抛物线的简单几何性质教案 (1)
(第15课时)抛物线的简单几何性质(1)
课题:8.6抛物线的简单几何性质(一)教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:“抛物线的简单几何性质”是课本第八章最后一节,它在全章占有重要的地位和作用本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数p本节分两课时进行教学第一课时内容主要讲抛物线的四个几何性质、抛物线的画图、例1、例2、及其它例题;第二课时主要内容焦半径公式、通径、例3教学过程:一、复习引入:1.抛物线定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线定点F叫做抛物线的焦点,定直线l叫做抛物线的准线相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242p = 不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 二、讲解新课:抛物线的几何性质 1.范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. 2.对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. 3.顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.4.离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 对于其它几种形式的方程,列表如下:抛物线不是双曲线的一支,抛物线不存在渐近线通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率 附:抛物线不存在渐近线的证明.(反证法)假设抛物线y 2=2px 存在渐近线y =mx +n ,A (x ,y )为抛物线上一点,A 0(x ,y 1)为渐近线上与A 横坐标相同的点如图,则有px y 2±=和y 1=mx +n . ∴ px n mx y y 21+=-xpx n m x 2+⋅= 当m ≠0时,若x →+∞,则+∞→-y y 1 当m =0时,px n y y 21=-,当x →+∞,则+∞→-y y 1这与y =mx +n 是抛物线y 2=2px 的渐近线矛盾,所以抛物线不存在渐近线三、讲解范例:例1 已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形.分析:首先由已知点坐标代入方程,求参数p .解:由题意,可设抛物线方程为px y 22=,因为它过点)22,2(-M , 所以 22)22(2⋅=-p ,即 2=p 因此,所求的抛物线方程为x y 42=.将已知方程变形为x y 2±=,根据x y 2=计算抛物线在0≥x 的范围内几个点的坐标,得描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点位置.分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p 值.解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于灯口直径.设抛物线的标准方程是px y 22= (p >0).由已知条件可得点A 的坐标是(40,30),代入方程,得402302⨯=p , 即 445=p 所求的抛物线标准方程为x y 2452=. 例3 过抛物线px y 22=的焦点F 任作一条直线m ,交这抛物线于A 、B 两点,求证:以AB 为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图.设AB 的中点为E ,过A 、E 、B 分别向准线l 引垂线AD ,EH ,BC ,垂足为D 、H 、C ,则|AF |=|AD |,|BF |=|BC |∴|AB |=|AF |+|BF |=|AD |+|BC |=2|EH |所以EH 是以AB 为直径的圆E 的半径,且EH ⊥l ,因而圆E 和准线l 相切. 四、课堂练习:1.过抛物线x y 42=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果621=+x x ,那么||AB =( B )(A )10 (B )8 (C )6 (D )42.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( B )(A )3 (B )4 (C )5 (D )6 3.过抛物线()02>=a axy 的焦点F 作直线交抛物线于P 、Q 两点,若线段PF 、QF 的长分别是p 、q ,则qp 11+=( C ) (A )a 2 (B )a 21 (C )a 4 (D )a4 4.过抛物线x y 42=焦点F 的直线l 它交于A 、B 两点,则弦AB 的中点的轨迹方程是 ______ (答案:()122-=x y )5.定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 中点M 到y 轴距离的最小值,并求出此时AB 中点M 的坐标(答案:⎪⎪⎭⎫⎝⎛±22,45M , M 到y 轴距离的最小值为45) 五、小结 :抛物线的离心率、焦点、顶点、对称轴、准线、中心等六、课后作业:1.根据下列条件,求抛物线的方程,并画出草图.(1)顶点在原点,对称轴是x 轴,顶点到焦点的距离等于8. (2)顶点在原点,焦点在y 轴上,且过P (4,2)点.(3)顶点在原点,焦点在y 轴上,其上点P (m ,-3)到焦点距离为5. 2.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影是A 2,B 2,则∠A 2FB 2等于3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长为16,求抛物线方程.4.以椭圆1522=+y x 的右焦点,F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长.5.有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米? 习题答案:1.(1)y 2=±32x (2)x 2=8y (3)x 2=-8y 2.90°3.x 2=±16 y 4.54 5.520米七、板书设计(略)八、课后记:。
§2.4.2抛物线的简单几何性质(1)(1)
结论得证.
