中考数学研究:偶然事件和必然事件中的概率性问题
概率应用中考知识点总结
概率应用中考知识点总结一、基本概率概念首先,我们需要了解一些基本的概率概念。
概率是描述随机事件发生可能性的数学工具,通常用一个介于0和1之间的数值来表示。
若一个随机事件的概率为0,表示该事件不可能发生;若概率为1,表示该事件必然发生;而概率介于0和1之间,表示该事件在一次试验中发生的可能性大小。
在实际应用中,概率可以用来描述掷硬币、抛骰子、购买彩票等随机事件的可能性。
二、概率题型归类概率题型大致分为几类,包括基本概率、排列组合和事件独立性等。
在考试中,常见的概率题型包括以下几种:1. 基本概率问题:如掷硬币、抛骰子、抽卡片等随机事件的概率计算;2. 排列组合问题:考察在一定条件下,不同的排列组合可能性;3. 事件独立性问题:考察两个或多个事件同时发生的概率;4. 条件概率问题:在一定条件下,某一事件发生的概率。
针对以上的题目类型,我们可以针对性地进行练习和复习,以提高解题效率。
三、基本概率计算在概率题型中,最基本的是基本概率计算。
基本概率是指在一次试验中,某一事件发生的可能性大小,通常用概率公式来计算。
例如,掷硬币的概率可以用P(A) = n(A)/n(S)来计算,其中n(A)表示事件A发生的次数,n(S)表示总的可能发生的次数。
当然在实际中,我们也可以使用频率来计算概率,即事件A发生的次数/总次数。
在考试中,我们需要对基本概率计算掌握得比较熟练,因为这类题型是概率题目中最基础的部分。
四、排列组合排列组合是数学中一个重要的概念,也经常出现在概率题型中。
排列是指在一个序列中,不同元素的排列情况;组合是指在一个元素集合中,不同元素的组合情况。
在概率题目中,排列组合通常用来求解在一定条件下,不同元素的排列组合可能性。
这需要我们对排列组合公式进行了解和掌握,然后灵活运用到不同的题目中。
五、事件独立性事件独立性是指在某一试验过程中,两个或多个事件相互独立的情况。
在概率题目中,我们经常需要计算两个或多个事件同时发生的概率。
中考数学概率题型知识点归纳
中考数学概率题型知识点归纳概率是中考数学中的一个重要知识点,它与我们的日常生活息息相关,能够帮助我们理解和预测各种随机现象。
下面就为大家归纳一下中考数学中常见的概率题型及相关知识点。
一、概率的基本概念1、随机事件在一定条件下,可能发生也可能不发生的事件称为随机事件。
2、必然事件在一定条件下,必然会发生的事件称为必然事件。
3、不可能事件在一定条件下,不可能发生的事件称为不可能事件。
4、概率表示一个事件发生的可能性大小的数,叫做该事件的概率。
概率通常用 P(事件)来表示。
二、概率的计算1、古典概型如果一次试验中可能出现的结果有 n 个,而且所有结果出现的可能性都相等,那么某个事件 A 发生的概率为 P(A)=事件 A 包含的结果数÷所有可能的结果数。
例如:一个袋子里装有 5 个红球和 3 个白球,从袋子中随机摸出一个球,摸到红球的概率是多少?总共有 8 个球,摸到红球的可能性有 5 种,所以摸到红球的概率为5÷8 = 5/8 。
2、列表法和树状图法当一次试验要涉及两个或两个以上因素时,为了不重不漏地列出所有可能的结果,通常采用列表法或树状图法。
例如:同时抛掷两枚质地均匀的硬币,求出现“一正一反”的概率。
我们可以通过列表法:|第一枚硬币|正|正|反|反||||||||第二枚硬币|正|反|正|反|共有 4 种等可能的结果,其中“一正一反”的结果有 2 种,所以概率为 2÷4 = 1/2 。
或者通过树状图法:```第一枚硬币/\正反/\/\正反正反```同样可以得出“一正一反”的概率为 1/2 。
3、几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
例如:在一个边长为 4 的正方形内随机取一点,求该点到正方形顶点的距离小于 2 的概率。
此时,点到正方形顶点的距离小于2 的区域是以正方形顶点为圆心,以 2 为半径的四分之一圆,其面积为π×2²×1/4 =π。
中考数学简单事件的概率知识点含考点中考真题.doc
中考数学简单事件的概率知识点含考点中
考真题
简单事件的概率
一、确定事件和随机事件
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
二、频率与概率
1. 概率的概念
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).
