2017北京市高一数学初赛试题及解答
2017年数学真题及解析_2017年北京市高考数学试卷(理科)
2017年北京市高考数学试卷(理科)一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3} 2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.95.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 B.2 C.2 D.28.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=.10.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=.11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)=.13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.20.(13分)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.2017年北京市高考数学试卷(理科)参考答案与试题解析一、选择题.(每小题5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故选:A.【点评】本题考查的知识点集合的交集运算,难度不大,属于基础题.2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得,解得a范围.【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.3.(5分)执行如图所示的程序框图,输出的S值为()A.2 B.C.D.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当k=0时,满足进行循环的条件,执行完循环体后,k=1,S=2,当k=1时,满足进行循环的条件,执行完循环体后,k=2,S=,当k=2时,满足进行循环的条件,执行完循环体后,k=3,S=,当k=3时,不满足进行循环的条件,故输出结果为:,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.(5分)若x,y满足,则x+2y的最大值为()A.1 B.3 C.5 D.9【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(5分)已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【分析】由已知得f(﹣x)=﹣f(x),即函数f(x)为奇函数,由函数y=3x为增函数,y=()x为减函数,结合“增”﹣“减”=“增”可得答案.【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度不大,属于基础题.6.(5分)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 B.2 C.2 D.2【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA===2,故选:B.【点评】本题考查了三视图的问题,关键画出物体的直观图,属于基础题.8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033 B.1053 C.1073 D.1093【分析】根据对数的性质:T=,可得:3=10lg3≈100.48,代入M将M也化为10为底的指数形式,进而可得结果.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093,故选:D.【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题.二、填空题(每小题5分)9.(5分)若双曲线x2﹣=1的离心率为,则实数m=2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.10.(5分)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=1.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.【解答】解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.【点评】本题考查等差数列以及等比数列的通项公式的应用,考查计算能力.11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为1.【分析】先将圆的极坐标方程化为标准方程,再运用数形结合的方法求出圆上的点到点P的距离的最小值.【解答】解:设圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0为圆C,将圆C的极坐标方程化为:x2+y2﹣2x﹣4y+4=0,再化为标准方程:(x﹣1)2+(y﹣2)2=1;如图,当A在CP与⊙C的交点Q处时,|AP|最小为:|AP|min=|CP|﹣r C=2﹣1=1,故答案为:1.【点评】本题主要考查曲线的极坐标方程和圆外一点到圆上一点的距离的最值,难度不大.12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则cos(α﹣β)=﹣.【分析】方法一:根据教的对称得到sinα=sinβ=,cosα=﹣cosβ,以及两角差的余弦公式即可求出方法二:分α在第一象限,或第二象限,根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】解:方法一:∵角α与角β均以Ox为始边,它们的终边关于y轴对称,∴sinα=sinβ=,cosα=﹣cosβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣cos2α+sin2α=2sin2α﹣1=﹣1=﹣方法二:∵sinα=,当α在第一象限时,cosα=,∵α,β角的终边关于y轴对称,∴β在第二象限时,sinβ=sinα=,cosβ=﹣cosα=﹣,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣:∵sinα=,当α在第二象限时,cosα=﹣,∵α,β角的终边关于y轴对称,∴β在第一象限时,sinβ=sinα=,cosβ=﹣cosα=,∴cos(α﹣β)=cosαcosβ+sinαsinβ=﹣×+×=﹣综上所述cos(α﹣β)=﹣,故答案为:﹣【点评】本题考查了两角差的余弦公式,以及同角的三角函数的关系,需要分类讨论,属于基础题13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为﹣1,﹣2,﹣3.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b >c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.(1)记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1.(2)记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2.【分析】(1)若Q i为第i名工人在这一天中加工的零件总数,则Q i=A i的综坐标+B i的纵坐标;进而得到答案.(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率;进而得到答案.【解答】解:(1)若Q i为第i名工人在这一天中加工的零件总数,Q1=A1的纵坐标+B1的纵坐标;Q2=A2的纵坐标+B2的纵坐标,Q3=A3的纵坐标+B3的纵坐标,由已知中图象可得:Q1,Q2,Q3中最大的是Q1,(2)若p i为第i名工人在这一天中平均每小时加工的零件数,则p i为A i B i中点与原点连线的斜率,故p1,p2,p3中最大的是p2故答案为:Q1,p2【点评】本题考查的知识点是函数的图象,分析出Q i和p i的几何意义,是解答的关键.三、解答题15.(13分)在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【分析】(1)根据正弦定理即可求出答案,(2)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC【点评】本题考查了正弦定理和两角和正弦公式和三角形的面积公式,属于基础题16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)【分析】(1)由图求出在50名服药患者中,有15名患者指标y的值小于60,由此能求出从服药的50名患者中随机选出一人,此人指标小于60的概率.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【解答】解:(1)由图知:在50名服药患者中,有15名患者指标y的值小于60,则从服药的50名患者中随机选出一人,此人指标小于60的概率为:p==.(2)由图知:A、C两人指标x的值大于1.7,而B、D两人则小于1.7,可知在四人中随机选项出的2人中指标x的值大于1.7的人数ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,∴ξ的分布列如下:E(ξ)==1.(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【分析】(1)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2)设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2=,x1x2=,根据中点的定义即可证明.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.【点评】本题考查了抛物线的简单性质,以及直线和抛物线的关系,灵活利用韦达定理和中点的定义,属于中档题.19.(13分)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【分析】(1)求出f(x)的导数,可得切线的斜率和切点,由点斜式方程即可得到所求方程;(2)求出f(x)的导数,再令g(x)=f′(x),求出g(x)的导数,可得g(x)在区间[0,]的单调性,即可得到f(x)的单调性,进而得到f(x)的最值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f (x )在区间[0,]上的最大值为f (0)=e 0cos0﹣0=1;最小值为f ()=e cos ﹣=﹣. 【点评】本题考查导数的运用:求切线的方程和单调区间、最值,考查化简整理的运算能力,正确求导和运用二次求导是解题的关键,属于中档题.20.(13分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.【分析】(1)分别求得a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5,代入即可求得c 1,c 2,c 3;由(b k ﹣na k )﹣(b 1﹣na 1)≤0,则b 1﹣na 1≥b k ﹣na k ,则c n =b 1﹣na 1=1﹣n ,c n +1﹣c n =﹣1对∀n ∈N*均成立;(2)由b i ﹣a i n=[b 1+(i ﹣1)d 1]﹣[a 1+(i ﹣1)d 2]×n=(b 1﹣a 1n )+(i ﹣1)(d 2﹣d 1×n ),分类讨论d 1=0,d 1>0,d 1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m ,c m +1,c m +2,…是等差数列;设=An +B +对任意正整数M ,存在正整数m ,使得n ≥m ,>M ,分类讨论,采用放缩法即可求得因此对任意正数M ,存在正整数m ,使得当n ≥m 时,>M . 【解答】解:(1)a 1=1,a 2=2,a 3=3,b 1=1,b 2=3,b 3=5,当n=1时,c 1=max {b 1﹣a 1}=max {0}=0,当n=2时,c 2=max {b 1﹣2a 1,b 2﹣2a 2}=max {﹣1,﹣1}=﹣1,当n=3时,c 3=max {b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max {﹣2,﹣3,﹣4}=﹣2, 下面证明:对∀n ∈N*,且n ≥2,都有c n =b 1﹣na 1,当n ∈N*,且2≤k ≤n 时,则(b k ﹣na k )﹣(b 1﹣na 1),=[(2k ﹣1)﹣nk ]﹣1+n ,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,﹣c n=﹣1对∀n∈N*均成立,∴c n+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n﹣c n=d2﹣a1,+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.。
2016_2017学年10月北京海淀区北京市八一中学高一上学期月考数学试卷(详解)
上的奇函数
的取值范围.
在定义域上单调递减,若
【答案】 【解析】
由题意有
,即
,解得
.
,求实数 ,
19. 已知函数
,
,
,
.
1 )若
,且函数 的值域为
,求
的的表达式.
2 )在(Ⅰ)的条件,当
时,
是单调函数,求 的范围.
3 )设
,
,
且 是偶函数,判断
能否大于零?
【答案】( 1 )
(2)
或
(3)
能大于零;证明见解析
,所以 ,
,所以函数
,
,
,所以
在区间
上为单调递增函数.
17. 设全集 1 )当 2 )若
,不等式
时,求集合
.
,求实数 的取值范围.
的解集为 .
【答案】( 1 ) (2)
【解析】( 1 )
,
时,
,
.
( 2 )①当
时,有
,解得
,显然合题;
②当
时,由题意有
,解得
;
综上实数 的取值范围为
.
18. 设定义在
.
3. 集合 A.
, B.
,若
有三个元素,则 的取值集合是( ).
C.
D.
【答案】 C 【解析】 当
或
时,显然不行对应关系中是映射的是( ).
A. ①②③
B. ①②⑤
【答案】 A 【解析】 由映射的定义可知④⑤不是;
④不符合定义域的遍历性;
C. ①③⑤
D. ①②③⑤
所以
,
所以
.