例3.(抛物线的焦点弦问题 ) 已知过抛物线y 2 px p 0 的焦点F的直线l交抛
2
物线于A x1 , y1 , B x2 , y2 两点. 1 1 2 问题6 : 求证 : FA FB p
解法1 : 过A, B作x轴的垂线, 垂足分别为R, S , 直线l的倾斜角为 , P , 1 cos 1 1 cos 1 1 cos 1 1 2 ,同理 , . AF P BF P FA FB p ER EF FR P AF cos AF AF 解法 2 : 若直线l的斜率不存在, 结论显然成立, p y k( x ) 若直线l的斜率存, 设为k , 则 2 y 2 2 px 2 2 k p k 2 x 2 p( k 2 2 ) x 0 4 1 1 1 1 2 p p p FA FB x1 x2 2 2
例3.(抛物线的焦点弦问题 ) 已知过抛物线y 2 px p 0 的焦点F的直线l交抛
2
物线于A x1 , y1 , B x2 , y2 两点. 问题7 : 过A, B分别作准线的垂线, 垂足分别为A1 , B1 , 则AF1 BF1 .
解 : AA1 AF ,AA1F AFA1 AA1 / / OF AA1F A1FO A1FO A1FA, 同理B1FO B 1 FB , A1FB1 90, AF1 BF1 .
O
P ( x 0 , y0 )
F
x
通径的长度:2P
P越大,开口越开阔
利用抛物线的顶点、通径的两个端点可较准确画出 反映抛物线基本特征的草图。
例1.设M x0 , y0 是抛物线y 2 px上的任一点,
抛物线的简单几何性质教案
抛物线的简单几何性质(一)导学案【教学目标】知识与技能:了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.使学生理解并掌握抛物线的几何性质,从定义和标准方程出发,探究有关抛物线的焦半径和焦点弦的常见性质.过程与方法:从抛物线的定义和标准方程出发,结合几何分析和坐标运算,推导抛物线的性质。
培养学生分析、归纳、推理等能力.情感态度与价值观:使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,解决抛物线中的弦的问题.【学法指导】结合椭圆和双曲线的几何性质,类比抛物线的性质,通过对抛物线的标准方程的讨论,进一步理解用代数方法研究几何性质的优越性,感受坐标法和数形结合的基本思想.教学重难点:1.重点:有关抛物线焦半径和焦点弦几何性质的推理过程中所应用的方法、技巧和结论.2.难点:对抛物线的几何性质和焦点弦几何性质推理和应用的方法渗透.学情分析:【知识回顾】1.抛物线的定义、标准方程。
(生口述完成)2.焦半径直线过抛物线y2=2px (p>0)的焦点F,与抛物线交于A(x1,y1)、B(x2,y2)两点,由抛物线的定义知,|AF|=x1+p2,|BF|=x2+p2,3.填空(顶点在原点,焦点在坐标轴)方程,焦点,准线,开口.1.26y x=2.()1,0F-3.1y=-4.2270x y+=二、新课讲授【问题探究一】探究点一抛物线的几何性质问题1类比椭圆、双曲线的几何性质,结合图象,说出抛物线y2=2px (p>0)的范围、对称性、顶点、离心率.怎样用方程验证?(生通过预习,完成导学案上的表格,并小组之间互相分享结果,互相讨论)1.抛物线的几何性质(方程的方法进行验证)(生口述完成) 研究抛物线)0(22>=p px y : (1)范围因为0>p ,由方程可知0≥x ,所以抛物线在y 轴的右侧,当x 的值增大时,||y 也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以y -代y ,方程不变,所以抛物线关于x 轴对称.我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当0=y 时0=x ,因此抛物线的顶点就是坐标原点.(4)离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知1=e例题1:【引题】已知斜率为1直线经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.求线段AB 的长。
3.3.2 抛物线的简单几何性质(第1课时)
对称性
对称中心为原点 两条对称轴
对称中心为原点 两条对称轴
无对称中心 一条对称轴
顶点 离心率 决定形状的因素
4个 0<e<1 e 决定扁平程度
2个
1个
e>1
e=1
e 决定“张口”大小 p 决定“张口”大小
第9页
课时学案
第10页
题型一 抛物线的几何性质
例 1 抛物线的顶点在原点,对称轴重合于椭圆 9x2+4y2=36 短轴所在的
写出△AOB的面积,利用面积列方程求解 . 【解析】 由题意,设抛物线方程为 y2=2mx(m≠0),焦点 Fm2 ,0,直线 l:
x=m2 ,∴A,B 两点坐标为m2 ,m,m2 ,-m,∴|AB|=2|m|.∵△OAB 的面积为 4, ∴12·m2 ·2|m|=4,∴m=±2 2.∴抛物线方程为 y2=±4 2x.