2. 频率与概率的关系
当我们大量重复进行试验时,某事件出现的频率逐渐稳定到某一个数值,把这一频率的稳定值作为该事件发生的概率的估计值.。
九年级数学简单事件的概率知识点复习
数学中,简单事件的概率是一个非常重要的知识点。
在九年级数学中,我们通常会学习概率的基本概念、求解概率的方法以及概率问题的应用等。
一、基本概念1.试验和样本空间:试验是指具有明确结果的随机事件,样本空间是试验所有可能结果的集合。
2.随机事件和必然事件:随机事件是指试验的一些结果,必然事件是指在所有可能结果中一定会发生的事件。
3.事件的概率:事件A的概率是指事件A发生的可能性大小,用P(A)表示,0≤P(A)≤14.互斥事件和对立事件:互斥事件是指两个事件不可能同时发生,对立事件是指两个事件只可能发生一个。
二、求解概率的方法1.频率法:对一个试验进行多次重复,统计一些事件发生的次数与试验总次数之比,作为概率的估计值。
2.几何法:利用几何图形的面积来表示概率的大小,通常用于连续随机事件。
3.等可能概型法:试验的所有可能结果是等概率的,概率可以通过事件的个数与样本空间的个数之比来计算。
三、概率问题的应用1.古典概型问题:对于等可能概型的问题,可以使用排列组合等方法来求解概率。
2.排列和组合问题:在计算概率时,有时需要使用排列和组合的知识来求解事件的个数。
3.包含事件的概率:利用集合的概念,可以求解包含事件的概率,如事件的和、交、差等。
4.独立事件的概率:当两个事件发生与否互不影响时,可以将它们分别的概率相乘来计算它们同时发生的概率。
5.条件概率:当事件的发生依赖于另一个事件的已经发生时,可以使用条件概率来计算这一事件的概率。
6.超几何分布:在实际问题中,有时会涉及到不放回抽样的情况,可以使用超几何分布来求解相关的概率问题。
以上就是九年级数学中关于简单事件的概率的基本知识点的复习内容。
希望对你的学习有所帮助!。
2020年中考数学必考考点专题29概率含解析
专题29 概率1.确定事件(1)必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
(2)不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2.随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
(1)有些事情我们能确定他一定会发生,这些事情称为必然事件; (2)有些事情我们能肯定他一定不会发生,这些事情称为不可能事件; 必然事件和不可能事件都是确定的(3)有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件 2.概率的统计定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
即()p A P = . 概率各种情况出现的次数某一事件发生的次数=3.确定事件概率(1)当A 是必然发生的事件时,P (A )=1 (2)当A 是不可能发生的事件时,P (A )=0 4.古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
5.古典概型的概率的求法一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )=nm 6.列表法:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
7.列表法的应用场合当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
专题知识回顾8.树状图法:就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
9.运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
10.利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
九年级数学概率全部知识点
九年级数学概率全部知识点概率在数学中是一个重要的概念,用于描述事件发生的可能性。
在九年级数学学习中,概率也是一个重要的知识点。
本文将对九年级数学概率的全部知识点做一个全面的总结。
一、基本概念1.试验和样本空间:试验是观察的一次实验,样本空间是试验中所有可能结果的集合。
2.随机事件:样本空间的子集称为随机事件,即可能发生的事件。
3.概率:事件发生的可能性大小称为概率,用P(A)表示事件A发生的概率。
二、事件的概率计算1.频率与概率:事件发生的频率趋于某个固定值时,这个值就是概率。
2.等可能概型:所有基本事件的概率相等的情况下,事件A包含的基本事件数除以样本空间的基本事件数即为事件A的概率。
P(A) = n(A) / n(S),其中n(A)表示事件A包含的基本事件数,n(S)表示样本空间的基本事件数。
3.互斥事件:两个事件不可能同时发生,相互之间没有交集。
对于互斥事件的概率计算,可以直接将两个事件的概率相加。
4.相互独立事件:两个事件的发生与否互不影响。
对于相互独立事件的概率计算,可以将两个事件的概率相乘。
三、概率的性质和计算方法1.加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。
2.乘法法则:对于两个独立事件A和B,P(A∩B) = P(A) × P(B)。
3.全概率公式:对于一组互斥事件B1,B2,...,Bn,它们的并集是样本空间S,且概率均大于0,则对任意事件A有P(A) =P(A∩B1) + P(A∩B2) + ... + P(A∩Bn)。
4.条件概率:设事件B的概率大于0,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A|B) = P(A∩B) / P(B)。
四、排列与组合1.排列:从n个不同元素中取出m个元素,且考虑元素之间的顺序,有Anm种不同的排列方式,即A(n,m) = n! / (n-m)!。
中考数学概率统计必考知识点是什么
中考数学概率统计必考知识点是什么中考数学中,概率统计是一个重要的板块,其中包含了一些必考的知识点。