15. 已知函数 满足
2017年北京市中学生数学竞赛高一年级初赛试题及参考解答
数学竞赛之窗2017年北京市中学生数学竞赛高一年级初赛试题及参考解答(2017年4月9日) 一、选择题1.集合A={2,0,1,7},B={x|x2-2∈A,x-2瓟A},则集合B的所有元素之积为( ).(A)36 (B)54 (C)72 (D)108答:(A).解 由x2-2∈A,可得x2=4,2,3,9,即x=±2,±槡2,±槡3,±3.又因为x-2瓟A,所以x≠2,x≠3,故x=-2,±槡2,±槡3,-3.因此,集合B={-2,-槡2,槡2,-槡3,槡3,-3}.所以,集合B的所有元素的乘积等于(-2)(-槡2)(槡2)(-槡3)(槡3)(-3)=36.2.已知锐角△ABC的顶点A到它的垂心与外心的距离相等,则tan(∠BAC2)=( ).(A)槡33 (B)槡22 (C)1 (D)槡3答:(A).图1解 如图1,作锐角△ABC的外接圆,这个圆的圆心O在形内,高AD,CE相交于点H,锐角△ABC的垂心H也在形内.连接BO交⊙O于K,BK为⊙O的直径.连接AK,CK.因为AD,CE是△ABC的高,∠KAB,∠KCB是直径BK上的圆周角,所以∠KAB=∠KCB=90°.于是KA∥CE,KC∥AD,因此AKCH是平行四边形.所以KC=AH=AO=12BK.在直角△KCB中,由KC=12BK,得∠BKC=60°,所以∠BAC=∠BKC=60°.故tan(∠BAC2)=tan30°=槡33.3.将正奇数的集合{1,3,5,7,…}从小到大按第n组2n-1个数进行分组:{1},{3,5,7},{9,11,13,15,17},…,数2017位于第k组中,则k为( ).(A)31 (B)32 (C)33 (D)34答:(B).解 数2017是数列an=2n-1的第1009项.设2017位于第k组,则1+3+5+…+(2k-1)≥1009,且1+3+5+…+(2k-3)<1009.即k是不等式组k2≥1009,(k-1)2<1009{的正整数解,解得k=32,所以2017在第32组中.4.如图2,平面直角坐标系x-O-y中,A、B是函数y=1x在第I象限的图像上两点,满足∠OAB=图290°且AO=AB,则等腰直角△OAB的面积等于( ).(A)12 (B)槡22(C)槡32(D)槡52答:(D).图3解 依题意,∠OAB=90°且AO=AB,∠AOB=∠ABO=45°.过点A做y轴垂线交y轴于点C,过点B做y轴平行线,交直线CA于点D(如图3).易见△COA≌△DAB.设点A(a,1a),则点B(a+1a,1a-a).因为点B在函数y=1x的图像上,所以(a+1a)(1a-a)=1,即1a2-a2=1.因此S△ABC=12OA2=12(1a2+a2)数学竞赛之窗=12(1a2-a2)2槡+4 =槡52.5.已知f(x)=x5+a1x4+a2x3+a3x2+a4x+a5,且当m=1,2,3,4时,f(m)=2017 m,则f(10)-f(-5)=( ).(A)71655 (B)75156(C)75615(D)76515答:(C).解 因为当m=1,2,3,4时,f(m)=2017 m,所以1,2,3,4是方程f(x)-2017x=0的四个实根,由于5次多项式f(x)-2017x有5个根,设第5个根为p,则f(x)-2017x=(x-1)(x-2)(x-3)(x-4)(x-p),即f(x)=(x-1)(x-2)(x-3)(x-4)(x-p)+2017x.所以f(10)=9×8×7×6(10-p)+2017×10,f(-5)=-6×7×8×9(5+p)-2017×5,因此f(10)-f(-5)=15(9×8×7×6+2017)=75615.6.已知函数f(x)=|x|,x≤a,x2-4ax+2a,x>a.{若存在实数m,使得关于x的方程f(x)=m有四个不同的实根,则a的取值范围是( ).(A)a>17(B)a>16(C)a>15(D)a>14答:(D).解 要使方程f(x)=m有四个不同的实根,必须使得y=m的图像与y=f(x)的图像有4个不同的交点.而直线与y=|x|的图像及二次函数的图像交点都是最多为两个,所以y=m与函数y=|x|,x≤a的图像和y=x2-4ax+2a,x>a的图像的交点分别都是2个.而存在实数m,使y=m与y=|x|,x≤a的图像有两个交点,需要a>0,此时0<m≤a;又因为y=x2-4ax+2a,x>a顶点的纵坐标为4×2a-(4a)24,所以,要y=m与y=x2-4ax+2a,x>a的图像有两个交点,需要m>4×2a-(4a)24.因此y=m的图像与y=f(x)的图像有4个不同的交点需要满足:0<m≤a且m>4×2a-(4a)24,解得a>14.二、填空题1.用[x]表示不超过x的最大整数,设S=[槡1]+[槡2]+[槡3]+…+[槡99],求[槡S]的值.答:24.解 因为12≤1,2,3<22,所以1≤槡1,槡2,槡3<2,因此[槡1]=[槡2]=[槡3]=1,共3个1;同理,22≤4,5,6,7,8<32,因此,[槡4]=[槡5]=[槡6]=[槡7]=[槡8]=2,共5个2;又32≤9,10,11,12,13,14,15<42,因此[槡9]=[槡10]=…=[槡15]=3,共7个3;依次类推,[槡16]=[槡17]=…=[槡23]=[槡24]=4,共9个4;[槡25]=[槡26]=…=[槡34]=[槡35]=5,共11个5;[槡36]=[槡37]=…=[槡47]=[槡48]=6,共13个6;[槡49]=[槡50]=…=[槡62]=[槡63]=7,共15个7;[槡64]=[槡65]=…=[槡79]=[槡80]=8,共17个8;[槡81]=[槡82]=…=[槡98]=[槡99]=9,共19个9.S=([槡1]+[槡2]+[槡3])+([槡4]+[槡5]+[槡6]+[槡7]+[槡8])+…+([槡81]+…+[槡99])=1×3+2×5+3×7+4×9+5×11+6×13+7×15+8×17+9×19=615.因为242=576<615=S<625=252,即24<槡S<25,所以[槡S]=24.2.确定(20171log22017×20171log42017×20171log82017×20171log162017×20171log322017)15的值.答:8.解 原式=(2017log2 2017×(2017log4 2017×(2017log8 2017×(2017log16 2017×(2017log32 2017×)15=(2×4×8×16×32)15=(21×22×23×24×25)15=(21+2+3+4+5)15=(215)15=23=8.数学竞赛之窗3.已知△ABC的边AB=槡29厘米,BC=槡13厘米,CA=槡34厘米,求△ABC的面积.答:9.5平方厘米.图4解 注意到13=32+22,29=52+22,34=52+32,作边长为5厘米的正方形AMNP,分成25个1平方厘米的正方形网格,如图4.根据勾股定理,可知AB=槡29厘米,BC=槡13厘米,CA =槡34厘米,因此△ABC的面积可求.△ABC的面积=5×5-12×3×5-12×2×5-12×2×3=9.5(平方厘米).4.设函数f(x)=(x+1)2+ln(x2槡+1+x)x2+1的最大值为M,最小值为N,试确定M+N的值.答:2.解 由已知得f(x)=1+2x+ln(x2槡+1+x)x2+1,因为ln(x2槡+1+x)+ln((-x)2槡+1+(-x))=ln[((-x)2槡+1-(-x))((-x)2槡+1+(-x))]=ln((-x)2+1-(-x)2)=ln1=0,所以ln((-x)2槡+1+(-x))=-ln(x2槡+1+x),因此,ln(x2槡+1+x)是奇函数.进而可判定,函数g(x)=2x+ln(x2槡+1+x)x2+1为奇函数.则g(x)的最大值M1和最小值N1满足M1+N1=0.因为M=M1+1,N=N1+1,所以M+N=2.5.设A是数集{1,2,…,2017}的n元子集,且A中的任意两个数既不互质,又不存在整除关系,确定n的最大值.答:504.解 在数集{1,2,…,2017}中选取子集,使得子集中任意两个数不互质,最大的子集是偶数集{2,4,…,2016}共1008个元素,但其中,有的元素满足整除关系,由于1010的2倍是2020,所以集合A={1010,1012,1014,…,2016}中,任意两个数既不互质,又不存在整除关系,A中恰有504个元素.事实上504是n的最大值.因为若从{1009,1011,…,2017}中任取一个奇数,会与A中的与它相邻的偶数互质;若从{1,2,3,…,1008}中任取一数,则它的2倍在A中,存在整除关系.图56.如图5,以长为4厘米的线段AB的中点O为圆心、2厘米为半径画圆,交AB的中垂线于点E和F.再分别以A、B为圆心,4厘米为半径画圆弧交射线AE于点C,交射线BE于点D.再以E为圆心DE为半径画圆弧DC︵,求这4条实曲线弧连接成的“卵形”AFBCDA烇烋的面积.(圆周率用π表示,不取近似值)答:(12-4槡2)π-4平方厘米.解 半圆(O,2)的面积=12π×22=2π.因为AO=OB=2,所以AB=AC=BD=4,AE=BE=2槡2,ED=EC=4-2槡2.又∠AEB=∠CED=90°,∠EAB=∠EBA=45°,因此,扇形BAD的面积=扇形ACB的面积=18π×42=2π,△AEB的面积=12×4×2=4,直角扇形EDC︵的面积=14π(4-2槡2)2=6π-4槡2π,卵形AFBCDA的面积=半圆(O,2)的面积+扇形BAD的面积+扇形ACB的面积-△AEB的面积+直角扇形EDC︵的面积=2π+2×2π-4+6π-4槡2π=(12-4槡2)π-4(平方厘米).7.已知f(x)=x2x2-100x+5000,求f(1)+f(2)+…+f(100)的值.答:101.解 设g(x)=x2-100x+5000,则 g(100-x)=(100-x)2-100(100-x)+5000=1002-200x+x2-1002+100x+5000=x2-100x+5000=g(x),即g(k)=g(100-k).数学竞赛之窗所以f(k)+f(100-k)=k2g(k)+(100-k)2g(100-k)=k2+(100-k)2g(k)=2,又 f(50)=502502-100×50+5000=1,f(100)=10021002-100×100+5000=2.所以f(1)+f(2)+…+f(100)=(f(1)+f(99))+(f(2)+f(98))+…+(f(49)+f(51))+f(50)+f(100)=2×49+1+2=101.图68.如图6,在锐角△ABC中,AC=BC=10,D是边AB上一点,△ACD的内切圆和△BCD的与BD边相切的旁切圆的半径都等于2,求AB的长.答:4槡5.图7解 线段AB被两圆与AB的切点及点D分成四段,由于两圆半径相等,再根据切线长定理,可知中间两段相等,于是可将这四段线段长度分别记为a,b,b,c,由于圆O2的切线长CE=CG,所以BC+a=CD+b=(AC-c+b)+b,而AC=BC,所以a+c=2b.由等角关系可得△AO1F∽△O2BE,得O1FAF=BEO2E,即2c=a2,由此推出ac=4.分别计算△BCD和△ACD的面积:S△BCD=12×2(BC+CD-BD),S△ACD=12×2(AC+CD+AD).所以S△ACD-S△BCD=AD+BD=AB=a+c+2b=4b①又设由C引向AB的高为h,可得S△ACD-S△BCD=12(c-a)h=12(c+a)2-4槡ac·102-(2b)槡2②由①、②两式可得4b=12(c+a)2-4槡ac·102-(2b)槡2.将a+c=2b,ac=4代入,化简得b4-25b2+100=0,解得b2=5或b2=20,即b =槡5或b=2槡5,(负根舍).于是AB=a+c+2b=4b=4槡5,或AB=8槡5.若AB=8槡5,△ABC为钝角三角形,不合题设△ABC是锐角三角形的要求.所以AB的长为4槡5.(北京数学会普及委员会提供)檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪(上接第30页)解题反思是解题教学的重要环节,反思可使经验升华和理性化,产生认识上的飞跃,因此解题养成反思的习惯,尤其是要从数学思想方法上进行反思.如解题体现了哪些数学思想方法?解题的宏观策略是如何想到的?此题的条件能不能弱化或强化?能不能进行变式训练?等等.解完题后,带着欣赏的眼光,我们主要思考题目的核心是什么,能否从题目中提炼反映具有普遍意义和广泛迁移性的策略性知识或方法.于是,我们改变题目的条件或背景,从特殊到一般,探究题目的一般结论,思考解决更一般性的问题,引导学生对题目进行全方位、深层次、多角度的探索.(责审 梁宇学)。
2017年全国高中数学联赛试题与答案
2017年全国高中数学联赛试题与答案第一试一、填空题:本大题共8小题,每小题8分,共64分.1.设()f x 是定义在R 上的函数,对任意实数x 有()()341f x f x +⋅-=-.又当07x ≤<时,()()2log 9f x x =-,则()100f -的值为 .答案:1.2-解:由条件知,()()()114,7f x f x f x +=-=+所以()()()()21111001001472.5log 42f f f f -=-+⨯=-=-=-=- 2.若实数,x y 满足22cos 1x y +=,则cos x y -的取值范围是 .答案:1.⎡⎤-⎣⎦解:由于[]212cos 1,3x y =-∈-,故.x ⎡∈⎣由21cos 2x y -=可知,()2211cos 1 1.22x x y x x --=-=+-因此当1x =-时,cos x y -有最小值(这时y 可以取2π);当x =cos x y -1(这时y 可以取π).由于()21112x +-的值域是1⎡⎤-⎣⎦,从而cos x y -的取值范围是1.⎡⎤-⎣⎦ 3.在平面直角坐标xOy 中,椭圆C 的方程为221910x y +=,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为 .解:易知()()3,0,0,1.A F 设P的坐标是()3cos ,0,,2πθθθ⎛⎫∈ ⎪⎝⎭则11313cos 23OAPF OAP OFP SS S θθ=+=⋅+⋅⋅)()3sin .2θθθϕ=+=+其中ϕ=当θ=时,四边形OAPF 另解:易知()()3,0,0,1.A F 经过C 上位于第一象限内点()000,P x y 一条切线与直线1AF 平行.该切线方程为001910x x y y+=. 因为这两条平行直线的斜率相等,所以 00101.93x y -⋅=- 又因22001,910x y +=所以00x y ==易得点0P ⎝⎭到直线1:330AF x y +-=)1.于是,四边形OAPF 的面积的最大值为)01131122OAF FAP S S +=⋅⋅+=4.若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是 .答案:75.解:考虑平稳数abc .若0b =,则{}1,0,1a c =∈,有2个平稳数.若1b =,则{}1,2a ∈,{}0,1,2c ∈,有236⨯=个平稳数. 若28b ≤≤,则{},1,,1a c b b b ∈-+,有73363⨯⨯=个平稳数. 若9b =,则{},8,9a c ∈,有224⨯=个平稳数. 综上可知,平稳数的个数是2663475.+++= 另解:设abc 是一个平稳数,则1b a -≤且 1.c b -≤ 由1b a -≤可知0b a -=,1.由1c b -≤可知c b -=0,1. 1)若0,0b a c b -=-=,则,1,2,,9abc aaa a ==,有9个平稳数.2)若0,1b a c b -=-=,则 ,1,b a c a =⎧⎨=+⎩或,1.b a c a =⎧⎨=-⎩于是,()1abc aa a =+,1,2,,8a =;或()1abc aa a =-,1,2,,9a =.