第14页
探究2
利用抛物线的性质可以解决的问题 (1)对称性:解决抛物线的内接三角形问题. (2)焦点、准线:解决与抛物线的定义有关的问题. (3)范围:解决与抛物线有关的最值问题. (4)焦点弦:解决焦点弦问题.
第15页
思考题 2 (1)已知抛物线的顶点在坐标原点,对称轴为 x 轴,且与圆 x2 +y2=4 相交的公共弦长等于 2 3.求这个抛物线的方程.
2.抛物线方程中,参数 p 的几何意义是抛物线的焦点到准线的距离,2p等于 焦点到抛物线顶点的距离.
3.在解题中,抛物线上的点、焦点、准线三者通常与抛物线的定义相联系, 所以要注意相互转化.
其准线方程分别为 x=-3 或 x=3.
第11页
探究1
把握三个要点确定抛物线的简单几何性质 (1)开口:由抛物线的标准方程看图象开口,关键是看准一次项是 x 还是 y,一次项的系数是正还是负. (2)关系:顶点位于焦点与准线中间,准线垂直于对称轴. (3)定值:焦点到准线的距离为 p;过焦点垂直于对称轴的弦(又称为通径) 长为 2p;离心率恒等于 1.
关于在高二数学教案:抛物线的简单几何性质及方程
一.课题:抛物线及其标准方程(1)二.教学目标:1.使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.2.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.3.通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.三.教学重、难点:1. 重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识).2. 难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.)四、教学过程(一)导出课题:我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思考两个问题:问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.(二)抛物线的定义1.回顾:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A 到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.3.定义:平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(三)抛物线的标准方程设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的几种方案:方案1:(由第一组同学完成,请一优等生演板.)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D,抛物线的集合为:p={M||MF|=|MD|}.化简后得:y2=2px p2(p>0).方案2:(由第二组同学完成,请一优等生演板)以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31).设动点M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MD⊥l于D,抛物线的集合为:p={M||MF|=|MD|}.化简得:y2=2px+p2(p>0).方案3:(由第三、四组同学完成,请一优等生演板.)取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32).抛物线上的点M(x,y)到l的距离为d,抛物线是集合p={M||MF|=d}.化简后得:y2=2px(p>0).比较所得的各个方程,应该选择哪些方程作为抛物线的标准方程呢?引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):由学生讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(四)四种标准方程的应用例题:(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程.方程是x2=-8y.练习:根据下列所给条件,写出抛物线的标准方程:(1)焦点是F(3,0);答案是:(1)y2=12x;(2)y2=-x;(3)焦点到准线的距离是2.(3)y2=4x,y2=-4x,x2=4y,x2=-4y.由三名学生演板,教师予以订正.这时,教师小结一下:由于抛物线的标准方程有四种形式,且每一种形式中都只含一个系数p,因此只要给出确定p的一个条件,就可以求出抛物线的标准方程.当抛物线的焦点坐标或准线方程给定以后,它的标准方程就唯一确定了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解.(五)小结:本次课主要介绍了抛物线的定义,推导出抛物线的四种标准方程形式,并加以运用.五、作业:到准线的距离是多少?点M的横坐标是多少?2.求下列抛物线的焦点坐标和准线方程:(1)x2=2y;(2)4x2+3y=0;(3)2y2+5x=0;(4)y2-6x=0.3.根据下列条件,求抛物线的方程,并描点画出图形:(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;(2)顶点在原点,对称轴是y轴,并经过点p(-6,-3).4.求焦点在直线3x-4y-12=0上的抛物线的标准方程.作业答案:3.(1)y2=24x,y2=-2x,(2)x2=-12y(图略)4.分别令x=0,y=0得两个焦点F1(0,-3),F2(4,0),从而可得抛物线方程为x2=-12y或y2=16x.一.课题:抛物线及其标准方程(2)二.教学目标:1.会用定义法、直译法、参数法,求与抛物线有关的动点的轨迹方程;2.会判断直线与抛物线的位置关系;3.会求解与抛物线的焦点弦有关的问题.三.教学重、难点:目标1,2,3。
3.3.2抛物线的简单几何性质(第1课时)课件(人教版)
关于x轴
对称
( x, y )
O
•
F
(
p
,0)
2
若点(x,y)在抛物线上, 即满足y2 = 2px,
则 (-y)2 = 2px
即点(x,-y) 也在抛物线上,
故抛物线y2 = 2px(p>0)关于x轴对称.
