菱形的性质(作业)
菱形的性质专项练习30题(有答案)ok
菱形的性质专项练习30题(有答案)1.如图,菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC,交BD于E,垂足为H,已知CH=4,AH=8(1)求菱形的周长;(2)求OE的长度.2.如图,菱形ABCD中,两条对角线AC和BD相交于点O,AC=6cm,BD=8cm.(1)求菱形ABCD的面积;(2)求菱形ABCD的周长.3.如图,菱形对角线AC,BD相交于一点O,且AC=12cm,BD=16cm.求这个菱形的周长和面积.4.如图,已知菱形ABCD的边长是2cm,BAD=120°.(1)试说明:△ABC是等边三角形;(2)求菱形两条对角线的长.5.如图,菱形ABCD的两条对角线AC与BD相交于点O,AB=5,OA=3.(1)求菱形ABCD的周长;(2)求菱形ABCD的面积.6.如图,菱形ABCD的周长为200cm,对角AC与BD交于点O,且AC=60cm,试求菱形ABCD的面积.7.已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.8.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,AE∥BD.试判断四边形AODE的形状,并说明理由.9.如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AC=6,BD=8,求线段OE的长.10.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:AM=DM;(2)若DF=2,求菱形ABCD的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.11.菱形ABCD中,∠B=60°,一块三角板的60°角的顶点绕点A转动,两边分别交BC、CD于点E、F.(1)说明△ABC、△ACD都是等边三角形.(2)判断△AEF的形状,说明理由?(3)如果AB=2,写出△CEF的周长的最小值.12.如图,O是菱形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE,CE交于点E.(1)求证:四边形OCED是矩形;(2)若菱形ABCD的周长为20,矩形OCED的周长为14,求菱形ABCD的面积.13.如图,点E、F分别在菱形ABCD的边BC、AD上,且AF=CE,∠BAE=25°,∠BCD=130°,求∠AFC的度数.14.如图,平行四边形ABCD中,AE是BC边上的高,AE是BC沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG:(2)若四边形ABFG是菱形,且AB:BC=2:3,求∠B的度数.15.如图,菱形ABCD中,AE⊥BC,垂足为点E,BE=CE,求∠BAD的度数.16.如图,已知一四边形菜地ABCD为菱形,点E,F分别位于边AB,BC上,AD=6,AE=5BE,BF=5CF,若△DEF 为等边三角形.(1)求∠A的度数;(2)求菱形ABCD的面积.17.如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC 与AM交于点Q,求证:P,D,Q三点共线.18.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,菱形ABCD的周长为20,求m的值.19.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.20.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.21.如图,菱形ABCD中,E是AD中点,EF⊥AC交CB的延长线于点F.(1)DE和BF相等吗?请说明理由.(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.22.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.若AE垂直平分BC,AF垂直平分CD.求证:(1)AE=AF;(2)△AEF为等边三角形.23.如图,在菱形ABCD中,过点A作AE⊥BC,垂足E为BC的中点,连接DE,F为DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,求DE和AF的长.24.如图,边长为a的菱形ABCD中,∠A=60°,过C任作直线分别交AB、AD的延长线于E、F,连接DE、BF 交于M,若△BEM和△DFM外接圆的半径分别是R1、R2,求证:R1•R2为定值,并求这个定值.25.如图,四边形ABCD为菱形,已知A(0,6),D(﹣8,0).(1)求点C的坐标;(2)设菱形ABCD对角线AC、BD相交于点E,求经过点E的反比例函数解析式.26.如图,菱形ABCD中,点P是AB的中点,延长DP交CB的延长线于E点.求证:BE=CD.27.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.28.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB.求证:∠APD=∠EBC.29.如图,在菱形ABCD中,E是BC延长线上一点,连接AE,使得∠E=∠B,过D作DH⊥AE于H.(1)若AB=10,DH=6,求HE的长;(2)求证:AH=CE+EH.30.如图,已知点O在菱形ABCD内,过点O分别作OE⊥AB于E,OF⊥AD于F,且OE=OF.(1)求证:OB=OD;(2)把菱形换成矩形、平行四边形、等腰三角形,上述结论仍成立吗?(写出结论,不证明)参考答案:1.(1)设AB=x,则BC=x,BH=BC﹣CH=x﹣4,在Rt△ABH中,AH2+BH2=AB2,∴82+(x﹣4)2=x2,解得x=10,∴菱形周长为40.(2)∵AH=8,CH=4,∴AC==4,∴CO=AO=AC=2,∵BC=10,CO=2,∴BO==4∵∠BHE=∠BOC=90°,∠EBH=∠CBO,∴△BHE∽△BOC,∴,∴,∴EH=3,∴AE=AH﹣EH=8﹣3=5,∴OE==2.(1)菱形的对角线为AC=6cm,BD=8cm,则菱形的面积为AC•BD=×6×8=24cm2;(2)菱形对角线互相垂直平分,∴BO=OD=4cm,AO=OC=3cm,∴AB==5cm,故菱形的周长为20cm,答:菱形的周长为20cm,面积为24cm2.3.∵在菱形ABCD中,AC=12cm,BD=16cm,∴S菱形ABCD =×AC×BD=×12×16=96(cm2).∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=6cm,OB=BD=8cm,∴AB==10cm,∴菱形ABCD的周长为:4×10=40(cm).故这个菱形的周长为40cm,面积为96cm24.(1)∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC,∠BAC=∠BAD=60°,∴△ABC是等边三角形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∵∠BAC=60°,AB=2cm,∴∠ABO=30°,∴OA AB=1(cm),∴OD==(cm),∴AC=2OA=2cm,BD=2OD=2cm.5.(1)∵四边形ABCD是菱形,AB=5,∴菱形ABCD的周长等于5×4=20;(2)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB=,==4,∴AC=2OA=6,BD=2OB=8,∴S菱形ABCD=×AC×BD=×6×8=246.菱形周长为200cm,则AB=50cm,∵AC=60cm,∴AO=30cm,菱形对角线互相垂直,∴△AOB为直角三角形,在Rt△AOB中,BO==40cm,∴BD=2BO=80cm,∴菱形ABCD的面积为S=×60cm×80cm=2400cm2,答:菱形ABCD的面积为2400cm2.7.由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,∴AB=5,∴周长L=4AB=20;∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24.综上可得菱形的周长为20、面积为24.8.四边形AODE是矩形.∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD∴∠AOD=90°,∴四边形AODE是矩形9.(1)四边形OCED是矩形.理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形;(2)在菱形ABCD中,∵AC=6,BD=8,∴OC=AC=×6=3,OD=BD=×8=4,∴CD===5,在矩形OCED中,OE=CD=510.1)证明:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,∵EM⊥AC,∴EM∥BD,∵E为AB的中点,∴M为AD的中点,∴AM=DM;(2)解:∵EB∥FD,EM∥BD,∴四边形FDBE是平行四边形,∴FD=BD,∵DF=2,∴BE=2,∴AB=2BE=2×2=4,∴菱形ABCD的周长=4AB=4×4=16;(3)设ME与AC的交点为G,相似三角形有:△AGE∽△AGM,△AGE∽△CGF,△AGM∽△CGF,△AEM∽△DFM,△ABC∽△ADC共5对.11.(1)∵菱形ABCD中,AB=BC,AD=CD,∠B=∠D=60°,∴△ABC和△ACD都是等边三角形.(2)∵∠B=∠ACD=60°,AB=AC,∴△ABC是等边三角形,∴∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF,又∠EAF=60°,∴△AEF是等边三角形;(3)∵EC+CF=BE+EC=BC=2,△AEF是等边三角形,∴EF=AE,∴△CEF的周长=2+AE,由“垂线段最短”,当AE⊥BC时,AE最短,AE=,∴△CEF的周长=2+12.(1)∵DE∥AC,CE∥BD∴四边形OCED为平行四边形,∵AC,BD为菱形的对角线,∴AC⊥BD,即∠COD=90°,∴平行四边形OCED为矩形.(2)菱形ABCD的周长为20,则菱形的边长为5,即=5,矩形OCED的周长为14,则OC+OD=7,解题OC=3,OD=4,∴AC=6,BD=8,∴菱形的面积为×6×8=24.答:菱形ABCD的面积为2413.由菱形ABCD,得∠BAD=∠BCD=130°,∠BAE=25°,∴∠EAF=105°,又∵AF=CE,AD∥BC,∴四边形AECF是平行四边形,则∠AFC=180°﹣∠EAF=180°﹣105°=75°.14.(1)∵∠ABE=∠CDG,∠AEB=∠CGD,AE=CG,∴△ABE≌△CDG,∴BE=DG,(2)四边形ABFG是菱形,则BF=AB,∵AB:BC=2:3∴FC=AB,∵AE是BC沿BC方向平移,使点E与点C重合,得△GFC.∴BE=FC,∴AB=2BE,∴直角△ABE中,∠BAE=30°,∴∠ABE=60°15.∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵AE⊥BC,BE=CE,∴AB=AC,∴AB=AC=BC,即△ABC是等边三角形,∴∠B=60°,又∵AD∥BC,∴∠BAD=180°﹣∠B=120°16.(1)如图,过E作AD,BC的垂线交AD和CB的延长线于H,G.