有8917+=个平稳数.3)若1,0b a c b -=-=,则 ,1,c b a b =⎧⎨=-⎩或, 1.c b a b =⎧⎨=+⎩ 于是,()1abc b bb =-,2,3,,9b =;或()1,0,1,,8abc b bb b =+=.有8917+=个平稳数.4)若1,1b a c b -=-=,则1b a -=±, 1.c b -=± 由1,1b a c b -=-=得()()12,1,2,,7abc a a a a =++=;由1,1b a c b -=-=-得()1,1,2,,8abc a a a a =+=;由1,1b a c b -=--=得()1,1,2,,9abc a a a a =-=;由1,1b a c b -=--=-得()()12,2,3,,9.abc a a a a =--=有789832+++=个平稳数.综上可知,平稳数的个数为 917173275.+++=5.正三棱锥P -ABC 中,1,2AB AP ==,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为 .解:设,AB PC 的中点分别为,K M ,则易证平面ABM 就是平面α.由中线长公式知()()222222*********,24242AM AP AC PC =+-=+-⨯=所以KM ==又易知直线PC 在平面α上的射影是直线MK,而1,CM KC ==所以222531cos 2KM MC KC KMC KM MC +-+-∠===⋅故棱PC 与平面α6.在平面直角坐标系xOy 中,点集(){},|,1,0,1.K x y x y ==-在K 中随机取出三个点,则的概率 .答案:4.7解:易知K 中有9个点,故在K 中随机取出三个点的方式有3984C =种.将K 中的点按右图标记为128,,,,,A A A O 其中有8由对称性,考虑14,A A 两个点的情况,则剩下的一个点有7种取法.这样有7856⨯=个三点组(不计每组中三点的次序).对每个()1,2,,8i A i =,K 中恰有35,i i A A ++(这里下标按模8理解),因而恰有{}()35,,1,2,,8i i i A A A i ++=这8个三点组被记了两次.从而满足条件的三点组个数为56848-=,进而所求概率为484.847= 7.在ABC 中,M 是BC 的中点,N 是线段BM 的中点.若3A π∠=,ABC 的面积AM AN ⋅的最小值为 .1. 解:由条件知,()131,244AM AB AC AN AB AC =+=+,故()22131134.2448AM AN AB AC AB AC AB AC AB AC ⎡⎤⎛⎫⋅=+⋅+=++⋅ ⎪⎢⎥⎝⎭⎣⎦13sin ,24ABCSAB AC A AB AC ==⋅⋅⋅=⋅⋅所以4AB AC ⋅=,进一步可得 cos 2,AB AC AB AC A ⋅=⋅⋅=从而2212348AM AN AB AC AB AC ⎛⎫⋅≥⋅+⋅ ⎪⎝13 1.2AB AC AB AC ⋅+⋅=+当,2AB AC ==AM AN ⋅ 1.8.设两个严格递增的正整数数列{}n a ,{}n b 满足:10102017a b =<,对任意正整数n , 有211,2,n n n n n a a a b b +++=+=则11a b +的所有可能值为 .答案:13,20.解:由条件可知:121,,a a b 均为正整数,且12.a a <由于9101120172512b b b >=⋅=,故{}11,2,3.b ∈反复运用{}n a 的递推关系知 1098877665542325385a a a a a a a a a a a =+=+=+=+=+43322113821131421,a a a a a a =+=+=+ 因此1101032212121133421,a a b a a a a ≡==+=+而13213481⨯=⨯+,故()1111132113226mod34.a a b b ≡⨯≡⨯= ①另一方面,注意到12a a <,有1211553421512,a a a b <+=故11512.55a b <② 当11b =时,①,②分别化为()1151226mod34,,55a a ≡<无解. 当12b =时,①,②分别化为()11102452mod34,,55a a ≡<得到唯一的正整数118,a =此时1120.ab +=当13b =时,①,②分别化为()11153678mod34,55a a ≡<,得到唯一的正整数110,a =此时1113.ab +=综上所述,11a b +的所有可能的值为13,20.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)设,k m 为实数,不等式21x kx m --≤对所有[],x a b ∈成立.证明:b a -≤证明:令()2f x x kx m =--,[],x a b ∈,则()[]1,1.f x ∈-于是 ()21,f a a ka m =--≤ ① ()21,f b b kb m =--≤ ②21.222a b a b a b f k m +++⎛⎫⎛⎫=-⋅-≥- ⎪ ⎪⎝⎭⎝⎭③ 由①+②2-⨯③知,()()()22 4.22a b a b f a f b f -+⎛⎫=+-≤ ⎪⎝⎭故b a -≤另证:令()2f x x kx m =--,[],.x a b ∈因为不等式()1f x ≤对所有[],x a b ∈成立,所以()f x 在[],a b 上的最大值与最小值之差不超过2.下面用反证法证明b a -≤假设b a ->1)当2ka ≥时,()()(()2f b f a f a f a ≥->+-((()22a k a m a ka m =+-+----228a ka m a ka m =++----++888.2k=-+≥-+=矛盾.2)当2kb ≤时, ()()(()2f a f b f b f b ≥->--888.2k=-++≥-++=矛盾.3)当2ka b <<时, ⅰ)若22k a b+≤,则 ()()222k a b f b f f b f +⎛⎫⎛⎫≥-≥-⎪ ⎪⎝⎭⎝⎭2222a b a b a b f f +++⎫⎛⎫>-=+⎪ ⎪⎭⎝⎭2 2.2k≥+=矛盾.ⅱ)若22k a b+>,则 ()()22222k a b a b a b f a f f a f f f +++⎛⎫⎛⎫⎛⎛⎫≥->->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭22 2.22a b k+=-++>-+=矛盾.10.(本题满分20分)设123,,x x x 是非负实数,满足1231x x x ++=,求 ()3212313535x x x x x x ⎛⎫++++⎪⎝⎭的最大值和最小值.解:由柯西不等式()3212313535x x x x x x ⎛⎫++++≥ ⎪⎝⎭ ()2123 1.x x x =++=当1231,0,0x x x ===时不等式等号成立,故欲求的最小值为1. 因为()()52123113312315353553553x x x x x x x x x x x x ⎛⎫⎛⎫++++=++++ ⎪ ⎪⎝⎭⎝⎭ ()2123123115355543x x x x x x ⎡⎤⎛⎫≤⋅+++++⎢⎥ ⎪⎝⎭⎣⎦212311466203x x x ⎛⎫=++ ⎪⎝⎭()212319666,205x x x ≤++= 当12311,0,22x x x ===时不等式等号成立,故欲求的最大值为9.511.(本题满分20分)设复数12,z z 满足()()12Re 0,Re 0z z >>,且()()2212Re Re 2z z ==(其中()Re z 表示复数z 的实部). (1)求()12Re z z 的最小值;(2)求121222z z z z +++--的最小值.解:对1,2k =,设()i ,k k k k k z x y x y R =+∈.由条件知()()222Re 0,Re 2.k k k k k x z z y z =>-== 因此()()()()1211221212Re Re i i z z x y x y x x y y =++=-()12122 2.y y y y +-≥又当12z z ==()12Re 2z z =.这表明,()12Re z z 的最小值为2.(2)对1,2k =,将k z 对应到直角坐标系xOy 中的点(),k k k P x y .记2P '是2P 关于x 轴的对称点,则12,P P '均位于双曲线22:2C x y -=的右支上.设12,F F 分别是C 的左、右焦点,易知()()122,0,2,0.F F -根据双曲线的定义,有11122122PF PF P FP F ''=+=+进而得 1212112222z z z z z z z +++--=++-112112122212PF P F PP PF P F PP ''''=+-=+-≥等号成立当且仅当2F 位于线段12P P '上(例如,当122z z ==时,2F 恰是12P P '的中点).综上可知,121222z z z z +++--的最小值为加试题一、(本题满分40分)如图,在ABC 中,AB AC =,I 为ABC 的内心.以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点B 、I 的圆3Γ与1Γ、2Γ分别交于点P 、Q (不同于点B ).设IP 与BQ 交于点R .证明:.BR CR ⊥证明:连接,,,,.IB IC IQ PB PC由于点Q 在圆2Γ上,故,IB IQ =所以.IBQ IQB ∠=∠又,,,B I P Q 四点共圆,所以,IQB IPB ∠=∠于是,IBQ IPB ∠=∠ 故IBP ∽IRB ,从而有,IRB IBP ∠=∠且RQP ICBA A BCIP Q R,IB IP IR IC= 注意到AB AC =,且I 为ABC 的内心,故IB IC =,所以,IC IP IR IC= 于是ICP ∽IRC ,故.IRC ICP ∠=∠又点P 在圆1Γ的弧BC 上,故11802BPC A ∠=-∠,因此BRC IRB IRC IBP ICP ∠=∠+∠=∠+∠360BIC BPC =-∠-∠113609018022A A ⎛⎫⎛⎫=-+∠--∠ ⎪ ⎪⎝⎭⎝⎭90,= 故.BR CR ⊥二、(本题满分40分)设数列{}n a 定义为11,a = 1,,1,2,.,,n n n nn a n a n a n a n a n ++≤⎧⎪==⎨->⎪⎩若若求满足20173r a r <≤的正整数r 的个数.解:由数列定义可知121, 2.a a ==假设对某个2r ≥有r a r =,我们证明对1,,1t r =-,有2122121,2.r t r t a r t r t a r t r t +-+=+->+-=-<+ ①对t 归纳证明.当1t =时,由于r a r r =≥,由定义,121,r r a a r r r r r +=+=+=>+()()2112112r r a a r r r r r ++=-+=-+=-<+,结论成立.设对某个11t r ≤<-,①成立,则由定义()21222221,r t r t a a r t r t r t r t r t +++=++=-++=+>++()()222121221122,r t r t a a r t r t r t r t r t ++++=-++=+-++=--<++即结论对1t +也成立.由数学归纳法知,①对所有1,2,,1t r =-成立,特别当1t r =-时,有321r a -=,从而()3132323 1.r r a a r r --=+-=- 若将所有满足r a r =的正整数r 从小到大记为12,,,r r 则由上面的结论可知1211,2,31,2,3,.k k r r r r r +===-=由此可知,()11131,,122k k r r k m +⎛⎫-=-=- ⎪⎝⎭,从而11111313.222m m m r r --+⎛⎫=-+= ⎪⎝⎭由于201730182017201820193131322r r ++=<<=,在20171,2,,3中满足r a r =的数r 共有2018个,为122018,,,.r r r由①可知,对每个1,2,,2017k =,1,2,,32k k k r r r ++-中恰有一半满足.r a r <由于2017201831112r ++=+与20173均为奇数,而在201720181,,3r +中,奇数均满足r a r >,偶数均满足r a r <,其中偶数比奇数少1个.因此满足20173r a r <≤的正整数r 的个数为()20172017132019320181.22---= 另解:易知1231,2,4a a a ===;4567891,5,10,4,11,3,a a a a a a ======10111212,2,13a a a ===;1314151617181920211,14,28,13,29,12,30,11,31,a a a a a a a a a =========222310,32,a a == 242526272829309,33,8,34,7,35,6,a a a a a a a =======31323336,5,37,a a a ===344,a = 353637383938,3,39,2,40a a a a a =====;……当正整数n 足够大时,若1n a =,则()121321,1,122,2,n n n n n n n a a a n n a a n n a a n n +++++==+=+=++=+=-+=()435465323,41,524,n n n n n n a a n n a a n n a a n n ++++++=++=+=-+=-=++=+由以上等式易观察出:若1n a =,正整数2k n <+,则 2122,2 1.n k n k a n k a n k +-+=-+=++因为当21n k -+=时,1k n =+,2131,n k n +-=+所以,当1n a =时,使得1m a =且m n >的最小正整数3 1.m n =+当1n >,且1n a =时, 11,11n n a n a n n +=<=+≤+,2222,n a n n +=+>+ 212221,212,2,,.n k n k a n k n k a n k n k k n +-+=-+<+-=++>+= 因为11a =,所以使得1m a =且1m >的最小正整数31m =+.因为311a +=,所以使得1m a =且31m >+的最小正整数()2331133 1.m =⋅++=++依此类推下去,可知使得1n a =的一切正整数n 分别为221,13,133,,1333,k +++++++.设220121,13,133,,1333,k k n n n n ==+=++=++++.易知2007201620173,n n <<20161n a =,2016201612016201622016201611,22 2.n n a n n a n n ++=+≤+=+>+ 201620162120162016220162016221,212,n k n k a n k n k a n k n k +-+=-+<+-=++>+2017201632,,.2n k -=满足01,r a r n r n <≤<的正整数r 的个数为零;满足,3r i i a r n r n <≤<+ 的正整数r 的个数为1,1,2,,2016.i =满足1331i i i n r n n ++≤<=+的正整数r 共有22i n -(偶数)个,1,2,,2015,i =其中分别使得r a r <和r a r >的各占一半.满足2017201633n r +≤≤的正整数r 共有2017201632n --(偶数)个,其中分别使得r a r <和r a r >的各占一半.