x
3.顶点
定义:抛物线与它的对称轴的交
y
点叫做抛物线的顶点.
y2
= 2px (p>0)中,
叫做抛物线的焦半径.
y
焦半径公式:
p
MF x0
2
H
y2 = 2px
d
M (x0,y0)
O
•
F( p ,0) x
2
方程 y2 = 2px y2 = -2px x2 = 2py x2 = -2py
图
形
y
l
M
O F
M
x
F
y
y
l
O
F M
x
O
l
焦半
径
y
x
O
F
l
M x
p
p
p
p
MF x0
MF
例4.斜率为1的直线 l 经过抛物线
且与抛物线相交于A、B两点,求线段AB的长.
解:F(1,0),直线l:y=x-1
y x 1
由 2
消y得:x 2 6 x 1 0
y 4xyA来自oFB
法2:设A( x1 , y1 ), B( x2 , y2 )
x1 x2 6
x1 x2 1
由 2
y 4x
抛物线的简单几何性质教案
抛物线的简单几何性质教案教案标题:抛物线的简单几何性质教案目标:1. 了解抛物线的定义和基本性质。
2. 掌握抛物线的焦点、准线、顶点等重要概念。
3. 能够应用抛物线的性质解决简单几何问题。
教案步骤:步骤一:引入1. 引导学生回顾直线、圆等几何图形的性质,引出抛物线的概念。
2. 展示一张抛物线的图像,让学生观察并描述其形状和特点。
3. 引导学生思考抛物线的性质和应用领域。
步骤二:抛物线的定义和基本性质1. 讲解抛物线的定义:平面上到一个定点(焦点)和一条定直线(准线)的距离相等的点的轨迹。
2. 介绍抛物线的基本性质:a. 抛物线关于准线对称。
b. 焦点到抛物线上任意一点的距离等于该点到准线的距离。
c. 抛物线的顶点是其最高(或最低)点,对称轴经过顶点。
d. 抛物线开口方向由抛物线的二次项系数的正负决定。
步骤三:抛物线的重要概念1. 介绍抛物线的焦点、准线和顶点的定义和性质。
2. 指导学生通过几何构造方法确定抛物线的焦点、准线和顶点。
步骤四:抛物线的应用1. 给出一些简单的抛物线几何问题,如:已知焦点和准线,求抛物线方程;已知顶点和焦点,求抛物线方程等。
2. 引导学生分析问题,运用抛物线的性质解决问题。
3. 给予学生充分的练习机会,巩固抛物线的性质和应用。
步骤五:小结与拓展1. 对本节课所学内容进行小结,强调抛物线的定义和基本性质。
2. 提供一些拓展问题,让学生进一步思考抛物线的性质和应用。
教学资源:1. PowerPoint或白板等教学工具。
2. 抛物线的图像和实例题目。
教学评估:1. 课堂练习:布置一些练习题,检验学生对抛物线的理解和应用能力。
2. 个人或小组作业:要求学生解答一些抛物线相关的问题,加深对知识的理解。
教学延伸:1. 引导学生进一步探究抛物线的性质和应用,如抛物线的焦半径、离心率等。
2. 引导学生进行实际观察和实验,了解抛物线在现实生活中的应用,如抛物线反射器、喷泉喷水形状等。
备注:该教案适用于中学数学教学,学生年级和学习能力可以根据实际情况进行调整。
抛物线的简单几何性质(第1课时)高中数学获奖教案
2.3.2抛物线的简单几何性质(第一课时)(人教A版普通高中教科书数学选择性必修第一册第三章)一、教学目标1.掌握抛物线的简单几何性质:范围、对称性、顶点、离心率;2.能根据抛物线的几何性质对抛物线方程进行讨论;3.对通径、焦半径公式进行初步探索;4.进一步理解数形结合的思想方法在解析几何中的应用。
二、教学重难点1.教学重点:抛物线的简单几何性质、利用抛物线的几何性质求方程、对通径与焦半径公式的初步探究。
2.教学难点:利用数形结合法对通径、焦半径公式的探究。
三、教学过程1.利用数形结合的思想探究抛物线的简单几何性质1.1 知识回顾,温故知新【学生活动】学生完成学案内容,对抛物线的四种方程、图形、焦点坐标、准线方程进行复习。
【设计意图】之前学过椭圆、双曲线的几何性质,都是通过图形和方程两方面进行研究的,因此引导学生对抛物线的四种方程、图形、焦点坐标、准线方程进行复习,有利于对抛物线性质的进一步探索。
