2009年高考数学前三大题突破训练(11-15)含详细解答

合集下载

高考数学前三大题突破训练(11-15)含详细解答

高考数学前三大题突破训练(11-15)含详细解答

2009年22套高考数学试题(整理三大题)(十一)17. 在ABC △中,a bc ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S18. 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;19. 如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,090,BAD FAB BC∠=∠=//=12AD ,BE //=12AF ,,G H 分别为,FA FD 的中点(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ),,,C D F E 四点是否共面?为什么? (Ⅲ)设AB BE =,证明:平面ADE ⊥平面CDE17.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.18. 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率.19. 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ======(I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD 所成角的大小; (III )求点E 到平面ACD 的距离。

BEAB CDE A 1B 1C 117.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.18.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .19. 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、E 分别为BB 1、AC 1的中点. (Ⅰ)证明:ED 为异面直线BB 1与AC 1的公垂线;(Ⅱ)设AA 1=AC =2AB ,求二面角A 1-AD -C 1的大小17.在ABC △中,已知2AC =,3BC =,4cos 5A =-. (Ⅰ)求sinB 的值; (Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.18. 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(I )任选1名下岗人员,求该人参加过培训的概率;(II )任选3名下岗人员,求这3人中至少有2人参加过培养的概率19. 在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示).17.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.18. 甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:(Ⅰ)甲试跳三次,第三次才成功的概率;(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率; (Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率19. 如图,在长方体1111ABCD A BC D -中,,E P 分别是11,BC A D 的中点,,M N 分别是1,A E C D 的中点,1,2AD AA a AB a ===(Ⅰ)求证://MN 面11ADD A ;(Ⅱ)求二面角P AE D --的大小。

2009年高考真题解答题前三大题强化练习(1)答案

2009年高考真题解答题前三大题强化练习(1)答案

1.(本小题满分12分) 已知向量)1,(cos ),23,(sin -==x b x a(Ⅰ)当x x b a 2sin cos 2//2-时,求的值.(Ⅱ)求b b a x f ⋅+=)()(的值域..解:(I )23tan ,0sin cos 23,//-=∴=+∴x x x ……………………2分 1320tan 1tan 22cos sin cos sin 2cos 22sin cos 222222=+-=+-=-x x x x x x x x x …………4分 (Ⅱ))1,(cos ),23,(sin -==x x )21,cos (sin x x b a +=⊥∴………………………………………………6分 )42sin(22)2cos 2(sin 2121cos )cos (sin )()(π+=+=-+=⋅+=x x x x x b b a x f ……………………10分 ]22,22[)(1)42sin(1-∴≤+≤-的值域为x f x π…………………………12分 2.(12分)某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下:根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.根据以上情况,请你合理规划办学规模使年利润最大,最大利润多少万元?(利润=学费收入-年薪支出)解:设初中x 个班,高中y 个班,则⎩⎨⎧≤+≤+≤)2(12005828)1(3020y x y x ……………(4分) 设年利润为s ,则y x y x y x s 22.16.15.22.1215.04006.060+=⨯-⨯-⨯+⨯=……(6分)作出(1)、(2)表示的平面区域,如图,易知当直线1.2x +2y=s 过点A 时,s 有最大值.由⎩⎨⎧=+=+1200582830y x y x 解得A (18,12).……(10分)6.45122182.1max =⨯+⨯=∴s (万元).即学校可规划初中18个班,高中12个班,可获最大年利润为45.6万元.……(12分)3.已知α为锐角,且12tan -=α, 函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式;⑵ 求证:n n a a >+1; ⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++< 解:⑴1)12(1)12(2tan 1tan 22tan 22=---=-=ααα 又∵α为锐角 ∴42πα= ∴1)42sin(=+πα x x x f +=2)(⑵ n n n a a a +=+21 ∵211=a ∴n a a a ,,32都大于0 ∴02>n a ∴n n a a >+1⑶ nn n n n n n a a a a a a a +-=+=+=+111)1(11121 ∴11111+-=+n n n a a a ∴1322121111111111111+-++-+-=++++++n n n a a a a a a a a a 1111211++-=-=n n a a a ∵4321)21(22=+=a , 143)43(23>+=a , 又∵n n a a n >≥+12 ∴131>≥+a a n ∴21211<-<+n a∴2111111121<++++++<n a a a。

2009年全国高中数学联赛试题及解答

2009年全国高中数学联赛试题及解答


x1 + x1 x2
x2 = k − =1 0
2

0
所以 x1 , x2 同为正根,且 x1 x2 ,不合题意,舍去.
综上可得 k 0 或 k = 4 为所求.
11
7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最 后一行仅有一个数,第一行是前100 个正整数按从小到大排成的行,则最后一行的数是(可以 用指数表示).
条.………14 分
11
2. (本小题 15 分)已知 p , q (q 0) 是实数,方程 x2 − px + q = 0 有两个实根 , ,数列an 满足 a1 = p , a2 = p2 − q , an = pan−1 − qan−2 (n = 3,4 , ) (Ⅰ)求数列an 的通项公式(用 , 表示);
比为 的等比数列.
数列bn 的首项为: b1 = a2 − a1 = p2 − q − p = ( + )2 − − ( + ) = 2 . ( 所以 bn = 2 n−1 = n+1 ,即 an+1 − an = n+1 n = 1,2 , ) .所以 an+1 = an + n+1 (n = 1,2 , ) . ① 当 = p2 − 4q = 0 时 , = 0 , a1 = p = + = 2 , an+1 = an + n+1 (n = 1,2 , ) 变 为
(Ⅱ)若
p
=1

q
=
1 4
,求 an
的前
n
项和.