于是,满足20173r a r <≤的正整数r 的个数为20172017332017320192016.22-⨯-+=三、(本题满分50分)将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻两个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.解:记分隔边的条数为L .首先,将方格纸按如图分成三个区域,分别染成三种颜色, 粗线上均为分隔边,此时共有56条分隔边,即56.L =粗线上均为分隔边,此时共有56条分隔边,即56.L =下面证明56.L ≥将方格纸的行从上至下依次记为1233,,,A A A ,列从左至右依次记为1233,,,B B B .行i A 中方格出现的颜色数记为()i n A ,列i B 中方格出现的颜色个数记为()i n B .三种颜色分别记为123,,.c c c 对于一种颜色j c ,设()j n c 是含有j c 色方格的行数与列数之和.记()1,,0,i j i j A c A c δ⎧⎪=⎨⎪⎩若行含有方格,否则,类似地定义(),i j B c δ.于是()()()()()()33333111,,iiijiji i j n A n B A c B c δδ===+=+∑∑∑11331716()()()()3333111,,.i j i j j j i j A c B c n c δδ====+=∑∑∑由于染j c 色的方格有21333633⋅=个,设含有j c 色方格的行有a 个,列有b 个,则j c 色的方格一定在这a 行和b 列的交叉方格中,因此363ab ≥,从而()38,j n c a b =+≥> 故 ()39,1,2,3.j n c j ≥= ①由于在行i A 中有()i n A 种颜色的方格,因此至少有()1i n A -条分隔边.同理在列j B 中,至少有()1j n B -条分隔边.于是()()()()33331111i i i i L n A n B ==≥-+-∑∑()()()33166i i i n A n B ==+-∑ ②()3166.j j n c ==-∑ ③下面分两种情形讨论.情形 1:有一行或一列全部方格同色.不妨设有一行全为1c 色,从而方格纸的33列中均含有1c 色方格.由于1c 色方格有363个,故至少有11行中含有1c 色方格,于是()1113344.n c ≥+= ④由①,③及④即得()()()123664439396656.L n c n c n c ≥++-≥++-=情形2:没有一行也没有一列的全部方格同色.则对任意133i ≤≤,均有 ()()()33166334666656.i i i L n A n B =≥+-≥⨯-=>∑综上所述,分隔边条数的最小值等于56. 四、(本题满分50分)设,m n 均是大于1的整数,.m n ≥12,,,n a a a 是n 个不超过m 的互不相同的正整数,且12,,,n a a a 互素.证明:对任意实数x ,均存在一个()1i i n ≤≤,使得()2,1i a x x m m ≥+这里y 表示实数y 与它最近的整数的距离.证明:首先证明以下两个结论. 结论1:存在整数12,,,n c c c ,满足11221,n n c a c a c a +++=并且,1.i c m i n ≤≤≤由于()12,,,1n a a a =,由裴蜀定理,存在整数12,,,n c c c ,满足1122 1.n n c a c a c a +++= ①下面证明,通过调整,存在一组12,,,n c c c 满足①,且绝对值均不超过m .记()()112212,,,0,,,,0.i j n in j c mc mS c c c cS c c c c ><-=≥=≥∑∑如果10S >,那么存在1,i c m >>于是1,i i c a >又因为12,,,n a a a 均为正数,故由① 可知存在0.j c <令i i c c a '=-。
2017年北京市中学生数学竞赛高一年级复赛试题及解答
在三 角 形 A B C 中, A B=
A C, AD⊥B C 于D, D E⊥A C
于 E, 作 G 是B E 的 中 点, 与 AD 交 于 EH ⊥A G 于 H, 点 K, B E 与 AD 交 于 点 F , 求证 : D F=KF. 证明 在 △A B C 中, A B=A C, AD⊥B C 于D, 则 D 为B C 的中点 . 如 图 3, 取D E 的中点 连结 G 交 AD 于点J, 延 I, I, 长交 C 则 N 为C E 于 N, E 的中点 . 连结 DN , 因为 G 为 所以 GN ∥B B E 的中点 , C. 在 △AND 中 , 因 为 AD
出三 条 线 段, 则以这三条线段为边构成的三角形面积 等于 答: 2. 解 因为直线 y=1, y=2, y=3 都 与 已 知 抛 物 线 所以条件 x 交于 关 于 纵 坐 标 轴 对 称 的 两 个 点 , 2 y=槡
2
2 6 1 ) 因此 f( =3, 1 0 =3- = . 1 0 5 , } , 集合 A= { 其 5. n n∈N, 1 1 S( n) 1 1 S( n+1) | | | 表示自 然 数 m 的 数 字 和 , 则 A 中的最小数是 中 S( m) . 答: 2 8 9 9 9 9 9. 解 记 A 中的最小 数n=a a a a S( n) =a 1 2… t -1 1, 1 如果 n 的个位数字a 则 n+1 + a a a 9, 2+ … + t -1 + t, t≠ ( ) , 其中 a 则 = a a a a ′ ′ a 1 2… t -1 t , t = t +1 ) S( n+1 = a a a a ′ a a 1+ 2+ … + t -1 + t = 1+ 2+ … + ) , a a t -1 + ( t +1 由题意知
2017年普通高等学校招生全国统一考试数学试题理(北京卷,参考解析)
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A ={x |–2x1},B={x |x–1或x3},则AB =(A ){x |–2x –1} (B ){x |–2x 3} (C ){x |–1x1} (D ){x |1x3}【答案】A【解析】{}21A Bx x =-<<-I ,故选A.(2)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是(A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【解析】()()()()111z i a i a a i =-+=++-,因为对应的点在第二象限,所以1010a a +<⎧⎨->⎩ ,解得:1a <-,故选B.(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【答案】C【解析】0k =时,03<成立,第一次进入循环111,21k s +===,13<成立,第二次进入循环,2132,22k s +===,23<成立,第三次进入循环31523,332k s +===,33< 否,输出53s =,故选C.(4)若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.(5)已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【答案】A【解析】若0λ∃<,使m n λ=r r,即两向量反向,夹角是0180,那么0cos1800m n m n m n ⋅==-<r r r rr r,反过来,若0m n ⋅<r r,那么两向量的夹角为(0090,180⎤⎦ ,并不一定反向,即不一定存在负数λ,使得λ=m n ,所以是充分不必要条件,故选A.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )32 (B )23 (C )22 (D )2 【答案】B【解析】几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l =++=选B.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D【解析】设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(完整版)2017年北京市中考数学试题及答案
2017年北京市高级中等学校招生考试数 学 试 题一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度 C. 小苏前15s 跑过的路程大于小林前15s 跑过的路程 D .小林在跑最后100m 的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:① 当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.计算:(4cos3012+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m . (1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D . (1)求证:DB DE =;(2)若12,5AB BD ==,求O e 的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下: 甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a .估计乙部门生产技能优秀的员工人数为____________;b .可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点123115,0,,,,02222P P P ⎛⎛⎫⎛⎫⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________. ②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.。
2017年普通高等学校招生全国统一考试数学试题理(北京卷,附解析)
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数学(理)(北京卷)【试卷点评】2017年北京高考数学试卷,试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查。
我先说一说2017年总体试卷的难度,2017年文科也好、理科也好,整个试卷难度较2015、2016年比较平稳,北京高考应该是从2014年以前和2014年以后,2015、2016年卷子难度都比较低,今年延续了前两年,整体难度比较低。
今天我说卷子简单在于第8题和第14题,难度下降了,相比2014、2015、2016,整体都下降了。
1.体现新课标理念,实现平稳过渡。
试卷紧扣北京考试大纲,新增内容的考查主要是对基本概念、基本公式、基本运算的考查,难度不大。
对传统内容的考查在保持平稳的基础上进行了适度创新,符合北京一贯的风格。
2.关注通性通法,试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,题目没有偏怪题,以能力考查为目的的命题要求。
3.体现数学应用,联系实际,例如理科第17 题考查了样本型的概率问题,第三问要求不必证明、直接给出结论(已经连续6年),需注重理解概念的本质原理,第8 题本着创新题的风格,结合生活中的实际模型进行考查,像14 年的成绩评定、15 年的汽车燃油问题,都是由生活中的实际模型转化来的,对推动数学教学中关注身边的数学起到良好的导向。
【试卷解析】本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A={x|–2<x<1},B={x|x<–1或x>3},则A B=(A){x|–2<x<–1} (B){x|–2<x<3}(C){x|–1<x<1} (D){x|1<x<3}【解析】试题分析:利用数轴可知{}21A B x x =-<<-,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)若复数()()1i a i -+在复平面内对应的点在第二象限,则实数a 的取值范围是 (A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i(a ,b ∈R ) 平面向量OZ .(3)执行如图所示的程序框图,输出的s 值为(A )2 (B )32(C )53(D )85【考点】循环结构【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.(4)若x,y满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,,,则x + 2y的最大值为(A)1 (B)3 (C)5 (D)9 【答案】D【解析】试题分析:如图,画出可行域,2z x y=+表示斜率为12-的一组平行线,当过点()3,3C时,目标函数取得最大值max3239z=+⨯=,故选D.【考点】线性规划【名师点睛】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z ax by =+.求这类目标函数的最值常将函数z ax by =+转化为直线的斜截式:a z y x b b =-+,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+- ;(3)斜率型:形如y b z x a-=-,而本题属于截距形式. (5)已知函数1()3()3xx f x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A 【解析】试题分析:()()113333xx x x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A. 【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性. (6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【考点】1.向量;2.充分必要条件.【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要 ,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q 的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断. (7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A )(B )(C ) (D )2 【答案】B 【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,l == B. 【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.(8)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073(D )1093【答案】D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即MN最接近9310,故选D. 【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log na a M n M =. 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2016_2017学年10月北京海淀区北京市第五十七中学高一上学期月考数学试卷
1. 函数
的定义域是( ).