接下来,咱们就一起来详细了解一下。
首先,事件的分类是必须要清楚的。
事件分为确定事件和随机事件。
确定事件又包括必然事件和不可能事件。
比如说“太阳从东方升起”这就是必然事件,因为这是一定会发生的;而“明天地球爆炸”就是不可能事件,因为这绝对不会发生。
随机事件则是在一定条件下,可能发生也可能不发生的事件,比如“明天会下雨”。
概率的定义也是一个基础且重要的知识点。
概率是指某个事件发生的可能性大小。
如果一个试验有 n 种等可能的结果,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A) = m / n 。
这里要特别注意,概率的值在 0 到 1 之间。
0 表示不可能事件,1 表示必然事件。
然后是列举法求概率。
列举法包括直接列举法、列表法和树形图法。
直接列举法适用于比较简单的情况,比如掷一枚骰子,求点数为 3 的概率。
列表法适用于两步试验的概率计算,比如同时掷两枚骰子,求点数之和为 7 的概率。
树形图法则适用于三步或三步以上试验的概率计算,比如从红、白、黄三个球中,两次摸球,求两次摸到同色球的概率。
再来说说频率与概率的关系。
在大量重复试验中,某一事件发生的频率近似等于这一事件发生的概率。
但要注意,频率不等于概率,频率是通过试验得到的,会随着试验次数的变化而变化;而概率是一个固定的值,是理论上的数值。
统计部分,数据的收集方式也很关键。
常见的数据收集方式有普查和抽样调查。
普查是对全体对象进行调查,能得到准确的结果,但有时工作量大、难度大。
抽样调查则是从总体中抽取部分个体进行调查,通过样本去估计总体。
抽样时要保证样本的代表性和广泛性。
数据的整理与描述也常常出现在考题中。
比如平均数、中位数、众数这三个统计量。
平均数是所有数据的总和除以数据的个数;中位数是将一组数据从小到大(或从大到小)排列后,位于中间位置的数,如果数据个数是奇数,中位数就是中间的那个数,如果数据个数是偶数,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据。
中考数学复习《概率》考点及经典题型
中考数学复习《概率》考点及经典题型知识点一:概率 1. 概率及公式(1)定义:表示一个事件发生的可能性大小的数. (2)概率公式:P (A )=mn(m 表示试验中事件A 出现的次数,n 表示所有等可能出现的结果的次数). 2、事件和概率的表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.变式练习2:设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是14.2. 用频率可以估计概率一般地,在大量重复试验中,如果事件A 发生的频率 会稳定在某个常数p 附近,那么事件A 发生的概率P (A )=p =m n. 变式练习1:一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出1个球,摸出的球是红球的概率为( ) A. 47 B. 37 C. 34 D. 13【解析】B 因为布袋里有3个红球和4个白球,共7个球,所以从中任取一个,摸出的球是红球的概率是37.注意:(1)在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
(2)在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
变式练习2:在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的个数为( )A. 2B. 3C. 4D. 12【解析】B 由已知得4个黄球占总球的13,所以共有12个球,则白球的个数为12-5-4=3(个).变式练习3:在一个不透明的布袋中装有黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则摸到白球的概率为0.7.3. 事件的类型及其概率 1)确定事件和随机事件 (1)确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
初三概率知识点总结及归纳
初三概率知识点总结及归纳在初三数学学习的过程中,概率是一个非常重要的知识点。
概率为我们提供了一种用数字来描述事件发生可能性的方法,通过概率的计算,我们可以更好地理解和分析各种事件的发生概率。
本文将对初三阶段所学习的概率知识点进行总结和归纳,旨在帮助学生更好地掌握和应用概率知识。
1.基本概率概念概率是用来描述一个事件发生的可能性大小的概念。
在初三概率学习中,我们通常使用一个介于0到1之间的数来表示概率,其中0表示不可能事件,1表示必然事件。
当某个事件的概率接近1时,该事件发生的可能性就越大;当某个事件的概率接近0时,该事件发生的可能性就越小。
2.计算概率的方法在计算概率时,我们可以根据事件的样本空间和事件的发生数目来进行计算。
概率的计算方法可分为以下几种:- 经典概率:对于等可能性事件,可以通过样本空间中有利事件数目与样本空间总数目之比来计算概率。
例如,掷一枚均匀的骰子,掷出一个奇数的概率为3/6,即1/2。
- 频率概率:通过大量实验的频率来近似估计概率。
例如,通过大量次数的掷骰子实验,可以得出掷出一个奇数的频率概率为1/2。
- 主观概率:根据个人主观判断和经验来估计概率。
例如,根据过往的天气经验,我们可以主观判断明天下雨的概率为0.3。
3.概率的运算规则在概率的计算中,我们经常需要应用一些概率运算规则来简化计算或者得到更复杂事件的概率:- 事件的互斥与对立:如果两个事件不能同时发生,即互斥事件,则它们的概率之和等于两个事件发生的概率之和。
而如果两个事件是对立事件,即互为补事件,则它们的概率之和等于1。
- 事件的并与交:对于两个事件A和B,它们的并事件表示A或B发生的概率,交事件表示A和B同时发生的概率。
根据事件的并与交的关系,可以利用加法原理和乘法原理来计算其概率。
- 事件的补:对于事件A,其补事件表示A不发生的概率,即概率为1减去事件A发生的概率。
4.条件概率在实际问题中,我们常常需要考虑某个事件在另一个事件已经发生的条件下的概率。