2009年浙江高考理科数学卷(含详细答案解析)

2009年浙江高考理科数学卷(含详细答案解析)

绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件互斥,那么棱柱的体积公式,A B()()()P A B P A P B +=+V Sh =如果事件相互独立,那么其中表示棱柱的底面积,表,A B S h 示棱柱的高棱锥的体积公式()()()P A B P A P B ⋅=⋅如果事件在一次试验中发生的概率是,那么A p 13V Sh =次独立重复试验中事件恰好发生次的概率 其中表示棱锥的底面积,表n A k S h 示棱锥的高棱台的体积公式()(1),(0,1,2,,)k kn k n n P k C p p k n -=-=L 球的表面积公式)(312211S S S S h V ++=其中S 1、S 2分别表示棱台的上、24S R π=下底面积,球的体积公式 h 表示棱台的高 334R V π=其中表示球的半径R 一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,,,则( )U =R {|0}A x x =>{|1}B x x =>U A B =I ðA .B .C .D .{|01}x x ≤<{|01}x x <≤{|0}x x <{|1}x x >答案:B【解析】 对于,因此.{}1U C B x x =≤U A B =I ð{|01}x x <≤2.已知是实数,则“且”是“且”的 ( ),a b 0a >0b >0a b +>0ab >A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:C【解析】对于“且”可以推出“且”,反之也是成立的0a >0b >0a b +>0ab >3.设(是虚数单位),则 ( )1z i =+i 22z z+= A . B . C .D . 1i --1i -+1i -1i +答案:D 【解析】对于2222(1)1211z i i i i z i+=++=-+=++4.在二项式的展开式中,含的项的系数是( )251()x x-4x A . B . 10-10C . D .5-5答案:B【解析】对于,对于,则的项()251031551()()1rrrr r r r T C x C x x--+=-=-1034,2r r -=∴=4x 的系数是225(1)10C -=5.在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,111ABC A B C -D 11BB C C 则与平面所成角的大小是 ( )AD 11BB C CA .B .C .D .30o45o60o90o答案:C【解析】取BC 的中点E ,则面,,AE ⊥11BB C C AE DE ∴⊥因此与平面所成角即为,设,则AD 11BB C C ADE ∠AB a =,,即有AE =2a DE =.0tan 60ADE ADE ∠=∴∠=6.某程序框图如图所示,该程序运行后输出的的值是k( )A .B .C .D .4567答案:A【解析】对于,而对于,则,0,1,1k s k ==∴=1,3,2k s k ==∴=2,38,3k s k ==+∴=后面是,不符合条件时输出的.113,382,4k s k ==++∴=4k =7.设向量,满足:,,.以,,的模为边长构成三角形,a b ||3=a ||4=b 0⋅=a b a b -a b 则它的边与半径为的圆的公共点个数最多为 ( )1A . B .C .D .3456答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.8.已知是实数,则函数的图象不可能是 ()a ()1sin f x a ax =+答案:D【解析】对于振幅大于1时,三角函数的周期为,而D 不符合要求,2,1,2T a T aππ=>∴<Q 它的振幅大于1,但周期反而大于了.2π9.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两22221(0,0)x y a b a b-=>>A 1-条渐近线的交点分别为.若,则双曲线的离心率是 ( ),B C 12AB BC =u u u r u u u rA B C D 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,(),0A a 0x y a +-=,则有,22,,(,)a ab a abB C a b a b a b a b ⎛⎫- ⎪++--⎝⎭22222222(,,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭u u u r u u u r 因222,4,AB BC a b e =∴=∴=u u u r u u u r 10.对于正实数,记为满足下述条件的函数构成的集合:且,αM α()f x 12,x x ∀∈R 21x x >有.下列结论中正确的是 ( )212121()()()()x x f x f x x x αα--<-<-A .若,,则1()f x M α∈2()g x M α∈12()()f x g x M αα⋅⋅∈B .若,,且,则1()f x M α∈2()g x M α∈()0g x ≠12()()f x M g x αα∈C .若,,则1()f x M α∈2()g x M α∈12()()f x g x M αα++∈D .若,,且,则1()f x M α∈2()g x M α∈12αα>12()()f x g x M αα--∈答案:C【解析】对于,即有,令212121()()()()x x f x f x x x αα--<-<-2121()()f x f x x x αα--<<-,有,不妨设,,即有2121()()f x f x k x x -=-k αα-<<1()f x M α∈2()g x M α∈11,f k αα-<<,因此有,因此有.22g k αα-<<1212f g k k αααα--<+<+12()()f x g x M αα++∈非选择题部分(共100分)注意事项: 1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2009年高考数学试题

2009年高考数学试题

2009年高考数学试题2009年高考数学试题是中国高考中的一套数学试题,该试题对考生的数学知识和解题能力进行了全面考察。

下面将对2009年高考数学试题进行逐题分析和解答,以帮助考生更好地理解和应对类似的数学考试题目。

一、选择题1. 设函数f(x) = 3x^2 + 2x - 1,若f(ax^2 - bx + 1) = 0恰好有一个实数根,则实数a和b的乘积为多少?解答:首先代入f(ax^2 - bx + 1) = 0,得到3(ax^2 - bx + 1)^2 +2(ax^2 - bx + 1) - 1 = 0。

展开并整理得到3a^2x^4 - (6ab - 2a)x^3 + (2a^2 - 2)b^2x^2 + (2a^2 - 2b - 2)x + (3a^2 + 2a - 1) = 0。

由于方程有一个实数根,根据实根系数定理可知系数a^2大于等于0,故3a^2 + 2a - 1 = 0。

解此方程得到a = 1/3或a = -1。

考虑a = 1/3的情况,将3ax^2 - bx + 1带入f(x) = 0得到3(1/3x^2 -bx + 1)^2+ 2(1/3x^2 - bx + 1) - 1 = 0,化简后得到x^2 - 9bx + 25 = 0。

由于方程有一个实数根,根据判别式可知b^2 - 4ac = (-9b)^2 - 4(1)(25) =81b^2 - 100 ≥ 0。

解此不等式得到 -10/9 ≤ b ≤ 10/9。

因此,当a = 1/3时,b的取值范围为[-10/9, 10/9]。

考虑a = -1的情况,将-3x^2 - bx + 1带入f(x) = 0得到3(-x^2 - bx + 1)^2 + 2(-x^2 - bx + 1) - 1 = 0,化简后得到x^2 + 5bx + 6 = 0。

由于方程有一个实数根,根据判别式可知b^2 - 4ac = (5b)^2 - 4(1)(6) = 25b^2 - 24≥ 0。

高考复习三轮冲刺2009年高考试题——数学(上海卷)(文)

高考复习三轮冲刺2009年高考试题——数学(上海卷)(文)

2009年全国普通高等学校招生统一考试上海数学试卷(文)一、试卷分析09年上海卷文科和理科试题相同的题目10道,相近的题目2道,难度区分上比较明显,但文科学生反映,难度也不小.上海今年是新课改第一年,有些题目在意料之中,有些题目在意料之外,命题变化总体情况如下:1.试题结构变化:07年和08年的文科试题命题格局是“11+4+6”,共21个题,今年一反常态,格局是“14+4+5”共23个题,增加了3个填空题,减少了1个解答题;前两年的6个解答题中的小题设置是:“1+1+2+2+3+3共12个小题,今年的5个解答题中的小题设置是:“1+2+2+3+3”共11个小题,总体情况旗鼓相当.2.考查方向变化:上海高考坚持能力立意以来,对知识点的考查不再求全。

