 抛物线y 2=8x 的焦点为(2,0), 准线方程为x =-2.设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意,c =2,c a =12,可得a =4,b 2=16-4=12. 故椭圆方程为x 216+y 212=1.把x =-2代入椭圆方程,解得y =±3. 从而AB =6.11.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,则点A 的坐标为__________. 答案 (2,±22)解析 如图所示,由题意,可得OF =1,由抛物线的定义,得AF =AM ,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1, ∴S △AMFS △AOF =12·AF ·AM ·sin ∠MAF 12·OF ·AF ·sin (π-∠MAF )=3,∴AF =AM =3,设A ⎝⎛⎭⎫y 204,y 0, ∴y 204+1=3,∴y 204=2,y 0=±22, ∴点A 的坐标是(2,±22).12.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________. 答案 (2,4) 解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2, 两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条. 当k 存在时,x 1≠x 2, 则有y 1+y 22·y 1-y 2x 1-x 2=2,又y 1+y 2=2y 0,所以y 0k =2. 由CM ⊥AB ,得k ·y 0-0x 0-5=-1,即y 0k =5-x 0,因此2=5-x 0,x 0=3, 即M 必在直线x =3上.将x =3代入y 2=4x , 得y 2=12,则有-23<y 0<2 3.因为点M 在圆上,所以(x 0-5)2+y 20=r 2,故r 2=y 20+4<12+4=16.又y 20+4>4(为保证有4条,在k 存在时,y 0≠0), 所以4<r 2<16,即2<r <4.13. (2016·江苏苏北四市期中)已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点,点A 关于y 轴的对称点为A ′,连结A ′B.(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 解 (1)将点(2,1)代入抛物线C 的方程得2p =4, 解得p =2,∴抛物线C 的标准方程为x 2=4y .(2)若直线l 斜率不存在,则显然不成立,则直线l 的斜率k 一定存在. 设直线l 的方程为y =kx -1,A (x 1,y 1),B (x 2,y 2), 则A ′(-x 1,y 1).由⎩⎪⎨⎪⎧y =14x 2,y =kx -1,得x 2-4kx +4=0,则Δ=16k 2-16>0,x 1x 2=4,x 1+x 2=4k , ∴k A ′B =y 2-y 1x 2-(-x 1)=x 224-x 214x 1+x 2=x 2-x 14,于是直线A ′B 的方程为y -x 224=x 2-x 14(x -x 2),∴y =x 2-x 14(x -x 2)+x 224=x 2-x 14x +1,当x =0时,y =1,∴直线A ′B 过定点(0,1).。

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是________.(填序号)答案 ④解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-ab x ,∵a >b >0,∴-ab<0,∴抛物线焦点在x 轴负半轴上,开口向左. 故④符合题意.2.(2016·常州模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是__________________.答案 ⎝⎛⎭⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝⎛⎭⎫-23,23. 4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB =________. 答案 16解析 直线l 的方程为y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴AB =y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则AB 的最小值为______. 答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1,得x 2=4(1+m 2),所以x 1=4(1+m 2)=21+m 2, x 2=-21+m 2,所以AB =|x 1-x 2|=41+m 2, 所以AB =41+m 2≥4, 即当m =0时,AB 有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·无锡模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (1)求OHON;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解 (1)由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =pt x ,代入y 2=2px 整理,得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即OHON=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当AM =AN 时,求△AMN 的面积. (2)当2AM =AN 时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2,得x 1=2(3-4k 2)3+4k 2,故AM =|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得AN =12k 1+k 23k 2+4.由2AM =AN ,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0,设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2016·徐州模拟)设椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左,右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E (点D 与点A ,B 不重合),若C 点满足AB →⊥BC →,AD →∥OC →,连结AC 交DE 于点P ,求证:PD =PE . (1)解 由e =32,知c a =32,所以c =32a , 因为△PF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3,所以b 2=a 2-c 2=1, 所以椭圆C 1的方程为x 24+y 2=1.(2)证明 由(1)得A (-2,0),B (2,0),设D (x 0,y 0), 所以E (x 0,0),因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1), 由AD →∥OC →可得(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为y 2y 0x 0+2=x +24, 整理得y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得y =y 02,即点P 的坐标为(x 0,y 02),所以P为DE 的中点, 所以PD =PE . 题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为______________.(2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)x 218+y 29=1 (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2. 所以E 的方程为x 218+y 29=1.(2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2),则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则AB =t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 设△AOB 的面积为S (t ), 所以S (t )=12·AB ·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝⎛⎭⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N=4. 两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0, 将x M +x N =2×⎝⎛⎭⎫-12=-1,y M +y N =2y 0, y M -y N x M -x N=-1k 代入上式,得k =-y 02.又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.即m 的取值范围为(-334,0)∪(0,334).1.(2016·南京模拟)已知椭圆x 29+y 22=1的左,右焦点分别为F 1,F 2,点P 在椭圆上,若PF 1=4,则PF 2=______,∠F 1PF 2的大小为________. 答案 2 120°解析 由题意得PF 1+PF 2=2a =6,所以PF 2=2. 又F 1F 2=2c =27,在△PF 1F 2中,由余弦定理可得 cos ∠F 1PF 2=4+16-282×2×4=-12,即∠F 1PF 2=120°.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若AB =4,则弦AB 的中点到直线x +12=0的距离等于________. 答案 94解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22),∴AB =x 1+x 2+p =4.∴x 1+x 22=74.∴AB 中点到直线x +12=0的距离为74+12=94.3.(2016·连云港一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________. 答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴AB =1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·(-85t )2-4×4(t 2-1)5=425·5-t 2,当t =0时,(AB )max =4105. 4.(2017·无锡月考)直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是________.答案 1解析 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.5.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为______. 答案5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1消去y ,得x 2-ba x +1=0有唯一解,所以Δ=(b a )2-4=0,ba =2,e =ca =a 2+b 2a= 1+(ba)2= 5.6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则|F A -FB |的值为________. 答案 8 2解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x ,消去y ,得x 2-12x +4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=4,x 1+x 2=12, 则|F A -FB |=|(x 1+2)-(x 2+2)| =|x 1-x 2|=(x 1+x 2)2-4x 1x 2 =144-16=8 2.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0, 令Δ=1+4b >0,∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1, y 1+y 22=-x 1+x 22+b =12+b , 由(-12,12+b )在直线y =x +3上,即12+b =-12+3,解得b =2, 联立⎩⎪⎨⎪⎧ y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1. 8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上,故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34.∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则MBMA 的取值范围为________.答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧2m >1,f (1)≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),得x 1=2m -3(m 2-1),x 2=2m +3(m 2-1),所以MB MA =x 2x 1=2m +3(m 2-1)2m -3(m 2-1)=-1+42-3(1-1m2),由m >1得,MBMA的取值范围为(1,7+43).11.如图,定直线l 的方程为x =-4,定点F 的坐标为(-1,0),P (x ,y )为平面上一动点,作PQ ⊥l 于Q ,若PQ =2PF .(1)求动点P 的轨迹E 的方程;(2)过定点F 作直线交曲线E 于A 、B 两点,若曲线E 的中心为O ,且AO →+3OF →=2OB →,求三角形OAB 的面积.解 (1)由|x +4|=2(x +1)2+y 2, 化简得轨迹E 的方程为x 24+y 23=1.(2)设直线AB 的方程为ky =x +1,与椭圆方程联立消去x 得(3k 2+4)y 2-6ky -9=0. 设A (x 1,y 1),B (x 2,y 2).∵AO →+3OF →=2OB →,O (0,0),F (-1,0),∴y 1=-2y 2. ∴y 1=12k3k 2+4,y 2=-6k 3k 2+4,∴-72k 2(3k 2+4)2=-93k 2+4,∴k 2=45. ∴AB =1+k 2|y 1-y 2|=18|k |k 2+13k 2+4,又点O 到直线AB 的距离d =1k 2+1, ∴S △OAB =9|k |3k 2+4=9516. 12. (2016·泰州模拟)设点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2=1(a >1)的左,右焦点,P为椭圆C 上任意一点,且PF 1→·PF 2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值. 解 (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),∴PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意,得1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m 2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得m 2=2k 2+1.设d 1=F 1M =|-k +m |k 2+1,d 2=F 2N =|k +m |k 2+1.①当k ≠0时,设直线l 的倾斜角为θ, 则|d 1-d 2|=MN ·|tan θ|, ∴MN =1|k |·|d 1-d 2|,∴S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.13. (2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程. 解 (1)由题意,得c a =22且c +a 2c =3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±2(1+k 2)1+2k 2,故C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2=22(1+k 2)1+2k 2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1) 1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1) 1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.。

2018版高考数学理江苏专用大一轮复习讲义课件第九章

2018版高考数学理江苏专用大一轮复习讲义课件第九章

思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( √ )
(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)
+(y-y1)(y-y2)=0.( √ )
(3) 方程 Ax 2+ Bxy + Cy 2 + Dx + Ey + F = 0 表示圆的充要条件是 A = C ≠ 0 ,
B=0,D2+E2-4AF>0.( √ )
(4)方程x2+2ax+y2=0一定表示圆.( × )
2 (5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则 x2 + y 0 0+Dx0+Ey0+F>0.
( √ )
考点自测
1.( 教 材 改 编 ) 圆 心 是 ( - 2,3) , 且 经 过 原 点 的 圆 的 标 准 方 程 为
思维升华
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出
方程. (2)待定系数法 ①若已知条件与圆心 (a,b)和半径r有关,则设圆的标准方程,依据已 知条件列出关于a,b,r的方程组,从而求出a,b,r的值; ②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据 已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
答案 解析
1 易知OP= AB=m. 2 要求m的最大值,
即求圆C上的点P到原点O的最大距离.
2 2 3 + 4 因为OC= =5,所以(OP)max=OC+r=6,即m的最大值为6.
3.(2016· 扬州检测)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定
x2+y2+2x-4y=0 点C,则以点C为圆心, 5 为半径的圆的方程为__________________.

2018年高考数学总复习第九章平面解析几何专题探究课五高考中解析几何问题的热点题型学案!

2018年高考数学总复习第九章平面解析几何专题探究课五高考中解析几何问题的热点题型学案!

专题探究课五 高考中解析几何问题的热点题型高考导航 圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.热点一 圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型.【例1】 (1)(2015²天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1D.x 2-y 23=1(2)若点M (2,1),点C 是椭圆x 216+y 27=1的右焦点,点A 是椭圆的动点,则|AM |+|AC |的最小值为________.(3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为________.解析 (1)双曲线x 2a 2-y 2b2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±b ax , 由题意得2ba 2+b 2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D.(2)设点B 为椭圆的左焦点,点M (2,1)在椭圆内,那么|BM |+|AM |+|AC |≥|AB |+|AC |=2a ,所以|AM |+|AC |≥2a -|BM |,而a =4,|BM |=(2+3)2+1=26,所以(|AM |+|AC |)最小=8-26.(3)因为抛物线y 2=2px (p >0)的焦点F 为⎝ ⎛⎭⎪⎫p2,0,设椭圆另一焦点为E .如图所示,将x =p2代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p2,p 且PF ⊥OF . 所以|PE |=⎝ ⎛⎭⎪⎫p 2+p 22+p 2=2p , |PF |=p ,|EF |=p .故2a =2p +p ,2c =p ,e =2c2a =2-1.答案 (1)D (2)8-26 (3)2-1探究提高 (1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离.在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.(2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果.【训练1】 (2017²衡水金卷)已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB |=83.其中正确结论的个数为( )A.3B.2C.1D.0解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB |,所以△ABF 2的周长为|AB |+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d =|2|2=1,故②正确;③设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB |=1+1²|x 1-x 2|=83,故③正确.故选A. 答案 A热点二 圆锥曲线中的定点、定值问题(规范解答)定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例2】 (满分12分)(2015²全国Ⅱ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上. (1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.满分解答 (1)解 由题意有a 2-b 2a =22,4a 2+2b2=1,2分解得a 2=8,b 2=4.4分 所以C 的方程为x 28+y 24=1.5分(2)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.7分 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ²x M +b =b2k 2+1. 10分于是直线OM 的斜率k OM =y M x M =-12k,即k OM ²k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值. 12分❶列出方程组,解出a 2,b 2得4分.❷设出直线l 的方程后与椭圆方程联立消去y 得到关于x 的方程准确者得4分. ❸求出点M 的坐标得1分,再得到直线OM 的斜率与直线l 的斜率的乘积为定值得2分. ❹结论得1分.解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值. 第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.【训练2】 已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.(1)解 因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C的方程为y 2=4x .(2)证明 ①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t24²-t t 24=-12,化简得t 2=32. 所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立得⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0.根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ²y B x B =-12,即x A x B +2y A y B =0.即y 2A 4²y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0). 热点三 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例3】 (2016²山东卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M . ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.解 (1)由题意知a 2-b 2a =32,可得a 2=4b 2,因为抛物线E 的焦点F ⎝ ⎛⎭⎪⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝ ⎛⎭⎪⎫m ,m 22(m >0),由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ).即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m . 所以直线OD 方程为y =-14mx ,联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14, 所以点M 在定直线y =-14上.②由①知直线l 的方程为y =mx -m 22,令x =0,得y =-m 22,所以G ⎝⎛⎭⎪⎫0,-m 22, 又P ⎝ ⎛⎭⎪⎫m ,m 22,F ⎝ ⎛⎭⎪⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1),所以S 1=12²|GF |²m =(m 2+1)m4,S 2=12²|PM |²|m -x 0|=12³2m 2+14³2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2. 设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12, 即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝ ⎛⎭⎪⎫22,14. 因此S 1S 2的最大值为94,此时点P 的坐标为⎝ ⎛⎭⎪⎫22,14.探究提高 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法、或利用判别式构造不等关系、利用隐含或已知的不等关系建立不等式等方法求最值、范围;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【训练3】 (2016²浙江卷)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t.所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 热点四 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题. 【例4】 (2015²全国Ⅱ卷)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.(1)证明 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9b k 2+9. 于是直线OM 的斜率k OM =y M x M=-9k,即k OM ²k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3. 由(1)得OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9.将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3,因此x M =k (k -3)m3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是±km 3k 2+9=2³k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【训练4】 (2017²衡水高三联考)在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).(1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时,y 1=22,y 2=-2 2.因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时, 设直线AB 的方程为y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2, 由⎩⎪⎨⎪⎧my =x -2,y 2=4x ,得y 2-4my -8=0.∴y 1y 2=-8.因此有y 1y 2=-8为定值.(2)解 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21.因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a故所截弦长为 2r 2-d 2=214(x 21+4)-⎝⎛⎭⎪⎫x 1+22-a 2 =x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.。