∵AD∥CB,∴△BGE∽△AHE,∵AB=AD=6,∴AE=BF=5,CF﹣BE=1,令BG=x,GE=y,则EH=5y,AH=5x,在△FGE 中,,在△DEH 中,,根据EF=ED,BE=1,易得EF2=ED2,即有,解得,,∴tan∠A=,∴∠A=60°;(2)由以上求得知,EH=AEsin60°=,,故.17.连接PD,DQ,由已知∠PAC=120°,∠QCA=120°,∴△PAC∽△AMC,△AMC∽△ACQ.∴,.∴AC2=PA•QC,又AC=AD=DC.∴,又∠PAD=∠DCQ=60°,∴△PAD∽△DCQ,∴∠APD=∠CDQ.∴∠PDA+∠ADC+∠CDQ=180°,∴P,D,Q三点共线.18.∵菱形ABCD的周长为20,∴菱形的边长AB=5,由直角三角形的三边关系可得:AO2+BO2=25,又有根与系数的关系可得:AO+BO=2m﹣1,AO•BO=4(m﹣1),∴AO2+BO2=(AO+BO)2﹣2AO•BO=(2m﹣1)2﹣2×4(m﹣1)=25,整理得:4m2﹣12m+9=25,解得:m=4或﹣1(舍去).故m=419.∵四边形ABCD为菱形,∴AD=AB=CD=CB,∠B=∠D.又∵CE=CF,∴CD﹣CE=CB﹣CF,即DE=BF.∴△ADE≌△ABF.∴AE=AF20.菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE 的长为cm21.(1)DE=BF.理由如下:如图,设AB、EF相交于G,连接BD,在菱形ABCD中,BD⊥AC,∵EF⊥AC,∴EG∥BD,∵E是AD中点,∴EG是△ABD的中位线,∴AG=BG,又∵AD∥BC,∴∠AEG=∠BFG,在△AEG和△BFG 中,,∴△AEG≌△BFG(AAS),∴AE=BF,∵E是AD中点,∴AE=DE,∴DE=BF;(2)四边形AFBE是平行四边形.理由如下:∵四边形ABCD是菱形,∴AD∥BC,∴AE∥BF,又∵AE=BF,∴四边形AFBE是平行四边形22.(1)∵四边形ABCD是菱形,∴AB=CB=CD=AD,∠B=∠D,∵BE=DF∴△ABE≌△ADF(SAS),∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD.∴AB=AC=AD,∴AB=AD=BC=CD=AC,∴∠B=60°,∴∠BCD=120°,∴∠EAF=60°,∴△AEF为等边三角形.23.(1)证明:∵∠B+∠C=180°,∠AFE+∠AFD=180°,∠AFE=∠B,∴∠C=∠AFD.∵AD∥BC,∴∠ADF=∠DEC.∵AD=DC,∴△ADF∽△DEC.(2)解:∵AB=4,E为BC的中点,∴BE=2,AE=,DE=.∵△ADF∽△DEC,∴.∴AF=.24.△BEC∽△DCF,∴.∴△BED∽△DBF.∴∠BED=∠DBM.∴∠BME=∠BDM+∠DBM=∠BDM+∠BED=∠ABD= 60°.∴由正弦定理得:2R1=,2R2=.∴R1•R2=•==.25.(1)∵A(0,6),D(﹣8,0),∴OA=6,OD=8,∴由勾股定理可得AD=10,∵四边形ABCD为菱形∴CD=AD=10,∴OC=2,∴C(2,0),(2)∵A(0,6)C(2,0),∴E(1,3),设经过点E 的反比例函数解析式为,将E(1,3)代入求得k=3∴反比例函数解析式为:26.∵点P是AB的中点,∴AP=BP,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠A=∠PBE,∵在△ADP和△BEP中,,∴△ADP≌△BEP(ASA),∴BE=AD,∵AD=CD,∴BE=CD27.(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.28.∵四边形ABCD是菱形,∴BC=CD,AC平分∠BCD,在△BCE和△DCE 中,,∴△BCE≌△DCE(SAS),∴∠EBC=∠EDC,又AB∥DC,∴∠APD=∠EDC,∴∠EBC=∠APD29.(1)∵四边形ABCD是菱形,∴AD=AB=10,∵DH⊥AE,∴∠AHD=90°,在Rt△ADH中,AH===8,∵∠E=∠B,∴AE=AB=10,∴HE=AE﹣AH=10﹣8=2;证明:(2)过点D作DF⊥BC的延长线于点F,连接DE,∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,AD=CD,∴∠1=∠B,∠2=∠3,∵∠B=∠2,∴∠1=∠3,∵DH⊥AE,DF⊥CF,∴∠4=∠F,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,DH=DF,∴在Rt△DEH和Rt△DEF中,,∴Rt△DEH≌Rt△DEF(HL),∴EH=EF,∵CF=CE+EF,∴AH=CE+EH30.(1)证明:连接OA、AC、BD,∵OE⊥AB,OF⊥AD,且OE=OF,∴∠BAO=∠DAO,∵菱形ABCD,∴AC⊥BD,MB=MD,∠BAC=∠DAC,∴O在AC上,∴OB=OD.(2)解:矩形和平行四边形时,结论不成立,等腰三角形时,结论成立,因为:矩形和平行四边形的对角线不一定平分对角,而等腰三角形的三线合一性质,能得出结论成立菱形的性质--11。
菱形性质习题精选(含答案)
菱形性质习题精选(含答案)菱形性质习题精选一.填空题(共26小题)1.(2015?模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.2.(2015?模拟)如图,在四边形ABCD中,AB=6,∠ABC=90°,E在CD上,连接AE,BE,∠DAE=75°,若四边形ABED 是菱形,则EC的长度为.3.(2015?模拟)如图,菱形ABCD的对角线AC、BD交于点O,其中AC=8,BD=6,以OC、OB为边作矩形OBEC,矩形OBEC 的对角线OE、BC交于点F,再以CF、FE为边作第一个菱形CFEG,菱形CFEG的对角线FG、CE交于点H,如此继续,得到第n个菱形的周长等于.4.(2015?州市校级模拟)己知菱形相邻两角的度数比为1:5,且它的面积为8,则这个菱形的周长为.5.(2015?模拟)如图,在菱形ABCD中,∠A=45°,DE⊥AB,垂足为E,若CD=4cm,则菱形ABCD的面积是.6.(2015?模拟)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于.7.(2014?)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.8.(2014?)菱形的周长为20cm,两个相邻的角的度数之比为1:2,则较长的对角线长度是cm.9.(2014?)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=.10.(2014?宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y 轴上,则点C的坐标是.11.(2014?眉山)如图,菱形ABCD中,E、F分别是BC、CD 的中点,过点E作EG⊥AD 于G,连接GF.若∠A=80°,则∠DGF的度数为.12.(2014春?期末)如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为.13.(2014?模拟)如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为.14.(2014?江都市二模)已知菱形ABCD的对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为cm.15.(2014?简阳市模拟)如图,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.若变形后的菱形有一个角是60°,则形变度k=.16.(2014?淮区一模)如图,在菱形ABCD中,∠ABC=60°,BC=1cm,以DC为边在菱形的外部作正三角形CDE,连接AE,则AE=cm.17.(2014?惠安县二模)如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为cm.18.(2013秋?海陵区期末)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为4cm,∠A=120°,则EF=cm.19.(2014春?仙游县校级期末)如图,以菱形AOBC的顶点O 为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=,点C的坐标为(4,0),则点A的坐标为.20.(2014春?期末)如图,在菱形ABCD中,AB=13cm,BC 边上的高AH=5cm,那么对角线AC的长为cm.21.(2014春?泰兴市校级期末)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF 经过点A,则对角线BD长为cm.22.(2014春?建湖县期末)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,则ED的长等于.23.(2014春?玄武区期末)如图,在菱形ABCD中,BE⊥AD,垂足为E,且E为AD为中点.则∠ADC=°.24.(2014春?定县期末)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P 是对角线AC上的一个动点,当P移动到AC的中点时,则PE+PB的值是.25.(2014春?顺义区期末)如图,菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=度.26.(2014秋?武进区期中)如图,依次连结第一个矩形各边的中点得到第一个菱形,再依次连结所得菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为2,则第2013个菱形的面积为.二.解答题27.(2014?县模拟)如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.28.(2014?江都市模拟)如图,在菱形ABCD中,点M是对角线AC上一点,且MC=MD.连接DM并延长,交边BC于点F.(1)求证:∠1=∠2;(2)若DF⊥BC,求证:点F是边BC的中点.29.(2014春?期末)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.30.(2014春?高淳县校级期末)如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.31.(2013秋?东海县月考)如图,在菱形ABCD中,点E是AD 边的中点,点M是AB边上的一个动点(不与点A重合),延长ME 交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)若∠DAB=60°,当点M位于何处时,四边形AMDN是矩形?并说明理由.(请在备用图中画出符合题意的图形)32.(2012秋?鼓楼区校级期末)如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B 出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.参考答案1.50 2.3 3. 4.16 5.8cm 2 6.5 7.5 8.5 9.35° 10.(5,4) 11.50° 12.20°13.3 14.4.8 15. 16.17. 18.2 19.