中考概率知识点总结
中考概率知识点总结概率是一个在日常生活中经常出现的概念,它涉及到我们对未知情况的估计和推测。
在数学中,概率是描述一个随机事件发生可能性的一种数值,通常用来衡量某个事件发生的可能性有多大。
在中考数学中,概率是一个重要的知识点,它涉及到事件的发生概率计算、概率的性质、概率分布、概率的运算等内容。
下面我们来总结一下中考概率知识点。
一、概率的基本概念1.1 随机事件在概率论中,随机事件是指在一定条件下,可能发生也可能不发生的事件。
例如:掷硬币得到正面、摸黑箱中的球是红色等都属于随机事件。
1.2 随机事件的概率随机事件的概率就是指在一定条件下,某个随机事件发生的可能性大小。
概率通常用P(A)表示,其中A表示随机事件,P(A)表示事件A发生的概率。
1.3 随机试验随机试验是指在相同的条件下,可以重复进行的观察、记录或测量,且每次试验的结果不确定。
例如:掷硬币、抽取彩票等都属于随机试验。
1.4 样本空间样本空间是指一个随机试验的所有可能结果的集合,通常用Ω表示。
例如:掷硬币的样本空间为{正面,反面},抽取一张扑克牌的样本空间为{红心A,红心2,…,黑桃K}等。
1.5 事件的互斥和对立互斥事件是指两个事件不可能同时发生,对立事件是指两个事件至少有一个发生。
例如:掷骰子得到奇数和得到偶数是对立事件,抽取一张扑克牌是红心和不是红心是互斥事件。
二、概率的性质2.1 非负性概率永远是非负数,即0≤P(A)≤1,其中A表示随机事件。
2.2 规范性对于一个必然事件,其概率为1,即P(Ω)=1。
2.3 可列可加性对于事件A和事件B,有P(A∪B)=P(A)+P(B)-P(A∩B)。
2.4 对立事件概率关系事件A的对立事件记作A',有P(A)+P(A')=1。
2.5 空集事件概率对于空集事件ϕ,有P(ϕ)=0。
三、事件的概率计算3.1 等可能性原理对于一个没有任何明显差别的样本空间,每个基本事件的概率相等。
例如:掷骰子得到1、2、3、4、5、6的概率都是1/6,抽取一张扑克牌得到红心、方块、梅花、黑桃的概率都是1/4等。
初三概率知识点总结归纳
初三概率知识点总结归纳概率是数学中的一个重要分支,也是生活中常常会涉及到的概念。
在初中数学教学中,概率也是一个重要的内容。
下面将对初三学生所需掌握的概率知识点进行总结归纳。
一、基本概念1. 试验:指的是一次随机现象的观察和记录。
2. 样本空间:指的是试验的所有可能结果的集合,用S表示。
3. 事件:指的是样本空间中的某个子集,用A、B、C等表示。
4. 随机事件:指的是有可能发生也有可能不发生的事件。
5. 必然事件:指的是一定会发生的事件,如在一次投掷硬币的试验中,出现正面的事件就是必然事件。
二、计算概率的方法1. 频率法:通过观察统计次数来计算概率,频率越接近概率。
2. 理论法:通过试验的理论计算来确定概率。
3. 等可能原则:指的是每个基本事件发生的可能性相等的原则。
三、事件的关系与概率运算1. 事件的包含关系:若事件A发生必导致事件B发生,则称事件B 包含事件A。
2. 事件的互斥关系:若事件A和事件B不可能同时发生,则称事件A和事件B互斥。
3. 事件的对立关系:若事件A发生的时候事件B不发生,事件B 发生的时候事件A不发生,则称事件A和事件B互为对立事件。
4. 加法定理:P(A∪B) = P(A) + P(B) - P(A∩B),其中A∪B表示事件A和事件B至少发生一个。
5. 乘法定理:P(A∩B) = P(A) × P(B|A),其中A∩B表示事件A和事件B同时发生。
6. 对立事件之和为1:P(A) + P(A') = 1,其中A'表示事件A的对立事件。
四、条件概率1. 条件概率的定义:在B发生的条件下,事件A发生的概率记作P(A|B),读作“在B的条件下A的概率”。
2. 条件概率的计算:P(A|B) = P(A∩B) / P(B)。
3. 乘法定理改进版:P(A∩B) = P(A) × P(B|A),其中A∩B表示事件A和事件B同时发生。
五、独立事件1. 独立事件的概念:若事件A和事件B相互独立,则P(A∩B) =P(A) × P(B)。
【中考冲刺】初三数学培优专题 11 是偶然还是必然—概率初步(含答案)(难)
是偶然还是必然—概率初步阅读与思考统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的学科.在自然界和人类社会中,严格确定性的现象十分有限,不确定性现象却是大量存在的,而概率正是对随机现象的一种数学描述.数学中用概率来表示事件发生的机会大小,概率是一个比值,用字母P 表示,计算公式是:事件发生的概率P =所有可能结果结果该事件发生的所有可能在具体的计算中,常用到树形图、列表、穷举等方法.统计与概率互为基础,概率这一概念是建立在概率这一统计量稳定性的基础上的,而推断、估计等统计方法的科学性有赖于概率理论的严密性. 例题与求解【例1】一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .(“《数学周报》杯”全国初中数学竞赛试题)解题思路:用列表法列出所有情形.【例2】一项“过关游戏”规定:在第n 关要掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于43n ,则算过关;否则不算过关.现有下列说法:①过第一关是必然事件;②过第二关的概率是3635; ③可以过第四关;④过第五关的概率大于0.其中,正确说法的个数为( ) A .4个B .3个C .2个D .1个解题思路:对于(2),在理解“过关”意义的基础上,逐步计算相关概率.【例3】如图,用红、蓝、黄三色将图中区域A ,B ,C ,D 染色,要求有公共边界的相邻区域不能染相 同的颜色,则满足区域A 恰好染蓝色的概率为 . 解题思路:用树形图列出所有可能情形,或从整体考虑.【例4】小明准备给小陈打电话,由于保管不善,电话本上的小陈手机号码中,有两个数字已模糊不清.如果用x ,y 表示这两个看不清的数字,那么小陈的手机号码为139x 370y 580(手机号码由11个数字组成),小明记得这11个数字之和是20的整数倍.求小明一次拨对小陈手机号码的概率. 解题思路:建立关于x ,y 的不定方程,由此可得x ,y 可能的对应值的所有情况.