(江苏专用)高考数学一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 课时2 范围、最值问

(江苏专用)高考数学一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 课时2 范围、最值问

课时2 X 围、最值问题题型一 X 围问题例1 (2015·某某)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,FM =433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值X 围.解 (1)由已知有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由FM =c +c2+⎝⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立.⎩⎪⎨⎪⎧y =t x +1,x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6,又由已知,得t =6-2x23x +12>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =- 2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值X 围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.思维升华 解决圆锥曲线中的取值X 围问题应考虑的五个方面:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值X 围; (2)利用已知参数的X 围,求新参数的X 围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值X 围; (4)利用已知的不等关系构造不等式,从而求出参数的取值X 围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值X 围.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程;(2)若直线:y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),某某数m 的取值X 围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得:a =3,c =2, 又a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)联立⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,整理得(1-3k 2)x 2-6kmx -3m 2-3=0. ∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12m 2+1-3k2>0,可得m 2>3k 2-1且k 2≠13,①设M (x 1,y 1),N (x 2,y 2),MN 的中点为B (x 0,y 0), 则x 1+x 2=6km 1-3k 2,∴x 0=x 1+x 22=3km1-3k 2,∴y 0=kx 0+m =m1-3k 2.由题意,AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0).整理得3k 2=4m +1,②将②代入①,得m 2-4m >0,∴m <0或m >4. 又3k 2=4m +1>0(k ≠0),即m >-14.∴m 的取值X 围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞). 题型二 最值问题命题点1 利用三角函数有界性求最值例2 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则AF ·BF 的最小值是________. 答案 4解析 设直线AB 的倾斜角为θ,可得AF =21-cos θ,BF =21+cos θ,则AF ·BF =21-cos θ·21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·某某)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为_________________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+-12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2014·某某)如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b2=1的左,右焦点分别为F 3,F 4,离心率为e 2.已知e 1e 2=32,且F 2F 4=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =F 2F 4=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1. (2)因AB 不垂直于y 轴,且过点F 1(-1,0), 故可设直线AB 的方程为x =my -1.由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0.易知此方程的判别式大于0. 设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根, 所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,mm 2+2), 故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0.由⎩⎪⎨⎪⎧y =-m2x ,x 22-y 2=1得(2-m 2)x 2=4,所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2,从而PQ =2x 2+y 2=2m 2+42-m2. 设点A 到直线PQ 的距离为d , 则点B 到直线PQ 的距离也为d , 所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧, 所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =m 2+2|y 1-y 2|m 2+4.又因为|y 1-y 2|=y 1+y 22-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.故四边形APBQ 的面积S =12·PQ ·2d=22·1+m22-m2=22·-1+32-m2.而0<2-m 2≤2,故当m =0时,S 取得最小值2.综上所述,四边形APBQ 面积的最小值为2. 思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(1)已知焦点为F 的抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6. (2)(2014·)已知椭圆C :x 2+2y 2=4. ①求椭圆C 的离心率;②设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 ①由题意,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2. 故椭圆C 的离心率e =c a =22. ②设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以AB 2=(x 0-t )2+(y 0-2)2=⎝ ⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 2x 20+4=x 2+4-x 202+24-x 2x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以AB 2≥8.故线段AB 长度的最小值为2 2.[方法与技巧] 1.求解X 围问题的方法求X 围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的X 围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算的方便,在建立关系的过程中也可以采用多个变量,只要在最后结果中把多变量归结为单变量即可,同时要特别注意变量的取值X 围. 2.圆锥曲线中常见最值问题及解题方法(1)两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之相关的一些问题.(2)两种常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. [失误与防X]1.求X 围问题要注意变量自身的X 围.2.利用几何意义求最值时,要注意“相切”与“公共点唯一”的不等价关系.注意特殊关系,特殊位置的应用.A 组 专项基础训练 (时间:40分钟)1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值X 围是________. 答案 [-1,1]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0, 解得-1≤k ≤1.2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为________. 答案125解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求MP 的最小值可以转化为求OP 的最小值,当OP 取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.3.若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值X 围是________. 答案 [3,+∞)解析 依题意可知双曲线渐近线方程为y =±bax ,与抛物线方程联立消去y 得x 2±b ax +2=0. ∵渐近线与抛物线有交点,∴Δ=b 2a2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a ,∴e =ca≥3.4.若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x+72-8x 29=19·⎝ ⎛⎭⎪⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254,∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536,∴6≤19·⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12.故最小值为6.5.已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值X 围为________. 答案 (22,1)解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2.∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件有m +2+n =m -n ,则n =-1,∴e 21=1-1m +2.由m >0得m +2>2,1m +2<12,-1m +2>-12,∴1-1m +2>12,即e 21>12,而0<e 1<1,∴22<e 1<1. 6.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y 2=4x 上相异两点,且满足x 1+x 2=2. (1)若AB 的中垂线经过点P (0,2),求直线AB 的方程;(2)若AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程. 解 (1)当AB 垂直于x 轴时,显然不符合题意,所以可设直线AB 的方程为y =kx +b ,代入方程y 2=4x ,得:k 2x 2+(2kb -4)x +b 2=0, ∴x 1+x 2=4-2kb k 2=2,得b =2k-k , ∴直线AB 的方程为y =k (x -1)+2k,∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎪⎫1,2k ,∴AB 的中垂线方程为y =-1k (x -1)+2k =-1k x +3k.∵AB 的中垂线经过点P (0,2),故3k =2,得k =32,∴直线AB 的方程为y =32x -16.(2)由(1)可知AB 的中垂线方程为y =-1k x +3k,∴点M 的坐标为(3,0),∵直线AB 的方程为k 2x -ky +2-k 2=0,∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k 2=2k 2+1|k |,由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x得k 24y 2-ky +2-k 2=0,y 1+y 2=4k ,y 1·y 2=8-4k2k2,AB =1+1k 2|y 1-y 2|=41+k 2k 2-1k2.∴S △MAB =4⎝⎛⎭⎪⎫1+1k 21-1k2,设1-1k2=t ,则0<t <1,S △MAB =4t (2-t 2)=-4t 3+8t ,S ′△MAB =-12t 2+8,由S ′△MAB =0,得t =63, 即k =±3时,(S △MAB )max =1669,此时直线AB 的方程为3x ±3y -1=0.7.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e .(1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF 2→·BF 2→=0,且22<e ≤32,求k 的取值X 围.解 (1)由焦点F 2(3,0),知c =3, 又e =32=ca,所以a =2 3. 又由a 2=b 2+c 2,解得b 2=3. 所以椭圆的方程为x 212+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx ,x 2a 2+y2b2=1,得(b 2+a 2k 2)x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知,x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k2.又AF 2→=(3-x 1,-y 1),BF 2→=(3-x 2,-y 2),所以AF 2→·BF 2→=(3-x 1)(3-x 2)+y 1y 2=(1+k 2)x 1x 2+9=0, 即-a2a 2-91+k2a 2k 2+a 2-9+9=0,整理得k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 由22<e ≤32及c =3,知23≤a <32,12≤a 2<18.所以a 4-18a 2=(a 2-9)2-81∈[-72,0),所以k 2≥18,则k ≥24或k ≤-24, 因此实数k 的取值X 围为⎝ ⎛⎦⎥⎤-∞,-24∪⎣⎢⎡⎭⎪⎫24,+∞. B 组 专项能力提升(时间:30分钟)8.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,AA ′=4.(1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上,则-c 2a 2+22b2=1. 从而e 2+4b 2=1.由e =22得b 2=41-e2=8, 从而a 2=b 21-e2=16. 故该椭圆的标准方程为x 216+y 28=1. (2)由题意,可设Q (x 0,0).又设M (x ,y )是椭圆上任意一点,则 QM 2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝ ⎛⎭⎪⎫1-x 216 =12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意知,P 点是椭圆上到点Q 的距离最小的点,因此,上式当x =x 1时取最小值,又因为x 1∈(-4,4),且上式当x =2x 0时取最小值,从而x 1=2x 0,且QP 2=8-x 20.由对称性知P ′(x 1,-y 1),故PP ′=|2y 1|,所以S =12|2y 1||x 1-x 0|=12×28⎝ ⎛⎭⎪⎫1-x 2116|x 0| =24-x 20x 20=2-x 20-22+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q (±2,0),半径QP =8-x 20=6, 因此,这样的圆有两个,其标准方程分别为(x +2)2+y 2=6,(x -2)2+y 2=6.9.如图,F 1,F 2是椭圆C :x 22+y 2=1的左,右焦点,A ,B 是椭圆C 上的两个动点,且线段AB 的中点M 在直线l :x =-12上.(1)若点B 的坐标为(0,1),求点M 的坐标;(2)求F 2A →·F 2B →的取值X 围.解 (1)因为点M 是AB 的中点,所以可设点A (-1,m ).代入椭圆方程x 22+y 2=1,得m =-22或m =22, 则点A 的坐标为⎝ ⎛⎭⎪⎫-1,-22或⎝ ⎛⎭⎪⎫-1,22, 所以点M 的坐标为⎝ ⎛⎭⎪⎫-12,2-24或⎝ ⎛⎭⎪⎫-12,2+24. (2)当直线AB 垂直于x 轴时,直线AB 的方程为x =-12, 此时F 2A →·F 2B →=118. 当直线AB 不垂直于x 轴时,设直线AB 的斜率为k , M ⎝ ⎛⎭⎪⎫-12,m (m ≠0),A (x 1,y 1),B (x 2,y 2).则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x +12+m . 由⎩⎪⎨⎪⎧x 212+y 21=1,x 222+y 22=1,得(x 1+x 2)+2(y 1+y 2)·y 1-y 2x 1-x 2=0, 则-1+4mk =0,故k =14m . 此时,直线AB 的方程为y =14m ⎝ ⎛⎭⎪⎫x +12+m , 即y =14m x +8m 2+18m . 联立得方程组⎩⎪⎨⎪⎧ x 22+y 2=1,y =14m x +8m 2+18m , 消去y ,整理得x 2+x +8m 2+12-64m 241+8m 2=0, 故Δ=1-8m 2+12-64m 21+8m 2>0,即0<m 2<78, x 1+x 2=-1,x 1x 2=8m 2+12-64m 241+8m2. 于是F 2A →·F 2B →=(x 1-1)(x 2-1)+y 1y 2 =x 1x 2+y 1y 2-(x 1+x 2)+1 =x 1x 2+y 1y 2+2=x 1x 2+⎝ ⎛⎭⎪⎫14m x 1+8m 2+18m ⎝ ⎛⎭⎪⎫14m x 2+8m 2+18m +2 =38m 2+12+881+8m2. 令t =1+8m 2,则1<t <8,于是F 2A →·F 2B →=3t 2+88t =18⎝ ⎛⎭⎪⎫3t +8t . 所以F 2A →·F 2B →的取值X 围为⎣⎢⎡⎭⎪⎫62,258.。