(2,1)20. 21.4 22.4-3 23.120 24.2 25.105 26.27、证明:四边形ABCD 是菱形CE ⊥AE,CF ⊥AF∠DAB=∠CBB,∠DAB=∠FDC,∴∠CBE=∠FDC又 BC=DC,∴Rt △BEC ≌Rt △DFC,∴CE=CF.28、证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵MC=MD ,∴∠ACD=∠2,∴∠1=∠2;(2)连接BD ,∵四边形ABCD 是菱形,∴∠ACB=∠ACD ,BC=CD ,∵∠ACD=∠2,∴∠ACB=∠ACD=∠2,∵DF ⊥BC ,∴3∠2=90°,∴∠2=30°,∴∠BCD=∠ACB+∠ACD=60°,∴△BCD 是等边三角形,∴BF=CF ,即点F 是边BC 的中点.29、(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t .又∵AE=t ,∴AE=DF(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.∵AB =21AC BC=35 222AC BC AB =+∴()2223521AC AC =+??? ?? ∴AC=1010 2.AD AC DC t ∴=-=-若使AEFD 为菱形,则需10.102,.3AE AD t t t ==-=即即当103t =时,四边形AEFD 为菱形30、(1)△ABP ≌△ACQ ,△APC ≌△AQD ;(2)∵△ACP ≌△ADQ ,∴S △ACP =S △ADQ ,即S 四边形APCQ =S △ACD =3221??;(3为菱形的高) (3)∵△PAQ 是等边三角形,点P 是BC 的中点时,AP 垂直于BC ,AP 最小,∴当AP ⊥BC 时,三角形APQ 的面积最小,故在四边形APCQ 的面积一定,△APQ 面积最小时,△PCQ 的面积最大. 此时BP=1,31、证明:∵四边形ABCD 是菱形∴∠DNM=∠AMN又∵DE=AE ,∠NDE=∠MAE∴△NDE=△MAE∴ND=AM∴ND ∥AM∴四边形ANDM 是平行四边形(2)当点M 是AB 的中点时,四边形AMDN 是矩形证明:如图所示∵四边形AMDN 是矩形,∠DAB=60o∴∠ADM=30o∴AM=AD 21 ∵AD=AB ∴AM=AB 21 即M 是AB 的中点32、解:(1)经过x 秒后,四边形AQCP 是菱形∴DP=X cm AP=CP=AD-DP=(8-X)cm∵DP 2+CD 2=PC 2∴16+X 2=(8-X) 2 解得x=3即经过3秒后四边形是菱形(2)由(1)得菱形的边长为5∴菱形AQCP的周长=5×4=20(㎝)菱形AQCP的面积=5×4=20(㎝2)。
菱形的性质和计算
菱形的性质和计算菱形是一种特殊的四边形,具有一些独特的性质和计算方法。
在本文中,我们将探讨菱形的性质以及如何计算菱形的一些参数。
一、菱形的性质1. 边长相等:菱形的四条边都相等,即AB = BC = CD = DA。
2. 对角线相等:菱形的两条对角线相等,即AC = BD。
3. 对角线互相垂直:菱形的两条对角线相互垂直,即∠CAD = 90°,∠CBD = 90°。
4. 四个角相等:菱形的四个角都相等,即∠BAD = ∠ABC =∠BCD = ∠CDA。
5. 内角和为360°:菱形的内角和为360°,即∠BAD + ∠ABC +∠BCD + ∠CDA = 360°。
二、计算菱形的一些参数1. 周长:菱形的周长可以通过边长计算。
因为菱形的四条边相等,所以周长等于4倍边长,即周长 = 4 ×边长。
2. 面积:菱形的面积可以通过对角线长度计算。
我们可以利用以下公式计算菱形的面积:面积 = (对角线1 ×对角线2) / 2其中,对角线1和对角线2是菱形的两条对角线的长度。
3. 对角线长度:如果我们已知菱形的边长,可以通过以下公式计算对角线的长度:对角线长度= √(边长^2 + 边长^2)也可以通过已知菱形的某个角度和一条边长来计算对角线的长度。
具体计算方法可以根据已知条件灵活运用三角函数来求解。
4. 中线长度:菱形的两条对角线交叉点所形成的线段称为中线。
中线可以通过以下公式计算:中线长度= (1/2) × √(对角线1^2 + 对角线2^2)其中,对角线1和对角线2是菱形的两条对角线的长度。
5. 高度:菱形没有明确的高度定义。
因为菱形的对角线互相垂直,可以通过对角线长度计算高度。
从对角线的交叉点到菱形的任意一条边的垂直距离即可视为菱形的高度。
总结:菱形是一种特殊的四边形,具有边长相等、对角线相等、对角线互相垂直、四个角相等、内角和为360°等性质。
22.3菱形的性质常考题(含详细的解析)
22.3菱形的性质常考题一、选择题(共18小题)1、(2009•长春)菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为()A、(,1)B、(1,)C、(+1,1)D、(1,+1)2、(2010•盐城)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A、5B、10C、6D、83、(2010•南通)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A、20B、15C、10D、54、(2010•北京)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A、24B、20C、10D、55、(2009•河池)已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A、3cm2B、4cm2C、cm2D、2cm26、(2009•杭州)如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A、35°B、45°C、50°D、55°7、(2008•台州)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A、16aB、12aC、8aD、4a8、(2008•江汉区)如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是()A、DA=DEB、BD=CEC、∠EAC=90°D、∠ABC=2∠E9、(2007•嘉兴)如图,在菱形ABCD中,不一定成立的是()A、四边形ABCD是平行四边形B、AC⊥BDC、△ABD是等边三角形D、∠CAB=∠CAD10、(2005•扬州)如图是一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉A、B之间的距离为20cm,则∠1等于()A、90°B、60°C、45°D、30°11、(2005•济宁)已知菱形的边长为6cm,一个内角为60°,则菱形较短的对角线长是()A、6cmB、cmC、3cmD、cm12、(2004•重庆)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A、80°B、70°C、65°D、60°13、在菱形ABCD中,AE⊥BC,AF⊥CD,且E,F分别为BC,CD的中点,那么∠EAF的度数为()A、75°B、60°C、45°D、30°14、菱形的周长等于高的8倍,则此菱形的较大内角是()A、60°B、90°C、120°D、150°15、在菱形ABCD中,AC与BD相交于点O,则下列说法不正确的是()A、AO⊥BOB、∠ABD=∠CBDC、AO=BOD、AD=CD16、菱形的周长为20cm,两邻角的比为1:2,则较长的对角线长为()A、4.5cmB、4cmC、5cmD、4cm17、已知菱形的两条对角线长分别为4cm和10cm,则菱形的边长为()A、116cmB、29cmC、cmD、cm18、菱形的周长为20cm,两邻角的比为1:3,则菱形的面积为()A、25cm2B、16cm2C、cm2D、cm2二、填空题(共12小题)19、(2006•泉州)菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为_________.20、(2008•陕西)如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为_________.21、(2009•临沂)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.22、(2008•肇庆)边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是_________cm.23、(2003•盐城)已知菱形ABCD的对角线AC=6cm,BD=8cm,则菱形的边长是_________cm.24、如图,在由12个边长都为1且有一个锐角为60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长_________.25、(2011•长沙)已知菱形的两条对角线长分别是6cm和8cm,则周长是_________cm.26、(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________度.27、(2009•本溪)如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于_________.28、(2008•镇江)如图所示,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2008厘米后停下,则这只蚂蚁停在_________点.29、(2008•温州)如图,菱形ABCD中,∠A=60°,对角线BD=8,则菱形ABCD的周长等于_________.30、(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为_________cm2.答案与评分标准一、选择题(共18小题)1、(2009•长春)菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为()A、(,1)B、(1,)C、(+1,1)D、(1,+1)考点:坐标与图形性质;菱形的性质。
菱形的性质和判定练习题(精.选)