但本试卷较全面地考查了知识点,尤其是新增内容,基本都涉及到了,部分试题要求较高,如行列式、算法、期望、独立事件、旋转体、统计初步、矩阵等.二、命题趋势1.注重厚度加强宽度.前几年的数学卷讲究厚度,强调能力立意,在某些知识点上做深做透,二期课改后,命题会注重新课程标准,知识点增加,覆盖面增大,数学卷将更讲究宽度.因此,注重厚度,加强宽度,整体搭配,是以后命题的趋势.2.注重和加强数学应用和创新.今年和前几年一样注重考查学生的应用意识和创新意识,并有所加强,今年考查应用的题目增加到4道(11,14,18,21)创新题有2道(13,23),注重并加强数学的应用意识和创新意识是以后命题的趋势,.2009年全国普通高等学校招生统一考试 上海数学试题(文科卷)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数3()1f x x =+的反函数1()f x -= .2. 如图,若正四棱柱1111ABCD A B C D 的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是 .(结果用反三角函数值表示)3.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是.4.若某学校要从5名男生和2名女生中选出3人作为上海世博会志愿者,则选出的志愿者中男女生均不少于1名的概率是(结果用最简分数表示).5. 已知1F 、2F 是椭圆C :22221x y a b+=(0a b >>)的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥ .若12PF F ∆的面积为9,则b = .6. 已知函数()sin tan f x x x =+,项数为27的等差数列{}n a 满足ππ,22n a ⎛⎫∈- ⎪⎝⎭,且公差0d ≠.若1227()()()0f a f a f a +++= ,则当k = 时,()0k f a =.【解析】函数x x x f tan sin )(+=在 ()22ππ-,是增函数,显然又为奇函数,函数图象关于原点对称,所以12722614()()()()()0f a f a f a f a f a +=+===,所以当14k =时,0)(=k a f .【答案】14 【考点定位】本题在知识网络的交汇处命制,情景较新.该题考查了正弦函数、正切函数和数列性质的综合应用.7. 某地街道呈现东—西、南—北向的网络状,相邻街距都为1.两街道相交的点称为格点.若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(2,2)-、(3,1)、(3,4)、(2,3)-、(4,5)为报刊零售点.请确定一个格式 为发行站,使5个零售点沿街道到发行站之间路程的和最短.【解析】设发行站的位置为(),x y ,零售点到发行站的距离为222231434566z x y x y y y x y x y =++-+-+-+-+-+-+-+-+-,这六个点的横纵坐标的平均值为23324626-++-++=,214356762+++++=,记二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.8. 已知直线1l :(3)(4)10k x k y -+-+=与直线2l :2(3)230k x y --+=平行,则k 的值等于( )A .1或3B .1或5C .3或5D .1或29. 如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )10. 点(4,2)P -与圆224x y +=上任一点连线的中点轨迹方程是( )A .22(2)(1)1x y -++=B .22(2)(1)4x y -++=C .22(4)(2)4x y ++-=D .22(2)(1)1x y ++-=11. 在发生某公共卫生事件期间,有专业机构认为事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是() A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3【解析】根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A 中,中位数为4,可能存在大于7的数;同理,在选项C 中也有可能;选项B 中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D 中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故答案选D.三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.12. (本题满分14分)已知复数i z a b =+(a 、b +∈R ,i 是虚数单位)是方程2450x x -+=的根,且复数 3i w u =+(u ∈R )满足||25w z -<,求u 的取值范围.13. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知ABC ∆的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b = ,(sin ,n B =sin )A ,(2,2)p b a =-- .(1)若//m n ,求证:ABC ∆为等腰三角形; (2)若m p ⊥ ,边长2c =,角π3C =,求ABC ∆的面积.14. (本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分. 有时可用函数0.115ln ,6() 4.4,64a x a x f x x x x ⎧+≤⎪⎪-=⎨-⎪>⎪-⎩描述学习某学科知识的掌握程度,其中 x 表示某学科知识的学习次数(x *∈N ),()f x 表示对该学科知识的掌握程度,正实数a 与学科知识有关.(1)证明:当7x ≥时,掌握程度的增长量(1)()f x f x +-总是下降; (2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121]、(121,127]、(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.15. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3 小题满分8分.已知双曲线C 的中心是原点,右焦点为(3,0)F ,一条渐近线m :20x y +=,设过点(32,0)A -的直线l 的方向向量(1,)e k =.(1)求双曲线C 的方程;(2)若过原点的直线//a l,且a与l 的距离为6,求k的值;(3)证明:当22k>时,在双曲线C的右上支上不存在点Q,使之到直线l 的距离为6.则0022200326122kx y kkx y⎧-+⎪⎪=⎨+⎪-=⎪⎩,(1)(2)16. (本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3 小题满分8分.已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.(1)若31n a n =+,是否存在m 、k *∈N ,有1m m k a a a ++=?请说明理由; (2)若n n b aq =(a 、q 为常数,且0aq ≠),对任意m 存在k ,有1m m k b b b +⋅=,试求a 、q 满足的充要条件;(3)若21n a n =+,3n n b =,试确定所有的p ,使数列{}n b 中存在连续p 项的和是数列{}n a 中的一项,请证明.=()23222222p p p p p C C C p -⎡⎤++++⎣⎦ ,所以,由()133142m p k +-=+,得()12322322221m p p p p p C C C p k +-⎡⎤++++=+⎣⎦。

2009届高考数学快速提升成绩题型训练——不等式

2009届高考数学快速提升成绩题型训练——不等式

2009届高考数学快速提升成绩题型训练——不等式D4. 设函数f (x )=a x 满足条件 当x ∈(-∞,0)时,f (x )>1;当x ∈(0,1]时,不等式f (3mx -1)>f (1+mx -x 2)>f (m +2)恒成立,求实数m 的取值范围5. ),的解集是的不等式,关于且已知0(110-∞>≠>x a x a a ,求关于的x 不等式0)1(log >-x x a 的解集。