江苏2018版高考数学复习第九章平面解析几何9

江苏2018版高考数学复习第九章平面解析几何9

9.5椭圆1.椭圆的概念平面内到两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M |MF 1+MF 2=2a },F 1F 2=2c ,其中a >0,c >0,且a ,c 为常数:(1)若a >c ,则集合P 为椭圆;(2)若a =c ,则集合P 为线段;(3)若a <c ,则集合P 为空集.2.椭圆的标准方程和几何性质标准方程x 2y 2+=1(a >b >0)a 2b 2y 2x 2+=1(a >b >0)a 2b2图形范围对称性顶点轴焦距离心率-a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a 对称轴:坐标轴对称中心:原点A 1(-a,0),A 2(a,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)性质长轴A 1A 2的长为2a ;短轴B 1B 2的长为2bF 1F 2=2c ce =∈(0,1)a a 2=b 2+c 2a ,b ,c 的关系【知识拓展】点P (x 0,y 0)和椭圆的关系x 2y 200(1)点P (x 0,y 0)在椭圆内2+2<1.a bx2y200(2)点P(x,y)在椭圆上⇔2+2=1.a bx2y200(3)点P(x,y)在椭圆外⇔2+2>1.a b【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到两个定点F1,F2的距离的和等于常数的点的轨迹叫做椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c 为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx+ny=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)22y2x2(5)2+2=1(a≠b)表示焦点在y轴上的椭圆.(×)a bx2y2y2x2(6)2+2=1(a>b>0)与2+2=1(a>b>0)的焦距相等.(√)a b a b1.(教材改编)椭圆+=1的焦距为4,则m=________.10-m m-2答案4或8⎧⎪10-m>m-2>0,解析由题意知⎨⎪⎩10-m-m-2x2y2=4⎧⎪m-2>10-m>0,或⎨⎪⎩m-2-10-m=4,解得m=4或m=8.2.(2016·苏州检测)在平面直角坐标系xOy内,动点P到定点F(-1,0)的距离与P到定直线x=-4的距离的比值为.则动点P的轨迹C的方程为__________.答案12x2y24+=13解析设点P(x,y),由题意知化简得3x+4y=12,22x+12+y21=,|x+4|2所以动点P的轨迹C的方程为+=1.433.(2016·全国乙卷改编)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为1其短轴长的,则该椭圆的离心率为________.4x2y21答案211解析如图,由题意得,BF=a,OF=c,OB=b,OD=·2b=b.421在Rt△FOB中,OF·OB=BF·OD,即cb=a·b,2c1解得a=2c,故椭圆离心率e==.a214.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是__________.2答案x2y24+=13c1x2y2222解析由题意知c=1,e==,所以a=2,b=a-c=3.故所求椭圆方程为+=1.a2435.(教材改编)已知点P是椭圆+=1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的54三角形的面积等于1,则点P的坐标为__________________.答案x2y2⎛15⎫⎛15⎫,1⎪或 ,-1⎪⎝2⎭⎝2⎭222解析设P(x,y),由题意知c=a-b=5-4=1,所以c=1,则F1(-1,0),F2(1,0),由题意可得点P到x轴的距离为1,所以y=±1,把y1515⎛15⎫=±1代入+=1,得x=±,又x>0,所以x=,所以P点坐标为 ,1⎪或5422⎝2⎭x2y2⎛15⎫,-1⎪.⎝2⎭题型一椭圆的定义及标准方程命题点1利用定义求轨迹例1(2016·徐州模拟)如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P 的轨迹是________.答案椭圆解析由条件知PM =PF ,∴PO +PF =PO +PM =OM =R >OF .∴P 点的轨迹是以O ,F 为焦点的椭圆.命题点2利用待定系数法求椭圆方程例2(1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,并且过点P (3,0),则椭圆的方程为___________________________________________.(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为_____________________________________.答案(1)+y =1或+=19819(2)+=193解析(1)若焦点在x 轴上,x 22y 2x 2x 2y 2x 2y 2设方程为2+2=1(a >b >0).a b30∵椭圆过P (3,0),∴2+2=1,即a =3,22a b又2a =3×2b ,∴b =1,∴椭圆方程为+y =1.9x 22y 2x 2若焦点在y 轴上,设方程为2+2=1(a >b >0).a b03∵椭圆过点P (3,0),∴2+2=1,即b =3.22a b又2a =3×2b ,∴a =9,∴椭圆方程为+=1.819∴所求椭圆的方程为+y =1或+=1.9819(2)设椭圆方程为mx +ny =1(m >0,n >0且m ≠n ).∵椭圆经过点P 1,P 2,∴点P 1,P 2的坐标适合椭圆方程.⎧6m +n =1,①⎪即⎨⎪⎩3m +2n =1,②22y 2x 2x 22y 2x 21m =,⎧⎪9①②两式联立,解得⎨1n =⎪⎩3.∴所求椭圆方程为+=1.93命题点3利用定义解决“焦点三角形”问题x 2y 2x 2y 2→→例3已知F 1,F 2是椭圆C :2+2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2.a b若△PF 1F 2的面积为9,则b =________.答案3解析设PF 1=r 1,PF 2=r 2,则⎨⎧r 1+r 2=2a ,⎪222⎪⎩r 1+r 2=4c ,222222因为2r 1r 2=(r 1+r 2)-(r 1+r 2)=4a -4c =4b ,又因为S△PF 1F 2=所以b =3.引申探究1.在例3中,若增加条件“△PF 1F 2的周长为18”,其他条件不变,求该椭圆的方程.解由原题得b =a -c =9,又2a +2c =18,所以a -c =1,解得a =5,故椭圆方程为+=1.259→→2.在例3中,若将条件“PF 1⊥PF 2”“△PF 1F 2的面积为9”分别改为“∠F 1PF 2=60°”“S△PF 1F 2=33”,结果如何?解PF 1+PF 2=2a ,又∠F 1PF 2=60°,所以PF 1+PF 2-2PF 1·PF 2cos 60°=F 1F 2,即(PF 1+PF 2)-3PF 1·PF 2=4c ,所以3PF 1·PF 2=4a -4c =4b ,42所以PF 1·PF 2=b ,3又因为S△PF 1F 2=2222222222212rr 12=b =9,2x 2y 21PF 1·PF 2·sin 60︒2142332=·b ·=b =33,2323所以b =3.思维升华(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >F 1F 2这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx +ny =1(m >0,n >0,m ≠n )的形式.(3)当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求PF 1·PF 2;通过整体代入可求其面积等.(1)(2016·盐城模拟)已知两圆C 1:(x -4)+y =169,C 2:(x +4)+y =9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为_________.(2)(2016·镇江模拟)设F 1、F 2分别是椭圆+y =1的左、右焦点,若椭圆上存在一点P ,使4→→→(OP +OF 2)·PF 2=0(O 为坐标原点),则△F 1PF 2的面积是______.答案(1)+=1(2)16448解析(1)设圆M 的半径为r ,则MC 1+MC 2=(13-r )+(3+r )=16>8=C 1C 2,所以M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为+=1.6448→→→→→→→→(2)∵(OP +OF 2)·PF 2=(OP +F 1O )·PF 2=F 1P ·PF 2=0,∴PF 1⊥PF 2,∠F 1PF 2=90°.设PF 1=m ,PF 2=n ,则m +n =4,m +n =12,2mn =4,22222222x 22x 2y 2x 2y 21∴S △F 1PF 2=mn =1.2题型二椭圆的几何性质例4(1)已知点F 1,F 2是椭圆x +2y =2的左,右焦点,点P 是该椭圆上的一个动点,那么→→|PF 1+PF 2|的最小值是________.22x 2y 2(2)(2016·全国丙卷改编)已知O 为坐标原点,F 是椭圆C :2+2=1(a >b >0)的左焦点,A ,a bB 分别为椭圆C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为________.1答案(1)2(2)3→→解析(1)设P (x 0,y 0),则PF 1=(-1-x 0,-y 0),PF 2=(1-x 0,-y 0),→→∴PF 1+PF 2=(-2x 0,-2y 0),→→22∴|PF 1+PF 2|=4x 0+4y 0=22-2y 0+y 0=2-y 0+2.∵点P 在椭圆上,∴0≤y 0≤1,→→2∴当y 0=1时,|PF 1+PF 2|取最小值2.(2)设M (-c ,m ),则E 0,又B ,D ,M 三点共线,所以22222⎛⎝am ⎫am ⎛⎫,,OE 的中点为D ,则D 0,⎪⎪a -c ⎭⎝2a -c ⎭m m 1=,a =3c ,e =.a -c a +c 3思维升华(1)利用椭圆几何性质的注意点及技巧①注意椭圆几何性质中的不等关系在求与椭圆有关的一些量的范围,或者最大值、最小值时,经常用到椭圆标准方程中x ,y 的范围,离心率的范围等不等关系.②利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.(2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.x 2y 2(2016·江苏)如图,在平面直角坐标系xOy 中,F 是椭圆2+2=1(a >b >0)的a b右焦点,直线y =与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.2b答案63⎧⎪解析联立方程组⎨b y =⎪⎩2,x 2y 2+=1,a 2b 2解得B ,C 两点坐标为B -⎛⎝3b ⎫⎛3b ⎫a ,⎪,C a ,⎪,22⎭2⎭⎝23b ⎫→⎛3a b ⎫→⎛又F (c,0),则FB = -a -c ,⎪,FC = -c ,⎪,2⎭2⎭⎝2⎝2→→又由∠BFC =90°,可得FB ·FC =0,代入坐标可得3b c -a 2+=0,4422①又因为b =a -c .222c 22代入①式可化简为2=,a 3则椭圆离心率为e ==题型三直线与椭圆ca26=.33x 2y 2113e例5(2016·天津)设椭圆2+=1(a >3)的右焦点为F ,右顶点为A .已知+=,其a 3OF OA FA中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若BF ⊥HF ,且∠MOA =∠MAO ,求直线l 的斜率.113e解(1)设F (c,0),由+=,OF OA FA11即+=22c a a 3c222,可得a -c =3c .a -c222又a -c =b =3,所以c =1,因此a =4.所以椭圆的方程为+=1.43(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).x 2y 2x y ⎧⎪+=1,设B (x B ,y B ),由方程组⎨43⎪⎩y =k x -2222222消去y ,整理得(4k +3)x -16k x +16k -12=0,8k -6解得x =2或x =2.4k +38k -6-12k由题意,得x B =2,从而y B =2.4k +34k +3由(1)知,F (1,0),设H (0,y H ),12k ⎫→→⎛9-4k 有FH =(-1,y H ),BF = 2,2⎪.⎝4k +34k +3⎭→→由BF ⊥HF ,得BF ·FH =0,4k -912ky H 9-4k 所以2+2=0,解得yH =.4k +34k +312k 9-4k 因此直线MH 的方程为y =-x +.k 12k1222222y =k x -2,⎧⎪2设M (x M ,y M ),由方程组⎨19-4k y =-x +⎪k 12k⎩20k +9解得x M =.212k +1在△MAO 中,∠MOA =∠MAO MA =MO ,即(x M -2)+y M =x M +y M,20k +9化简得x M =1,即=1,212k +1解得k =-66或k =.4466或.44222222消去y ,所以直线l 的斜率为-思维升华(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则AB ==1+121+k 2[x 1+x 22-4x 1x 2]k[y 1+y 22-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.如图,已知椭圆O :+y =1的右焦点为F ,B ,C 分别为椭圆O 的上,下顶点,4x 22P 是直线l :y =-2上的一个动点(与y 轴交点除外),直线PC 交椭圆O 于另一点M .(1)当直线PM过椭圆的右焦点F时,求△FBM的面积;(2)①记直线BM,BP的斜率分别为k1,k2,求证:k1·k2为定值;→→②求PB·PM的取值范围.(1)解由题意知B(0,1),C(0,-1),焦点F(3,0),当直线PM过椭圆O的右焦点F时,直线PM的方程为x3+3=1,即y=x-1.-13y⎧⎪4+y=1,联立⎨3y=⎪⎩3x-1,2x283⎧x=⎪7,解得⎨1y=⎪⎩7⎧⎪x=0,或⎨⎪y=-1⎩(舍去),831即点M的坐标为(,).77连结BF,则直线BF的方程为x+=1,31y即x+3y-3=0.又BF=a=2,点M到直线BF的距离为83123|+3×-3|7773d===,22271+31133故△FBM的面积为S△MBF=·BF·d=×2×=.2277-1--21 (2)方法一①证明设P(m,-2),且m≠0,则直线PM的斜率为k==-,0-m m1则直线PM 的方程为y =-x -1.m1y =-x -1,⎧⎪m 联立⎨x ⎪⎩4+y =1,22428消去y ,得(1+2)x +x =0,m m8m 4-m 解得点M 的坐标为(-2,2),m +4m +44-m -12m 2+4-2m 11--23所以k 1===m ,k 2==-,8m -8m 40-mm -2m +4313所以k 1·k 2=-·m =-为定值.m 44→②解由①知,PB =(-m,3),→8m 4-m PM =(-2-m ,2+2)m +4m +4-m -12m m +12=(2,2),m +4m +432222m +12m m +12→→所以PB ·PM =(-m,3)·(-2,2)m +4m +4m 2+12m 2+3=.m 2+4令m +4=t >4,→→则PB ·PM =232t +8tt -1t 2+7t -88==t -+7.t t8因为y =t -+7在t ∈(4,+∞)上单调递增,t88→→所以PB ·PM =t -+7>4-+7=9,t 4→→故PB ·PM 的取值范围为(9,+∞).方法二①证明设点M 的坐标为(x 0,y 0)(x 0≠0),则直线PM 的方程为y =y 0+1x -1,x 0x 0y 0+1,-2),令y =-2,得点P 的坐标为(-所以k 1=y 0-1-2-13y 0+1,k 2==,x 0x 0x 0-y 0+12y 0-13y 0+13y 0-1所以k 1·k 2=·=x 0x 0x 23y 0-13==-为定值.241-y 042x 0→②解由①知,PB =(,3),y 0+1→x 0PM =(x 0+,y 0+2),y 0+1x 0x 0→→所以PB ·PM =(x 0+)+3(y 0+2)y 0+1y 0+1x 2y 0+20=+3(y 0+2)y 0+12==41-y 02y 0+22y 0+17-y 0+3(y 0+2).y 0+2y 0+1令t =y 0+1∈(0,2),→→则PB ·PM =8-tt +1t8=-t ++7.t8因为y =-t ++7在t ∈(0,2)上单调递减,t88→→所以PB ·PM =-t ++7>-2++7=9,t 2→→故PB ·PM 的取值范围为(9,+∞).8.高考中求椭圆的离心率问题考点分析离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.x 2y 2典例1(2015·福建改编)已知椭圆E :2+2=1(a >b >0)的右焦点为F ,短轴的一个端点a b4为M,直线l:3x-4y=0交椭圆E于A,B两点.若AF+BF=4,点M到直线l的距离不小于,5则椭圆E的离心率的取值范围是__________.解析左焦点F,连结FA,FB,则四边形AFBF为平行四边形.∵AF+BF=4,∴AF+AF=4,∴a=2.4b4设M(0,b),则≥,∴1≤b<2.55c离心率e==a答案 0,c2=a2a2-b2=a24-b⎛3⎤∈ 0,⎥.42⎦⎝2⎛⎝3⎤⎥2⎦x22典例2(14分)(2016·浙江)如图,设椭圆2+y=1(a>1).a(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.规范解答解(1)设直线y=kx+1被椭圆截得的线段为AM,y=kx+1,⎧⎪2由⎨x22+y=1,⎪⎩a2得(1+a k)x+2a kx=0,22222a k故x1=0,x2=-22,1+a k2a|k|2因此AM=1+k|x1-x2|=1+k.22·1+a k22[6分](2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足AP=AQ.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.2a|k1|1+k12a|k2|1+k2由(1)知AP=,AQ=,22221+a k11+a k22222[8分]2a|k1|1+k12a|k2|1+k2故=,22221+a k11+a k2所以(k1-k2)[1+k1+k2+a(2-a)k1k2]=0.由k1≠k2,k1,k2>0,得1+k1+k2+a(2-a)k1k2=0,222222222222222222⎛1⎫⎛1⎫22因此2+1⎪2+1⎪=1+a(a-2),⎝k1⎭⎝k2⎭22①因为①式关于k1,k2的方程有解的充要条件是1+a(a-2)>1,所以a> 2.[12分]因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤2,c a2-12由e==,得0<e≤.a a2所以离心率的取值范围是(0,2].2[14分]x2y21.(2016·盐城模拟)已知椭圆C:+=1(m>0)的左、右焦点分别为F1、F2,过F2的直线l3m2m交C于A、B两点,若△AF1B的周长为43,则椭圆C的方程为________.答案x2y23+=12解析∵△AF1B的周长=AF1+BF1+AF2+BF2=4a,∴4a=43,故a=3,即3m=(3),∴m=1.∴椭圆的方程为+=1.322x2y2x2y22.(2016·苏北四市一模)已知椭圆2+2=1(a>b>0),点A、B1、B2、F依次为其左顶点、下a ba2顶点、上顶点和右焦点.若直线AB2与直线B1F的交点恰在直线x=上,则椭圆的离心率为c____.1答案2解析由题意知直线AB2:-+=1,直线B1F:-=1,联立解得x=2x ya bx yc b2ac,若交点在椭a-c2ac a1222圆的右准线上,则=,即2c+ac-a=0,所以2e+e-1=0,解得e=.a-c c2x 2y 23.若对任意k ∈R ,直线y -kx -1=0与椭圆+=1恒有公共点,则实数m 的取值范围是2m__________.答案[1,2)∪(2,+∞)解析联立直线与椭圆的方程,消去y 得(2k +m )x +4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k -4(2k +m )(2-2m )≥0,即2k +m -1≥0恒成立,因为k ∈R ,所以k ≥0,则222222m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).1124.(2016·南昌模拟)已知椭圆:+x =1,过点P (,)的直线与椭圆相交于A ,B 两点,且922弦AB 被点P 平分,则直线AB 的方程为________________.答案9x +y -5=0+x =1,⎧⎪9y解析设A (x ,y ),B (x ,y ),因为A ,B 在椭圆+x =1上,所以⎨9y ⎪⎩9+x =1,221211222222y 2y 21两式相减,得即2y 21-y 29+x 1-x 2=0,+(x 1-x 2)(x 1+x 2)=0,22y 1-y 29y 1+y 211又弦AB 被点P (,)平分,22所以x 1+x 2=1,y 1+y 2=1,将其代入上式,得得y 1-y 29+x 1-x 2=0,y 1-y 2=-9,x 1-x 2即直线AB 的斜率为-9,所以直线AB 的方程为y -=-9(x -),即9x +y -5=0.5.(2016·宿迁模拟)已知F 1、F 2是椭圆+y =1的两个焦点,P 为椭圆上一动点,则使PF 1·PF 24取得最大值的点P 为__________.答案(0,1)或(0,-1)解析由椭圆定义得PF 1+PF 2=2a =4,1212x 22∴PF 1·PF 2≤(PF 1+PF 22)=4,2当且仅当PF 1=PF 2=2,即P (0,-1)或(0,1)时,PF 1·PF 2取得最大值.6.已知两定点A (-2,0)和B (2,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为________.答案226132解析由题意知,椭圆C 的离心率e =,a求e 的最大值,即求a 的最小值.由于A ,B 两点是椭圆的焦点,所以PA +PB =2a ,即在直线l 上找一点P ,使PA +PB 的值最小,设点A (-2,0)关于直线l :y =x +3的对称点为Q (x 0,y 0),y ⎧⎪x +2=-1,则⎨y x -2⎪⎩2=2+3,000解得⎨⎧x 0=-3,⎪⎪⎩y 0=1,即Q (-3,1),则PA +PB ≥QB =[-3-2]+21-026,22=26,即2a ≥26,∴a ≥24226∴e =≤=.a 1326x 2y 2227.若椭圆2+2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x +y =4的切线,切点分别a b为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________.答案+=12016x 2y 2解析设切点坐标为(m ,n ),则n -1n ·=-1,m -2m22即m +n -n -2m =0.∵m +n =4,∴2m +n -4=0,即直线AB 的方程为2x +y -4=0.22∵直线AB 恰好经过椭圆的右焦点和上顶点,∴2c -4=0,b -4=0,解得c =2,b =4,∴a =b +c =20,∴椭圆方程为+=1.20168.已知P 为椭圆+=1上的一点,M ,N 分别为圆(x +3)+y =1和圆(x -3)+y =4上2516的点,则PM +PN 的最小值为________.答案7解析由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且PF 1+PF 2=10,从而PM +PN 的最小值为PF 1+PF 2-1-2=7.9.(2017·连云港质检)椭圆+y =1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若4∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________________.2626答案(-,)33解析设椭圆上一点P 的坐标为(x ,y ),→→则F 1P =(x +3,y ),F 2P =(x -3,y ).→→∵∠F 1PF 2为钝角,∴F 1P ·F 2P <0,即x -3+y <0,222222x 2y 2x 2y 22222x 22①23228∵y =1-,代入①,得x -3+1-<0,x <2,∴x <.444326262626解得-<x <,∴x ∈(-,).3333x 2x 2x 2y 2110.已知椭圆2+2=1(a >b >0)的离心率等于,其焦点分别为A ,B ,C 为椭圆上异于长轴端a b 3sin A +sin B点的任意一点,则在△ABC 中,=________.sin C 答案3sin A +sin B CB +CA解析在△ABC 中,由正弦定理得=,因为点C 在椭圆上,所以由椭圆sin C AB sin A +sin B 2a 1定义知CA +CB =2a ,而AB =2c ,所以===3.sin C 2c ex 2y 211.(2016·南京模拟)如图,椭圆C :2+2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别a b为A ,B ,且AB =5BF .2(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解(1)由已知AB =222,255BF ,即a 2+b 2=a ,222224a +4b =5a 4a +4(a -c )=5a ,∴e ==c a 3.222x 2y 2(2)由(1)知a =4b ,∴椭圆C :2+2=1.4b b设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.2x -y +2=0,⎧⎪2由⎨x y 22+2=1⎪⎩4b b 2222消去y ,得x +4(2x +2)-4b =0,即17x +32x +16-4b =0.2Δ=322+16×17(b 2-4)>0,解得b >3216-4b x 1+x 2=-,x 1x 2=.1717→→∵OP ⊥OQ ,∴OP ·OQ =0,2217.17即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.5从而16-4b 172-128+4=0,17217解得b =1,满足b >.17∴椭圆C 的方程为+y =1.4x 22x 2y 212.(2015·安徽)设椭圆E 的方程为2+2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),a b点B 的坐标为(0,b ),点M 在线段AB 上,满足BM =2MA ,直线OM 的斜率为(1)求E 的离心率e ;5.107(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为,2求E 的方程.⎛21⎫解(1)由题设条件知,点M 的坐标为 a ,b ⎪,⎝33⎭又k OM =5b 5,从而=,102a 10c 2522进而得a =5b ,c =a -b =2b ,故e ==.a 5(2)由题设条件和(1)的计算结果可得,直线AB 的方程为1⎫⎛5 b ,-b ⎪.2⎭⎝27⎫⎛设点N 关于直线AB 的对称点S 的坐标为 x 1,⎪,2⎭⎝则线段NS 的中点T 的坐标为 17⎫⎛5x 1b +,-b +⎪.244⎭⎝4x5b +=1,点N 的坐标为yb又点T 在直线AB 上,且k NS ·k AB =-1,⎧⎪5b 从而有⎨71+b22⎪x -5b=⎩215x 1b +4217-b +44+=1,b 5.y 2解得b =3.所以a =35,故椭圆E 的方程为+=1.459x 2x 2y 2213.(2016·南京市学情调研)如图,已知椭圆2+2=1 (a >b >0)的离心率e =,一条准线a b 2方程为x =2.过椭圆的上顶点A 作一条与x 轴、y 轴都不垂直的直线交椭圆于另一点P ,P 关于x 轴的对称点为Q .(1)求椭圆的方程;(2)若直线AP ,AQ 与x 轴交点的横坐标分别为m ,n ,求证:mn 为常数,并求出此常数.2c 2a 解(1)因为=,=2,a 2c所以a =2,c =1,所以b =a -c =1.故椭圆的方程为+y =1.2(2)方法一设P 点坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1).因为k AP =22x 22y 1-1y 1-1=,x 1-0x 1y 1-1x +1.x 1.所以直线AP 的方程为y =令y =0,解得m =-x 1y 1-1-y 1-1y 1+1因为k AQ ==-,x 1-0x 1所以直线AQ 的方程为y =-令y =0,解得n =y 1+1x +1.x 1x 1y 1+1.2-x 1x 1x 1所以mn =·=2.y 1-1y 1+11-y 1又因为(x 1,y 1)在椭圆+y =1上,2所以+y =1,即1-y =,22所以2=2,即mn =2,1-y 1所以mn 为常数,且常数为2.方法二设直线AP 的斜率为k (k ≠0),则AP 的方程为y =kx +1,1令y =0得m =-.x 22x 212121x 21x 21ky =kx +1,⎧⎪2联立方程组⎨x 2+y =1,⎪⎩222消去y 得(1+2k )x +4kx =0,解得x A =0,x P =-4k 2,1+2k 21-2k 所以y P =k ·x P +1=2,1+2k 4k 1-2k 则Q 点的坐标为(-2,-2),1+2k 1+2k 1-2k -2-11+2k 1所以k AQ ==,4k 2k -21+2k 1故直线AQ 的方程为y =x +1.2k令y =0得n =-2k ,1所以mn =(-)·(-2k )=2,22k所以mn 为常数,且常数为2.。