1.2 数形结合,类比探究问题1:类比用标准方程研究椭圆、双曲线几何性质的过程与方法,请思考:我们要研究抛物线的哪些几何性质?如何研究这些性质?【预设答案】前面我们学习了椭圆、双曲线的范围、对称性、顶点、离心率,在双曲线中还学习了渐近线。
我们是通过“数”和“形”两方面对椭圆、双曲线的几何性质进行探究的。
【设计意图】类比椭圆、双曲线几何性质的研究思路,为接下来用数形结合法研究抛物线的几何性质进行铺垫。
问题2:观察图形,你能发现抛物线横、纵坐标的取值范围吗?【预设答案】通过观察图形,学生很容易得到开口向右的抛物线中横、纵坐标的取值范围,即为问题3:从数的角度,也就是从抛物线方程的角度,怎样得到抛物线中横纵坐标的取值范围呢?【预设答案】在方程中,并无限制,因此。
而因为,且,所以。
【设计意图】让学生从“数”和“形”两个角度探索抛物线的范围。
问题4:观察图形,抛物线有几条对称轴?是否有对称中心?【预设答案】学生观察图形容易得到开口向右的抛物线关于轴对称,没有对称中心。
3.3.2抛物线的简单几何性质(1)教师版
2。
3. 已知直线x-y=2与抛物线 y2 4x 交于A、
B两点,那么线段AB的中点坐标是 (4, 2) 。
讲
课
人
:
邢
启 强
12
典例精析 例3、正三角形的一个顶点位于坐标原点,另外两个顶
点在抛物线y2 2 px( p 0) 上,求这个三角形的边长。
解:如图,设正三角形OAB的顶点A、
y
A (x1,y1)
越大. 6、光学性质:从焦点出发的光线,通过抛物线反射就
变成了平行光束.
讲
课
人
:
邢
启 强
16
小结: 抛物线的几何性质
图 形 方程 焦点 准线 范围 顶点 对称轴 e
y
l OF
x
y2 = 2px (p>0)
F
(
p 2
,0)
x p 2
x≥0 y∈R
x轴
yl
FO
y2 = -2px x(p>0) F
(
p ,0) 2
2.4.2抛物线的简单几 何性质(1)
1.准备好练习本、课堂笔记本、笔;
2.回顾以下问题: (1)抛物线的定义; (2)椭圆、双曲线的简单几何性质有哪些?
温故知新
(二) 抛物线标准方程
(一) 抛物线定义 方程
图形 准线
焦点 对称轴
在平面内,与 一个定点F
y2 2 px ( p 0)
ly
O
F
x
讲
焦半径公式:|PF|=x0+p/2
课
人
:
邢
启 强
8
知识归纳
(1)、抛物线只位于半个坐标平面内,虽然它也可以 无限延伸,但没有渐近线; (2)、抛物线只有一条对称轴,没有对称中心; (3)、抛物线只有一个顶点,一个焦点,一条准线; (4)、抛物线的离心率e是确定的为1, ⑸、抛物线的通径为2P, 2p越大,抛物线的张口越大.
§2.4.2 抛物线的简单几何性质(1)
平行光线射到抛物镜面上,经镜面反射后, 平行光线射到抛物镜面上,经镜面反射后,反射光线都 经过抛物线的焦点, 经过抛物线的焦点,这就是太阳灶能把光能转化为热能 的理论依据。 的理论依据。
y 2 = 2 px ( p > 0) 2、已知点 (-2,3)与抛物线 、已知点A( , )
的焦点的距离是5, 的焦点的距离是 ,则P=
4
。
例3、斜率为 的直线 l 经过抛物线 y = 4 x 的 、斜率为1的直线 焦点F,且与抛物线相交于A, 两点 y 两点, 焦点 ,且与抛物线相交于 ,B两点,求线 的长。 段AB的长。 的长
解 由题意可知 p = , ,
p
y
= ,
焦点F( , ), 准线l : x = − .如
A`
O
A
图 . − , 设 ( x , y ), B( x , y ), A
B`
F B
x
A, B到 线 的 离 别 dA, dB. 准 l 距 分 为 由 物 的 义 知 抛 线 定 可 图 . −
| AF |= dA = x + ,| BF |= dB = x + .