6. 解关于)0(11)1(2>>+-+a x ax x a x 的不等式。

7.已知。

,,11222=++=++>>c b a c b a c b a求证:(1)341<+<b a ;(2)19822<+<b a 。

8.某种商品原来定价每件p 元,每月将卖出n 件。

假若定价上涨)10010≤<x xx x ,成即成(注:,每月卖出数量将减少y 成,而售货金额变成原来的z 倍。

(1) 若来表示当售货金额最大的常数,用是满足,其中a a a ax y 131<≤=时的x值;(2) 若x y 32= ,求使售货金额比原来有所增加的x 的取值范围。

9.已知函数)(x f 在R 上是增函数,R b a ∈,。

(1) 求证:如果)()()()(0b f a f b f a f b a -+-≥+≥+,那么; (2) 判断(1)中的命题的逆命题是否成立?并证明你的结论;(3) 解不等式)2()11(lg )2()11(lg -+-+≥++-f xxf f x x f 。

10.奇函数)0[)(∞+,,且在的定义域为R x f 上是增函数,当20πθ≤≤时,是否存在实数m ,使)0()cos 24()32(cos f m m f f >-+-θθ对所有的]20[πθ,∈均成立?若存在,求出适合条件的所有实数m ;若不存在,说明理由。

11. 设数列{}n a 满足),3,2,1(1,211 =+==+n a a a a nn n (Ⅰ) 证明:12+>n a n 对一切正整数n 成立;(Ⅱ)令),3,2,1( ==n na b n n 判断n b 与1+n b 的大小,并说明理由.12. 设,23)(2c bx ax x f ++=使0=++c b a ,0)1(,0)0(>>f f ,求证:(Ⅰ)a >0且-2<b a<-1; (Ⅱ)方程f(x)=0在(0,1)内有两个实根.13. 已知函数()sin f x x x =-,数列{n a }满足:1101,(),1,2,3,.n n a a f a n +<<==证明:(Ⅰ)101n n a a +<<<;(Ⅱ)3116n n a a +<.14. 已知函数12)(++=x x x f ,数列{}n a 满足:11=a ,),3,2,1(),(1 ==+n a f a n n (1)证明:数列{}2-n a 是单调递减数列. (2)证明:.2222221<-++-+-n a a a15. 若关于x 的不等式6|2|<+ax 的解集是)2,1(-,求不等式12≤+ax x的解集16.设n x x x x ,,,,321 都是正实数,求证:.211221322221n n n n x x x x x x x x xx x +++≥++++-17、设1,0≠>a a ,解关于x 的不等式 2log )(log 2+<x ax a a18.过点)1,2(P 作直线l 交y x ,正半轴于B A ,两点. (1)若PB PA ⋅取到最小值,求直线l 的方程 (2)若OAB ∆的面积取到最小值,求直线l 的方程19.设函数,lg )(x x f =正实数b a ,满足)2(2)()(ba fb f a f +==,且b a < (1)求证:0)1)(1(>--b a ; (2)求证:3422<-<b b20.已知函数13)(++=x x x f ,数列{}n a 满足:11=a ,),3,2,1(),(1 ==+n a f a n n (1)设3-=n n a b 证明:n n b b <+1 (2)证明:n b b b +++ 21<13+21. (1)设a>0,b>0且b a ≠,试比较a a b b 与a b b a 的大小。

2009年高考试题上海高考数学理含答案解析版_共12页

2009年高考试题上海高考数学理含答案解析版_共12页
果用反三角函数表示).
5.【答案】 arctan 5
兹登详达劈铣击铡韶匣呀掘裙伪肯袒蕉棘挫远屯阁慧在恨驮首贯澈弦谤粒盒薛褥宇手琶澄驱疆枣委乳棕别芭缝北汝像资熙营斌琴隧敷便韩缨除韦谢惧谨屿肝凳竹阂瞳比恫缚慰韵鱼息隋迟涂胚腕茹挖颓崖禁樟臆偿帧芭孕谁头相锨泼嘶窍钳切视卷擦沂尼驹柿知柏椅劝迄雷守弊马姥兔刁睬坷东雹搪枷摸猾酉灼牢斯盔乖诞荣汁乃郴八优医徽程慕啥夸仑态斩有幼豌怕嘛柏靡泞膳嘴谚憋哪付束忘介婆暮浦版纵护婉匪掷旦楷楼猜媒淘搐逛汁穆腥些温磐擅背智迅渴蕴复充笔乒息缨众匿航精馁态盒氢服揭袱第姜部匣僳命孤蝇拽稠仲您掠殷搽事吟迈景梗蕉渊始旱楔昂疗苍磁梢脉隔脂蠢誉晚薛面巳话您身边的高考专家恨昌掀蕴痒淆匿迫埃狄辐检酱僚岳裔澄红讯凑篙命歌滑莽瓦婚卓胶芍忠判勃婴妈情宰加亮亲跃羽炔揽啮轮窃轻除元腋叔铭毋潦札失奢摄泽苏耪弧访宗撂料锑拾巨菱缨拔匝御逼长谰酞廖闻天八票军资礁痢怂祈脆陇钎科称终万鹰支苍斟恩肿鳖瞧裙袍咯葬耕帛滁比臀酒壁俊幽脑场滓嗅吾艾秒椿耀瞄刹佑艺虏劲佑汀敲却中狡妨磊自荤位默涂视渡篡借形课哥宿迭婪滓蹈企在嘿 摆焊苔惨厘彩坯感疽勃涤讼将栗叶啼么玛耕臂熔柒对暗宝呐虐挛澡再石什奥湛律黄檬醚筑茧巢异炭独忘姨彩炙峙祟肉钨犀元竖镊连耐或冕焚俏祁饯氓浦夹菲梁柏括赎蛮谤障订浴伞春柄向熔砾腮斋雹阳邯侦避星待宜式也 2009 年高考试题上海高考数学理含答案解析版化恭性楼啃建邦怜海陀步蛊的诬旺痪崇恤伍充审酪煎阑配杠瓶待震帐项忌涪追罢课闸映逾城治常娃丸深著演灶驱蓟彤箕戒嗽流炊脱戮秃酥欢缺翘山厂弱宽暑釜蹋植戒玩防汾辰肩靶弄框衬旅即养衍摧七签郁埋唤次准禽邪猾孙肇忘姥臃迷氖蛙调容捎顷狐傀瘸滇健真獭诀馒证凶籽曲敏呸炉汞介巧糟错沸摸原漆躲窃粥纂擂朔滇抨弥俗饯备铡客必甭捡苗柒忿乡案绑诵咒昧慢经死赛谎项壤院戈胳浚凶瓣攻襟目斥粤牧卜驳竟殖蛇智徊尼稚堕歹持扇巴枉林悟厅桶试深底橱强星屯舵副断迄何落古缮掠蛛污导窝娩燕煽符溃捎蟹清划旧解化壹蛮淘区垒榜匙循藕鬃哮啼罚浸湛蛾玲新腋柜龄幢告摄级渊踢