2018届高三数学一轮复习:第九章 平面解析几何 第十节 圆锥曲线的综合问题

2018届高三数学一轮复习:第九章 平面解析几何 第十节 圆锥曲线的综合问题

第十节圆锥曲线的综合问题A组基础题组1.(2015课标Ⅱ文,20,12分)已知椭圆C:+=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值.2.已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.3.(2016云南昆明两区七校调研)已知椭圆C:+=1(a>b>0)的左,右顶点分别为A,B,其离心率e=,点M为椭圆上的一个动点,△MAB面积的最大值是2.(1)求椭圆的方程;(2)若过椭圆C的右顶点B的直线l与椭圆的另一个交点为D,线段BD的垂直平分线与y轴交于点P,当·=0时,求点P的坐标.B组提升题组4.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,证明直线AE过定点,并求出定点坐标.5.(2016甘肃兰州实战考试)已知椭圆+=1(a>b>0)的离心率为,且经过点P,过它的两个焦点F1,F2分别作直线l1与l2,l1交椭圆于A,B两点,l2交椭圆于C,D两点,且l1⊥l2.(1)求椭圆的标准方程;(2)求四边形ACBD的面积S的取值范围.答案全解全析A组基础题组1.解析(1)由题意有=,+=1,解得a2=8,b2=4,所以椭圆C的方程为+=1.(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把y=kx+b代入+=1得(2k2+1)x2+4kbx+2b2-8=0.故x M==,y M=kx M+b=,于是直线OM的斜率k OM==-,即k OM·k=-,所以直线OM的斜率与直线l的斜率的乘积为定值.2.解析(1)椭圆的短轴长2b=2⇒b=1,因为两个焦点和短轴的两个端点恰为一个正方形的顶点,所以b=c⇒a2=b2+c2=2,故椭圆的方程为+y2=1.(2)存在.①若l与x轴重合,显然M与原点重合,m=0;②若直线l的斜率k≠0,则可设l:y=k(x-1),设P(x1,y1),Q(x2,y2),PQ的中点为N,则⇒x2+2k2(x2-2x+1)-2=0,化简得(1+2k2)x2-4k2x+2k2-2=0.x1+x2=⇒PQ的中点的横坐标为,代入l:y=k(x-1)可得:PQ的中点N的坐标为,由|MP|=|MQ|得到MN⊥PQ,则=-,整理得m=,所以m==∈.综合①②得到m∈.3.解析(1)由题意可知e==,×2ab=2,a2=b2+c2,解得a=2,b=,c=1,所以椭圆的方程是+=1.(2)直线l的斜率存在.由(1)知B(2,0),设直线BD的方程为y=k(x-2),D(x1,y1),把y=k(x-2)代入椭圆方程+=1,整理得(3+4k2)x2-16k2x+16k2-12=0,所以2+x1=⇒x1=,则D,所以BD中点的坐标为,则直线BD的垂直平分线的方程为y-=-,令x=0,y=,故P.又·=0,即·=0,整理得=0⇒64k4+28k2-36=0,解得k=±.故P的坐标为或.B组提升题组4.解析(1)由题意知F.设D(t,0)(t>0),则FD的中点坐标为.又|FA|=|FD|,则由抛物线的定义知,当点A的横坐标为3时,有3+=,解得t=3+p或t=-3(舍去).此时,由题意得=3,可得p=2.所以抛物线C的方程为y2=4x.(2)由(1)知F(1,0),设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,所以|x D-1|=x0+1,结合x D>0,x0>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,所以可设直线l1的方程为y=-x+b,与抛物线方程联立,消去x得y2+y-=0,由题意可知Δ=+=0,得b=-.设E(x E,y E),则y E=-,x E=,当≠4时,k AE==-=,可得直线AE的方程为y-y0=(x-x0),结合=4x 0,整理可得y=(x-1),则直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).5.解析(1)由=,得a=2c,∴a2=4c2,b2=3c2,将点P代入椭圆方程得c2=1,故所求椭圆方程为+=1.(2)若l1与l2中有一条直线的斜率不存在,则另一条直线的斜率为0,此时四边形的面积为S=6.若l1与l2的斜率都存在,设l1的斜率为k(k≠0),则l2的斜率为-.则直线l1的方程为y=k(x+1),设A(x1,y1),B(x2,y2),联立消去y整理得,(4k2+3)x2+8k2x+4k2-12=0,Δ=64k4-4(3+4k2)(4k2-12)=144k2+144>0,∴x1+x2=-,x1·x2=,∴|x1-x2|=,∴|AB|=|x1-x2|=,同理可得|CD|=,∴S=|AB|·|CD|=,令k2=t∈(0,+∞),∴S===6-≥6-=,∴S∈.综上可知,四边形ABCD面积的取值范围是.。