于 | AB |=| AF | + | BF |= x + x + . 是
由已知得抛物线的焦点为F( , ), 所以直线 AB的 方程为 y = x − .
()
将( ) 代入 y = x , 得( x −
y
)
= x.
A`
O
A
化简得 x − x + = .
由 根 式 求 公 得 x = + ,x = − , 于 | AB |= x + x + = . 是
抛物线的简单几何性质(1)
§2.4.2 抛物线的简单几何性质(1)【使用说明】1、课前完成预习学案,掌握基本题型;2、认真限时规范书写,课上小组合作探讨,答疑解惑。
3、A、B层全部掌握,C层选做。
【学习目标】1.掌握抛物线的几何性质;2.根据几何性质确定抛物线的标准方程.【问题导学】(预习教材理P68~ P70,文P60~ P61找出疑惑之处)复习1:准线方程为x=2的抛物线的标准方程是.复习2:双曲线{EMBED Equation.DSMT4 |221169x y-=有哪些几何性质?【合作探究】探究1:类比椭圆、双曲线的几何性质,抛物线又会有怎样的几何性质?新知:抛物线的几何性质图形标准方程焦点准线顶点对称轴x轴离心率试试:画出抛物线的图形,顶点坐标()、焦点坐标()、准线方程、对称轴、离心率.我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。
【深化提高】例1已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,求它的标准方程.变式:顶点在坐标原点,对称轴是坐标轴,并且经过点的抛物线有几条?求出它们的标准方程.小结:一般,过一点的抛物线会有两条,根据其开口方向,用待定系数法求解.例2斜率为的直线经过抛物线的焦点,且与抛物线相交于,两点,求线段的长.变式:过点作斜率为的直线,交抛物线于,两点,求.学案编号:B51 第1 页共2 页成功的秘诀公式是其中代表成功,代表艰苦的劳动,代表正确的方法,代表少说空话. ——爱因斯坦4.抛物线的准线方程是.5.过抛物线的焦点作直线交抛物线于,两点,如果,则= .小结:求过抛物线焦点的弦长:可用弦长公式,也可利用抛物线的定义求解.※动手试试练1. 求适合下列条件的抛物线的标准方程:⑴顶点在原点,关于轴对称,并且经过点,;⑵顶点在原点,焦点是;⑶焦点是,准线是.【小结】(1)知识与方法方面。
(2)数学思想及方法方面。
【当堂检测】1.下列抛物线中,开口最大的是().A.B.C.D.2.顶点在原点,焦点是的抛物线方程().A.B.C.D.3.过抛物线的焦点作直线,交抛物线于,两点,若线段中点的横坐标为,则等于().A.B.C.D.第 2 页共2 页。
抛物线的简单几何性质教案
抛物线的简单几何性质教案抛物线是一种经典的二次函数,具有许多独特的几何性质。
它是数学中的重要概念,也常常出现在物理等实际应用中。
本文将介绍抛物线的一些简单几何性质,并设计一个教案,帮助学生理解和掌握这些性质。
一、抛物线的定义与性质1. 抛物线的定义:抛物线是一组与一直线和一个点的距离比例关系相符的点的轨迹。
2. 抛物线的特点:(1) 对称性:抛物线关于与其对称轴垂直的直线对称。
(2) 相同距离比例:抛物线上任意一点到焦点的距离与该点到准线的距离的比例始终相等,即反映了抛物线的几何性质。
(3) 焦点和准线:抛物线上的焦点与准线的距离相等,且焦点位于对称轴上。
(4) 抛物线开口方向:开口向上或向下取决于二次函数的二次项系数的正负。
二、教案设计1. 教学目标:(1) 理解抛物线的定义;(2) 掌握抛物线的对称性、焦点和准线的性质;(3) 理解抛物线开口方向与二次项系数的关系。
2. 教学过程:(1) 导入:提问学生对抛物线的认识,引导学生思考距离比例的概念,并通过图片和实物示例展示抛物线的形状。
(2) 概念解释:向学生介绍抛物线的定义和性质,让学生了解对称性、焦点和准线等概念,激发学生的兴趣。
(3) 教学演示:通过数学软件或手绘,展示抛物线的对称性和焦点、准线的位置,并解释相同距离比例的特点。
(4) 学生练习:提供抛物线的图形,让学生找出其对称轴、焦点和准线,并计算相同距离比例。
(5) 小组合作:学生分小组讨论并解决抛物线开口方向与二次项系数的关系问题,并向其他小组进行解释和讨论。
(6) 总结复习:学生总结抛物线的简单几何性质,并展示在教室内或墙壁上。
3. 教学评价:(1) 课堂回答问题:老师通过提问检查学生对抛物线性质的理解和掌握情况。
(2) 练习册作业:让学生在练习册上完成相关练习题,检测学生对抛物线性质的理解和应用能力。