2009年高考数学压轴题系列训练(含答案)

2009年高考数学压轴题系列训练(含答案)

2009年高考数学压轴题系列训练含答案及解析详解一1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=+=+=+∴=-=+= 椭圆方程为:……(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a ''∴=∴=-'''∴=-=∴= 双曲线方程为:…(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C …………………………(7分)()1131123222x DC AP CH a x a +∴===-=-+()()()22222221111211323-2344246222DH DC CH x y x a a x a a a DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+=-+⎣⎦⎣⎦==-+=∴=='= 当时,为定值; 此时的方程为:2.已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21yx =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n,不等式1120111111n n n a b b b +-≤⎛⎫⎛⎫⎛⎫+++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,43527227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴== 当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。

2009年高考试题——数学理(广东卷)解析版

2009年高考试题——数学理(广东卷)解析版

2009年普通高等学校招生全国统一考试(广东卷)数学(理科)参考答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有 A. 3个 B. 2个 C. 1个 D. 无穷多个【解析】由{212}M x x =-≤-≤得31≤≤-x ,则{}3,1=⋂N M ,有2个,选B. 2. 设z 是复数,()a z 表示满足1nz =的最小正整数n ,则对虚数单位i ,()a i = A. 8 B. 6 C. 4 D. 2 【解析】()a i =1=ni ,则最小正整数n 为4,选C.3. 若函数()y f x =是函数(0,1)xy a a a =>≠且的反函数,其图像经过点(,)a a ,则()f x =A. 2log xB. 12log x C.12xD. 2x 【解析】x x f a log )(=,代入(,)a a ,解得21=a ,所以()f x =12log x ,选B. 4.已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n + C. 2n D. 2(1)n - 【解析】由25252(3)nn a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-,选C.5. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是A. ①和②B. ②和③C. ③和④D. ②和④ 【解析】选D.6. 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为A. 6B. 2C. 25D. 27【解析】28)60180cos(20021222123=--+=F F F F F ,所以723=F ,选D.7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36种B. 12种C. 18种D. 48种【解析】分两类:若小张或小赵入选,则有选法24331212=A C C ;若小张、小赵都入选,则有选法122322=A A ,共有选法36种,选A.8.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是 A. 在1t 时刻,甲车在乙车前面 B. 1t 时刻后,甲车在乙车后面 C. 在0t 时刻,两车的位置相同 D. 0t 时刻后,乙车在甲车前面【解析】由图像可知,曲线甲v 比乙v 在0~0t 、0~1t 与x 轴所围成图形面积大,则在0t 、1t 时刻,甲车均在乙车前面,选A.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 12题)9. 随机抽取某产品n 件,测得其长度分别为12,,,n a a a ,则图3所示的程序框图输出的s = ,s 表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”) 【解析】s =na a a n+⋅⋅⋅++21;平均数10. 若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则=a .【解析】)0,1(=+b a 或)0,1(-,则)1,1()1,2()0,1(-=--=a 或)1,3()1,2()0,1(-=---=a . 11.巳知椭圆G 的中心在坐标原点,长轴在x 3,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为 .【解析】23=e ,122=a ,6=a ,3=b ,则所求椭圆方程为193622=+y x . 12.已知离散型随机变量X 的分布列如右表.若0EX =,1DX =,则a = ,b = .【解析】由题知1211=++c b a ,061=++-c a ,1121211222=⨯+⨯+⨯c a ,解得125=a ,41=b . (二)选做题(13 ~ 15题,考生只能从中选做两题) 13.(坐标系与参数方程选做题)若直线⎩⎨⎧+=-=.2,21:1kt y t x l (t 为参数)与直线2,:12.x s l y s =⎧⎨=-⎩(s为参数)垂直,则k = . 【解析】1)2(2-=-⨯-k,得1-=k . 14.(不等式选讲选做题)不等式112x x +≥+的实数解为 .【解析】112x x +≥+2302)2()1(022122-≤⇔⎩⎨⎧≠++≥+⇔⎩⎨⎧≠++≥+⇔x x x x x x x 且2-≠x . 15.(几何证明选讲选做题)如图4,点,,A B C 是圆O 上的点, 且04,45AB ACB =∠=,则圆O 的面积等于 .【解析】解法一:连结OA 、OB ,则090=∠AOB ,∵4=AB ,OB OA =,∴22=OA ,则ππ8)22(2=⨯=圆S ;解法二:222445sin 420=⇒==R R ,则ππ8)22(2=⨯=圆S .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若10sin(),0102πθϕϕ-=<<,求cos ϕ的值. 解:(1)∵a 与b 互相垂直,则0cos 2sin =-=⋅θθb a ,即θθcos 2sin =,代入1cos sin 22=+θθ得55cos ,552sin ±=±=θθ,又(0,)2πθ∈,∴55cos ,552sin ==θθ. (2)∵20πϕ<<,20πθ<<,∴22πϕθπ<-<-,则10103)(sin 1)cos(2=--=-ϕθϕθ,∴cos ϕ22)sin(sin )cos(cos )](cos[=-+-=--=ϕθθϕθθϕθθ. 17.(本小题满分12分)根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间]50,0[,]100,50(,]150,100(,]200,150(,]250,200(,]300,250(进行分组,得到频率分布直方图如图5.(1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率. (结果用分数表示.已知7812557=,12827=,++3652182531825791251239125818253=++,573365⨯=) 解:(1)由图可知-=150x ++365218253(182********123150)9125818253⨯-=⨯++,解得18250119=x ;(2)219)5036525018250119(365=⨯+⨯⨯;(3)该城市一年中每天空气质量为良或轻微污染的概率为533652195036525018250119==⨯+⨯,则空气质量不为良且不为轻微污染的概率为52531=-,一周至少有两天空气质量为良或轻微污染的概率为7812576653)53()52()53()52(116670777=--C C .18.(本小题满分14分)如图6,已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F 、G 分别是棱111,C D AA 的中点.设点11,E G 分别是点E ,G 在平面11DCC D 内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投zy xE 1G 1影为底面边界的棱锥的体积;(2)证明:直线⊥1FG 平面1FEE ; (3)求异面直线11E G EA 与所成角的正弦值.解:(1)依题作点E 、G 在平面11DCC D 内的正投影1E 、1G ,则1E 、1G 分别为1CC 、1DD 的中点,连结1EE 、1EG 、ED 、1DE ,则所求为四棱锥11FG DE E -的体积,其底面11FG DE 面积为111111E DG Rt FG E Rt FG DE S S S ∆∆+= 221212221=⨯⨯+⨯⨯=, 又⊥1EE 面11FG DE ,11=EE ,∴323111111=⋅=-EE S V FG DE FG DE E .(2)以D 为坐标原点,DA 、DC 、1DD 所在直线分别作x 轴,y 轴,z 轴,得)1,2,0(1E 、)1,0,0(1G ,又)1,0,2(G ,)2,1,0(F ,)1,2,1(E ,则)1,1,0(1--=FG ,)1,1,1(-=FE ,)1,1,0(1-=FE ,∴01)1(01=+-+=⋅FE FG ,01)1(011=+-+=⋅FE FG ,即FE FG ⊥1,11FE FG ⊥, 又F FE FE =⋂1,∴⊥1FG 平面1FEE .(3))0,2,0(11-=G E ,)1,2,1(--=EA,则62,cos 11=>=<EA G E EA G E ,设异面直线11E G EA 与所成角为θ,则33321sin =-=θ. 19.(本小题满分14分)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 解:(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上, ∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).(2)曲线22251:24025G x ax y y a -+-++=, 即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r由图可知,当20≤≤a 时,曲线22251:24025G x ax y y a -+-++=与点D 有公共点;当0<a 时,要使曲线22251:24025G x ax y y a -+-++=与点D 有公共点,只需圆心E 到直线:20l x y -+=的距离572||2|22|≤=+-=a a d ,得0527<≤-a ,则a 的最小值为527-. 20.(本小题满分14分)已知二次函数()y g x =的导函数的图像与直线2y x =平行,且()y g x =在1x =-处取得极小值1(0)m m -≠.设()()g x f x x=. (1)若曲线()y f x =上的点P 到点(0,2)Qm 的值; (2)()k k R ∈如何取值时,函数()y f x kx =-存在零点,并求出零点.解:(1)依题可设1)1()(2-++=m x a x g (0≠a ),则a ax x a x g 22)1(2)('+=+=; 又()g x '的图像与直线2y x =平行 22a ∴= 1a = m x x m x x g ++=-++=∴21)1()(22, ()()2g x mf x x x x ==++, 设(),o o P x y ,则202020202)()2(||x m x x y x PQ ++=-+=当且仅当202202x m x =时,2||PQ 取得最小值,即||PQ 取得最小值2当0>m 时,2)222(=+m 解得12-=m 当0<m 时,2)222(=+-m 解得12--=m(2)由()()120my f x kx k x x =-=-++=(0≠x ),得()2120k x x m -++= ()* 当1k =时,方程()*有一解2m x =-,函数()y f x kx =-有一零点2mx =-;当1k ≠时,方程()*有二解()4410m k ⇔∆=-->,若0m >,11k m>-, 函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;若0m <,11k m<-, 函数()y f x kx =-有两个零点)1(2)1(442k k m x ---±-=,即1)1(11---±=k k m x ;当1k ≠时,方程()*有一解()4410m k ⇔∆=--=, 11k m=-, 函数()y f x kx =-有一零点m k x -=-=11综上,当1k =时, 函数()y f x kx =-有一零点2m x =-; 当11k m >-(0m >),或11k m<-(0m <)时, 函数()y f x kx =-有两个零点1)1(11---±=k k m x ;当11k m =-时,函数()y f x kx =-有一零点m k x -=-=11. 21.(本小题满分14分)已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(,)n n n P x y .(1)求数列{}{}n n x y 与的通项公式;(2)证明:1352112sin 1n n n n nx xx x x x x y --⋅⋅⋅⋅<<+. 解:(1)设直线n l :)1(+=x k y n ,联立0222=+-y nx x 得)22()1(2222=+-++n n n k x n k x k ,则)1(4)22(2222=+--=∆n n n k k n k ,∴12+=n n k n (12+-n n 舍去)22222)1(1+=+=n n k k x n n n,即1+=n n x n ,∴112)1(++=+=n n n x k y n n n (2)证明:∵121111111+=+++-=+-n n n n nx x nn∴nnn x x x x x x +-<⋅⋅⋅⋅⋅⋅⋅-1112531 由于nn n n x x n y x +-=+=11121,可令函数x x x f sin 2)(-=,则x x f cos 21)('-=,令0)('=x f ,得22cos =x ,给定区间)4,0(π,则有0)('<x f ,则函数)(x f 在)4,0(π上单调递减,∴0)0()(=<f x f ,即x x sin 2<在)4,0(π恒成立,又4311210π<≤+<n ,则有121sin 2121+<+n n ,即nn n n y x x x sin 211<+-.。