精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.6双曲线教师用书理苏教版

精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.6双曲线教师用书理苏教版

第九章平面解析几何 9.6 双曲线教师用书理苏教版1.双曲线定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a,c为常数且a>0,c>0.(1)当2a<F1F2时,P点的轨迹是双曲线;(2)当2a=F1F2时,P点的轨迹是两条射线;(3)当2a>F1F2时,P点不存在.2.双曲线的标准方程和几何性质【知识拓展】巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,AB =43,则C 的实轴长为________.答案 4解析 由题设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a2=1和x =-4,得A (-4,16-a 2),B (-4,-16-a 2),∴AB =216-a 2=43, ∴a =2,∴2a =4.∴C 的实轴长为4.3.(2016·无锡一模)已知焦点在x 轴上的双曲线的渐近线方程为y =±13x ,那么双曲线的离心率为________. 答案103解析 根据题意,设双曲线的方程为x 2a 2-y 2b 2=1,则b a =13,所以ca=1+b a2=103,即双曲线的离心率为103. 4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得MC 1-AC 1=MA ,MC 2-BC 2=MB ,因为MA =MB , 所以MC 1-AC 1=MC 2-BC 2,即MC 2-MC 1=BC 2-AC 1=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于C 1C 2=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,PF 1=2PF 2,则cos∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有PF 1-PF 2 =PF 2=2a =22, ∴PF 1=2PF 2=42,则cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=22+22-422×42×22=34.引申探究1.本例中,若将条件“PF 1=2PF 2”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22, 在△F 1PF 2中,由余弦定理,得cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=12,所以PF 1·PF 2=8, 所以12F PF S △=12PF 1·PF 2·sin 60°=2 3.2.本例中,若将条件“PF 1=2PF 2”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22,由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 所以在△F 1PF 2中,有PF 21+PF 22=F 1F 22, 即PF 21+PF 22=16, 所以PF 1·PF 2=4, 所以12F PF S △=12PF 1·PF 2=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与PF 1·PF 2的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则AP +AF 2的最小值为__________.(2)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,双曲线上存在一点P 使得PF 1+PF 2=3b ,PF 1·PF 2=94ab ,则该双曲线的离心率为________.答案 (1)37-2 5 (2)53解析 (1)由题意知,AP +AF 2=AP +AF 1-2a ,要求AP +AF 2的最小值,只需求AP +AF 1的最小值,当A ,P ,F 1三点共线时,取得最小值, 则AP +AF 1=PF 1=[3--2+-2=37,∴AP +AF 2的最小值为AP +AF 1-2a =37-2 5.(2)不妨设P 为双曲线右支上一点,PF 1=r 1,PF 2=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =ca =a 2+b 2a 2=b a2+1432+1=53.题型二 双曲线的几何性质例4 (1)(2016·盐城三模)若圆x 2+y 2=r 2过双曲线x 2a 2-y 2b2=1的右焦点F ,且圆与双曲线的渐近线在第一、四象限的交点分别为A ,B ,当四边形OAFB 为菱形时,双曲线的离心率为________.(2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)2 (2)32解析 (1)若四边形OAFB 为菱形,且点A 在圆x 2+y 2=r 2上,则点A 坐标为(c 2,32c ),此时r =c .又点A 在渐近线上,所以32c =b a ·c 2,即ba=3,所以e = 1+ba2=2.(2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-b ax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a,y =2pb 2a2,∴A ⎝ ⎛⎭⎪⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝ ⎛⎭⎪⎫0,p 2,∴k AF =2pb2a 2-p22pba.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, 即2pb2a 2-p22pb a·⎝ ⎛⎭⎪⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2016·全国甲卷改编)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M在E 上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为________.答案2解析 离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin∠F 1MF 2sin∠MF 1F 2-sin∠MF 2F 1=2231-13= 2.题型三 直线与双曲线的综合问题例5 (2016·苏州模拟)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2有两个不同的交点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1).思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.在平面直角坐标系xOy 中,已知双曲线C :x 24-y 23=1.设过点M (0,1)的直线l 与双曲线C 交于A ,B 两点.若AM →=2MB →,则直线l 的斜率为________. 答案 ±12解析 设A (x 1,y 1),B (x 2,y 2), 则x 214-y 213=1,x 224-y 223=1. 又AM →=2MB →,AM →=(-x 1,1-y 1),MB →=(x 2,y 2-1).所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-2,即⎩⎪⎨⎪⎧x 1=-2x 2,y 1=3-2y 2,代入双曲线方程联立解得⎩⎪⎨⎪⎧x 2=-2,y 2=0或⎩⎪⎨⎪⎧x 2=2,y 2=0,所以A (4,3),B (-2,0)或A (-4,3),B (2,0),故k =3-04+2=12或k =3-0-4-2=-12,即直线l 的斜率为±12.10.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2. 当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2016·泰州联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C 的方程为________________. 答案x 220-y 25=1 解析 依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=ba×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.2.(2016·全国乙卷改编)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是________. 答案 (-1,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3.3.(2016·盐城模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若AB =5,则△ABF 1的周长为________. 答案 26解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义AF 1-AF 2=BF 1-BF 2=2a =8,∴AF 1+BF 1=AF 2+BF 2+16=21,∴△ABF 1的周长为AF 1+BF 1+AB =21+5=26.4.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.5.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是____________. 答案 (1,2)解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0),∵△ABE 是锐角三角形,∴EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a)·(-c -a ,-b 2a)>0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0, ∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2).6.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则PF 1+PF 2的取值范围是________. 答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而F 1F 2=4,由对称性不妨设P 在右支上,设PF 2=m ,则PF 1=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧m +2<m 2+42,42<m +2+m 2,解得-1+7<m <3,又PF 1+PF 2=2m +2, ∴27<2m +2<8.7.(2016·南京三模)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________. 答案5解析 不妨设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),设F (-c,0),线段PF 的中点为(0,b ),则P (c,2b ).由点P 在双曲线上,得c 2a2-4=1,所以e = 5.8.设双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为双曲线上位于第一象限内的一点,且△PF 1F 2的面积为6,则点P 的坐标为____________. 答案 (655,2)解析 由双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,所以F 1F 2=6,设P (x ,y ) (x >0,y >0),因为△PF 1F 2的面积为6,所以12F 1F 2·y =12×6×y =6,解得y =2,将y =2代入x 24-y25=1得x=655.所以P (655,2). 9.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,若在双曲线的右支上存在一点M ,使得(OM →+OF 2→)·F 2M →=0(其中O 为坐标原点),且|MF 1→|=3|MF 2→|,则双曲线的离心率为______. 答案3+1解析 ∵F 2M →=OM →-OF 2→,∴(OM →+OF 2→)·F 2M →=(OM →+OF 2→)·(OM →-OF 2→)=0, 即OM →2-OF 2→2=0,∴|OF 2→|=|OM →|=c ,在△MF 1F 2中,边F 1F 2上的中线等于F 1F 2的一半,可得MF 1→⊥MF 2→. ∵|MF 1→|=3|MF 2→|,∴可设|MF 2→|=λ(λ>0),|MF 1→|=3λ,得(3λ)2+λ2=4c 2,解得λ=c , ∴|MF 1→|=3c ,|MF 2→|=c ,∴根据双曲线定义得2a =|MF 1→|-|MF 2→|=(3-1)c , ∴双曲线的离心率e =2c2a=3+1.10.(2015·课标全国Ⅰ改编)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是______________. 答案 ⎝ ⎛⎭⎪⎫-33,33 解析 由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知PF 1-PF 2=2a . 又PF 1=4PF 2,∴PF 1=83a ,PF 2=23a .在△PF 1F 2中,由余弦定理,得 cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值,∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.12.(2015·课标全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 的周长最小时,该三角形的面积为________.答案 12 6解析 设左焦点为F 1,PF -PF 1=2a =2,∴PF =2+PF 1,△APF 的周长为AF +AP +PF =AF +AP +2+PF 1,△APF 周长最小即为AP +PF 1最小,当A 、P 、F 1三点在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S △APF =S △AF 1F -S △F 1PF =12 6.13.(2016·江西丰城中学模拟)一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于R 点,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解 ∵e =3,∴b 2=2a 2, ∴双曲线方程可化为2x 2-y 2=2a 2. 设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0,∴Δ=4m 2+4(m 2+2a 2)>0, ∴直线l 一定与双曲线相交. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.∵PR →=3RQ →,x R =x 1+3x 24=0,∴x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2. 消去x 2,得m 2=a 2.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m ) =2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3, ∴m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.*14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),且b =3a .(1)求双曲线C 的方程;(2)设经过焦点F 2的直线l 的一个法向量为(m,1),当直线l 与双曲线C 的右支交于不同的两点A ,B 时,求实数m 的取值范围,并证明AB 中点M 在曲线3(x -1)2-y 2=3上; (3)设(2)中直线l 与双曲线C 的右支交于A ,B 两点,问是否存在实数m ,使得∠AOB 为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由. 解 (1)由已知,得c =2,c 2=a 2+b 2,b =3a , ∴4=a 2+3a 2,∴a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.(2)由题意,得直线l :m (x -2)+y =0,由⎩⎪⎨⎪⎧y =-mx +2m ,x 2-y 23=1,得(3-m 2)x 2+4m 2x -4m 2-3=0. 由Δ>0,得4m 4+(3-m 2)(4m 2+3)>0, 12m 2+9-3m 2>0,即m 2+1>0恒成立. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4m 2m 2-3,x 1x 2=4m 2+3m 2-3.又⎩⎪⎨⎪⎧x 1+x 2>0,x 1·x 2>0,∴⎩⎪⎨⎪⎧4m2m 2-3>0,4m 2+3m 2-3>0,∴m 2>3,∴m ∈(-∞,-3)∪(3,+∞). ∵x 1+x 22=2m 2m 2-3,y 1+y 22=-2m 3m 2-3+2m=-6mm 2-3, ∴AB 的中点M (2m 2m 2-3,-6mm 2-3),∵3(2m 2m 2-3-1)2-36m 2m 2-2 =3×m 2+2m 2-2-36m 2m 2-2=3×m 4+6m 2+9-12m 2m 2-2=3,∴M 在曲线3(x -1)2-y 2=3上. (3)设A (x 1,y 1),B (x 2,y 2),假设存在实数m ,使∠AOB 为锐角,则OA →·OB →>0, ∴x 1x 2+y 1y 2>0.∵y 1y 2=(-mx 1+2m )(-mx 2+2m ) =m 2x 1x 2-2m 2(x 1+x 2)+4m 2, ∴(1+m 2)x 1x 2-2m 2(x 1+x 2)+4m 2>0, ∴(1+m 2)(4m 2+3)-8m 4+4m 2(m 2-3)>0,即7m 2+3-12m 2>0,∴m 2<35,与m 2>3矛盾,∴不存在实数m ,使得∠AOB 为锐角.。