三、教学展望通过这节课的教学,学生应能够理解抛物线的基本几何性质,并能够应用这些性质解决简单的问题。
抛物线简单几何性质(1)教案
2.3.2抛物线的简单几何性质(1)教材分析:“抛物线的简单几何性质”在全章占有重要的地位和作用.本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一.对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用.研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论.学情分析:教学对象为高二年纪文科生,智力发展趋于成熟。
但由于本班学生的水平参差不齐,有些差距还较大,因此要通过自主探究、合作学习等教学方法来完成全体学生的学习任务,并渗透基本的数学思想。
教学目标:1.能叙述抛物线的简单几何性质,如范围、对称性、顶点和离心率等。
2.能用抛物线的简单几何性质解决一些简单问题。
3.能在对抛物线几何性质的讨论中,体会数形结合的思想与转化。
教学重点:抛物线的简单几何性质及初步运用。
教学难点:抛物线的简单几何性质及初步运用。
课时安排:1课时教学过程:复习引入1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.抛物线的标准方程相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称.探索新知(类比思想)问题1:这一节我们来研究抛物线的标准方程y2=2px(p>0)的几何性质.请同学们思考:类比椭圆、双曲线的几何性质研究,想想应从哪几个方面进行研究?学情预测:学生会给出很多方面,此时教师引导学生观察图像给出性质.1.范围2.对称性3.顶点4.离心率5.焦点探索研究:活动,先由学生合作讨论,再由学生代表发言,教师适时补充.1.范围学情预测:一般情况下,学生会从图像观察到:x≥0,y∈R.此时教师可引导学生从方程角度思考,可得到:因为p>0,由方程y2=2px(p>0)可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.2.对称性学情预测:一般情况下,学生会从图像观察到:关于x轴对称.此时教师可引导学生从方程角度思考,可得到:以-y代y,方程y2=2px(p>0)不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.当以-x代x时,方程改变,所以不关于y 轴对称,亦不关于原定对称。
抛物线的简单几何性质
一.课题:抛物线的简单几何性质(1)二.教学目标: 1.记住抛物线的几何性质, 能由方程写性质画图,也能由图形写性质和方程;2.会根据抛物线的几何性质确定抛物线的位置及基本量p ;3.会简单应用抛物线的几何性质;4.强化数形结合的思想。
三.教学重、难点:抛物线的几种不同状态下的标准方程的几何性质和应用。
四.教学措施:使用多媒体 五.教学过程: (一)复习:(1)抛物线的四种标准方程; (2)基本量p 的几何意义。
(3)复习:椭圆,双曲线的几何性质(以焦点在x 轴上的为例)(二)新课讲解:抛物线的简单几何性质我们以焦点在x 轴正半轴上的抛物线为例( )1.范围)0(22>=P px y 限延伸所以抛物线向上向下无也增大的增大随显然轴的右侧物线在抛点横坐标所以得由,y ,x ;y ,x M py x p px y ||02)0(222≥=>=∙在y 轴的右侧,向上向下无限延伸2.对称性关于x 轴对称 3.顶点 原点(0,0)6.渐近线 无7.离心率抛物线上点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率。
显然e=1)0,2:.4p F (焦点2:.5p x -=准线性原点不对称轴所以关于改变方程时代代不变时或以代而以轴对称线关于所以抛物方程不变不变时代以,,,,,;,,,y y y x x y x x x x y y ----∙∙下面请同学们补全下表 说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径。
(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线。