菱形检测题二1.菱形的两条对角线长分别为16cm,12cm,那么这个菱形的高是_______.2.已知菱形两邻角的比是1:2,周长是40cm,则较短对角线长是________.3.菱形的面积为50cm2,一个内角为30°,则其边长为______.4.菱形一边与两条对角线所构成两角之比为2:7,则它的各角为______.5.如图,在四边形ABCD中,AB=CD,AD=BC,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是__________(写出一个即可).6、已知在菱形ABCD中,下列说法错误的是().A. 两组对边分别平行B. 菱形对角线互相平分C. 菱形的对边相等D. 菱形的对角线相等7、菱形具有而矩形不一定具有的性质是().A.对边相等B.对角相等C.对角线互相垂直D.对角线相等8、能够找到一点使该点到各边距离相等的图形为().A.平行四边形B.菱形C.矩形D.不存在9、下列说法不正确的是().A.菱形的对角线互相垂直B.菱形的对角线平分各内角C.菱形的对角线相等D.菱形的对角线交点到各边等距离10、菱形的两条对角线分别是12cm、16cm,则菱形的周长是().A.24cm B.32cm C.40 cm D.60cm11.菱形ABCD,若∠A:∠B=2:1,∠CAD的平分线AE和边CD之间的关系是().A.相等B.互相垂直且不平分C.互相平分且不垂直D.垂直且平分12.在菱形ABCD中,AE⊥BC于E,菱形ABCD面积等于24cm2,AE=6cm,则AB长为().A.12cm B.8cm C.4cm D.2cm13.如图,在菱形ABCD中,E是AB的中点,作EF∥BC,交AC•于点F,如果EF=4,那么CD的长为().A.2 B.4 C.6 D.814.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )A.1B.3C.2D.2315.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10B.8C.6D.516.如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为28,则OH 的长等于( )A.3.5B.4C.7D.1417.若菱形的周长20 cm,则它的边长是__________cm.18.如图,菱形ABCD 的周长是20,对角线AC ,BD 相交于点O ,若BD=6,则菱形ABCD 的面积是( )A.6B.12C.24D.4819、菱形ABCD 中,AB=15,∠ADC=120°,则B 、D 两点之间的距离为( ).A .15B .3215C .7.5D .315 20、菱形的两邻角之比为1:2,如果它的较短对角线为3cm ,则它的周长为( ).A .8cmB .9cmC .12cmD .15cm21、菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( ).A .3:1B .4:1C .5:122.如图,已知AC ,BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍23.如图,在菱形ABCD 中,AC ,BD 是对角线,若∠BAC =50°,则∠ABC 等于( )A.40°B.50°C.80°D.100°24.已知一个菱形的周长是20 cm ,两条对角线的比是4∶3,则这个菱形的面积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm2 25.如图,在菱形ABCD 中,AB=5,对角线AC=6,过点A 作AE ⊥BC ,垂足为E ,则AE 的长为( )A.4B.125C.245D.526.如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为点E ,F ,连接EF ,则△AEF 的面积是__________.27.如图,将菱形纸片ABCD折叠.使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2 cm,∠A=120°,则EF=__________cm.28.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.29.如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.30、如图,菱形ABCD中,E是AB中点,DE⊥AB,AB=4.求(1)∠ABC的度数;(2)AC的长;(3)菱形ABCD的面积.31.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.32、如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形33、如图,在四边形ABCD 中,点E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC的中点,AB ,CD 满足什么条件时,四边形EGFH 是菱形?请证明你的结论.34.如图,点O 是菱形ABCD 对角线的交点,DE ∥AC ,CE ∥BD ,连接OE.求证:OE =BC.35.如图所示,等边三角形CEF 的边长与菱形ABCD 的边长相等.(1)求证:∠AEF=∠AFE ;(2)求∠B 的度数.A B C D EG H最新文件仅供参考已改成word文本。
菱形的性质与判定经典例题练习
1、叫菱形2、菱形的性质1)边2)角3)对角线4)对称性5)菱形的面积计算方法:练一练:、1菱形具有而矩形不一定具有的性质是().A.对边相等 B.对角相等 C.对角线互相垂直 D.对角线相等2、能够找到一点使该点到各边距离相等的图形为().A.平行四边形 B.菱形 C.矩形 D.不存在3、如图所示,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°3.如在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2其中正确的结论有()A.1个B.2个C.3个D.4个4、菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.75° B.60° C.45° D.30°6、菱形的边长是2 cm,一条对角线的长是23 cm,则另一条对角线的长是()A.4 cmB.3 cmC.2 cmD.23 cm例1、如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.2、如图,菱形ABCD的对角线AC、BD交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离为_______.3、如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.12. 如图,菱形OABC 在直角坐标系中,点A 的坐标为(5,0),对角线OB =45,反比 例函数xky(k ≠0,x >0)经过点C .则k 的值等于( ) A .12 B .8 C .15 D .94变式:菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.5如图,在菱形ABCD 中,∠BAD=60°,BD=4,则菱形ABCD 的周长是_________.6、如图,菱形ABCD 中,E 是AB 中点,DE ⊥AB ,AB=4.求(1)∠ABC 的度数; (2)AC 的长; (3)菱形ABCD 的面积.例7:如图,在菱形ABCD 中,AB=4,E 在BC 上,BE=2,角ABC=120度,P 点在AC 上,求PE+PC 的最小值。
菱形性质经典练习题(详细答案)
菱形性质经典练习题一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.(2010•宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.(2011•铜仁地区)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.(2011•綦江县)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9.(2010•嘉兴)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________度.10题图12题13题图14题图11.(2009•朝阳)已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.(2009•安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.(2008•长沙)如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.(2006•云南)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.(2005•黄石)已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.(2005•新疆)已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.(2004•贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.(2011•南昌)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.(2010•益阳)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.(2010•宁洱县)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E 连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C 运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。
菱形的性质-北京习题集-教师版
菱形的性质(北京习题集)(教师版)一.选择题(共2小题)1.(2020•海淀区校级模拟)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,16BD =,3tan 4ABD ∠=,则线段AB 的长为( )A .7B .10C .5D .272.(2019春•怀柔区期末)如图,菱形ABCD 中,点E ,F 分别是AC ,DC 的中点.若5EF =,则菱形ABCD 的周长为( )A .15B .20C .30D .40二.填空题(共4小题)3.(2019春•西城区校级期中)已知菱形的一条对角线长为6,面积是12,则这个菱形的另一条对角线长是 . 4.(2019春•海淀区期末)在平面直角坐标系xOy 中,直线3y kx =+与x ,y 轴分别交于点A ,B ,若将该直线向右平移5单位,线段AB 扫过区域的边界恰好为菱形,则k 的值为 .5.(2019•西城区二模)如图,在平面直角坐标系xOy 中,已知点(0,3)A ,(1,0)B -,菱形ABCD 的顶点C 在x 轴的正半轴上,其对角线BD 的长为 .6.(2019春•房山区期末)如图,在平面直角坐标系xOy 中,已知点3)A ,(1,0)B -,菱形ABCD 的顶点C 在x 轴的正半轴上,则点D 的坐标为 .三.解答题(共8小题)7.(2020春•海淀区校级月考)如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE AF=,连接并延长EF,与CB的延长线交于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若30FGB∠=︒,2GB AE==,求AG的长.8.(2020春•海淀区校级月考)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE DF=,连接EF.(1)求证:AC EF⊥;(2)延长EF交CD的延长线于点G,连接BD交AC于点O,若6BD=,1tan2G=,求AO的长.9.(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE DF=,连接EF.(1)求证:AC EF⊥;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若4BD=,1tan2G=,求AO的长.10.(2019春•海淀区校级期中)如图,在菱形ABCD中,30B∠=︒,点E在CD边上,若AE AC=,6DE=,求AC 的长11.