A.
B.
C.
D.
2. 下列各组函数表示同一函数的是( ).
A.
与
B.
与 C.
与 D.
, 与
,
3. 若 A.
的定义域为 , B.
的定义域为 ,那么( ).
C.
D.
4. 函数
的值域是( ).
A.
B.
上的最大值与最小值之和为( ).
B.
C.
D.
12. 若函数 A.
,是 上的减函数,则实数 的取值范围是( ).
B.
C.
D.
13. 若函数 的定义域是 ,则函数
的定义域为
.
14. 设函数
,若
,则实数
.
15. 已知
,则
的值是
.
16. 已知 是定义在 பைடு நூலகம்的增函数,且
,则 的取值范围为
.
17. 设函数
为奇函数,则实数
在闭区间 B.
上有最大值 ,最小值 ,则 的取值范围是( ).
C.
D.
9. 已知函数 是定义在 上的偶函数,当
解析式是( ).
A.
B.
时, C.
,则函数 在 上的 D.
10. 已知集合
值范围是( ).
A.
B.
, C.
,则能使
成立的实数 的取
D.
11. 已知 A.
是定义在 在
上的奇函数,且 在
上的最大值为 ,则函数
.
18. 若函数
是偶函数,则 的递增区间是
北京市2017年中考数学试题及答案
北京市2017年中考数学试题及答案2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠D .4x ≠3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b >D .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy中,AOB∆∆可以看作是OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD∆的过程:.∆得到AOB16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0∆∠=,求作Rt ABC,90Rt ABC C∆的外接圆.作法:如图.(1)分别以点A和点B为圆心,大于1AB的长为半径作弧,2两弧相交于,P Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:(004cos3012122+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD SS S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC SS ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.23. 如图,在平面直角坐标系xOy 中,函数()0k y x x =>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0k y x x =>的图象于点N .①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D .(1)求证:DB DE=;(2)若12,5AB BD==,求O e的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P是AB所对弦AB上一动点,过点P作PM AB⊥交AB于点M,连接MB,过点P作PN MB=,设⊥于点N.已知6AB cm、两点间的距离为xcm,P N、两点间的距离为ycm.(当点A PP与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: /x cm 0 12 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x xx <<,结合函数的图象,求123x xx ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________.②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.2017年北京市高级中等学校招生考试数学试卷答案一、选择题1-5: BDACA 6-10: BCBDB二、填空题113. (答案不唯一)12.13. 3 14.25°三、解答题。
2017年普通高等学校招生全国统一考试数学试题理(北京卷,含解析)
绝密★本科目考试启用前2017年普通高等学校招生全国统一考试数 学(理)(北京卷)【试卷解析】本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)若集合A ={x |–2<x <1},B={x |x <–1或x >3},则AB =(A ){x |–2<x <–1} (B ){x |–2<x <3} (C ){x |–1<x <1} (D ){x |1<x <3} 【答案】A 【解析】试题分析:利用数轴可知{}21A B x x =−<<−,故选A.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)若复数()()1i a i −+在复平面内对应的点在第二象限,则实数a 的取值范围是 (A )(–∞,1) (B )(–∞,–1) (C )(1,+∞) (D )(–1,+∞) 【答案】B【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z=a+b i复平面内的点Z(a,b)(a,b∈R).复数z=a+b i(a,b∈R ) 平面向量OZ.(3)执行如图所示的程序框图,输出的s值为(A)2 (B)32(C)53(D)85【答案】C【考点】循环结构【名师点睛】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体,争取写出每一个循环,这样避免出错.(4)若x,y满足32xx yy x≤⎧⎪+≥⎨⎪≤⎩,,,则x + 2y的最大值为(A)1 (B)3 (C)5 (D)9 【答案】D【解析】试题分析:如图,画出可行域,2z x y =+表示斜率为12−的一组平行线,当过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【考点】线性规划【名师点睛】本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z ax by =+.求这类目标函数的最值常将函数z ax by =+转化为直线的斜截式:a z y x b b =−+,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =−+− ;(3)斜率型:形如y b z x a−=−,而本题属于截距形式.(5)已知函数1()3()3xx f x =−,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A 【解析】试题分析:()()113333xx xx f x f x −−⎛⎫⎛⎫−=−=−=− ⎪⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A. 【考点】函数的性质【名师点睛】本题属于基础题型,根据奇偶性的定义()f x −与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法,1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性.(6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【考点】1.向量;2.充分必要条件.【名师点睛】判断充分必要条件的的方法:1.根据定义,若,p q q p ⇒≠>,那么p 是q 的充分不必要 ,同时q 是p 的必要不充分条件,若p q ⇔,那互为充要条件,若p q <≠>,那就是既不充分也不必要条件,2.当命题是以集合形式给出时,那就看包含关系,若:,:p x A q x B ∈∈,若A B ≠⊂,那么p 是q 的充分必要条件,同时q 是p 的必要不充分条件,若A B =,互为充要条件,若没有包含关系,就是既不充分也不必要条件,3.命题的等价性,根据互为逆否命题的两个命题等价,将p 是q 条件的判断,转化为q ⌝是p ⌝条件的判断.(7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)32(B)23(C)22(D)2 【答案】B【解析】试题分析:几何体是四棱锥,如图红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,22222223l=++=,故选B.【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.(8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)(A)1033(B)1053(C)1073(D)1093【答案】D【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==−=⨯−=,所以93.2810x =,即MN最接近9310,故选D. 【考点】对数运算【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是36180310x =时,两边取对数,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N−=,log log na a M n M =. 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
第十七届北京高中数学知识应用竞赛初赛试题及参考解答
边顶点到底边的垂直距离为等,在此基础上拼接
厶
以用频数近似概率. 解答模拟一周内是否出现“连续3天下雨” 事件的程序框图和计算机程序是:
出的空心正方形的面积大于以詈为宽、以竺警口
厶 峰
.I蔚
为长的矩形面积的2倍,即大于半n2,而这已
』j.厅
哇
经大于七巧板整体的面积n2了.这是不能实 现的. 对于图6(1),再考虑正方形4,只能放在一个 角上,如图6(2),这样,空心正方形的面积至少是
图l
图2
圈3
每块板标上数,如图5,其中两个大等腰直角三角
解答 (1)拼接图3的方法见图4.
形1和2,直角边长为譬n,斜边长为口.等腰直角 三角形7的直角边长为号,斜边长为譬口,两个小
等腰直角三角形3和5,直角边长为譬口,斜边长 为号,平行四边形6的短边长为譬n,长边长为
号,四个内角两个为45。和两个为135。.正方形4
2014年
第53卷
第2期
数学通报
45
第十七届北京高中数学知识 应用竞赛初赛试题及参考解答
一、(满分20分)在商店,经常见到一些商品 的包装不合适,从商品本身的保质来讲不需要如 此的包装,它既造成浪费,又使消费者增加了支 出,属于过度包装. (1)请给“过度包装”建立一个便于消费者观 察的度量指标; (2)请列举一个具体实例,通过计算,说明你 建立的度量指标能够比较好地刻画“过度包装”的 程度. 解答要点(1)可以显示“过度包装”的指标 很多,如:
图4(1)
图4(2)
的边长为譬口.