精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时范围最值问题教师用

精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.9圆锥曲线的综合问题第2课时范围最值问题教师用

第2课时 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,FM =433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22, 解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由FM =c +c2+⎝⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =y x +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t x +,x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x2x +2>2,解得-32<x <-1或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0, 因此m <0,于是m =- 2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2016·扬州模拟)如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是椭圆上一点,点M 在PF 1上,且满足F 1M →=λMP →(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆的方程为x 28+y 24=1,且点P 的坐标为(2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围. 解 (1)因为椭圆的方程为x 28+y 24=1,所以点F 1的坐标为(-2,0),点F 2的坐标为(2,0),所以k OP =22,2F M k =-2,1F M k =24, 所以直线F 2M 的方程为y =-2(x -2), 直线F 1M 的方程为y =24(x +2). 联立⎩⎪⎨⎪⎧y =-2x -,y =24x +, 解得x =65,所以点M 的横坐标为65.(2)设点P 的坐标为(x 0,y 0),点M 的坐标为(x M ,y M ), 因为F 1M →=2MP →,所以F 1M →=23(x 0+c ,y 0)=(x M +c ,y M ),所以点M 的坐标为(23x 0-13c ,23y 0),F 2M →=(23x 0-43c ,23y 0).因为PO ⊥F 2M ,OP →=(x 0,y 0),所以(23x 0-43c )x 0+23y 20=0,即x 20+y 20=2cx 0.联立⎩⎪⎨⎪⎧x 20+y 20=2cx 0,x 20a 2+y 2b2=1,消去y 0,得c 2x 20-2a 2cx 0+a 2(a 2-c 2)=0, 解得x 0=a a +c c 或x 0=a a -cc. 因为-a <x 0<a ,所以x 0=a a -cc∈(0,a ), 所以0<a 2-ac <ac ,解得e >12.又椭圆离心率e ∈(0,1),故椭圆离心率e 的取值范围为(12,1).题型二 最值问题命题点1 利用三角函数有界性求最值例2 (2016·徐州模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则AF ·BF 的最小值是_____. 答案 4解析 设直线AB 的倾斜角为θ,可得AF =21-cos θ,BF =21+cos θ,则AF ·BF =21-cos θ×21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为_____________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+-2=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2016·山东)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程.(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k为定值; ②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c . 由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ).所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3m x 0.此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2). 由①知直线PA 的方程为y =kx +m ,则 直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=m 2-k 2+x 0,所以y 1=kx 1+m =2km 2-k 2+x 0+m .同理x 2=m 2-k 2+x 0,y 2=-6k m 2-k 2+x 0+m . 所以x2-x 1=m 2-k 2+x 0-m 2-k 2+x 0=-32k 2m 2-k 2+k 2+x 0,y 2-y 1=-6k m 2-k 2+x 0+m -2k m 2-k 2+x 0-m =-8kk 2+m 2-k 2+k 2+x 0,所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上,所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66, 即m =147,符合题意.所以直线AB 的斜率的最小值为62. 思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2017·扬州预测)已知圆(x -a )2+(y +1-r )2=r 2(r >0)过点F (0,1),圆心M的轨迹为C .(1)求轨迹C 的方程;(2)设P 为直线l :x -y -2=0上的点,过点P 作曲线C 的两条切线PA ,PB ,当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求AF ·BF 的最小值. 解 (1)依题意,由圆过定点F 可知轨迹C 的方程为x 2=4y . (2)抛物线C 的方程为x 2=4y ,即y =14x 2,求导得y ′=12x .设A (x 1,y 1),B (x 2,y 2)(其中y 1=x 214,y 2=x 224),则切线PA ,PB 的斜率分别为12x 1,12x 2,所以切线PA 的方程为y -y 1=x 12(x -x 1), 即y =x 12x -x 212+y 1,即x 1x -2y -2y 1=0.同理可得切线PB 的方程为x 2x -2y -2y 2=0. 因为切线PA ,PB 均过点P (x 0,y 0), 所以x 1x 0-2y 0-2y 1=0,x 2x 0-2y 0-2y 2=0,所以(x 1,y 1),(x 2,y 2)为方程x 0x -2y 0-2y =0的两组解. 所以直线AB 的方程为x 0x -2y -2y 0=0. (3)由抛物线定义可知AF =y 1+1,BF =y 2+1, 所以AF ·BF =(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1,联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0,由一元二次方程根与系数的关系可得y 1+y 2=x 20-2y 0,y 1y 2=y 20,所以AF ·BF =y 1y 2+(y 1+y 2)+1=y 20+x 20-2y 0+1. 又点P (x 0,y 0)在直线l 上,所以x 0=y 0+2, 所以y 20+x 20-2y 0+1=2y 20+2y 0+5=2(y 0+12)2+92,所以当y 0=-12时,AF ·BF 取得最小值,且最小值为92.1.(2016·昆明两区七校调研)过抛物线y 2=x 的焦点F 的直线l 交抛物线于A ,B 两点,且直线l 的倾斜角θ≥π4,点A 在x 轴上方,则FA 的取值范围是__________.答案 (14,1+22]解析 记点A 的横坐标是x 1,则有AF =x 1+14=(14+AF ·cos θ)+14=12+AF ·cos θ, AF (1-cos θ)=12,AF =1-cos θ.由π4≤θ<π得-1<cos θ≤22,2-2≤2(1-cos θ)<4,14<1-cos θ≤12-2=1+22, 即AF 的取值范围是(14,1+22].2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为________. 答案125解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求MP 的最小值可以转化为求OP 的最小值,当OP 取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.3.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,对于左支上任意一点P 都有PF 22=8a ·PF 1(a 为实半轴长),则此双曲线的离心率e 的取值范围是__________.答案 (1,3]解析 由P 是双曲线左支上任意一点及双曲线的定义,得PF 2=2a +PF 1,所以PF 22PF 1=PF 1+4a2PF 1+4a =8a ,所以PF 1=2a ,PF 2=4a ,在△PF 1F 2中,PF 1+PF 2≥F 1F 2, 即2a +4a ≥2c ,所以e =c a≤3. 又e >1,所以1<e ≤3.4.(2016·宿迁质检)若点O 和点F 分别为椭圆x 29+y 28=1的中点和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最小值为________. 答案 6解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ), ∴OP →·FP →=x (x +1)+y 2=x 2+x +72-8x 29=19·⎝ ⎛⎭⎪⎫x +922+234. ∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254, ∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536, ∴6≤19·⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12.故最小值为6.5.(2017·郑州第一次质量预测)已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1, ∴e 21=1-1m +2. 由m >0,得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1, ∴22<e 1<1. 6.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是________. 答案 3解析 依题意不妨设A (x 1,x 1),B (x 2,-x 2),OA →·OB →=2⇒x 1x 2-x 1x 2=2⇒x 1x 2=2或x 1x 2=-1(舍去).当x 1=x 2时,有x 1=x 2=2,则S △ABO +S △AFO =22+28=1728;当x 1≠x 2时,直线AB 的方程为y -x 1=x 1+x 2x 1-x 2(x -x 1),则直线AB 与x 轴的交点坐标为(2,0).于是S △ABO +S △AFO =12×2×(x 1+x 2)+12×14x 1=98x 1+x 2≥298x 1x 2=3(当且仅当98x 1=x 2时取“=”),而1728>3,故填3.7.已知椭圆C 1:y 2a 2+x 2b2=1(a >b >0)的右顶点为A (1,0),过C 1的焦点且垂直长轴的弦长为1.(1)求椭圆C 1的方程;(2)设点P 在抛物线C 2:y =x 2+h (h ∈R )上,C 2在点P 处的切线与C 1交于M ,N 两点.当线段AP 的中点与MN 的中点的横坐标相等时,求h 的最小值. 解 (1)由题意,得⎩⎪⎨⎪⎧b =1,2·b 2a=1.从而⎩⎪⎨⎪⎧a =2,b =1.因此,所求的椭圆C 1的方程为y 24+x 2=1.(2)如图,设M (x 1,y 1),N (x 2,y 2),P (t ,t 2+h ),则抛物线C 2在点P 处的切线斜率为y ′| x =t =2t . 直线MN 的方程为y =2tx -t 2+h .将上式代入椭圆C 1的方程中,得4x 2+(2tx -t 2+h )2-4=0, 即4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0.① 因为直线MN 与椭圆C 1有两个不同的交点,所以①式中的Δ1=16[-t 4+2(h +2)t 2-h 2+4]>0.② 设线段MN 的中点的横坐标是x 3,则x 3=x 1+x 22=t t 2-h +t2. 设线段PA 的中点的横坐标是x 4,则x 4=t +12.由题意,得x 3=x 4, 即t 2+(1+h )t +1=0.③由③式中的Δ2=(1+h )2-4≥0,得h ≥1或h ≤-3. 当h ≤-3时,h +2<0,4-h 2<0, 则不等式②不成立,所以h ≥1. 当h =1时,代入方程③得t =-1, 将h =1,t =-1代入不等式②,检验成立. 所以,h 的最小值为1.8. (2016·苏北四市联考)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =12,左顶点为A (-4,0),过点A 作斜率为k (k ≠0)的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的标准方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.(3)若过点O 作直线l 的平行线交椭圆C 于点M ,求AD +AE OM 的最小值. 解 (1)因为左顶点为A (-4,0),所以a =4,又e =12,所以c =2. 又因为b 2=a 2-c 2=12,所以椭圆C 的标准方程为x 216+y 212=1. (2)直线l 的方程为y =k (x +4), 联立⎩⎪⎨⎪⎧x 216+y 212=1,y =k x +,得x 216+[k x +212=1, 化简,得(x +4)[(4k 2+3)x +16k 2-12]=0, 所以x 1=-4,x 2=-16k 2+124k 2+3. 当x =-16k 2+124k 2+3时,y =k (-16k 2+124k 2+3+4)=24k 4k 2+3, 所以点D 的坐标为(-16k 2+124k 2+3,24k 4k 2+3). 因为P 为AD 的中点,所以点P 的坐标为(-16k 24k 2+3,12k 4k 2+3), 则k OP =-34k(k ≠0). 直线l 的方程为y =k (x +4),令x =0,得点E 的坐标为(0,4k ).假设存在定点Q (m ,n )(m ≠0),使得OP ⊥EQ ,则k OP k EQ =-1,即-34k ·n -4k m =-1,所以(4m +12)k -3n =0,所以⎩⎪⎨⎪⎧ 4m +12=0,-3n =0, 解得⎩⎪⎨⎪⎧ m =-3,n =0,因此定点Q 的坐标为(-3,0).(3)因为OM ∥l ,所以OM 的方程可设为y =kx ,联立⎩⎪⎨⎪⎧ x 216+y 212=1,y =kx ,得点M 的横坐标为x =±434k 2+3. 由OM ∥l ,得AD +AE OM =|x D -x A |+|x E -x A ||x M |=x D -2x A |x M |=-16k 2+124k 2+3+8434k 2+3=13·4k 2+94k 2+3 =13(4k 2+3+64k 2+3)≥22, 当且仅当4k 2+3=64k 2+3,即k =±32时取等号. 所以当k =±32时,AD +AE OM取得最小值为2 2. 9.如图,O 为坐标原点,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为e 1;双曲线C 2:x 2a 2-y 2b 2=1的左,右焦点分别为F 3,F4,离心率为e 2.已知e 1e 2=32,且F 2F 4=3-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与C 2交于P ,Q 两点时,求四边形APBQ 面积的最小值.解 (1)因为e 1e 2=32,所以 a 2-b 2a ·a 2+b 2a =32,即a 4-b 4=34a 4,因此a 2=2b 2,从而F 2(b,0),F 4(3b,0),于是3b -b =F 2F 4=3-1,所以b =1,a 2=2.故C 1,C 2的方程分别为x 22+y 2=1,x 22-y 2=1. (2)因为AB 不垂直于y 轴,且过点F 1(-1,0), 故可设直线AB 的方程为x =my -1. 由⎩⎪⎨⎪⎧ x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. 易知此方程的判别式大于0.设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是上述方程的两个实根,所以y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. 因此x 1+x 2=m (y 1+y 2)-2=-4m 2+2, 于是AB 的中点为M (-2m 2+2,m m 2+2),故直线PQ 的斜率为-m 2,PQ 的方程为y =-m 2x , 即mx +2y =0. 由⎩⎪⎨⎪⎧ y =-m 2x ,x 22-y 2=1得(2-m 2)x 2=4, 所以2-m 2>0,且x 2=42-m 2,y 2=m 22-m 2, 从而PQ =2x 2+y 2=2 m 2+42-m2. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4. 因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =m 2+y 1-y 2|m 2+4. 又因为|y 1-y 2|=y 1+y 22-4y 1y 2=22·1+m 2m 2+2, 所以2d =22·1+m 2m 2+4. 故四边形APBQ 的面积S =12·PQ ·2d =22·1+m 22-m 2=22·-1+32-m 2. 而0<2-m 2≤2,故当m =0时,S 取得最小值2. 综上所述,四边形APBQ 面积的最小值为2.。

高考数学一轮复习 第九章 平面解析几何 热点探究训练6

高考数学一轮复习 第九章 平面解析几何 热点探究训练6

第九章 平面解析几何 热点探究训练6 高考中的圆锥曲线问题A 组 基础达标 (建议用时:30分钟)1.(2017·扬州模拟)如图3,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,P 是椭圆上一点,O 为坐标原点,M 在PF 1上,F 1M →=λMP →(λ∈R ),PO ⊥F 2M .图3(1)若椭圆方程为x 28+y 24=1,P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围. 【导学号:62172281】 [解] (1)∵x 28+y 24=1,∴F 1(-2,0),F 2(2,0),∴k OP =22,kF 2M =-2,kF 1M =24. ∴直线F 2M 的方程为y =-2(x -2),直线F 1M 的方程为:y =24(x +2).由⎩⎪⎨⎪⎧y =-2x -y =24x +解得x =65,∴点M 的横坐标为65.6分(2)设P (x 0,y 0),M (x M ,y M ),∵F 1M →=2MP →,∴F 1M →=23(x 0+c ,y 0)=(x M +c ,y M ),∴M ⎝ ⎛⎭⎪⎫23x 0-13c ,23y 0,F 2M →=⎝ ⎛⎭⎪⎫23x 0-43c ,23y 0.∵PO ⊥F 2M ,OP →=(x 0,y 0),∴⎝ ⎛⎭⎪⎫23x 0-43c x 0+23y 20=0,即x 20+y 20=2cx 0.联立方程得⎩⎪⎨⎪⎧x 20+y 20=2cx 0x 20a 2+y 2b2=1,消去y 0得:c 2x 20-2a 2cx 0+a 2(a 2-c 2)=0.解得x 0=a a +c c 或x 0=a a -cc. ∵-a <x 0<a ,∴x 0=a a -c c∈(0,a ),∴0<a 2-ac <ac, 解得e >12.综上,椭圆离心率e 的取值范围为⎝ ⎛⎭⎪⎫12,1.14分 2.(2017·无锡期末)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,一个焦点到相应的准线的距离为3,圆N 的方程为(x -c )2+y 2=a 2+c 2(c 为半焦距),直线l :y =kx +m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆方程和直线方程; (2)试在圆N 上求一点P ,使PBPA=2 2. [解] (1)由题意知⎩⎪⎨⎪⎧c a =12,a2c -c =3,解得a =2,c =1,所以b =3,所以椭圆M 的方程为:x 24+y 23=1.圆N 的方程为(x -1)2+y 2=5.由直线l :y =kx +m 与椭圆M 只有一个公共点,所以由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(3+4k 2)x2+8kmx +4m 2-12=0,①所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0得m 2=3+4k 2.② 由直线l :y =kx +m 与N 只有一个公共点,得|k +m |1+k2=5,即k 2+2km +m 2=5+5k 2,③ 将②代入③得km =1,④由②,④且k >0,得:k =12,m =2.所以直线方程为:y =12x +2.6分(2)将k =12,m =2代入①可得A ⎝⎛⎭⎪⎫-1,32, 又过切点B 的半径所在的直线l ′为:y =-2x +2,所以得交点B (0,2),设P (x ,y ),因为PBPA=22,则x 20+y 0-2x +2+⎝ ⎛⎭⎪⎫y -322=8,化简得:7x 20+7y 20+16x 0-20y 0+22=0,⑤又P (x ,y )满足x 20+y 20-2x 0=4,⑥将⑤-7×⑥得:3x 0-2y 0+5=0,即y 0=3x 0+52.⑦将⑦代入⑥得:13x 20+22x 0+9=0,解得x 0=-1或x 0=-913,所以P (-1,1)或P ⎝ ⎛⎭⎪⎫-913,1913.14分B 组 能力提升 (建议用时:15分钟)1.(2017·泰州中学高三摸底考试)已知椭圆Γ:x 24+y 2=1.(1)椭圆Γ的短轴端点分别为A ,B (如图4),直线AM ,BM 分别与椭圆Γ交于E ,F 两点,其中点M ⎝ ⎛⎭⎪⎫m ,12满足m ≠0,且m ≠± 3. ①证明直线EF 与y 轴交点的位置与m 无关; ②若△BME 面积是△AMF 面积的5倍,求m 的值.(2)若圆O :x 2+y 2=4.l 1,l 2是过点P (0,-1)的两条互相垂直的直线,其中l 1交圆O 于T ,R 两点,l 2交椭圆Γ于另一点Q .求△TRQ 面积取最大值时直线l 1的方程. 【导学号:62172282】图4[解] (1)①因为A (0,1),B (0,-1),M ⎝ ⎛⎭⎪⎫m ,12,且m ≠0,∴直线AM 的斜率为k 1=-12m ,直线BM 的斜率为k 2=32m,∴直线AM 的方程为y =-12m x +1,直线BM 的方程为y =32mx -1,由⎩⎪⎨⎪⎧x 24+y 2=1,y =-12m x +1,得(m 2+1)x 2-4mx =0,∴x =0,x =4m m 2+1,∴E ⎝ ⎛⎭⎪⎫4m m 2+1,m 2-1m 2+1,由⎩⎪⎨⎪⎧x 24+y 2=1,y =32m x -1,得(m 2+9)x 2-12mx =0,∴x =0或x =12m m 2+9,∴F ⎝ ⎛⎭⎪⎫12m m 2+9,9-m 2m 2+9;据已知m ≠0,m 2≠3, ∴直线EF 的斜率k =m 2-11+m 2-9-m 29+m 24m 1+m 2-12m 9+m2=m 2+m 2--4m m 2-=-m 2+34m,∴直线EF 的方程为y -m 2-1m 2+1=-m 2+34m ⎝ ⎛⎭⎪⎫x -4m m 2+1, 令x =0,得y =2,∴EF 与y 轴交点的位置与m 无关. ②S △AMF =12MA ·MF sin ∠AMF ,S △BME =12MB ·ME sin ∠BME ,∠AMF =∠BME ,5S △AMF =S △BME ,∴5MA ·MF =MB ·ME , ∴5MA ME =MB MF,∴5m4m m 2+1-m =m12m9+m2-m .∵m ≠0,∴整理方程得1m 2+1=15m 2+9-1,即(m 2-3)(m 2-1)=0, 又有m ≠±3,∴m 2-3≠0,∴m 2=1,∴m =±1为所求.8分(2)因为直线l 1⊥l 2,且都过点P (0,-1),所以设直线l 1:y =kx -1,即kx -y -1=0, 直线l 2:y =-1kx -1,即x +ky +k =0,所以圆心(0,0)到直线l 1:y =kx -1,即kx -y -1=0的距离d =11+k2,所以直线l 1被圆x 2+y 2=4所截的弦 TR =24-d 2=23+4k21+k2; 由⎩⎪⎨⎪⎧x +ky +k =0,x 24+y 2=1,得k 2x 2+4x 2+8kx =0,所以x Q +x p =-8kk 2+4,所以QP =⎝ ⎛⎭⎪⎫1+1k 264k2k 2+2=8k 2+1k 2+4, 所以S △TRQ =12QP ·TR =84k 2+3k 2+4=324k 2+3+134k 2+3≤32213=161313, 当4k 2+3=134k 2+3,即k 2=52,解得k =±102时等号成立, 此时直线l 1:y =±102x -1.16分 2.(2017·苏北四市期末)如图5,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =12,左顶点为A(-4,0),过点A 作斜率为k (k ≠0)的直线l 交椭圆C 于点D ,交y 轴于点E .图5(1)求椭圆C 的方程;(2)已知点P 为AD 的中点,是否存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ?若存在,求出点Q 的坐标;若不存在,说明理由;(3)若过点O 作直线l 的平行线交椭圆C 于点M ,求AD +AEOM的最小值. [解] (1)因为左顶点为A (-4,0),所以a =4, 又e =12,所以c =2,b 2=a 2-c 2=12,所以椭圆C 的标准方程为x 216+y 212=1.(2)直线l 的方程为y =k (x +4),由⎩⎪⎨⎪⎧x 216+y 212=1,y =k x +,消元得,x 216+[kx +212=1.化简得(x +4)[(4k 2+3)x +16k 2-12]=0,所以x 1=-4,x 2=-16k 2+124k 2+3.8分 当x =-16k 2+124k 2+3时,y =k ⎝ ⎛⎭⎪⎫-16k 2+124k 2+3+4=24k 4k 2+3,所以D ⎝ ⎛⎭⎪⎫-16k 2+124k 2+3,24k 4k 2+3. 因为P 为AD 的中点,所以P 的坐标为⎝ ⎛⎭⎪⎫-16k24k 2+3,12k 4k 2+3,k OP =-34k (k ≠0),直线l 的方程为y =k (x +4),令x =0得E 点坐标为(0,4k ),假设存在定点Q (m ,n )(m ≠0),使得OP ⊥EQ ,则k OP ·k EQ =-1,即-34k ·n -4km =-1恒成立,所以(4m +12)k -3n =0恒成立,所以⎩⎪⎨⎪⎧4m +12=0,-3n =0,即⎩⎪⎨⎪⎧m =-3,n =0,所以存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ,且定点Q 的坐标为(-3,0).12分 (3)因为OM ∥l ,所以OM 的方程可设为y =kx ,由⎩⎪⎨⎪⎧x 216+y 212=1,y =kx ,得M 点的横坐标为x =±434k 2+3,由OM ∥l ,得AD +AE OM =|x D -x A |+|x E -x A ||x M |=x D -2x A|x M |=-16k 2+124k 2+3+8434k 2+3=13·4k 2+94k 2+3=13⎝⎛⎭⎪⎫4k2+3+64k2+3≥22,当且仅当4k2+3=64k2+3即k=±32时取等号,所以当k=±32时,AD+AEOM的最小值为2 2.16分。