(2019春•石景山区期末)如图,菱形ABCD中,过点D作DE BA⊥交BA的延长线于点E,DF BC⊥交BC的延长线于点F.求证:DE DF=.12.(2019春•门头沟区期末)已知:如图,在菱形ABCD中,BE AD=,连接⊥于点E,延长AD至F,使DF AECF.(1)判断四边形EBCF的形状,并证明;(2)若9CF=,求CD的长.AF=,313.(2018•朝阳区模拟)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE CF=;(2)若2AB=,点E是AB中点,求EF的长.14.(2018春•怀柔区期末)已知:如图,菱形ABCD中,E,F分别为DC,BC上一点且DE BF=.求证:AEF AFE∠=∠.菱形的性质(北京习题集)(教师版)参考答案与试题解析一.选择题(共2小题)1.(2020•海淀区校级模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,16BD=,3tan4ABD∠=,则线段AB的长为()A.7B.10C.5D.27【分析】由菱形的性质可得AC BD⊥,8BO DO==,由锐角三角函数可求6AO=,由勾股定理可求解.【解答】解:四边形ABCD是菱形,AC BD∴⊥,8BO DO==,3 tan4AOABDBO∠==,6AO∴=,22366410AB AO BO∴=+=+=,故选:B.【点评】本题考查了菱形的性质,锐角三角函数,勾股定理等知识,灵活运用这些性质进行推理是本题的关键.2.(2019春•怀柔区期末)如图,菱形ABCD中,点E,F分别是AC,DC的中点.若5EF=,则菱形ABCD的周长为()A.15B.20C.30D.40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【解答】解:E、F分别是AC、DC的中点,EF∴是ADC∆的中位线,22510AD EF∴==⨯=,∴菱形ABCD 的周长441040AD ==⨯=.故选:D .【点评】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键. 二.填空题(共4小题)3.(2019春•西城区校级期中)已知菱形的一条对角线长为6,面积是12,则这个菱形的另一条对角线长是 4 . 【分析】设另一条对角线长为x ,然后根据菱形的面积计算公式列方程求解即可. 【解答】解:设另一条对角线长为x ,则 16122x ⨯=, 解得:4x =. 故答案为:4.【点评】本题考查了菱形对角线互相垂直平分的性质、菱形面积的计算方法,熟记菱形的面积公式是解题的关键. 4.(2019春•海淀区期末)在平面直角坐标系xOy 中,直线3y kx =+与x ,y 轴分别交于点A ,B ,若将该直线向右平移5单位,线段AB 扫过区域的边界恰好为菱形,则k 的值为 34± .【分析】根据菱形的性质知5AB =,由一次函数图象的性质和两点间的距离公式解答. 【解答】解:令0y =,则3x k =-,即3(A k-,0).令0x =,则3y =,即(0,3)B .将该直线向右平移5单位,线段AB 扫过区域的边界恰好为菱形, 5AB ∴=,则225AB =. 223()325k ∴-+=.解得34k =±.故答案是:34±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到5AB =.5.(2019•西城区二模)如图,在平面直角坐标系xOy 中,已知点(0,3)A ,(1,0)B -,菱形ABCD 的顶点C 在x 轴的正半轴上,其对角线BD 的长为 23 .【分析】由已知得出3DE OA ==,1OB =,由菱形的性质得出30DBE ∠=︒,连接BD ,作DE BC ⊥于E ,则90DEB ∠=︒,3DE OA ==,由直角三角形的性质得出223BD DE ==即可.【解答】解:点(0,3)A ,(1,0)B -, 3OA ∴=,1OB =,222AB OA OB ∴=+=, 12OB AB ∴=, 30OAB ∴∠=︒,60OBA ∠=︒,四边形ABCD 是菱形, 1302DBE OBA ∴∠=∠=︒,连接BD ,作DE BC ⊥于E ,如图所示: 则90DEB ∠=︒,3DE OA ==, 90DEB ∠=︒, 223BD DE ∴==;故答案为:23.【点评】本题考查了菱形的性质、坐标与图形性质、勾股定理、直角三角形的性质等知识;熟练掌握菱形的性质,求出60OBA ∠=︒是解题的关键.6.(2019春•房山区期末)如图,在平面直角坐标系xOy 中,已知点(0,3)A ,(1,0)B -,菱形ABCD 的顶点C 在x 轴的正半轴上,则点D 的坐标为 (2,3) .【分析】由勾股定理可求AB 的长,由菱形的性质可得2AB AD ==,//AD BC ,即可求点D 坐标.【解答】解:点(0,3)A ,(1,0)B -, 3AO ∴=,1BO =222AB AO BO ∴=+= 四边形ABCD 是菱形2AB AD ∴==,//AD BC∴点D 坐标(2,3)故答案为:(2,3)【点评】本题考查了菱形的性质,坐标与图形性质,勾股定理,求AB 的长是本题的关键. 三.解答题(共8小题)7.(2020春•海淀区校级月考)如图,菱形ABCD 中,E ,F 分别为AD ,AB 上的点,且AE AF =,连接并延长EF ,与CB 的延长线交于点G ,连接BD . (1)求证:四边形EGBD 是平行四边形;(2)连接AG ,若30FGB ∠=︒,2GB AE ==,求AG 的长.【分析】(1)连接AC ,再根据菱形的性质得出//EG BD ,根据对边分别平行证明是平行四边形即可. (2)过点A 作AH BC ⊥,再根据直角三角形的性质和勾股定理解答即可. 【解答】证明:(1)连接AC ,如图1:四边形ABCD 是菱形, AC ∴平分DAB ∠,且AC BD ⊥,AF AE =,AC EF ∴⊥, //EG BD ∴.又菱形ABCD 中,//ED BG ,∴四边形EGBD 是平行四边形.(2)过点A 作AH BC ⊥于H .30FGB ∠=︒, 30DBC ∴∠=︒,260ABH DBC ∴∠=∠=︒, 2GB AE ==,4AB AD ∴==,在Rt ABH ∆中,90AHB ∠=︒, 23AH ∴=,2BH =.4GH ∴=,22161227AG AH GH ∴=+=+=.【点评】本题考查了菱形性质,关键是根据菱形的性质和平行四边形的判定以及直角三角形的性质解题.8.(2020春•海淀区校级月考)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE DF =,连接EF .(1)求证:AC EF ⊥;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若6BD =,1tan 2G =,求AO 的长.【分析】(1)由菱形的性质得出AB AD =,AC BD ⊥,OB OD =,OA OC =,得出::AB BE AD DF =,证出//EF BD 即可得出结论;(2)由平行线的性质得出G ADO ∠=∠,由三角函数得出1tan tan 2OC G CDO OD =∠==,得出OC OD =,由6BD =,得出3OD =,得出32OC =,即可得出结果. 【解答】(1)证明:连接BD ,交AC 于O ,如图1所示:四边形ABCD 是菱形,AB AD ∴=,AC BD ⊥,OB OD =,OA OC =, BE DF =,::AB BE AD DF ∴=, //EF BD ∴, AC EF ∴⊥;(2)解:如图2所示:由(1)得://EF BD , G CDO ∴∠=∠,1tan tan 2OC G CDO OD ∴=∠==, 12OC OD ∴=,6BD =, 3OD ∴=,32OC ∴=, 32OA OC ∴==. 【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键. 9.(2019•北京)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE DF =,连接EF . (1)求证:AC EF ⊥;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若4BD =,1tan 2G =,求AO 的长.【分析】(1)由菱形的性质得出AB AD =,AC BD ⊥,OB OD =,OA OC =,得出::AB BE AD DF =,证出//EF BD 即可得出结论;(2)由平行线的性质得出G ADO ∠=∠,由三角函数得出1tan tan 2OC G CDO OD =∠==,得出12OC OD =,由4BD =,得出2OD =,得出1OC =,即可得出结果.【解答】(1)证明:连接BD ,交AC 于O ,如图1所示: 四边形ABCD 是菱形,AB AD ∴=,AC BD ⊥,OB OD =,OA OC =, BE DF =,::AB BE AD DF ∴=, //EF BD ∴, AC EF ∴⊥;(2)解:如图2所示: 由(1)得://EF BD , G CDO ∴∠=∠,1tan tan 2OC G CDO OD ∴=∠==, 12OC OD ∴=,4BD =,2OD ∴=, 1OC ∴=, 1OA OC ∴==.【点评】本题考查了菱形的性质、平行线的判定与性质、解直角三角形等知识;熟练掌握菱形的性质是解题的关键.10.(2019春•海淀区校级期中)如图,在菱形ABCD 中,30B ∠=︒,点E 在CD 边上,若AE AC =,6DE =,求AC 的长【分析】过点E 作EF AD ⊥于F ,由菱形的性质和等腰三角形的性质可求45DAE ∠=︒,由直角三角形的性质可求EF 的长,AC 的长.【解答】解:如图,过点E 作EF AD ⊥于F ,四边形ABCD 是菱形,30B ∠=︒,30D ∴∠=︒,AB AC AD ==,BCA DCA ∠=∠,75BAC ACB ACD ∴∠=∠=︒=∠,且AE AC =,75AEC ACE ∴∠=∠=︒,且AEC D DAE ∠=∠+∠,45DAE ∴∠=︒,EF AD ⊥,30D ∠=︒,6DE =3EF ∴=,且EF AD ⊥,45DAE ∠=︒, 232AE EF ∴==【点评】本题考查了菱形的性质,添加恰当辅助线构造直角三角形是本题的关键.11.(2019春•石景山区期末)如图,菱形ABCD 中,过点D 作DE BA ⊥交BA 的延长线于点E ,DF BC ⊥交BC 的延长线于点F .求证:DE DF =.【分析】解法一:根据角平分线上的点到角两边距离相等;解法二:根据面积公式求解;解法三:根据三角形全等来证明边相等.【解答】证法一:连接BD ,如图1.四边形ABCD 是菱形,12∴∠=∠,DE BA ⊥,DF BC ⊥,DE DF ∴=.证法二:如图2,四边形ABCD 是菱形,AB BC ∴=.DE BA ⊥,DF BC ⊥,ABCD S AB DE ∴=⨯菱形,ABCD S CB DF =⨯菱形,DE DF ∴=.证法三:如图2,四边形ABCD 是菱形,DA DC ∴=,12∠=∠,34∴∠=∠,DE BA ⊥,DF BC ⊥,90E F ∴∠=∠=︒,在AED ∆和CFD ∆中,34,90E F AD CD∠=∠⎧⎪∠=∠=︒⎨⎪=⎩ ()AED CFD AAS ∴∆≅∆,DE DF ∴=.【点评】本题主要考查了菱形的性质,解题的关键是菱形的对角线平分对角以及菱形四边相等,此题解题方法不唯一.12.(2019春•门头沟区期末)已知:如图,在菱形ABCD中,BE AD=,连接⊥于点E,延长AD至F,使DF AECF.