如果想拼接出空心正方形,两个大直角三角 形只有一种方法放入空心正方形中,如图6(1)
所呆
数学解释:设日本七巧板拼成的正方形边长 为n,为每块板标上数,如图4(1),其中两个大等
北京市2017年夏季普通高中会考数学试卷及答案(Word版)
北京市2017年夏季普通高中会考数学试卷及答案(Word版)·2·2017年北京市夏季普通高中会考数 学 试 卷考生须知 1. 考生要认真填写考场号和座位序号。
2. 本试卷共6页,分为两个部分,第一部分为选择题,25个小题(共75分);第二部分为解答题,5个小题(共25分)。
3.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
4.考试结束后,考生应将试卷、答题卡放在桌面上,待监考员收回。
第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的.1.已知集合{123}A =,,,{13}B =-,,那么集合A B等于A .{3}B .{1123}-,,,C .{11}-,D .{13}x x -≤≤ 2.如果直线l 与直线320x y +-=平行,那么直线l 的斜率是A.3B.3-C.13D.13-3.不等式2230x x--<的解集为A.(13)-,[gkstkgkstkgkstk]-,B.(31)C.(1)(3),,-∞-+∞,,D.(3)(1)-∞-+∞4.已知向量(12)b,且⊥a b,那么y等于=,=-,a,(2)yA.1-B.1C.4-D.45.已知tan=3α,那么tan(π+)α等于A.3-B.13-C.13D.36.某程序框图如图所示,如果输入x的值是2,那么输出y的值是A. 2B. 4C. 5D. 6·3··4·[gkstkgkstk] 7.要得到函数πsin()4y x =+的图象,只需将函数sinx 的图象A .向左平移π4个单位 B .向右平移π4个单位 C .向上平移π4个单位 D .向下平移π4个单位[gkstkgkstkgkstk] 8.给出下列四个函数:○11y x =-; ○22y x =; ○3ln y x =; ○43y x =.其中偶函数的序号是A .○1B .○2C .○3D .○49.在△ABC 中,2a =,b =3c =,那么角B 等于 A .π6 B .π4 C .π3 D .5π1210.已知数列{}na 的前n 项和2=1nS n-,那么3a 等于A .5B .6C .7D .811.已知正数a b ,满足10ab =,那么a b +的最小值等于开始是否输入输出A.2BC.D.2012.22log8log4-等于A.1 B.2 C.5 D.613.某几何体的三视图如图所示,那么该几何体的体积是A. 2π3B.C. 8π3D. 2π14.函数210()1x xf xxx⎧-⎪=⎨>⎪⎩,≤,,零点的个数为A.0B.1C.2D.3·5··6·15.22ππcos sin 1212-等于A..D16.不等式组1 02 00x y x y x --⎧⎪+-⎨⎪⎩≤,≤,≥表示的平面区域的面积等于A .32B .2C .94D .5217.已知定义在R 上的函数()f x 是单调函数,其部分图象如图所示,那么不等式()3f x <的解集为A .(0)+∞,B .(0)-∞,C .(2)-+∞,D .(2)-∞-, 18.已知圆221x y 与圆222(3)(0)x y r r 相外切,那么r 等于A .1B .2C .3D .419.在植树活动中,每名同学Array可从两种树苗中任选一种进行种植,那么甲乙两名同学选择同一种树苗的概率是A.14B.13C.12D.3420.已知向量(02)=,b,那么向量2-a b与b的夹角=,a,(10)为A.135︒B.120︒C.60︒D.45︒21.某地区有网购行为的居民约10万人. 为了解他们网上购物消费金额占日常消费总额的比例情况,现从中随机抽取168人进行调查,其数据如右表所示. 由此估计,该地区网购消费金额占日常消费总额的比例在20%及以下的人数大约是A.1.68万B.3.21万C.4.41万·7··8·D .5.59万22.已知数列{}na 满足1+nn a an+=,那么其前4项的和4S 等于A .3B .4C .5D .623.如图,在长方体1111ABCD A B C D -中,E F G H ,,,分别是棱111111A B BB CC C D ,,,的中点,那么A .1//BD GHB .//BD EFC .平面//EFGH 平面11A BCDD .平面//EFGH 平面ABCD24.如图,在△ABC 中,点D 在线段BC 上,2BD DC =. 如果AD x AB y AC =+,那么A .1233x y ==,B .2133x y ==,·9·C .2133x y =-=, D .1233x y ==-,25.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色. 下图是2009年至2016年高铁运营总里程数的折线图(图中的数据均是每年12月31日的统计结果).根据上述信息,下列结论中正确的是A .截止到2015年12月31日,高铁运营总里程数超过2万公里[gkstkgkstkgkstk]B .2011年与2012年新增高铁运营里程数之和超过了0.5万公里C .从2010年至2016年,新增高铁运营里程数最多的一年是2014年D.从2010年至2016年,新增高铁运营里程数逐年递增第二部分解答题(每小题5分,共25分)26.(本小题满分5分)已知函数()sin2cos2=+.f x x x(Ⅰ)(0)f=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)求函数()f x的最小正周期及单调递增区间.27.(本小题满分5分)如图,在三棱锥P ABC=.D,E分别是-中,PB PC=,AB ACBC,PB的·10·中点.(Ⅰ)求证://DE 平面PAC ;(Ⅱ)求证:平面ABC ⊥平面PAD .28.(本小题满分5分)已知数列{}n a 是公差为d 的等差数列,13a =,39a =.(Ⅰ)公差d = ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)数列{}n b 满足2n n b a =(123n =,,,),求数列{}nb 的前n 项和nS29.(本小题满分5分)已知⊙M:22-+=.x x y40(Ⅰ)⊙M的半径r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)设点(03)A,,(25)B,,试判断⊙M上是否存在两点C,D,使得四边形ABCD为平行四边形?若存在,求直线CD的方程;若不存在,请说明理由.30.(本小题满分5分)科学研究表明:人类对声音有不同的感觉,这与声音的强度I(单位:瓦/平方米)有关. 在实际测量时,常用L(单位:分贝)来表示声音强弱的等级,它与声音的强度I 满足关系式:0lg I L a I =⋅(a 是常数),其中120110I -=⨯瓦/平方米. 如风吹落叶沙沙声的强度11110I -=⨯瓦/平方米,它的强弱等级10L =分贝.(Ⅰ)a = ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)已知生活中几种声音的强度如下表:[gkstkgkstkgkstk] 声音来源声音大小 风吹落叶沙沙声 轻声耳语 很嘈杂的马路 强度I (瓦/平方米)11110-⨯ 10110-⨯ 3110-⨯ 强弱等级L (分贝) 10 m 90那么m = ;(将结果直接填写在答题卡的相应位置上) (Ⅲ)为了不影响正常的休息和睡眠,声音的强弱等级一般不能超过50分贝,求此时声音强度I 的最大值.2017年北京市夏季普通高中会考数学试卷答案及评分参考[说明]第一部分选择题,机读阅卷.第二部分解答题. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可. 若考生的解法与本解答不同,正确者可参照评分标准给分. 解答右端所注分数,表示考生正确做到这一步应得的累加分数.第一部分选择题(每小题3分,共75分)题号1 2 3 4 5 6 7 8 9答案B B A B D B A B C题号10 11 12 13 14 15 16 17 18答案A C A A B D C A B题号19 20 21 22 23 24 25 ———答案C A D B C A C第二部分解答题(每小题5分,共25分) 26.(本小题满分5分)已知函数()sin2cos2f x x x=+.(Ⅰ)(0)f=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)求函数()f x的最小正周期及单调递增区间. (Ⅰ)解:(0)=f1.……………………………………2分(Ⅱ)解:由题意得π())4f x x=+.所以T=π.因为πππ2π22π242k x k-++≤≤,k∈Z,所以3ππππ88k x k-+≤≤,k∈Z.所以()f x的单调递增区间是3ππ[ππ+]88k k -,,k∈Z. …………5分27.(本小题满分5分)如图,在三棱锥P ABC-中,PB=E分别是BC,PB的中点.(Ⅰ)求证://DE平面PAC;(Ⅱ)求证:平面ABC⊥平面PAD.(Ⅰ)证明:因为D,E分别是BC,PB的中点,所以//DE PC.因为DE⊄平面PAC,PC⊂平面PAC,所以//DE平面PAC.……………………………………2分(Ⅱ)证明:因为PB PC=,AB AC=,D是BC的中点,所以PD BC⊥,AD BC⊥.因为PD AD D =, 所以BC ⊥平面PAD . 因为BC ⊂平面ABC , 所以 平面ABC ⊥平面PAD . ……………………………………5分28.(本小题满分5分)已知数列{}n a 是公差为d 的等差数列,13a =,39a =. (Ⅰ)公差d = ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)数列{}n b 满足2n n b a =(123n =,,,),求数列{}n b 的前n 项和nS . (Ⅰ)解:公差d =3. ……………………………………2分(Ⅱ)解:因为 等差数列{}n a 的公差3d =,13a =, 所以 3n a n =.所以232n n n b a ==⋅.所以 数列{}nb 是首项为6,公比为2的等比数列. 所以 6(12)62612n n n S -==⋅--. …………………………………… 5分29.(本小题满分5分) 已知⊙M :2240x x y -+=. (Ⅰ)⊙M 的半径r = ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)设点(03)A ,,(25)B ,,试判断⊙M 上是否存在两点C ,D ,使得四边形ABCD 为平行四边形?若存在,求直线CD 的方程;若不存在,请说明理由. (Ⅰ)解:⊙M 的半径r =2. ……………………………………1分(Ⅱ)解:由2240x x y -+=得 22(2)4x y -+=. 所以 ⊙M 的半径2r =,圆心(20)M ,.由点(03)A ,,(25)B ,可得 直线AB 的斜率为53120-=-,AB =如果存在点C ,D ,使得四边形ABCD 为平行四边形,那么AB CD ∥,AB CD =. 设直线CD 的方程为y x b =+,则点M 到直线CD 的距离d =由()2222CDr d =+可得 2(2)422b +=+,解得 0b =,或4b =-.当0b =时,直线CD 的方程为0x y -=,此时(22)C ,,(00)D ,; 当4b =-时,直线CD 的方程为40x y --=,此时(40)C ,,(22)D -,. 所以 ⊙M 上存在两点C ,D ,使得四边形ABCD 为平行四边形. …5分·21· 强弱等级L (分贝) 10 m 90那么m = ;(将结果直接填写在答题卡的相应位置上) (Ⅲ)为了不影响正常的休息和睡眠,声音的强弱等级一般不能超过50分贝,求此时声音强度I 的最大值. (Ⅰ)解:a =10. ……………………………………1分(Ⅱ)解:m =20. ……………………………………3分(Ⅲ)解:由题意,得50L ≤. 所以 1210lg 50110I -⨯⨯≤.解不等式,得 70I -≤1.答:此时声音强度I 的最大值为70-1瓦/平方米. …………………………5分。
2017年1月北京市西城区高一数学期末试题答案
北京市西城区2016 — 2017学年度第一学期期末试卷高一数学参考答案及评分标准 2017.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.C2.A3.D4.D5.B6.A7.C8.C9.B 10.A .二、填空题:本大题共6小题,每小题4分,共24分.11. 2-12. 3, 9- 13. πcos(2)2y x =+(或sin 2y x =-) 14. 150 15. 208225-16. ○2○3 注:第16题少选得2分,多选、错选不得分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)解:(Ⅰ)由π1tan()43ϕ+=-,得tan 111tan 3ϕϕ+=--, ………………3分 解得tan 2ϕ=-. ………………5分 所以22tan 4tan 21tan 3ϕϕϕ==-. ………………8分 (Ⅱ)由tan 2ϕ=-,得cos 0ϕ≠. 将分式sin cos 2cos sin ϕϕϕϕ+-的分子分母同时除以cos ϕ, 得sin cos tan 112cos sin 2tan 4ϕϕϕϕϕϕ++==---. ………………12分 18.(本小题满分12分)解:(Ⅰ)π()cos cos()3f x x x =⋅-ππcos (cos cos sin sin )33x x x =⋅+ ………………2分21cos 22x x =+ ………………3分112cos 244x x =++ ………………4分1π1sin(2)264x =++, ………………6分 由πππ2π22π+262k x k -+≤≤,得ππππ+36k x k -≤≤, 所以()f x 的单调递增区间为ππ[ππ+],()36k k k -∈Z ,. ………………8分 (Ⅱ)因为πsin(2)[1,1]6x +∈-, 所以函数1π1()sin(2)264f x x =++的值域为13[,]44-. ………………10分 因为直线y a =与函数()f x 的图象无公共点,所以13(,)(,)44a ∈-∞-+∞ . ………………12分19.(本小题满分12分)解:(Ⅰ)如图,以点B 为原点,以AB ,BC 所在的直线分别为x ,y 轴建立直角坐标系, 则(0,0)B ,(2,0)A -,(0,)C a ,(1,)D a -,(1,)AD a = ,(2,0)AB = ,(0,)BC a = .………………2分由AP xAD = , 得(,)AP x ax = . 所以(2,)PB PA AB x ax =+=-- , (2,)PC PB BC x a ax =+=-- . ………4分 所以2222(2)y PB PC x a x a x =⋅=--+ ,即222()(1)(4)4f x a x a x =+-++. ………………6分所以(1)1f =. ………………7分 (注:若根据数量积定义,直接得到(1)1f =,则得3分)(Ⅱ)由(Ⅰ),知函数222()(1)(4)4f x a x a x =+-++为二次函数,其图象开口向上, 且对称轴为2242(1)a x a +=+, ………………8分 因为对称轴222224(1)31312(1)2(1)22(1)2a a x a a a +++===+>+++,[0,1]x ∈, ……10分 所以当0x =时, ()f x 取得最大值(0)4f =. ………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1. [1,0)-2. 2-或2e 3. (3,0)(3,)-+∞ 4. {0,1} 5. [10,20] 注:第2 题少解不得分.二、解答题:本大题共3小题,共30分.6.(本小题满分10分)解:(Ⅰ)由411()log 12a f a a -==+,得121a a -=+, ………………2分 解得3a =-. ………………4分 (Ⅱ)由函数41()log 1x f x x -=+有意义,得101x x ->+. ………………5分 所以函数()f x 的定义域为{|1x x >,或1}x <-. ………………6分 因为1444111()log log ()log ()111x x x f x f x x x x ------===-=--+++, 所以()()f x f x -=-,即函数()f x 为奇函数. ………………10分7.