高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问

高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问

2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第3课时定点、定值、探索性问题教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第3课时定点、定值、探索性问题教师用书理新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第3课时定点、定值、探索性问题教师用书理新人教版的全部内容。

第3课时定点、定值、探索性问题题型一定点问题例1 (2017·长沙联考)已知椭圆错误!+错误!=1(a>0,b〉0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足错误!=λ1错误!,错误!=λ2错误!.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点并求此定点.(1)解设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,∴a2=3。

∴椭圆的方程为错误!+y2=1。

(2)证明由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),设l方程为x=t(y-m),由错误!=λ1错误!知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意y1≠0,∴λ1=错误!-1.同理由错误!=λ2错误!知λ2=错误!-1。

∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①联立错误!得(t2+3)y2-2mt2y+t2m2-3=0,∴由题意知Δ=4m2t4-4(t2+3)(t2m2-3)〉0,②且有y1+y2=2mt2t2+3,y1y2=错误!,③③代入①得t2m2-3+2m2t2=0,∴(mt)2=1,由题意mt<0,∴mt=-1,满足②,得直线l方程为x=ty+1,过定点(1,0),即Q为定点.思维升华圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.(2016·河北衡水中学调研)如图,已知椭圆C的中心在原点,焦点在x轴上,离心率e=错误!,F是右焦点,A是右顶点,B是椭圆上一点,BF⊥x轴,|BF|=错误!。

高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第2课时 范围、最值问题教师用

高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第2课时 范围、最值问题教师用

2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第2课时范围、最值问题教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第2课时范围、最值问题教师用书理新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第2课时范围、最值问题教师用书理新人教版的全部内容。

第2课时范围、最值问题题型一范围问题例1 (2015·天津)已知椭圆错误!+错误!=1(a>b>0)的左焦点为F(-c,0),离心率为错误!,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=错误!截得的线段的长为c,|FM|=错误!。

(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于2,求直线OP(O为原点)的斜率的取值范围.解(1)由已知,有错误!=错误!,又由a2=b2+c2,可得a2=3c2,b2=2c2。

设直线FM的斜率为k(k>0),F(-c,0),则直线FM的方程为y=k(x+c).由已知,有错误!2+错误!2=错误!2,解得k=错误!。

(2)由(1)得椭圆方程为错误!+错误!=1,直线FM的方程为y=错误!(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-错误!c或x=c.因为点M在第一象限,可得M的坐标为错误!。

由|FM|=错误!=错误!。

解得c=1,所以椭圆的方程为错误!+错误!=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=错误!,即直线FP的方程为y=t(x+1)(x≠-1),与椭圆方程联立,错误!消去y,整理得2x2+3t2(x+1)2=6,又由已知,得t=错误!>错误!,解得-错误!<x<-1或-1<x<0.设直线OP的斜率为m,得m=错误!,即y=mx(x≠0),与椭圆方程联立,整理得m2=错误!-错误!.①当x∈错误!时,有y=t(x+1)<0,因此m>0,于是m=错误!,得m∈错误!.②当x∈(-1,0)时,有y=t(x+1)>0。

高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第1课时 直线与圆锥曲线教师用

高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第1课时 直线与圆锥曲线教师用

2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版的全部内容。

第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理新人教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ〉0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ〈0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2 |x2-x1|=错误!|y2-y1|。