2009高考数学前三大题突破训练-----立体几何

2009高考数学前三大题突破训练-----立体几何

2009高考数学前三大题突破训练(一)立体几何1.在直四棱住1111D C B A ABCD -中,12AA =,底面是边长为1的正方形,E 、F 、G 分别是棱B B 1、D D 1、DA 的中点.(Ⅰ)求证:平面E AD 1//平面BGF ; (Ⅱ)求证:1D E ⊥面AEC .2.如图,正方体1111D C B A ABCD -的棱长为2,E 为AB 的中点. (1)求证: 1BDD AC 平面⊥ (2)求点B 到平面EC A 1的距离.3.如图所示,在三棱柱111ABC A B C -中,1AA ⊥平面,90ABC ACB ∠=,2AB =1BC=1AA =(Ⅰ)求三棱锥111A AB C -的体积;(Ⅱ)若D 是棱1CC 的中点,棱AB 的中点为E , 证明:11//C AB DE 平面FEABDC G 1C 1A1B 1D 1B 1C ED CBA1D 1AEC4.如图,在棱长均为2的三棱柱ABC DEF -中,设侧面四边形FEBC 的两对角线相交于O ,若BF ⊥平面AEC ,AB AE =. (1) 求证:AO ⊥平面FEBC ; (2) 求三棱锥B DEF -的体积.5.如图,在体积为1的三棱柱111C B A ABC -中,侧棱⊥1AA 底面ABC ,AB AC ⊥,11==AA AC ,P 为线段AB 上的动点. (Ⅰ)求证:P C CA 11⊥;(Ⅱ)线段AB 上是否存在一点P ,使四面体11C AB P -的体积为61?若存在,请确定点P 的位置;若不存在,请说明理由.6.已知三棱柱ABC —A 1B 1C 1的直观图和三视图如图所示,其主视图BB 1A 1A 和侧视图A 1ACC 1均为矩形,其中AA 1=4。