(1)判断四边形EBCF的形状,并证明;(2)若9CF=,求CD的长.AF=,3【分析】(1)根据菱形的性质得出AD BCAD BC,求出EF BC=,根据平行四边形的判定得出四边形EBCF=,//是平行四边形,根据矩形的判定得出即可;(2)根据勾股定理求出AB,根据菱形的性质得出即可.【解答】(1)四边形EBCF是矩形,证明:四边形ABCD菱形,AD BC,AD BC∴=,//又DF AE=,∴+=+,DF DE AE DE即:EF AD=,∴=,EF BC∴四边形EBCF是平行四边形,又BE AD⊥,BEF∴∠=︒.90∴四边形EBCF是矩形;(2)四边形ABCD菱形,AD CD∴=.四边形EBCF是矩形,90F ∴∠=︒,9AF =,3CF =,∴设CD x =,则9DF x =-,222(9)3x x ∴=-+,解得:5x =,5CD ∴=.【点评】本题考查了平行四边形的性质和判定,矩形的判定,菱形的性质等知识点,能综合运用定理进行推理是解此题的关键.13.(2018•朝阳区模拟)如图,在菱形ABCD 中,AC 和BD 相交于点O ,过点O 的线段EF 与一组对边AB ,CD 分别相交于点E ,F .(1)求证:AE CF =;(2)若2AB =,点E 是AB 中点,求EF 的长.【分析】(1)由四边形ABCD 是菱形,可得//AB CD ,OA OC =,继而证得AOE COF ∆≅∆,则可证得结论.(2)利用平行四边形的判定和性质解答即可.【解答】(1)证明:四边形ABCD 是菱形,AO CO ∴=,//AB CD ,EAO FCO ∴∠=∠,AEO CFO ∠=∠.在OAE ∆和OCF ∆中,EAO FCO AO COAEO CFO ∠=∠⎧⎪=⎨⎪∠=∠⎩, AOE COF ∴∆≅∆,AE CF ∴=;(2)E 是AB 中点,BE AE CF ∴==.//BE CF ,∴四边形BEFC 是平行四边形,2AB=,∴===.2EF BC AB【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.14.(2018春•怀柔区期末)已知:如图,菱形ABCD中,E,F分别为DC,BC上一点且DE BF=.求证:AEF AFE∠=∠.【分析】在菱形中,由SAS求得ADE ABF∠=∠.∆≅∆,再由等边对等角得到AEF AFE【解答】证明:四边形ABCD为菱形,∠=∠,∴=,B DAB AD=,E、F分别为DC、BC上一点且DE BF∴∆≅∆()ADE ABF SAS∴=.AE AF∴∠=∠.AEF AFE【点评】本题考查了菱形的性质,关键是利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.。
初二数学菱形的性质作业练习题(含答案)
初二数学菱形的性质作业练习题一.选择题(共5小题)1.若菱形的一条边长为5cm,则这个菱形的周长为()A.20cm B.18cm C.16cm D.12cm2.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等3.在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.//⊥D.OA OC=AB DC B.OC OB=C.AC BD4.如图,四边形ABCD是菱形,120BD=,则BC的长是()∠=︒,4ABCA.6B.5C.4D.43第3题图第4题图第5题图5.如图,在菱形ABCD中,80∠=︒,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,BAD则CDF∠等于()A.80︒B.70︒C.65︒D.60︒二.填空题(共5小题)6.在菱形ABCD中,10BD=,则菱形的边长等于,面积等于.AC=,247.如图,菱形ABCD中,150∠=.∠=︒,则1D8.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.9.在菱形ABCD中,周长为16,30∠=︒,则其面积为.ABC10.菱形ABCD中,若周长是20cm,对角线6=,则对角线AC cmBD=cm.三.解答题(共4小题)11.如图,已知在菱形ABCD中,60AC=,求菱形ABCD∠=︒,对角线8ABC的周长和面积.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,且16BD=,求菱形ABCD的高AC=,12DH.13.如图,已知四边形ABCD是菱形,AE BC⊥于点F.⊥于点E,AF CD(1)求证:AE AF=;(2)若70∠的度数.∠=︒,求EAFB14.如图,在菱形ABCD中,AC为对角线,60B=.求∠=︒,点E,F分别是BC,CD边上的点,BE CF 证:AE AF=.答案与解析一.选择题(共5小题)1.若菱形的一条边长为5cm,则这个菱形的周长为()A.20cm B.18cm C.16cm D.12cm【分析】根据菱形的四条边都相等,现在已知其一条边长为5cm,即可求出菱形的周长.【解答】解:Q菱形的四条边都相等,∴其边长都为5cm,=⨯=.∴菱形的周长4520cm故选:A.2.菱形的对角线不一定具有的性质是()A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等【分析】根据菱形的对角线性质,即可得出答案.【解答】解:Q菱形的对角线互相垂直平分,且每一条对角线平分一组对角,∴菱形的对角线不一定具有的性质是相等;故选:D.3.在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.//=⊥D.OA OCAB DC B.OC OB=C.AC BD【分析】根据菱形的性质即可判断.【解答】解:Q四边形ABCD是菱形,⊥,OA OC=,AB CD//∴,AC BD故A,C,D正确,故选:B.4.如图,四边形ABCD是菱形,120BD=,则BC的长是()∠=︒,4ABCA.6B.5C.4D.43【分析】由菱形的性质可得CB CDBC BD==,∆是等边三角形,可得4=,BD平分ABC∠,可证BCD【解答】解:Q四边形ABCD是菱形,∠,且120∠=︒,ABC∴=,BD平分ABCCB CD∴∠=∠=︒,ABD CBD60∴∆是等边三角形,BCD4BC BD ∴==,故选:C .5.如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则CDF ∠等于( )A .80︒B .70︒C .65︒D .60︒【分析】连接BF ,根据菱形的对角线平分一组对角求出BAC ∠,BCF DCF ∠=∠,四条边都相等可得BC DC =,再根据菱形的邻角互补求出ABC ∠,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF BF =,根据等边对等角求出ABF BAC ∠=∠,从而求出CBF ∠,再利用“边角边”证明BCF ∆和DCF ∆全等,根据全等三角形对应角相等可得CDF CBF ∠=∠.【解答】解:如图,连接BF ,在菱形ABCD 中,11804022BAC BAD ∠=∠=⨯︒=︒,BCF DCF ∠=∠,BC DC =, 180********ABC BAD ∠=︒-∠=︒-︒=︒,EF Q 是线段AB 的垂直平分线,AF BF ∴=,40ABF BAC ∠=∠=︒,1004060CBF ABC ABF ∴∠=∠-∠=︒-︒=︒,Q 在BCF ∆和DCF ∆中,BC DC BCF DCFCF CF =⎧⎪∠=∠⎨⎪=⎩,()BCF DCF SAS ∴∆≅∆,60CDF CBF ∴∠=∠=︒,故选:D .二.填空题(共5小题)6.在菱形ABCD 中,10AC =,24BD =,则菱形的边长等于 13 ,面积等于 .【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长;由菱形面积公式即可求得面积.【解答】解:根据题意,设对角线AC 、BD 相交于O ,则由菱形对角线性质知,152AO AC ==,1122BO BD ==,且AO BO ⊥, 13AB ∴=,Q 菱形对角线相互垂直,∴菱形面积是11202S AC BD =⨯=. 故答案为:13,120.7.如图,菱形ABCD 中,150D ∠=︒,则1∠= 15︒ .【分析】由菱形的性质得出//AB CD ,21BAD ∠=∠,求出30BAD ∠=︒,即可得出115∠=︒.【解答】解:Q 四边形ABCD 是菱形,150D ∠=︒,//AB CD ∴,21BAD ∠=∠,180BAD D ∴∠+∠=︒,18015030BAD ∴∠=︒-︒=︒,115∴∠=︒;故答案为:15︒8.如图,已知菱形ABCD 的面积为26cm ,BD 的长为4cm ,则AC 的长为 3 cm .【分析】利用菱形的性质,菱形面积等于对角线乘积的一半,进而得出AC 的长;【解答】解:Q 菱形ABCD 的面积为26cm ,BD 的长为4cm ,∴1462AC ⨯⨯=, 解得:3AC =,故答案为:3.9.在菱形ABCD 中,周长为16,30ABC ∠=︒,则其面积为 8 .【分析】如图,过点A 作AE BC ⊥于点E ,由菱形的性质可求4AB BC ==,由直角三角形的性质可求2AE =,即可求解.【解答】解:如图,过点A 作AE BC ⊥于点E ,Q 菱形ABCD 的周长为16,4AB BC ∴==,30ABC ∠=︒Q ,AE BC ⊥,122AE AB ∴==, ∴菱形ABCD 的面积8BC AE =⨯=,故答案为:8.10.菱形ABCD 中,若周长是20cm ,对角线6AC cm =,则对角线BD = 8 cm .【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD 的一半,然后即可得解.【解答】解:如图,Q 菱形ABCD 的周长是20cm ,对角线6AC cm =, 2045AB cm ∴=÷=,132AO AC cm ==, 又AC BD ⊥Q ,2222534BO AB AO cm ∴=-=-=,28BD BO cm ∴==.故答案为:8.三.解答题(共4小题)11.如图,已知在菱形ABCD 中,60ABC ∠=︒,对角线8AC =,求菱形ABCD 的周长和面积.【分析】由在菱形ABCD 中,60ABC ∠=︒,可得ABC ∆是等边三角形,又由对角线8AC =,即可求得此菱形的边长,进而可求出菱形的周长,再根据菱形的面积等于对角线乘积的的一半即可求出其面积.【解答】解:Q 四边形ABCD 是菱形,AB BC ∴=,60ABC ∠=︒Q ,ABC ∴∆是等边三角形,8AB AC ∴==.∴菱形ABCD 的周长4832=⨯=, 228443BO =-=Q ,283BD BO ∴==,∴菱形ABCD 的面积18833232=⨯⨯=. 12.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且16AC =,12BD =,求菱形ABCD 的高DH .【分析】首先求出AB ,再利用12AB DH AC BD =g g ,即可解决问题. 【解答】解:Q 四边形ABCD 是菱形,DH AB ⊥,8OA OC ∴==,6OB OD ==,AC BD ⊥, ∴在Rt AOB ∆中,22228610AB OA OB =+=+=,12AB DH AC BD ∴=g g , 11016122DH ∴=⨯⨯g , 9.6DH ∴=.13.如图,已知四边形ABCD 是菱形,AE BC ⊥于点E ,AF CD ⊥于点F .(1)求证:AE AF =;(2)若70B ∠=︒,求EAF ∠的度数.【分析】(1)首先根据菱形的性质得到AB AD =,B D ∠=∠,再利用AAS 证明ABE ADF ∆≅∆,于是得到AE AF =;(2)首先根据垂直等知识求出BAE ∠的度数,结合全等三角形的知识以及菱形邻角互补即可求出EAF ∠的度数.【解答】(1)证明:AE BC ⊥Q ,AF DC ⊥,90AEB AFD ∴∠=∠=︒.Q 四边形ABCD 是菱形,AB AD ∴=,B D ∠=∠,在ABE ∆和ADF ∆,Q 90AEB AFD B D AB AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩gABE ADF ∴∆≅∆(AAS ), AE AF ∴=.(2)AE BC ⊥Q 于点E ,70B ∠=︒,20BAE ∴∠=︒,ABE ADF ∆≅∆Q ,20BAE DAF ∴∠=∠=︒,18070EAF B BAE DAF ∴∠=︒-∠-∠-∠=︒.14.如图,在菱形ABCD 中,AC 为对角线,60B ∠=︒,点E ,F 分别是BC ,CD 边上的点,BE CF =.求证:AE AF =.【分析】证明ABC ∆是等边三角形,得出AB AC =,由SAS 证明ABE ACF ∆≅∆,即可得出结论.【解答】证明:Q 四边形ABCD 是菱形,AB BC ∴=,ACB ACD ∠=∠,//AB CD ,180BCD B ∴∠+∠=︒,120BCD ∴∠=︒,60ACB B ∴∠=︒=∠,ABC ∴∆是等边三角形,AB AC ∴=,在ABE ∆和ACF ∆中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,()ABE ACF SAS ∴∆≅∆,AE AF ∴=.。