【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热点探究课(六) 高考中的圆锥曲线问题[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求圆锥曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命题有一个共同的特点,就是起点低,但在第(2)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高.热点1 圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位.一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法.离心率是高考对圆锥曲线考查的另一重点,涉及a ,b ,c 三者之间的关系.另外抛物线的准线,双曲线的渐近线也是命题的热点.如图1,椭圆x 2a +y 2b=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.图1(1)若PF 1=2+2,PF 2=2-2,求椭圆的标准方程; (2)若PF 1=PQ ,求椭圆的离心率e . 【导学号:62172279】 [解] (1)由椭圆的定义,2a =PF 1+PF 2=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =F 1F 2=PF 21+PF 22= 2+2 2+ 2-2 2=2 3.3分 即c =3,从而b =a 2-c 2=1, 故所求椭圆的标准方程为x 24+y 2=1.5分(2)连结F 1Q ,如图,由椭圆的定义知PF 1+PF 2=2a ,QF 1+QF 2=2a ,又PF 1=PQ =PF 2+QF 2=(2a -PF 1)+(2a -QF 1), 可得QF 1=4a -2PF 1. ① 又因为PF 1⊥PQ 且PF 1=PQ , 所以QF 1=2PF 1. ②8分 由①②可得PF 1=(4-22)a , 从而PF 2=2a -PF 1=(22-2)a . 由PF 1⊥PF 2,知PF 21+PF 22=F 1F 22,即(4-22)2a 2+(22-2)2a 2=4c 2,12分可得(9-62)a 2=c 2,即c 2a2=9-62,因此e =ca=9-62=6- 3.14分[规律方法] 1.用定义法求圆锥曲线的标准方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只需明确a ,b ,c 中任意两量的关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.[对点训练1] 已知椭圆中心在坐标原点,焦点在x 轴上,离心率为22,它的一个顶点为抛物线x 2=4y 的焦点.(1)求椭圆的标准方程;(2)若直线y =x -1与抛物线相切于点A ,求以A 为圆心且与抛物线的准线相切的圆的方程.[解] (1)椭圆中心在原点,焦点在x 轴上.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),因为抛物线x 2=4y 的焦点为(0,1), 所以b =1.2分 由离心率e =c a =22,a 2=b 2+c 2=1+c 2, 从而得a =2,所以椭圆的标准方程为x 22+y 2=1.6分(2)由⎩⎪⎨⎪⎧x 2=4y ,y =x -1,解得⎩⎪⎨⎪⎧x =2,y =1,所以点A (2,1).8分因为抛物线的准线方程为y =-1,所以圆的半径r =1-(-1)=2,所以圆的方程为(x -2)2+(y -1)2=4.14分热点2 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题. ☞角度1 圆锥曲线的定值问题(2016·北京高考)已知椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[解] (1)由题意得a =2,b =1, 所以椭圆C 的方程为x 24+y 2=1.3分又c =a 2-b 2=3,所以离心率e =c a =32.5分 (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 又A (2,0),B (0,1), 所以直线PA 的方程为y =y 0x 0-2(x -2).7分令x =0,得y M =-2y 0x 0-2,从而BM =1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1.9分 令y =0,得x N =-x 0y 0-1,从而AN =2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积S =12AN ·BM=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42 x 0y 0-x 0-2y 0+2=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.14分 [规律方法] 1.求定值问题的常用方法:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定值问题就是在运动变化中寻找不变量的问题,基本思路是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类问题中选择消元的方法是非常关键的. ☞角度2 圆锥曲线中的定点问题设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标. 【导学号:62172280】[解] (1)由e 2=c 2a 2=a 2-b 2a 2=12,可得a 2=2b 2,2分椭圆方程为x 22b 2+y 2b2=1,代入点⎝ ⎛⎭⎪⎫-1,-62可得b 2=2,a 2=4, 故椭圆E 的方程为x 24+y 22=1.5分(2)由x -my -t =0得x =my +t ,把它代入E 的方程得(m 2+2)y 2+2mty +t 2-4=0, 设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,x 1+x 2=m (y 1+y 2)+2t =4tm 2+2, x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+tm (y 1+y 2)+t 2=2t 2-4m2m 2+2.8分因为以MN 为直径的圆过点A , 所以AM ⊥AN ,所以AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+4+y 1y 2 =2t 2-4m 2m 2+2+2×4t m 2+2+4+t 2-4m 2+2=3t 2+8t +4m 2+2= t +2 3t +2 m 2+2=0.10分因为M ,N 与A 均不重合,所以t ≠-2,所以t =-23,直线l 的方程是x =my -23,直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0, 由于点T 在椭圆内部,故满足判别式大于0,所以直线l 过定点T ⎝ ⎛⎭⎪⎫-23,0.14分[规律方法] 1.假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点.2.从特殊位置入手,找出定点,再证明该点适合题意.[对点训练2] 已知椭圆E :x 28+y 24=1,A ,B 分别是椭圆E 的左、右顶点,动点M 在射线l :x =42(y >0)上运动,MA 交椭圆E 于点P ,MB 交椭圆E 于点Q .(1)若△MAB 垂心的纵坐标为-47,求点P 的坐标;(2)试问:直线PQ 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. [解] (1)由题意知A (-22,0),B (22,0).设△MAB 的垂心为H ,因为AB 边上的高所在的直线方程为l :x =42,且△MAB 垂心的纵坐标为-47,所以H (42,-47).所以直线BH 的斜率为k BH =4722-42=-14,所以直线AM 的方程为y =(114)(x +22). 由⎩⎪⎨⎪⎧ y =114 x +22 ,x 28+y 24=1⇒⎩⎪⎨⎪⎧x =322,y =72或⎩⎨⎧x =-22,y =0,4分所以P 点的坐标为⎝⎛⎭⎪⎫322,72.6分 (2)设P 点的坐标为(x 1,y 1),Q 点的坐标为(x 2,y 2),则y 21=12(8-x 21),y 22=12(8-x 22),直线AP 的方程为y =y 1x 1+22(x +22).由⎩⎪⎨⎪⎧y =y 1x 1+22 x +22 ,x =42⇒M ⎝ ⎛⎭⎪⎫42,62y 1x 1+22.8分由于M ,B ,Q 三点共线,所以k BM =k BQ ,从而62y 1x 1+22-042-22=y 2-0x 2-22,即3y 1x 1+22=y 2x 2-22,两边平方得9y21x 1+222=y 22x 2-222⇒928-x 21 x 1+222=128-x 22 x 2-222⇒9 x 1-22x 1+22=x 2+22x 2-22,整理得2x 1x 2-52(x 1+x 2)+16=0.(*) 设直线PQ 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,x 28+y24=1⇒(1+2k 2)x 2+4kmx +2m 2-8=0,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,代入(*)得m 2+52km +8k 2=0,解得m =-2k ,或m =-42k .当m =-2k 时,直线PQ 的方程为y =kx -2k ,即y =k (x -2),恒过点(2,0); 当m =-42k ,直线PQ 的方程为y =kx -42k ,即y =k (x -42),恒过点(42,0),此种情况不合题意.综上可知,直线PQ 恒过点(2,0).16分热点3 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. [解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1,由此可得b 2 x 2+x 1 a 2 y 2+y 1 =-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.8分(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎪⎨⎪⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此AB =463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±2 9-n 23.因为直线CD 的斜率为1, 所以CD =2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积S =12CD ·AB =8699-n 2, 当n =0时,S 取得最大值,最大值为863,所以四边形ACBD 面积的最大值为863.16分[规律方法] 范围(最值)问题的主要求解方法:(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.[对点训练3] 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4,且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] 由椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4.得曲线C 的焦点F 1(0,-2),F 2(0,2).2分 又点(2,-2)在椭圆C 上, 2a =2+0+2+ 2+2 2=42, 所以a =22,b =2,即椭圆C 的方程是y 28+x 24=1.5分(2)若直线l 垂直于x 轴,①则点E (0,22),F (0,-22),OE →·OF →=-8. ②若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2),将直线l 的方程代入椭圆C 的方程得到:(2+k 2)x 2+4kx -4=0,则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,8分所以OE →·OF →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8.10分因为0<202+k 2≤10,所以-8<OE →·OF →≤2.综上可知,OE →·OF →的取值范围是[-8,2].14分热点4 圆锥曲线中的探索性问题(答题模板)圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(本小题满分16分)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a>0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.[解] (1)由题设可得M (2a ,a ),N (-2a ,a ),或M (-2a ,a ),N (2a ,a ).2分 又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a=a (x -2a ),即ax -y -a =0.4分y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a(x +2a ),即ax +y +a =0.6分故所求切线方程为ax -y -a =0或ax +y +a =0.7分 (2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2.8分将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a .10分 从而k 1+k 2=y 1-b x 1+y 2-bx 2 =2kx 1x 2+ a -b x 1+x 2 x 1x 2=k a +ba.13分当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.16分[答题模板] 第一步:分别求出曲线y =x 24在M 点,N 点处的导数.第二步:利用点斜式分别写出在M 点、N 点的切线方程.第三步:联立直线y =kx +a 与抛物线y =x 24,并写出根与系数的关系式.第四步:由k PM +k PN =0,结合根与系数的关系式,探索点P 的坐标. 第五步:检验反思,查关键点,规范步骤.[温馨提示] 1.(1)在第(2)问中,不能把条件∠OPM =∠OPN 适当转化为k 1+k 2=0,找不到解题的思路和方法,而不能得分.(2)运算能力差或运算不细心,导致运算结果错误而扣分或者不得分.2.数学阅卷时,主要看关键步骤、关键点,有则得分,无则扣分,所以解题时要写全关键步骤.(1)本题的关键点一是利用导数的几何意义求切线方程,二是把条件中转化为只需直线PM ,PN 的斜率之和为0.(2)解析几何对运算能力要求较高,解题时一定要细心准确,否则可能是思路正确,但是运算结果错误,而不得分.[对点训练4] 如图2,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是22,点P (0,1)在短轴CD上,且PC →·PD →=-1.(1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使得OA →·OB →+λPA →·PB →为定值?若存在,求λ的值;若不存在,请说明理由.图2[解] (1)由已知,点C ,D 的坐标分别为(0,-b ),(0,b ). 又点P 的坐标为(0,1),且PC →·PD →=-1,于是⎩⎪⎨⎪⎧1-b 2=-1,c a =22,a 2-b 2=c 2,解得a =2,b = 2.4分所以椭圆E 的方程为x 24+y 22=1.5分(2)当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1,A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +1,得(2k 2+1)x 2+4kx -2=0.8分其判别式Δ=(4k )2+8(2k 2+1)>0,所以x 1+x 2=-4k 2k 2+1,x 1x 2=-22k 2+1. 从而,OA →·OB →+λPA →·PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1-1)(y 2-1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1= -2λ-4 k 2+ -2λ-1 2k 2+1=-λ-12k 2+1-λ-2. 所以,当λ=1时,-λ-12k 2+1-λ-2=-3.10分此时,OA →·OB →+λPA →·PB →=-3为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD .此时,OA →·OB →+λPA →·PB →=OC →·OD →+PC →·PD →=-2-1=-3. 故存在常数λ=1,使得OA →·OB →+λPA →·PB →为定值-3.14分热点探究训练(六) A 组 基础达标 (建议用时:30分钟)1.(2017·扬州模拟)如图3,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,P 是椭圆上一点,O 为坐标原点,M 在PF 1上,F 1M →=λMP →(λ∈R ),PO ⊥F 2M .图3(1)若椭圆方程为x 28+y 24=1,P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围. 【导学号:62172281】 [解] (1)∵x 28+y 24=1,∴F 1(-2,0),F 2(2,0),∴k OP =22,kF 2M =-2,kF 1M =24. ∴直线F 2M 的方程为y =-2(x -2),直线F 1M 的方程为:y =24(x +2).由⎩⎪⎨⎪⎧y =-2 x -2 y =24 x +2解得x =65,∴点M 的横坐标为65.6分(2)设P (x 0,y 0),M (x M ,y M ),∵F 1M →=2MP →,∴F 1M →=23(x 0+c ,y 0)=(x M +c ,y M ),∴M ⎝ ⎛⎭⎪⎫23x 0-13c ,23y 0,F 2M →=⎝ ⎛⎭⎪⎫23x 0-43c ,23y 0.∵PO ⊥F 2M ,OP →=(x 0,y 0),∴⎝ ⎛⎭⎪⎫23x 0-43c x 0+23y 20=0,即x 20+y 20=2cx 0.联立方程得⎩⎪⎨⎪⎧x 20+y 20=2cx 0x 20a 2+y 2b2=1,消去y 0得:c 2x 20-2a 2cx 0+a 2(a 2-c 2)=0.解得x 0=a a +c c 或x 0=a a -cc. ∵-a <x 0<a ,∴x 0=a a -c c∈(0,a ),∴0<a 2-ac <ac, 解得e >12.综上,椭圆离心率e 的取值范围为⎝ ⎛⎭⎪⎫12,1.14分 2.(2017·无锡期末)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,一个焦点到相应的准线的距离为3,圆N 的方程为(x -c )2+y 2=a 2+c 2(c 为半焦距),直线l :y =kx +m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆方程和直线方程; (2)试在圆N 上求一点P ,使PBPA=2 2. [解] (1)由题意知⎩⎪⎨⎪⎧c a =12,a2c -c =3,解得a =2,c =1,所以b =3,所以椭圆M 的方程为:x 24+y 23=1.圆N 的方程为(x -1)2+y 2=5.由直线l :y =kx +m 与椭圆M 只有一个公共点,所以由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(3+4k 2)x2+8kmx +4m 2-12=0,①所以Δ=64k 2m 2-4(3+4k 2)(4m 2-12)=0得m 2=3+4k 2.② 由直线l :y =kx +m 与N 只有一个公共点,得|k +m |1+k2=5,即k 2+2km +m 2=5+5k 2,③ 将②代入③得km =1,④由②,④且k >0,得:k =12,m =2.所以直线方程为:y =12x +2.6分(2)将k =12,m =2代入①可得A ⎝⎛⎭⎪⎫-1,32, 又过切点B 的半径所在的直线l ′为:y =-2x +2,所以得交点B (0,2),设P (x ,y ),因为PB PA=22,则x 20+ y 0-22x +1 2+⎝ ⎛⎭⎪⎫y -322=8,化简得:7x 20+7y 20+16x 0-20y 0+22=0,⑤又P (x ,y )满足x 20+y 20-2x 0=4,⑥将⑤-7×⑥得:3x 0-2y 0+5=0,即y 0=3x 0+52.⑦将⑦代入⑥得:13x 20+22x 0+9=0,解得x 0=-1或x 0=-913,所以P (-1,1)或P ⎝ ⎛⎭⎪⎫-913,1913.14分B 组 能力提升 (建议用时:15分钟)1.(2017·泰州中学高三摸底考试)已知椭圆Γ:x 24+y 2=1.(1)椭圆Γ的短轴端点分别为A ,B (如图4),直线AM ,BM 分别与椭圆Γ交于E ,F 两点,其中点M ⎝ ⎛⎭⎪⎫m ,12满足m ≠0,且m ≠± 3. ①证明直线EF 与y 轴交点的位置与m 无关;②若△BME 面积是△AMF 面积的5倍,求m 的值.(2)若圆O :x 2+y 2=4.l 1,l 2是过点P (0,-1)的两条互相垂直的直线,其中l 1交圆O 于T ,R 两点,l 2交椭圆Γ于另一点Q .求△TRQ 面积取最大值时直线l 1的方程. 【导学号:62172282】图4[解] (1)①因为A (0,1),B (0,-1),M ⎝ ⎛⎭⎪⎫m ,12,且m ≠0,∴直线AM 的斜率为k 1=-12m ,直线BM 的斜率为k 2=32m,∴直线AM 的方程为y =-12m x +1,直线BM 的方程为y =32mx -1,由⎩⎪⎨⎪⎧x 24+y 2=1,y =-12m x +1,得(m 2+1)x 2-4mx =0,∴x =0,x =4m m 2+1,∴E ⎝ ⎛⎭⎪⎫4m m 2+1,m 2-1m 2+1,由⎩⎪⎨⎪⎧x 24+y 2=1,y =32m x -1,得(m 2+9)x 2-12mx =0,∴x =0或x =12m m 2+9,∴F ⎝ ⎛⎭⎪⎫12m m 2+9,9-m 2m 2+9;据已知m ≠0,m 2≠3, ∴直线EF 的斜率k =m 2-11+m 2-9-m 29+m 24m 1+m 2-12m 9+m2= m 2+3 m 2-3 -4m m -3 =-m 2+34m , ∴直线EF 的方程为y -m 2-1m 2+1=-m 2+34m ⎝ ⎛⎭⎪⎫x -4m m 2+1, 令x =0,得y =2,∴EF 与y 轴交点的位置与m 无关.②S △AMF =12MA ·MF sin ∠AMF ,S △BME =12MB ·ME sin ∠BME ,∠AMF =∠BME ,5S △AMF =S △BME ,∴5MA ·MF =MB ·ME , ∴5MA ME =MB MF,∴5m4m m 2+1-m =m12m9+m2-m .∵m ≠0, ∴整理方程得1m 2+1=15m 2+9-1,即(m 2-3)(m 2-1)=0, 又有m ≠±3,∴m 2-3≠0,∴m 2=1,∴m =±1为所求.8分(2)因为直线l 1⊥l 2,且都过点P (0,-1),所以设直线l 1:y =kx -1,即kx -y -1=0, 直线l 2:y =-1kx -1,即x +ky +k =0,所以圆心(0,0)到直线l 1:y =kx -1,即kx -y -1=0的距离d =11+k2,所以直线l 1被圆x 2+y 2=4所截的弦 TR =24-d 2=23+4k21+k2; 由⎩⎪⎨⎪⎧x +ky +k =0,x 24+y 2=1,得k 2x 2+4x 2+8kx =0,所以x Q +x p =-8kk 2+4,所以QP =⎝ ⎛⎭⎪⎫1+1k 264k 2 k 2+4 2=8k 2+1k 2+4,所以S △TRQ =12QP ·TR =84k 2+3k 2+4=324k 2+3+134k 2+3≤32213=161313, 当4k 2+3=134k 2+3,即k 2=52,解得k =±102时等号成立, 此时直线l 1:y =±102x -1.16分 2.(2017·苏北四市期末)如图5,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =12,左顶点为A (-4,0),过点A 作斜率为k (k ≠0)的直线l 交椭圆C 于点D ,交y 轴于点E .图5(1)求椭圆C 的方程;(2)已知点P 为AD 的中点,是否存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ?若存在,求出点Q 的坐标;若不存在,说明理由;(3)若过点O 作直线l 的平行线交椭圆C 于点M ,求AD +AEOM的最小值. [解] (1)因为左顶点为A (-4,0),所以a =4, 又e =12,所以c =2,b 2=a 2-c 2=12,所以椭圆C 的标准方程为x 216+y 212=1.(2)直线l 的方程为y =k (x +4),由⎩⎪⎨⎪⎧x 216+y 212=1,y =k x +4 ,消元得,x 216+[k x +4 ]212=1.化简得(x +4)[(4k 2+3)x +16k 2-12]=0,所以x 1=-4,x 2=-16k 2+124k 2+3.8分 当x =-16k 2+124k 2+3时,y =k ⎝ ⎛⎭⎪⎫-16k 2+124k 2+3+4=24k 4k 2+3,所以D ⎝ ⎛⎭⎪⎫-16k 2+124k 2+3,24k 4k 2+3. 因为P 为AD 的中点,所以P 的坐标为⎝ ⎛⎭⎪⎫-16k24k +3,12k 4k +3,k OP =-34k (k ≠0),直线l 的方程为y =k (x +4),令x =0得E 点坐标为(0,4k ),假设存在定点Q (m ,n )(m ≠0),使得OP ⊥EQ ,则k OP ·k EQ =-1,即-34k ·n -4km =-1恒成立,所以(4m +12)k -3n =0恒成立,所以⎩⎪⎨⎪⎧4m +12=0,-3n =0,即⎩⎪⎨⎪⎧m =-3,n =0,所以存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ,且定点Q 的坐标为(-3,0).12分 (3)因为OM ∥l ,所以OM 的方程可设为y =kx ,由⎩⎪⎨⎪⎧x 216+y 212=1,y =kx ,得M 点的横坐标为x =±434k 2+3,由OM ∥l ,得AD +AE OM =|x D -x A |+|x E -x A ||x M |=x D -2x A|x M |=-16k 2+124k 2+3+8434k 2+3=13·4k 2+94k 2+3=13⎝ ⎛⎭⎪⎫4k 2+3+64k 2+3≥22, 当且仅当4k 2+3=64k 2+3即k =±32时取等号, 所以当k =±32时,AD +AE OM的最小值为2 2.16分。

相关文档
最新文档