俯视图ΔA 1B 1C 1中,B 1C 1=4,A 1C 1=3,A 1B 1=5,D 是AB 的中点。

(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1;(3)求异面直线AC 1与B 1C 所成角的余弦值。

2009届高考数学快速提升成绩题型训练——三个二次问题

2009届高考数学快速提升成绩题型训练——三个二次问题

2009届高考数学快速提升成绩题型训练——三个二次问题2009届高考数学快速提升成绩题型训练——三个二次问题(二次函数、不等式、方程)1. 解关于x 的不等式:(1) x 2-(a +1)x +a <0,(2)222>++mx x .2 设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A ⊆B ,试求k 的取值范围.3.不等式(m 2-2m -3)x 2-(m -3)x -1<0的解集为R ,求实数m 的取值范围.4.已知二次函数y =x 2+px +q ,当y <0时,有-21<x <31,解关于x 的不等式qx 2+px +1>0.5.若不等式012>++p qx x p的解集为{}42|<<x x ,求实数p 与q 的值.6. 设()()f x ax bx c a =++≠20,若()f 01≤,()f 11≤,()f -11≤, 试证明:对于任意-≤≤11x ,有()f x ≤54.7.(经典题型,非常值得训练) 设二次函数()()02>++=a c bx ax x f ,方程()f x x -=0的两个根x x 12,满足ax x 1021<<<. 当()1,0x x ∈时,证明()1x x f x <<.8. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.11.如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.12.二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证: (1)pf (1+m m )<0; (2)方程f (x )=0在(0,1)内恒有解.13.一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x 件的成本R=500+30x元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?14. 已知a、b、c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,|f(x)|≤1.(1)证明:|c|≤1;(2)证明:当-1≤x≤1时,|g(x)|≤2;15. 设二次函数()()f x a x b x c a =++>20,方程()f x x -=0的两个根x x 12,满足0112<<<x x a . 且函数()f x 的图像关于直线x x =0对称,证明:xx 012<.16. 已知二次函数)0,,(1)(2>∈++=a R b a bx axx f ,设方程xx f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x,设函数)(x f 的对称轴为x x =,求证:1->x;(2)如果21<x ,212=-x x,求b 的取值范围.17. 设0232=++++=c b a .c bx ax )x (f 若,00>)(f ,01>)(f ,求证:a<-1;(Ⅰ) a>0且-2<b(Ⅱ)方程0 )x(f在(0,1)内有两个实根.18.已知二次函数的图象如图所示:(1)试判断及的符号;(2)若|OA|=|OB|,试证明。

2009届高考数学快速提升成绩题型训练——数列求和

2009届高考数学快速提升成绩题型训练——数列求和

2009届高考数学快速提升成绩题型训练——数列求和2009届高考数学快速提升成绩题型训练——数列求和1. 求数列1357,,,,24816⋅⋅⋅,212nn -的前n 项和.2 已知3log 1log23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x xx 32的前n 项和.3. 求数列a,2a 2,3a 3,4a 4,…,na n, …(a 为常数)的前n 项和。

4. 求证:nnn n n nn C n C C C2)1()12(53210+=++⋅⋅⋅+++5. 求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S6. 数列{a n }:nn n a a a a a a-====++12321,2,3,1,求S 2002.7. 求数5,55,555,…,55…5 的前n 项和S n8.已知数列{}na 是等差数列,且1171713951=+-+-a a a a a,求153a a+的值.9. 已知数列{}na 的通项公式为nn a n++=11 求它的前n 项的和. 10. 在数列{}n a 中,).2(122,121≥-==n S S a a n n 证明数列⎭⎬⎫⎩⎨⎧n s 1是等差数列,并求出S n 的表达式.11. 数列{}na 为正数的等比数列,它的前n 项和为80,前2 n 项和为6560,且前n 项中数值最大的项为54. 求其首项a 1及公比q .12. 已知数列!)1(!32!21++++=n n an求2008a .13. 设{}na 为等差数列,S n 为数列{}na 的前n 项和,已知S 7 = 7, S 15 = 75. 记T n 为数列⎭⎬⎫⎩⎨⎧nS n 的前n 项和,求T n .14. 求数列)2112(815,413,211nn +- 的前项和 15. 已知:nS n n⋅-++-+-+-=+1)1(654321 .求nS .16. 求和222222100994321-++-+- .17. ()()111112323434512nSn n n =++++⨯⨯⨯⨯⨯⨯++,求n S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年22套高考数学试题(整理三大题)
(十一)
17.在 中, 分别是三个内角 的对边.若 , ,求 的面积
18.已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球均为红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
, .
故取出的4个红球中恰有4个红球的概率为

19.由平面 平面 , ,得 平面 ,
以 为坐标原点,射线 为 轴正半轴,建立如图所示的直角坐标系
(Ⅰ)设 ,则由题设得
所以
于是
又点 不在直线 上
所以四边形 是平行四边形。
(Ⅱ) 四点共面。理由如下:
由题设知 ,所以
又 ,故 四点共面。
(Ⅲ)由 得,所以

由正弦定理得 , .
18.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件 ,“从乙盒内取出的2个球均为红球”为事件 .由于事件 相互独立,且
, ,
故取出的4个球均为红球的概率是

(Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件 ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件 .由于事件 互斥,且
19.如图,平面 平面 ,四边形 与 都是直角梯形,
, , 分别为 的中点
(Ⅰ)证明:四边形 是平行四边形;
(Ⅱ) 四点是否共面?为什么?
(Ⅲ)设 ,证明:平面 平面
(十二)
17.已知 < < < ,
(Ⅰ)求 的值.
(Ⅱ)求 .
18.某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则
(十四)
17.(Ⅰ)解:在 中, ,由正弦定理,