【例5】杨华与李红用五张相同规格的硬币纸片做拼图游戏.硬纸片正面如下图1所示,背面完全一致.将它们背面朝上洗匀后,同时抽出两张.图2图1小山房子小人点灯规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分; 当两张硬纸片上的图形可拼成房子或小山时,李红得1分;问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?解题思路:游戏对双方公平是指双方积分相同.解题的关键是分别求出杨华、李红的得分.【例6】一个正三角形ABC 的每一个角各有一只蚂蚁,每只蚂蚁开始朝另一只蚂蚁做直线运动,目标角是随机选择.求蚂蚁不相撞的概率.(微软公司招聘面试试题)解题思路:三只蚂蚁在每个角上都有两种选择的方向(顺时针或逆时针),因每只蚂蚁选择的不确定性,故组成的各种情形似乎繁杂.出题用意就在于考查应试者摒除习惯因素的干扰、切中要害、化繁为简的能力.能力训练A 级1.如图1,图中有一个黑球,图2有3个同样大小的球叠成的图形,最下一层的2个球为黑色,其余为白色;图3为6个同样大小的球叠成德图形,最下一层的3个球为黑色,其余为白色;…则从第n 个图中随机取一个球,是黑球的概率为 .(株洲市中考试题)2.有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将他们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程xx ax -=+--21221有正整数解的概率为 .(重庆市中考试题)3.小丁、小明、小倩在一起做游戏时,需要确定做游戏的先后顺序.他们约定用“剪刀、布、锤子”的方式确定.那么,在一个回合中三个人都出“布”的概率是 .(海南省中考试题)4.对于平面内任意一个凸四边形ABCD ,现从以下四个关系式①AB=CD ;②AD=BC ;③AB//CD ;④ ∠A=∠C 中任取两个作为条件,能够得出这个四边形ABCD 是平行四边形的概率是 .(广州市中考试题)5.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( ) A .41 B .61 C .21 D .43(泰安市中考试题)6.从分别写有数字1,2,3,4,5的五张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,则所组成的数是3的倍数的概率为( ) A .51 B .103 C .52 D .21(全国初中数学联赛试题)7.经过某十字路口的汽车,可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两汽车经过该十字路口全部继续直行的概率为( ) A .31 B .32 C .91 D .21(呼和浩特市中考试题)8.盒子里有十个球,每个球上写有1~10中的一个数字,不同的球上数字不同,其中两个球上的数字之和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数之和最有可能出现的是( ) A .2B .10C .11D .209.一个口袋中有三个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……不断重复上诉过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个B .15个C .12个D .10个(青岛市中考试题)10.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针.若直角三角形的两条直角边长分别是2和1,则针扎到小正方形(阴影)区域的概率是( ) A .31B .41 C .51 D .55(临沂市中考试题)11.有四张卡片(背面完全相同),分别写有数字1,2,-1,-2.把它们背面朝上洗匀后,甲同学抽取一张,记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字.用字母b ,c 分别表示甲、乙两同学抽出的数字.(1)用列表法求关于x 的方程02=++c bx x 有实数解的概率; (2)求(1)中方程有两个相同实数解的概率.12.将背面完全相同,正面分别写有数字1,2,3,4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数;将形状、大小完全相同,分别标有数字1,2,3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差. (1)请你用画树形图或列表的方法,求这两个数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.(重庆市中考试题)B 级1.一只盒子中有红球m 个,白球10个,黑球n 个,每个球除颜色外都相同.从中任取一个球,取得是白球的概率与不是白球的概率相同.那么,m 与n 的关系是 .(山东省竞赛试题)2.某广场地面铺满了边长为36cm 的正六边形地砖.现在向上抛掷半径为36cm 的圆碟,圆碟落地后与地砖间的间隙不相交的概率大约是 .(太原市竞赛试题)3.甲、乙、丙、丁四位同学参加校田径运动会4×100m 接力跑比赛.如果任意安排四位同学的跑步顺序,那么,恰好由甲将接力棒交给乙的概率是( ) A .41B .61 C .81 D .121(浙江省竞赛试题)4.一条绳子被任意割成两段,较长的一段至少是较短的一段的x 倍的概率为( ) A .21 B .x 2 C .11+x D .x 1 E .12+x (美国高中数学考试题)5.把一颗六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,若两个正面朝上的编号分别为m ,n ,则二次函数n mx x y ++=2的图象与x 轴有两个不同交点的概率是( ) A .125B .94 C .3617 D .21(全国初中数学竞赛试题)6.长为1,2,3,4,5的线段各一条,从这五条线段中任取三条,能构成钝角三角形的概率为( ) A .101B .107 C . 51 D .527.