例1.已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点(2,M -,求它的标准方程,并用描点法画出图形.解:∵抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点(2,M -, 所以设它的标准方程为22(0)y px p =>.∵点M 在抛物线上,所以2(22p -=⋅,即2p =. ∴所求方程是24y x =.(图略)如何作抛物线的草图?画三个点:顶点、对称轴两侧的两个对称点 问题:抛物线开口大小与哪个量有关? 问题:双曲线也可这样画吗?两个问题学生讨论,师生共同总结例2.探照灯反射镜的轴截面是抛物线的一部分(图(1)),光源位于抛物线的焦点处。
抛物线的简单几何性质优秀教案
抛物线的简单几何性质优秀教案
引言
本教案旨在引导学生了解和掌握抛物线的简单几何性质,并通过实例与练加深对抛物线的理解。
通过本教案的研究,学生将能够掌握抛物线的形状、焦点、顶点等关键特征,并能够应用这些知识解决一些简单的几何问题。
教学目标
通过本课程的研究,学生将能够:
1. 了解抛物线的定义和基本性质;
2. 理解抛物线的形状、焦点和顶点的关系;
3. 运用抛物线的性质解决一些简单几何问题。
教学重点
抛物线的形状、焦点和顶点的关系。
教学内容
抛物线的定义
抛物线是平面上一条曲线,其定义为到定点的距离等于到定直线的距离。
抛物线的形状
抛物线是一种开口朝上或开口朝下的曲线。
当抛物线的开口朝上时,曲线呈现U形;当抛物线的开口朝下时,曲线呈现∩形。
抛物线的焦点和顶点
抛物线的焦点是定点,定直线是抛物线的对称轴。
抛物线的焦点和顶点位于对称轴上。
抛物线的关键性质
抛物线的焦点和顶点之间的距离称为焦距。
抛物线上任意一点到焦点的距离与该点到对称轴的距离相等。
教学步骤
1. 引入抛物线的定义和基本性质;
2. 通过实例展示不同形状的抛物线及其焦点、顶点的位置;
3. 解释抛物线焦点和顶点的关系;
4. 进行练,让学生应用抛物线的性质解决几何问题;
5. 总结抛物线的简单几何性质。
教学工具
1. 抛物线模型或示意图;
2. 几何练题。
教学评估
通过学生的研究表现和解决几何问题的能力,评估学生对抛物线的简单几何性质的掌握程度。
参考资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线的简单几何性质;
●教学目标
1.掌握抛物线的几何性质;
2.能根据几何性质确定抛物线的标准方程;
3.能利用工具作出抛物线的图形.
●教学重点
抛物线的几何性质
●教学难点
几何性质的应用
●教学方法
学导式
●教具准备
三角板
●教学过程
Ⅰ.复习回顾
简要回顾抛物线定义及标准方程的四种形式(要求学生回答)
师:这一节,我们根据抛物线的标准方程)0(22 p px y = ①来研究它的几何性质 Ⅱ.讲授新课
1. 范围
当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支 的区别,无渐近线).
2.对称性
抛物线关于x 轴对称.
我们把抛物线的对称轴叫抛物线的轴.
3.顶点
抛物线和它的轴的交点叫抛物线的顶点.即坐标原点.
4.离心率
抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1.
说明:对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程.
师:下面,大家通过问题来进一步熟悉抛物线的几何性质.
例1.已知抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),求它的标准方程,并用描点法画出图形.
师:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数P .
解:因为抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),所以可设它的标准方程为: )0(22 p px y =
因为点M 在抛物线上,所以22)22(2⋅=-p ,即2=p
因此所求方程是.42x y =
下面列表、描点、作图:
说明:①利用抛物线的对称性可以简化作图步骤;
②抛物线没有渐近线;
③抛物线的标准方程)0(22 p px y =中p 2的几何意义:抛物线的通
径,即连结通过焦点而垂直于x 轴直线与抛物线两交点的线段.
师:下面我们通过练习进一步熟悉并掌握抛物线的标准方程.
Ⅲ.课堂练习
课本P 122练习1,2.
●课堂小结
师:通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标准方程的四种形式.
●课后作业
习题8.6 1,2,5.
●板书设计
●教学后记。