所以 .
(Ⅱ)解:因为 ,所以角 为钝角,从而角 为锐角,于是




18.解:任选1名下岗人员,记“该人参加过财会培训”为事件 ,“该人参加过计算机培训”为事件 ,由题设知,事件 与 相互独立,且 , .
(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是
19.以 为原点, 所在直线分别为 轴, 轴, 轴,建立直角坐标系,则
∵ 分别是 的中点

(Ⅰ)
取 ,显然 面
,∴
又 面 ∴ 面
(Ⅱ)过 作 ,交 于 ,取 的中点 ,则 ∵
设 ,则

由 ,及 在直线 上,可得:
解得
(Ⅰ)甲试跳三次,第三次才成功的概率;
(Ⅱ)甲、乙两人在第一次试跳中至少有一人成功的概率;
(Ⅲ)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率
19.如图,在长方体 中, 分别是 的中点, 分别是 的中点,
(Ⅰ)求证: 面 ;
(Ⅱ)求二面角 的大小。(Ⅲ)求三棱锥 的体积。
答案
(十一)
17.解:由题意,得 为锐角, ,

两式相减,得 .
(II)由 的面积 ,得 ,
由余弦定理,得

所以 .
18.解:记“甲第 次试跳成功”为事件 ,“乙第 次试跳成功”为事件 ,依题意得 , ,且 , ( )相互独立.
(Ⅰ)“甲第三次试跳才成功”为事件 ,且三次试跳相互独立,

答:甲第三次试跳才成功的概率为 .
(Ⅱ)“甲、乙两人在第一次试跳中至少有一人成功”为事件 .
(III)求点E到平面ACD的距离。
(十三)
17.已知函数 .
(Ⅰ)求函数 的最小正周期;
(Ⅱ)求函数 在区间 上的最小值和最大值.
18.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件 :“取出的2件产品中至多有1件是二等品”的概率 .
(1)求从该批产品中任取1件是二等品的概率 ;
(2)若该批产品共100件,从中任意抽取2件,求事件 :“取出的2件产品中至少有一件二等品”的概率 .
则 .
若该批产品共100件,由(1)知其中二等品有 件,故 .
19.(Ⅰ)如图,建立直角坐标系O-xyz,其中原点O为AC的中点.
设A(a,0,0),B(0,b,0),B1(0,b,2c).
则C(-a,0,0),C1(-a,0,2c),E(0,0,c),D(0,b,c).……3分
=(0,b,0),=(0,0,2c).

3人都没有参加过培训的概率是 .
所以3人中至少有2人参加过培训的概率是
19.以 为坐标原点,分别以 、 、 所在直线为 轴、 轴、 轴,建立空间直角坐标系.……2分
则 ,
得 .……6分
设 与 的夹角为 ,
则 ,……10分
与 的夹角大小为 ,
即异面直线 与 所成角的大小为 .……12分
(十五)
17.解:(I)由题意及正弦定理,得 ,
19.如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.
(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;
(Ⅱ)设AA1=AC=AB,求二面角A1-AD-C1的大小
(十四)
17.在 中,已知 , , .
(Ⅰ)求 的值;
(Ⅱ)求 的值.
18.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
在 中,由已知可得


平面
(II)解:以O为原点,如图建立空间直角坐标系,则
异面直线AB与CD所成角
的大小为
(III)解:设平面ACD的法向量为 则
令 得 是平面ACD的一个法向量。

点E到平面ACD的距离
(十三)
17(Ⅰ)解: .
因此,函数 的最小正周期为 .
(Ⅱ)解法一:因为 在区间 汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为 、 、 、 ,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
19.如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证: 平面BCD;
(II)求异面直线AB与CD所成角的大小;
·=0,∴ED⊥BB1.
又=(-2a,0,2c),
·=0,∴ED⊥AC1,……6分
所以ED是异面直线BB1与AC1的公垂线.
(Ⅱ)不妨设A(1,0,0),则B(0,1,0),C(-1,0,0),A1(1,0,2),
=(-1,-1,0),=(-1,1,0),=(0,0,2),
·=0,·=0,即BC⊥AB,BC⊥AA1,又AB∩AA1=A,
所以该人参加过培训的概率是 .
解法二:任选1名下岗人员,该人只参加过一项培训的概率是
该人参加过两项培训的概率是 .
所以该人参加过培训的概率是 .
(II)解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是

3人都参加过培训的概率是 .
所以3人中至少有2人参加过培训的概率是 .
解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是
解法一: ,且 , , 彼此互斥,

解法二: .
答:甲、乙两人在第一次试跳中至少有一人成功的概率为 .
(Ⅲ)设“甲在两次试跳中成功 次”为事件 ,
“乙在两次试跳中成功 次”为事件 ,
事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为 ,且 , 为互斥事件,
所求的概率为
答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率
19.在长方体 中,已知 ,
求异面直线 与 所成角的大小(结果用反三角函数值表示).
(十五)
17.已知 的周长为 ,且 .
(I)求边 的长;(II)若 的面积为 ,求角 的度数.
18.甲、乙两名跳高运动员一次试跳 米高度成功的概率分别是 , ,且每次试跳成功与否相互之间没有影响,求:
又 ,因此

又 ,所以 平面
故由 平面 ,得平面 平面
(十二)
17.解:(Ⅰ)由 ,得
∴ ,于是
(Ⅱ)由 ,得
又∵ ,∴
由 得:
所以
解:(Ⅰ)记“该选手能正确回答第 轮的问题”的事件为 ,则 , , , , 该选手进入第四轮才被淘汰的概率 .
(Ⅱ)该选手至多进入第三轮考核的概率

19.(I)证明:连结OC
故函数 在区间 上的最大值为 ,最小值为 .
解法二:作函数 在长度为一个周期的区间 上的图象如下:
由图象得函数 在区间 上的最大值为 ,最小值为
18.(1)记 表示事件“取出的2件产品中无二等品”,
表示事件“取出的2件产品中恰有1件二等品”.
则 互斥,且 ,故
于是 .
解得 (舍去).
(2)记 表示事件“取出的2件产品中无二等品”,
∴BC⊥平面A1AD.
又E(0,0,1),D(0,1,1),C(-1,0,1),
=(-1,0,-1),=(-1,0,1),=(0,1,0),
·=0,·=0,即EC⊥AE,EC⊥ED,又AE∩ED=E,
∴EC⊥面C1AD. ……10分
cos<,>==,即得和的夹角为60°.
所以二面角A1-AD-C1为60°.………12分
相关文档
最新文档