一张数学游戏在两个同学甲、乙之间进行.裁判在黑板上先写出正整数2,3,…,2006,然后随意擦去一个数,接下来由乙、甲两人轮流擦去其中一个数(即乙先擦去其中的一个数,然后甲再擦去另一个数,如此下去).若最后剩下的两个数互质,则判甲胜;否则,判乙胜.按照这种游戏规则,求甲获胜的概率.(四川省竞赛试题)8.任意选择一对有序整数(b ,c ),其中每一个整数的绝对值小于或等于5,每一对这样的有序整数被选择的可能性是相等的.求方程02=++c bx x 没有相异正实根的概率.(美国高中数学考试题)9.袋中有数字卡片九张,其数字分别为1~9.若随机一次抽出三张,求被抽出的卡的数字全是奇数的概率.(香港中学数学竞赛试题)10.将20个球放入两个袋中,每袋10个球,各袋中的球分别标上自然数1~10,其中一袋中的球全是白色,另一袋中的球全为黑色.若从两个袋中任意各取一个球,求白球上的数比黑球上的数大的概率.(香港中学生数学竞赛试题)11.如图,将三枚相同的硬币依次放入一个4×4的正方形格子中(每个正方形格子只能放一枚硬币).求所放的三枚硬币中,任意两个都不同行且不同列的概率.(四川省竞赛试题)12.在一个口袋中有n 个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地完全相同.在看不到球的情况下,从袋中随机地取出一个球. (1)若取出的是红球的概率为53,求n 的值; (2)在(1)的条件下,把这n 个球中的两个标号为1,其余分别标号为2,3,…,n-1,随机地取出一个小球后不放回,再随机地取出一个小球,请用列表法或树形图求第二次取出的小球标号大于第一次取出的小球标号的概率;(3)若第(2)问去掉“在(1)的条件下”,且第二次取出的小球标号大于第一次取出的小球标号的概率为4522,求n 的值.。
初三概率知识点归纳总结
初三概率知识点归纳总结
嘿,同学们!今天咱就来好好唠唠初三概率这一块儿的知识点哈!
咱先说概率是啥,不就像是生活中各种事情发生的可能性嘛!比如说扔个骰子,扔出 1 的概率不就是六分之一嘛!这多形象呀!
那概率的计算方法呢,就好比树上的果子,咱得知道怎么摘下来才对。
简单事件的概率啊,那就是某个情况出现的次数除以总的可能情况数,就像从一堆糖果里挑出草莓味的概率一样。
“哎呀,这还不简单呀!”
有时候还会碰到复杂点的呢,像什么列表法呀、画树状图法呀,这就像是咱解题的秘密武器!比如说年底抽奖,咱要算算自己中大奖的概率,这时候列表法、树状图法就能派上大用场啦,“哇塞,有了这个我就知道自己有多大机会啦!”。
再来讲讲概率的取值范围哈,是在 0 到 1 之间哟!0 就代表这件事绝对不可能发生,比如说太阳从西边出来;1 就代表肯定会发生啦,像明天地球还会转。
这不是很有趣嘛!
还有啊,如果一个事件发生的概率很小很小,可不一定就不会发生哟!就像中彩票一样,虽然概率超低,但总有人能中呀,得多神奇!“哇,这就是概率的魅力呀!”。
反正咱们学概率,就是要知道生活中各种事情发生的可能性有多大,能让咱们更好地做决定呢。
我的观点结论就是:初三概率知识点虽然有点绕,但只要咱认真学,多结合生活实际去理解,就肯定能掌握得牢牢的,加油吧!。
2020年中考数学考点提分专题十五 概率初步(解析版)
2020年中考数学考点提分专题十五概率初步(解析版)必考点1 确定事件和随机事件。
(1)“必然事件”是指事先可以肯定一定会发生的事件。
P(A)=1(2)“不可能事件”是指事先可以肯定一定不会发生的事件。
P(A)=0(3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。
0<P(A)<1【典例1】(2008·吉林中考真题)下列成语所描述的事件是必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖【举一反三】1.(2019·湖北中考真题)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2011·四川中考真题)下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C.某彩票中奖率为36%,说明买100张彩票,有36张中奖。
D.打开电视,中央一套正在播放新闻联播。
3.(2019·湖北中考真题)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式必考点2 用频率估计概率(1)事件的频数、频率。
设总共做n次重复实验,而事件A发生了m次,则称事件A发生的次数m为频数。
称比值m/n为A发生的频率。
(3)概率:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
【典例2】(2019·江苏中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表: 抛掷次数 100 200 300 400 500 正面朝上的频数 5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( ) A .20B .300C .500D .800【举一反三】1.(2019·湖北初三期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.(2019·广东初三期末)一个不透明的袋子装有除颜色外其余均相同的2个白球和n 个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n 的值为( )A .2B .4C .8D .103.(2019·辽宁初三期末)一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为( ) A .50B .30C .12D .8必考点3 树状图与列表法求解概率列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.