《第六章1菱形的性质与判定》作业设计方案-初中数学鲁教版五四制12八年级下册
《菱形的性质与判定》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作和理论学习相结合的方式,使学生掌握菱形的定义、性质和判定方法,加深对菱形相关概念的理解,并能够运用所学知识解决实际问题。
二、作业内容本课时作业主要包括以下内容:1. 基础练习:通过大量的填空题和选择题,巩固学生对菱形定义、性质及判定的基础知识。
2. 操作实践:让学生利用手中的工具(如直尺、三角板等)自行绘制菱形,并在绘图中感受菱形的特点,如四条边等长、对角线互相垂直且平分等。
3. 探究活动:设计一系列问题,引导学生通过小组合作或个人思考的方式,探究菱形与其他图形的联系与区别,如正方形、矩形等。
4. 拓展应用:设置几道综合性题目,要求学生运用所学知识解决实际问题,如计算菱形面积、解决与菱形有关的几何问题等。
三、作业要求1. 学生在完成作业时,应认真审题,理解题目要求,按照步骤进行。
2. 对于基础练习部分,学生应确保答案的准确性,并在完成后进行自我检查。
3. 在操作实践中,学生应注意绘图的规范性,保证所绘制的菱形符合定义。
4. 探究活动部分要求学生积极思考,通过查阅资料或与同学讨论等方式得出答案。
5. 拓展应用部分要求学生尝试多种解题方法,提高解题的灵活性和创造性。
四、作业评价1. 教师将根据学生完成作业的准确性和规范性进行评价。
2. 对于学生的操作实践和探究活动部分,教师将关注学生的思考过程和合作能力,给予适当的指导和鼓励。
3. 教师将根据学生的拓展应用部分的表现,评价其创新思维和解决问题的能力。
五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,指出学生在作业中存在的问题及改进方向。
2. 对于学生在作业中表现出的亮点和进步,教师将给予表扬和鼓励,增强学生的学习信心。
3. 鼓励学生之间相互交流学习,分享解题经验和心得,促进班级学习氛围的营造。
4. 教师将根据学生作业情况调整教学计划,为下一课时的教学做好准备。
通过本课时作业的合理设计,期望学生能够在掌握菱形性质与判定的基础上,提高他们的实际操作能力和问题解决能力,同时激发他们的学习热情和探索精神。
菱形的性质及判定知识点及典型例题
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线. 以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中 位线,再用中位线的性质.中点中点中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质和判定定理。
菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。
菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
菱形的性质 及判定难点是菱形性质的灵活应用。
由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。
如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程 中应给予足够重视。
板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例3】 如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.图21CBA【例4】 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【例5】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.P HFE DCBA【例6】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .E FDBCA图1HO DC BA【例7】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例8】 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .【例9】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为【例10】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【例11】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例12】 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【例13】菱形ABCD中,E、F分别是BC、CD的中点,且AE BC⊥,AF CD⊥,那么EAF∠等于.【例14】已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________.【例15】如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A.210cm B.220cm C.240cm D.280cm图1DCBA【例16】已知菱形ABCD的两条对角线AC BD,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例17】如图,菱形花坛ABCD的周长为20m,60ABC∠=︒,•沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积.图2【例18】如图,在菱形ABCD中,4AB a E=,在BC上,2120BE a BAD P=∠=︒,,点在BD上,则PE PC+的最小值为EPDCBA【例19】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.FEDCBA【例20】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBA板块二、菱形的判定【例21】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例22】 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【例23】 如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.EDCB A【例24】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例25】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例26】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【例27】 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例28】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例29】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.HF DECBA【例30】 如图,M 是矩形ABCD 内的任意一点,将MAB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA【例31】 如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCBA三、与菱形相关的几何综合题【例32】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE【例33】 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PGPC的值.小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题:⑴ 写出上面问题中线段PG 与PC 的位置关系及PGPC的值;⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明.⑶ 若图1中()2090ABC BEF αα∠=∠=︒<<︒,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,求PGPC的值(用含α的式子表示). 图2AB CDEFG P四、中位线与平行四边形【例34】 顺次连结面积为20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一个 ,其面积为 .【例35】 如图,在四边形ABCD 中,AB CD ≠,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还满足的一个条件是 ,并说明理由.HGFE D CBA【例36】 在四边形ABCD 中,AB CD =,P ,Q 分别是AD 、BC 的中点,M ,N 分别是对角线AC ,BD中点,证明:PQ 与MN 互相垂直.Q PMNCB D A【例37】 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA【例38】 如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .M EDCBA【例39】 如图,四边形ABCD 中,AB CD =,E F ,分别是BC AD ,的中点,连结EF 并延长,分别交BA CD,的延长线于点G H ,,求证:BGE CHE ∠=∠ABH G FEDCBA【例40】 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA【例41】 如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤ADFEDCBA【例42】 已知如图所示,E 、F 、G 、H 分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.HGFEDC BA【例43】 如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.QEP NMDCBA【例44】 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH,相互垂直平分ABGH GFEDCBA【例45】 ABC ∆的三条中线分别为AD 、BE 、CF ,H 为BC 边外一点,且BHCF 为平行四边形,求证:AD EH ∥.ABCDE FH【例46】 在平行四边形ABCD 的对角线BD 上取一点E ,使13BE DE =,连接AE 并延长与DC 的延长线交于F ,则2CF AB =.