(本小题满分10分)解: (Ⅰ)由函数()3x f x =,()||3g x x a =+-,得函数||3()[()]3x a h x f g x +-==. ………………1分 因为函数()h x 的图象关于直线2x =对称,所以(0)(4)h h =,即||3|4|333a a -+-=,解得2a =-. ………………3分 (Ⅱ)方法一:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 当3a ≥时,由30x >,得33x a +>, 所以方程|3|3x a +=无解,即函数[()]y g f x =没有零点; ………………6分 当33a -<≤时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且33a -<≤,所以有且仅有一个0x 使得033x a +=,且对于任意的x ,都有33x a +≠-, 所以函数[()]y g f x =有且仅有一个零点; ………………8分 当3a -<时,因为3x y a =+在R 上为增函数,值域为(,)a +∞,且3a -<,所以有且仅有一个0x 使得033x a +=,有且仅有一个1x 使得133x a +=-, 所以函数[()]y g f x =有两个零点.综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 方法二:由题意,得[()]|3|3xg f x a =+-.由[()]|3|30x g f x a =+-=,得|3|3x a +=, ………………5分 即33x a +=,或33x a +=-,整理,得33x a =-,或33x a =--.○1考察方程33x a =-的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a ->,即3a <时,方程33x a =-有且仅有一解;当03a -≤,即3a ≥时,方程33x a =-有无解; ………………7分 ○2考察方程33x a =--的解,由函数3x y =在R 上为增函数,且值域为(0,)+∞,得当30a -->,即3a <-时,方程33x a =--有且仅有一解;当03a --≤,即3a ≥-时,方程33x a =--有无解. ………………9分综上,当3a ≥时,函数[()]y g f x =没有零点; 当33a -<≤时,函数[()]y g f x =有且仅有一个零点;当3a -<时,函数[()]y g f x =有两个零点. ………………10分 注:若根据函数图象便得出答案,请酌情给分,没有必要的文字说明减2分.8.(本小题满分10分)解:(Ⅰ)答案不唯一,如函数0y =,y x =等. ………………3分 (Ⅱ)因为函数2()f x ax bx c =++的图象经过点(1,0)-,所以0a b c -+=. ○1因为y x =为函数)(x f 一个承托函数,且)(x f 为函数21122y x =+的一个承托函数, 所以2()1122x f x x +≤≤对x ∈R 恒成立. 所以1(1)1f ≤≤,即 (1)1f a b c =++=. ○2 ………………5分由○1○2,得12b = ,12a c +=. ………………6分 所以211()22f x ax x a =++-. 由()f x x ≥对x ∈R 恒成立,得201122ax x a -+-≥对x ∈R 恒成立. 当0a =时,得01122x -+≥对x ∈R 恒成立,显然不正确; ………………7分 当0a ≠时,由题意,得0,0,114()42a a a >⎧⎪⎨∆=--⎪⎩≤ 即20(41)a -≤, 所以14a =. ………………9分 代入2()1122f x x +≤,得21110424x x -+≥, 化简,得2(1)0x -≥对x ∈R 恒成立,符合题意.所以14a =,12b =,14c =. ………………10分。
2017年普通高等学校招生全国统一考试(北京卷理科) 数学试题及答案(教师版)
2017年普通高等学校招生全国统一考试(北京卷理科)数学试题一、单选题(本大题共8小题,每小题____分,共____分。
)1.若集合A={x|–2x1},B={x|x–1或x3},则A B=(A)A. {x|–2x–1}B. {x|–2x3}C. {x|–1x1}D. {x|1x3}2.若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是(B)A. (–∞,1)B. (–∞,–1)C. (1,+∞)D. (–1,+∞)3.执行如图所示的程序框图,输出的s值为(C)A. 2B.C.D.4.若x,y满足,则x + 2y的最大值为(D)A. 1B. 3C. 5D. 95.已知函数,则(A)A. 是奇函数,且在R上是增函数B. 是偶函数,且在R上是增函数C. 是奇函数,且在R上是减函数D. 是偶函数,且在R上是减函数6.设m,n为非零向量,则“存在负数,使得”是“”的(A)A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(B)A. 3B. 2C. 2D. 28.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(D)(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 1093二、填空题(本大题共6小题,每小题____分,共____分。
)9.若双曲线的离心率为,则实数m=_____2_____.10.若等差数列和等比数列满足a1=b1=–1,a4=b4=8,则=___1___.11.在极坐标系中,点A在圆,点P的坐标为(1,0),则|AP|的最小值为__1__.12.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称。
若,=____.13.能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为_____-1,-2,-3____.14.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标学科&网分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3。
2017学年北京市西城区高一上学期期末数学试卷及参考答案
2016-2017学年北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.(4分)若向量=(1,﹣2),=(x,4)满足⊥,则实数x等于()A.8 B.﹣8 C.2 D.﹣23.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B.C.D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.(4分)函数f(x)=sinx﹣cosx的图象()A.关于直线对称B.关于直线对称C.关于直线对称D.关于直线对称6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|x| B.y=cos|x|C.y=|sinx| D.y=|cos2x|8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.199.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f (x)的图象是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.(4分)若向量=(﹣1,2)与向量=(x,4)平行,则实数x=.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2x的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(x﹣y)=.16.(4分)已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6k,k∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f(x)的单调增区间;(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a (a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f(x).(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁U B)=.21.(4分)已知函数若f(a)=2,则实数a=.22.(4分)定义在R上的函数f (x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为.23.(4分)函数的值域为.(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.26.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.27.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.2016-2017学年北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.2.(4分)若向量=(1,﹣2),=(x,4)满足⊥,则实数x等于()A.8 B.﹣8 C.2 D.﹣2【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(x,4),则有•=1×x+(﹣2)×4=0,解可得x=8;故选:A.3.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B.C.D.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【解答】解:函数=cosx,是偶函数,且在区间上单调递减,故选D.5.(4分)函数f(x)=sinx﹣cosx的图象()A.关于直线对称B.关于直线对称C.关于直线对称D.关于直线对称【解答】解:函数y=sinx﹣cosx=sin(x﹣),∴x﹣=kπ+,k∈Z,得到x=kπ+,k∈Z,则函数的图象关于直线x=﹣对称.故选:B.6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|x| B.y=cos|x|C.y=|sinx| D.y=|cos2x|【解答】解:对于A:y=sin|x|不是周期函数,对于B,y=cos|x|的最小正周期为2π,对于C,y=|sinx|最小正周期为π,对于D,y=|cos2x|最小正周期为,故选:C8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.19【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当x=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2kπ+,k ∈Z,∴φ=2kπ+,k∈Z,∵0<φ<π,∴φ=,故选:B.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为x,弓形PNO的面积S=f(x),那么f (x)的图象是()A.B.C.D.【解答】解:由题意得S=f (x )=x﹣f′(x)=≥0当x=0和x=2π时,f′(x)=0,取得极值.则函数S=f (x )在[0,2π]上为增函数,当x=0和x=2π时,取得极值.结合选项,A正确.故选A.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.(4分)若向量=(﹣1,2)与向量=(x,4)平行,则实数x=﹣2.【解答】解:因为向量=(﹣1,2)与向量=(x,4)平行,所以,所以﹣1=λx,2=λ4,解得:λ=,x=﹣2.故答案为﹣2.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.13.(4分)将函数y=cos2x的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2x.【解答】解:将函数y=cos2x的图象向左平移个单位,所得图象对应的解析式为y=cos2(x+)=cos(2x+)=﹣sin2x.故答案为:y=﹣sin2x.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°15.(4分)已知,则cos(x﹣y)=﹣.【解答】解:∵sinx+siny=,①cosx+cosy=,②①2+②2得:2+2sinxsiny+2cosxcosy=,∴cos(x﹣y)=sinxsiny+cosxcosy=﹣,故答案为:﹣.16.(4分)已知函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6k,k∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈Z),∴①ω=3正确;②ω≠6k,k∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.18.(12分)已知函数.(1)求函数f(x)的单调增区间;(2)若直线y=a与函数f(x)的图象无公共点,求实数a的取值范围.【解答】解:(1)函数=cosx(cosx+sinx)=+sin2x=cos(2x﹣)+,由2kπ﹣π≤2x﹣≤2kπ,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,即f(x)的增区间为[kπ﹣,kπ+],k∈Z;(2)由(1)可得当2x﹣=2kπ,即x=kπ+,k∈Z时,f(x)取得最大值;当2x﹣=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值﹣.由直线y=a与函数f(x)的图象无公共点,可得a的范围是a>或a<﹣.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a (a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f(x).(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=x,(0≤x≤1).∴=+x=(﹣2,0)+x(1,a)=(x﹣2,xa),∴=﹣=(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa)∴y=f(x)=•=(2﹣x,﹣xa)•(2﹣x,a﹣xa)=(2﹣x)2﹣ax(a﹣xa)=(a2+1)x2﹣(4+a2)x+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=.当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当a>时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上所述函数f(x)的最大值为4B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁U B)={x|﹣1≤x<0} .【解答】解:全集U=R,集合A={x|x<0},B={x||x|>1}={x|x<﹣1或x>1},则∁U B={x|﹣1≤x≤1},A∩(∁U B)={x|﹣1≤x<0}.故答案为:{x|﹣1≤x<0}.21.(4分)已知函数若f(a)=2,则实数a=e2.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.22.(4分)定义在R上的函数f (x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为(﹣3,0)∪(3,+∞).