【典例3】(2019·辽宁中考真题)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A .23B .12C .13D .14【举一反三】(2019·广西中考真题)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A .1325B .1225C .425D .1214.(2019·广西中考真题)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .2915.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( ) A .14B .13C .12D .231.(2019·湖北初三期末)“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件 B .必然事件 C .不可能事件 D .不确定事件 2.(2019·山东中考真题)下列事件中,是必然事件的是( )A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯3.(2019·四川中考真题)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x+<的概率是()A.15B.14C.13D.124.(2013·山东中考真题)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A.16B.13C.12D.235.(2019·海南中考模拟)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.23B.12C.13D.146.(2019·山东中考真题)从1,2,3,4中任取两个不同的数,分别记为a和b,则2219a b+>的概率是()A.12B.512C.712D.137.(2019·山东中考真题)一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.15B.25C.35D.458.(2019·江苏中考真题)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为________.9.(2019·江苏中考模拟)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.10.(2019·天津中考真题)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.11.(2019·辽宁中考真题)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是__.12.(2019·辽宁中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( ) A .12B .10C .8D .613.(2019·湖南中考真题)在一个不透明布袋里装有3个白球、2个红球和a 个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为12,则a 等于_____. 14.(2019·江苏中考真题)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)15.(2019·甘肃中考真题)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用1234, , , A A A A 表示); 第二环节:成语听写、诗词对句、经典通读(分别用123,,B B B 表示) (1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率。
初中概率题型及解题方法
初中概率题型及解题方法一、概率的基本概念概率是指一个事件发生的可能性大小,通常用数字表示。
在初中数学中,我们经常会遇到各种概率题型,如求事件发生的概率、求事件不发生的概率、求至少发生一次的概率等等。
在解题之前,我们先来了解一下概率的基本概念。
1.试验:进行一项观察或测量时所进行的操作。
2.样本空间:试验所有可能结果组成的集合。
3.事件:样本空间中的一个子集。
4.随机事件:样本空间中某些元素组成的子集称为随机事件。
5.必然事件:包含样本空间所有元素的随机事件称为必然事件。
6.不可能事件:不包含任何样本空间元素的随机事件称为不可能事件。
7.元素个数:指某个随机事件所包含元素数量。
二、求单个随机事件发生的概率1.公式法设某个随机事件A包含n个元素,而样本空间S包含N个元素,则单个随机事件A发生的概率P(A)为:P(A)=n/N例如,在一副扑克牌中抽出一张牌是黑桃A(共有52张牌),则该单个随机事件发生的概率为1/52。
2.图形法在一个矩形中,将随机事件A所包含的元素用小正方形表示,将样本空间S所包含的元素用大正方形表示,则单个随机事件A发生的概率P(A)等于小正方形面积与大正方形面积之比。
例如,在一副扑克牌中抽出一张牌是黑桃A时,可以用一个4×13的矩形表示,其中黑桃A所在的小正方形面积为1,整个矩形面积为52,则该单个随机事件发生的概率为1/52。
三、求多个随机事件发生的概率1.加法原理若随机事件A和B互不相交(即没有共同元素),则它们联合发生的概率为:P(A∪B)=P(A)+P(B)例如,在一副扑克牌中抽出一张牌是黑桃或红桃时,可以将这两个随机事件分别用矩形表示,黑桃和红桃没有共同元素,则它们联合发生的概率为:P(黑桃∪红桃)=P(黑桃)+P(红桃)=1/4+1/4=1/22.减法原理若随机事件A包含随机事件B,则A发生的概率减去B发生的概率,即为A且B不发生的概率:P(A-B)=P(A)-P(B)例如,在一副扑克牌中抽出一张牌是黑桃时,抽出黑桃Q的概率为1/52,而抽出黑桃Q且不是黑桃A的概率为1/51,则抽出黑桃Q且不是黑桃A的概率为:P(黑桃Q-黑桃A)=P(黑桃Q)-P(黑桃A)=1/52-1/51=1/26523.乘法原理若随机事件A和B相互独立,则它们联合发生的概率为:P(A∩B)=P(A)×P(B)例如,在一副扑克牌中连续抽出两张牌都是红色时,第一次抽到红色牌的概率为1/2,第二次再次抽到红色牌的概率也为1/2,则连续抽出两张牌都是红色的概率为:P(第一次红色∩第二次红色)=P(第一次红色)×P(第二次红色)=1/2×1/2=1/4四、常见题型及解题方法1.求事件发生的概率例如,一副扑克牌中抽出一张牌是红桃的概率是多少?解法:样本空间为52,红桃有13张,则事件发生的概率为:P(红桃)=13/52=1/42.求事件不发生的概率例如,一副扑克牌中抽出一张牌不是黑桃的概率是多少?解法:样本空间为52,黑桃有13张,则事件不发生的概率为:P(非黑桃)=1-P(黑桃)=39/52=3/43.求至少发生一次的概率例如,从1、2、3、4、5五个数中任意取两个数,求至少有一个数是奇数的概率。