图1CAEDBF【例47】 如图,ABC ∆中,E 、F 分别是AB 、BC 的中点,G 、H 是AC 的三等分点,连结并延长EG 、FH 交于点D .求证:四边形ABCD 是平行四边形.HGFEDCBA【例48】 如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC =,BD 和AC 相交于点O ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF =.FE ONM D CBA【例49】 如图,线段AB CD ,相交于点O ,且AB CD =,连结AD BC ,,E F ,分别是AD BC ,的中点,EF分别交AB CD ,于M N ,,求证:OM ON =A CFEO N M DCBA【例50】 如图,梯形ABCD 中,AD BC AB CD =∥,,对角线AC BD ,相交于点O ,60AOD ∠=︒,E F G,,分别是OA OB CD ,,的中点,求证:EFG ∆是等边三角形A BEFO G FE DC BA【例51】 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.OE FLHNMDCB A【例52】 如图,O 是平行四边形ABCD 内任意一点,E F G H ,,,分别是OA OB OC OD ,,,的中点.若DE ,CF 交于P ,DG ,AF 交于Q ,AH ,BG 交于R ,BE ,CH 交于S ,求证:PQ SR .SR QPH GOEFDCB A。
菱形性质练习题(详细答案)
菱形性质练习题一.选择题(共4小题)2.菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2B.C.1D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1B.4:1C.5:1D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15B.C.7.5D.二.填空题(共15小题)5.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________度.10如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=_________度.10题图12题13题图14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.13如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是______cm.14已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC 交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图19题图19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?。
初中数学知识点:菱形的性质
初中数学知识点:菱形的性质
菱形除了具有平行四边形的一切性质外,还有一些特殊性质:
1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.
要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.
(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.
(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.
第1 页共1 页。
菱形性质习题
菱形性质:1.对边平行,四边相等;2对角相等,邻角互补。
3对角线互相垂直平分且平分每一组对角,菱形判定:1四条边都相等的四边形是菱形.2一组邻边相等的平行四边形是菱形。
3.对角线相互垂直的平行四边形是菱形。
(2013•滨州)(2013•淄博)(2013•梧州)(2013•随州)(2013•河北)1.(2013•滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()2.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()3.(2013•梧州)如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()4.(2013•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()5.(2013•河北)如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()(2013•泉州)(2013•南京)(2013•内江)(2013•临沂)(2012•沈阳)6.(2013•泉州)如图,菱形ABCD的周长为8√(5),对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=,菱形ABCD的面积S=7.(2013•南京)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.8. (2013•内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=9.(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是 cm2.10.(2012•沈阳)如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为11.(2013•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.12.(2013•乌鲁木齐)如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.13.(2012•柳州)如图,用两张等宽的纸条交叉重叠地放在一起,重合的四边形ABCD是一个特殊的四边形.(1)这个特殊的四边形形状(2)请证明你的结论.14.(2011•湖州)如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.15.(2013•昭通)已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.。
菱形性质测试题及答案
菱形性质测试题及答案
一、选择题
1. 下列哪个选项不是菱形的性质?
A. 对角线互相垂直
B. 四边相等
C. 对角线平分每一组对角
D. 内角和为180°
2. 菱形的对角线将菱形分成几个全等的三角形?
A. 1
B. 2
C. 3
D. 4
3. 如果菱形的一条对角线长为10,另一条对角线长为8,那么菱形的边长是多少?
A. 4√2
B. 6√2
C. 8√2
D. 10√2
二、填空题
4. 菱形的对角线互相________。
5. 菱形的面积可以通过________来计算。
三、简答题
6. 请简述菱形的判定定理。
四、计算题
7. 已知菱形ABCD的对角线AC=8cm,BD=6cm,求菱形ABCD的边长。
五、证明题
8. 已知菱形ABCD中,E、F分别是边AB和CD上的点,且AE=CF,证明:△AED≅△CFB。
答案:
一、选择题
1. D
2. D
3. A
二、填空题
4. 垂直且平分
5. 对角线乘积的一半
三、简答题
6. 菱形的判定定理包括:四边相等的四边形是菱形;对角线互相垂直且平分的四边形是菱形。
四、计算题
7. 根据菱形的性质,对角线互相平分,所以AO=CO=4cm,BO=DO=3cm。
根据勾股定理,边长AB=√(AO²+BO²)=√(4²+3²)=5cm。
五、证明题
8. 证明:由于AE=CF,且AD=CD(菱形的四边相等),根据SAS(边角边)相似定理,我们可以得出△AED≅△CFB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菱形及其性质
1. 菱形具有而一般平行四边形不具有的性质是( )
A.两组对边分别平行
B.两组对角分别相等
C.对角线互相平分
D.对角线互相垂直
2.如图,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的中点,连接EG 与H 交于点O , 则图中的菱形共有( )
A.4个
B. 5个
C. 6个
D. 7个
3.如图,在菱形ABCD 中,∠BAD=80°,E 为AB 的中点,E F ⊥AB 交对角线AC 于点F , 连接DF ,则∠CDF = .
4.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )
A.3.5
B.4
C.7
D.14
5.菱形OACB 在平面直角坐标系中的位置如图所示,点C 的坐标是(6,0),
点A 的纵坐标是1,则点B 的坐标是( )
A.(3,1)
B. (3,-1)
C. (1,-3)
D. (1,3)
6.如图,菱形ABCD 的对角线相交于点O ,且AC=8,BD=6,,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH = .
7.已知菱形ABCD 的对角线AC=4cm,BD =3cm,求菱形ABCD 的面积和周长.
8.如图,四边形ABCD 是菱形,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD
交AD 的延长线于点F.求证: DF=BE.
第3题图
9.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD,BC分
别交于点M和点N.
(1)请你判断OM与ON的数量关系,并说明理由;
(2)过点D作DE∥AC交BC的延长线于点E,当AB=5,AC=8
时,求△BDE的周长.
10.如图,在菱形ABCD中,∠ABD=60°,M为对角线BD延长线上一点,连接AM、CM,E 为
CM上一点,且满足CB=CE,连接BE,交CD于点F,若∠AMB=30°,且DM=1,求BE的长.
11.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时从A、C两点出发,
分别沿AB、CB方向向点B匀速移动(到点B停止),点E的速度为1 cm/s,点F的速度为
2 cm/s,若经过t s后△DEP为等边三角形,求t的值?。