【解答】解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:∴f(x)>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).23.(4分)函数的值域为{0,1} .(其中[x]表示不大于x的最大整数,例如[3.15]=3,[0.7]=0.)【解答】解:设m表示整数.①当x=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当x=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<x<2m+1时,2m+1<x+1<2m+2∴m<<m+0.5m+0.5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<x<2m+2时,2m+2<x+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20] .【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣x,(0<x<30)∴矩形的面积S=x(30﹣x),∵矩形花园的面积不小于200m2,∴x(30﹣x)≥200,化为(x﹣10)(x﹣20)≤0,解得10≤x≤20.满足0<x<30.故其边长x(单位m)的取值范围是[10,20].故答案为:[10,20].二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f(x)的奇偶性,并证明你的结论.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=3;(Ⅱ)函数f(x)为奇函数,理由如下:函数f(x)的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣x)+f(x)=+=0,即f(﹣x)=﹣f(x),故函数f(x)为奇函数.26.(10分)已知函数f(x)=3x,g(x)=|x+a|﹣3,其中a∈R.(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h(x)=f[g(x)]=3|x+a|﹣3的图象关于直线x=2对称,则h(4﹣x)=h(x)⇒|x+a|=|4﹣x+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f(x)]=|3x+a|﹣3的零点个数,就是函数G(x)=|3x+a|与y=3的交点,①当0≤a<3时,G(x)=|3x+a|=3x+a与y=3的交点只有一个,即函数y=g[f(x)]的零点个数为1个(如图1);②当a≥3时,G(x)=|3x+a|=3x+a与y=3没有交点,即函数y=g[f(x)]的零点个数为0个(如图1);③﹣3≤a<0时,G(x)=|3x+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G(x)=|3x+a|与y=3的交点有2个(如图2);27.(10分)设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g (x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f (x)为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f(x)=ax2+bx+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f(x)=x2+2x+1,由新定义可得g(x)=x为函数f(x)的一个承托函数;(2)假设存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数的一个承托函数.即有x≤ax2+bx+c≤x2+恒成立,令x=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又ax2+(b﹣1)x+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)x2+bx+c﹣≤0恒成立,可得a <,且b 2﹣4(a ﹣)(c ﹣)≤0,即有(1﹣2a )2﹣4(a ﹣)2≤0恒成立.故存在常数a ,b ,c ,且0<a=c <,b=1﹣2a ,可取a=c=,b=.满足题意.赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为 M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年北京市中学生数学竞赛高中一年级初赛试题参考解答(2017年4月9日)选择题答案填空题答案一、选择题1.集合A ={2, 0, 1, 7},B ={x | x 2−2∈A , x −2∉A },则集合B 的所有元素之积为 (A )36.(B )54. (C )72.(D)108. 答:A .解:由x 2−2∈A,可得x 2=4,2,3,9,即x =±2,±3. 又因为x −2∉A ,所以x ≠2,x ≠3,故x = −2,−3. 因此,集合B ={−2,−3}.所以,集合B 的所有元素的乘积等于(−2)(−3)=36. 2.已知锐角△ABC 的顶点A 到它的垂心与外心的距离相等,则tan(2BAC∠)= (A . (B )2.(C )1. (D 答:A .解:作锐角△ABC 的外接圆,这个圆的圆心O 在形内,高AD ,CE 相交于点H ,锐角△ABC 的垂心H 也在形内.连接BO 交⊙O 于K ,BK 为O 的直径. 连接AK ,CK .因为AD ,CE 是△ABC 的高,∠KAB ,∠KCB 是直径BK 上的圆周角,所以∠KAB =∠KCB =90°.于是KA//CE KC//AD ,因此AKCH 是平行四边形.所以KC =AH =AO =12BK .在直角△KCB 中,由KC =12BK ,得∠BKC =60°,所以∠BAC =∠BKC =60°.故tan(2BAC ∠)= tan30°=3. 3.将正奇数的集合{1, 3, 5, 7, …}从小到大按第n 组2n −1个数进行分组:{1},{3, 5, 7},{9, 11, 13, 15, 17},…,数2017位于第k 组中,则k 为(A )31. (B )32. (C )33. (D )34. 答:B.解:数2017是数列a n = 2n −1的第1009项.设2017位于第k 组,则1+3+5+…+(2k −1)≥1009,且1+3+5+…+(2k −3)<1009.即k 是不等式组221009(1)1009k k ⎧≥⎨-<⎩的正整数解,解得k =32,所以2017在第32组中. 4.如图,平面直角坐标系x -O -y 中,A , B 是函数y =1x在第I 象限的图象上两点,满足∠OAB =90°且AO = AB ,则等腰直角△OAB 的面积等于(A )12. (B )2. (C)2. (D)2.答:D .解:依题意,∠OAB =90°且AO = AB ,∠AOB =∠ABO =45°.过点A 做y 轴垂线交y 轴于点C ,过点B 做y 轴平行线,交直线CA 于点D .易见△COA ≌△DAB .设点A (a , 1a ),则点B (a +1a , 1a− a ).因为点B 在函数y =1x 的图象上,所以(a +1a )(1a − a )=1,即21a− a 2=1. 因此S △ABC =12OA 2=12(21a + a 2) =122=. 5.已知f (x ) = x 5 + a 1x 4 + a 2x 3 + a 3x 2 + a 4x + a 5,且当m =1, 2, 3, 4时,f (m )=2017m ,则f (10)−f (−5)=(A )71655. (B )75156. (C )75615. (D )76515.答:C .解:因为 当m =1, 2, 3, 4时,f (m )=2017m ,所以1, 2, 3, 4是方程f (x )−2017x =0的四个实根,由于5次多项式f (x )−2017x 有5个根,设第5个根为p ,则f (x )−2017x = (x −1)(x −2)(x −3)(x −4)(x −p )即 f (x ) = (x −1)(x −2)(x −3)(x −4)(x −p )+2017x .所以f (10)=9×8×7×6(10−p )+2017×10,f (−5)=−6×7×8×9(5+p )−2017×5, 因此f (10)− f (−5)=15(9×8×7×6+2017)=75615.6.已知函数2||,,()42,.x x a f x x ax a x a ≤⎧=⎨-+>⎩若存在实数m ,使得关于x 的方程f (x )=m有四个不同的实根,则a 的取值范围是(A )17a >. (B )16a >. (C )15a >. (D )14a >.答:D .解:要使方程f (x )=m 有四个不同的实根,必须使得y =m 的图像与y =f (x )的图像有4个不同的交点.而直线与y =|x |的图像及二次函数的图像交点都是最多为两个,所以y =m 与函数y =|x |, x ≤a 的图像和y =x 2−4ax +2a , x >a 的图像的交点分别都是2个.而存在实数m ,使y =m 与y =|x |, x ≤a 的图像有两个交点,需要a >0,此时0<m ≤a ;又因为y =x 2−4ax +2a , x >a 顶点的纵坐标为242(4)4a a ⨯-,所以,要y =m 与y =x 2−4ax +2a ,x >a 的图像有两个交点,需要m >242(4)4a a ⨯-.因此y =m 的图像与y =f (x )的图像有4个不同的交点需要满足:0<m ≤a 且m >242(4)4a a ⨯-,解得14a >.二、填空题1. 用[x ]表示不超过x 的最大整数,设S =++++ ,求的值. 答:24.解:因为12≤1, 2, 3<22,所以12,因此1===,共3个1;同理,22≤4, 5, 6, 7, 8<32,因此,2=====,共5个2;又32≤9, 10, 11, 12, 13, 14, 15<42,因此3=== ,共7个3;依次类推,4===== ,共9个4;5===== ,共11个5;6===== ,共13个6;7===== ,共15个7;8===== ,共17个8;9===== ,共19个9.S= (++)+(++++)+…+(++ ) = 1×3+2×5+3×7+4×9+5×11+6×13+7×15+8×17+9×19=615.因为242=576<615=S <625=252,即2425,所以,.2.确定(201721log 2017×201741log 2017×201781log 2017×2017161log 2017×2017321log 2017)15的值. 答:8.解:原式=(20172017log 2×20172017log 4×20172017log 8×20172017log 16×20172017log 32)15=(2×4×8×16×32)15= (21×22×23×24×25)15=(21+2+3+4+5)15=(215)15=23=8.3.已知△ABC 的边ABBCCA厘米,求△ABC 的面积. 答:9.5平方厘米.解:注意到13=32+22,29=52+22,34=52+32,作边长为5厘米的正方形AMNP ,分成25个1平方厘米的正方形网格,如图.根据勾股定理,可知,ABBCCA=米,因此△ABC 的面积可求.△ABC 的面积=5×5−12×3×5−12×2×5−12×2×3=9.5(平方厘米).4.设函数22(1))()1x x f x x ++=+的最大值为M ,最小值为N ,试确定M +N的值.答:2.解:由已知得22)()11x x f x x +=++因为)())(())]x x x x ++-=--=22ln(()1())ln10x x -+--==,所以()))x x -=-,因此,)x 是奇函数.进而可判定,函数22)()1x x g x x ++=+为奇函数. 则g (x )的最大值M 1和最小值N 1满足M 1+N 1= 0. 因为M =M 1+1,N = N 1+1,所以 M + N = 2.NA MBP5.设A 是数集{1, 2, …, 2017}的n 元子集,且A 中的任意两个数既不互质,又不存在整除关系,确定n 的最大值.答:504.解:在数集{1, 2, …, 2017}中选取子集,使得子集中任意两个数不互质,最大的子集是偶数集{2, 4, …, 2016}共1008个元素,但其中,有的元素满足整除关系,由于1010的2倍是2020,所以集合A ={1010, 1012, 1014, …, 2016}中,任意两个数既不互质,又不存在整除关系,A 中恰有504个元素.事实上504是n 的最大值.因为若从{1009, 1011, …, 2017}中任取一个奇数,会与A 中的与它相邻的偶数互质;若从{1, 2, 3, …, 1008}中任取一数,则它的2倍在A 中,存在整除关系.6.如图,以长为4厘米的线段AB 的中点O 为圆心、2厘米为半径画圆,交AB 的中垂线于点E 和F . 再分别以A 、B 为圆心,4厘米为半径画圆弧交射线AE 于点C ,交射线BE 于点D . 再以E 为圆心DE 为半径画圆弧 DC,求这4条实曲线弧连接成的“卵形” AFBCDA 的面积.(圆周率用π表示,不取近似值)答:(12−π−4平方厘米.解:半圆(O , 2)的面积=12π×22=2π.因为AO=OB =2,所以AB=AC=BD =4,AE =BEED =EC =4−2 又∠AEB =∠CED =90°,∠EAB =∠EBA =45°,因此,扇形BAD 的面积=扇形ACB 的面积=18π×42=2π,△AEB 的面积=12×4×2=4,直角扇形 EDC的面积=14π(4−2= 6π−, 卵形 AFBCDA 的面积 = 半圆(O , 2)的面积+扇形BAD 的面积+扇形ACB 的面积−△AEB 的面积+直角扇形 EDC的面积 = 2π+2×2π−4+6π−4 = (12−π−4(平方厘米).7. 已知22()1005000x f x x x =-+,求f (1)+f (2)+…+f (100)的值.答:101.解:设g (x ) = x 2−100x +5000,则g (100−x ) = (100−x )2−100(100−x )+5000=1002−200x +x 2−1002+100x +5000= x 2−100x +5000= g (x ), 即 g (k ) = g (100−k ).BFADCEO所以 f (k ) + f (100−k ) =22(100)()(100)k k g k g k -+- =22(100)()k k g k +-=2, 又 f (50) =2250=150100505000-⨯+, f (100)22100==2.1001001005000-⨯+ 所以, f (1)+ f (2)+…+ f (100)= (f (1)+ f (99))+ (f (2)+ f (98))+…+ (f (49)+ f (51))+ f (50)+ f (100) = 2×49+1+2=101.8.如图,在锐角△ABC 中,AC = BC = 10,D 是边AB 上一点,△ACD 的内切圆和△BCD 的与BD 边相切的旁切圆的半径都等于2,求AB 的长.答:解:线段AB 被两圆与AB 的切点及点D 分成四段,由于两圆半径相等,再根据切线长定理,可知中间两段相等,于是可将这四段线段长度分别记为a , b , b , c ,由于圆O 2的切线长CE = CG ,所以BC +a = CD +b = (AC −c +b )+b ,而AC = BC ,所以a +c = 2b .由等角关系可得△AO 1F ∽△O 2BE ,得12O F BEAF O E=,即22ac =,由此推出ac = 4. 分别计算△BCD 和△ACD 的面积:12(),2BCD S BC CD BD ∆=⨯+-12()2ACD S AC CD AD ∆=⨯++所以24ACD BCD S S AD BD AB a c b b ∆∆-=+==++=. ①又设由C 引向AB 的高为h ,可得1()2ACD BCD S S c a h ∆∆-=-=②由①、②两式可得4b =将a +c = 2b ,ac = 4代入,化简得42251000b b -+=解得b 2=5或b 2=20,即bb(负根舍). 于是,AB = a +c +2b = 4bAB若ABABC 为钝角三角形,不合题设△ABC 是锐角三角形的要求. 所以AB 的长为DACBD A C B EG FO 1 O 2 · a b b c·。