中考数学知识考点:概率与统计
中考数学知识考点:概率与统计中考数学知识考点:概率与统计◆知识讲解概率初步的有关概念(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;(2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的事件;(4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(5)概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.统计初步的有关概念总体:所要考查对象的全体叫总体;个体:总体中每一个考查对象.样本:从总体中所抽取的一部分个体叫总体的一个样本.样本容量:样本中个体的数目.样本平均数:样本中所有个体的平均数叫样本平均数.总体平均数:总体中所有个体的平均数叫做总体平均数.要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
概率初中九年级知识点梳理
概率初中九年级知识点梳理概率是数学中一个非常重要的概念,它与我们的日常生活息息相关。
在初中九年级的数学课程中,概率也是一个重点内容。
本文将梳理初中九年级概率知识点,并深入探讨其实际应用。
1. 简单事件与必然事件概率的计算是基于事件的发生与否进行的。
在概率的计算中,我们常常称发生概率为1的事件为必然事件,称发生概率为0的事件为不可能事件。
对于初学者来说,简单事件是一个非常关键的概念。
简单事件是指只包含一个基本结果的事件,如掷一次骰子只出现一面的事件。
2. 概率的计算方法概率的计算方法有频率法和几何法两种。
频率法根据长期试验的结果来估计事件发生的概率。
比如,我们可以多次掷一枚骰子,记录每个面出现的次数,并计算出每个面的频数。
然后通过频数与总次数的比值,可以得到每个面出现的概率。
几何法则是通过面积来求解概率。
如果事件的样本空间可以用一个几何形状表示,我们可以根据几何图形的面积来计算事件的概率。
比如,当我们将一个正方形划分为几个子区域时,每个子区域的面积与事件发生的概率成比例,而样本空间的面积则等于1。
3. 多个事件的组合与计算在实际问题中,常常涉及到多个事件的组合与计算。
其中包括与、或、互斥事件等。
与事件是指两个或多个事件同时发生的情况。
当我们计算两个事件同时发生的概率时,可以将概率相乘。
比如,掷一次骰子正好出现1点且是偶数的概率可以通过“出现1点的概率”乘以“是偶数的概率”来计算。
或事件是指两个或多个事件中至少有一个发生的情况。
当我们计算两个事件中至少有一个发生的概率时,可以将概率相加,并减去两个事件同时发生的概率。
比如,掷一次骰子出现1点或出现偶数的概率可以通过“出现1点的概率”加上“是偶数的概率”再减去“出现1点且是偶数的概率”来计算。
互斥事件是指两个事件发生时不可能同时发生的情况,即两个事件的交集为空集。
当两个事件互斥时,它们的概率相加等于整个样本空间的概率。
比如,掷一次骰子既出现1点又出现2点的概率为0,因为1点和2点是互斥事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学研究:偶然事件和必然事件中的概率性问题
偶然事件和必然事件中的概率性问题
这个世界上的许多事情发生都是有偶然和必然的,正是因为有这些事件的不确定性才导致偶然事件的产生。
偶然事件就成为了现在人们研究的兴趣排除偶然去发现必然就是不断的发现误差的过程。
偶然的和必然的概率性研究就成了数学领域研究的重点。
既然绝大多数事情都同时包含偶然因素和必然因素,我们自然就想排除偶然去发现背后的必然。
偶然的失败和成功都不必大惊小怪,我根据必然因素去发现判断,这总可以吧?
可以,但是必须先理解误差。
历史上最早的科学家曾经不承认实验可以有误差,认为所有的测量必须都是精确的,把任何误差归结为错误。
后来人们才渐渐意识到偶然因素是永远存在的,即使实验条件再精确也无法完全避免随机干扰的影响,所以做科学实验往往要测量多次,用取平均值之类的统计手段得出结果。
多次测量确实是一个排除偶然因素的好办法。
国足输掉比赛以后经常抱怨偶然因素,裁判不公、主力不在、不适应客场气候,草皮太软、草皮太硬,等等。
关键是,如果经常输球,我还是可以得出国足是个弱队的结论。
即便科学实验也是如此,科学家哪怕是测量一个定义明确的物理参数,也不能给出最后的“真实答案”,他们总在测量结果上加一个误差范围比如最近发现的希格斯粒子质量为125.3±0.4(stat)±0.5(sys)GeV意思是质量125.3,但其中有0.4的统计误差,还有0.5的系统误差。
真实的质量其实只有一个,但这个数字是多少,我不知道,它可以是这个误差范围内的任何一个数字。
事实上,甚至可能是误差范围外的一个数字。
这是因为误差范围是一个概率计算的结果,这个范围的意思是说物理学家相信真实值落在这个范围以外的可能性非常非常小。
所以真实值非常不易得。
而且,别忘了科学实验是非常理想化的,大多数事情根本没有机会多次测量。
若只能测一次,那么对这一次测量的结果该怎么解读?
只能根据以往经验和类似案例,来估计一个大致的范围。
例子:中国的统计数据,2013年全国居民收入的基尼系数为0.473,新闻报道说,该数据较2012年0.474略有回落,回落有多大?0.001,从统计角度来说,其实没有什么意义,可能测量的误差就大大超过0.001.
有了误差的概念,就要学会忽略误差范围内的任何波动。
这个世界是允许误差性的存在的,就算是有了精准性的策略也仍然有误差性。
所以数学学习中误差也是允许存在的。
误差就是一个数学概念。