2021年中考九年级数学一轮压轴题复习:《四边形》 专题练习
2021年中考复习数学压轴题:四边形 综合专题练习
2021年中考数学压轴题专题练习:四边形综合复习1、如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△FAE;(2)求证:四边形ADCF为矩形.2、如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.3、如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G为CD的中点,求的值.4、已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在对角线AC上,且BF=DE,AH=CG,连接FH 、HE 、BG 、FG .(1)求证:FG=EH .(2)若EG 平分∠AEH ,FH 平分∠CFG ,FG//AB ,∠ACD=68°,∠GFH=35°,求∠GHF 的度数.5、如图,点E 是正方形ABCD 的边BC 上一点,连接DE ,将DE 绕着点E 逆时针旋转90°,得到EG ,过点G 作GF ⊥CB ,垂足为F ,GH ⊥AB ,垂足为H ,连接DG ,交AB 于I .(1)求证:四边形BFGH 是正方形;(2)求证:ED 平分∠CEI ;(3)连接IE ,若正方形ABCD 的边长为,则△BEI 的周长为 .6、如图,正方形CD AB 的边长为1,点E 为边AB 上一动点,连结C E 并将其绕点C 顺时针旋转90得到CF ,连结DF ,以C E 、CF 为邻边作矩形CFG E ,G E 与D A 、C A 分别交于点H 、M ,GF 交CD 延长线于点N .(1)证明:点A 、D 、F 在同一条直线上;(2)随着点E 的移动,线段D H 是否有最小值?若有,求出最小值;若没有,请说明理由;(3)连结F E 、MN ,当//F MN E 时,求AE 的长.7、定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=_____;(2)如图2,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,求这个准矩形的面积.8、【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD 面积的时,请直接写出tan∠BAE的值.9、若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧CC 的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.10、△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.11、点P 是平行四边形ABCD 的对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F .点O 为AC 的中点.(1)如图1,当点P 与点O 重合时,线段OE 和OF 的关系是 ;(2)当点P 运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P 在线段OA 的延长线上运动,当∠OEF =30°时,试探究线段CF 、AE 、OE 之间的关系.12、如图(1),在矩形ABCD 中,8,6AB AD ==,点,E F 分别是边,DC DA 的中点,四边形DFGE 为矩形,连接BG .(1)问题发现在图(1)中,CE BG=_________; (2)拓展探究将图(1)中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图(2)的情形给出证明;(3)问题解决当矩形DFGE旋转至,,B G E三点共线时,请直接写出线段CE的长.13、如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.14、已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°,如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s,EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连接AF,FQ,当点Q停止运动时,△EFQ也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,PQ∥BD?(2)设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形AFPQM :S矩形ABCD=9:8?若存在,求出t的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.15、问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN =60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.。
2021年中考数学专题复习:《四边形》 专项练习题精选(含答案)
2021年中考数学专题复习:《四边形》专项练习题精选一.选择题1.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5B.6C.4D.5 2.(2020•玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④3.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°4.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A .2对B .3对C .4对D .5对5.(2019•河池)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE =CF ,则图中与∠AEB 相等的角的个数是( )A .1B .2C .3D .46.(2019•贵港)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为S 1,S 2,则下列结论错误的是( )A .S 1+S 2=CP 2B .AF =2FDC .CD =4PD D .cos ∠HCD =7.(2019•河池)如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF8.(2018•河池)如图,要判定▱ABCD 是菱形,需要添加的条件是( )A.AB=AC B.BC=BD C.AC=BD D.AB=BC 9.(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)二.填空题10.(2020•河池)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是.11.(2020•玉林)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD菱形(填“是”或“不是”).12.(2019•百色)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.13.(2019•玉林)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.14.(2019•梧州)如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.15.(2019•广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S=24,则AH=.菱形ABCD16.(2018•河池)如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C 顺时针旋转90°,则点D旋转后的对应点D′的坐标是.三.解答题17.(2020•桂林)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.18.(2020•广西)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.19.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.20.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.21.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:22.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.23.(2018•百色)平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD 于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.24.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.25.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.26.(2018•柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.27.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.参考答案1.解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE===4.故选:C.2.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故选:A.3.解:该正九边形内角和=180°×(9﹣2)=1260°, 则每个内角的度数=.故选:D .4.解:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ;OD =OB ,OA =OC ;∵OD =OB ,OA =OC ,∠AOD =∠BOC ;∴△AOD ≌△COB (SAS );①同理可得出△AOB ≌△COD (SAS );②∵BC =AD ,CD =AB ,BD =BD ;∴△ABD ≌△CDB (SSS );③同理可得:△ACD ≌△CAB (SSS ).④因此本题共有4对全等三角形.故选:C .5.证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,AB =BC ,∠ABE =∠BCF =90°, 在△ABE 和△BCF 中,,∴△ABE ≌△BCF (SAS ),∴∠BFC =∠AEB ,∵AD ∥BC ,AB ∥CD ,∴∠DAE =∠AEB ,∠BFC =∠ABF ,故图中与∠AEB 相等的角的个数是3.故选:C .6.解:∵正方形ABCD ,DPMN 的面积分别为S 1,S 2, ∴S 1=CD 2,S 2=PD 2,在Rt △PCD 中,PC 2=CD 2+PD 2,∴S 1+S 2=CP 2,故A 结论正确;连接CF ,∵点H与B关于CE对称,∴CH=CB,∠BCE=∠ECH,在△BCE和△HCE中,∴△BCE≌△HCE(SAS),∴BE=EH,∠EHC=∠B=90°,∠BEC=∠HEC,∴CH=CD,在Rt△FCH和Rt△FCD中∴Rt△FCH≌Rt△FCD(HL),∴∠FCH=∠FCD,FH=FD,∴∠ECH+∠FCH=∠BCD=45°,即∠ECF=45°,作FG⊥EC于G,∴△CFG是等腰直角三角形,∴FG=CG,∵∠BEC=∠HEC,∠B=∠FGE=90°,∴△FEG∽△CEB,∴==,∴FG=2EG,设EG=x,则FG=2x,∴CG=2x,CF=2x,∴EC=3x,∵EB2+BC2=EC2,∴BC2=9x2,∴BC2=x2,∴BC=x,在Rt△FDC中,FD===x,∴3FD=AD,∴AF=2FD,故B结论正确;∵AB∥CN,∴=,∵PD=ND,AE=CD,∴CD=4PD,故C结论正确;∵EG=x,FG=2x,∴EF=x,∵FH=FD=x,∵BC=x,∴AE=x,作HQ⊥AD于Q,HS⊥CD于S,∴HQ∥AB,∴=,即=,∴HQ=x,∴CS=CD﹣HQ=x﹣x=x∴cos∠HCD===,故结论D错误,故选:D.7.解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE AC.A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.8.解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.9.解:∵在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),故选:B.二.填空题(共7小题)10.解:∵菱形ABCD的周长为16,∴AB=BC=CD=AD=4,OA=OC,∵OE∥AB,∴BE=CE,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.11.解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,=BC•AE=DC•AF,∴S平行四边形ABCD∴BC=DC,∴▱ABCD是菱形.故答案为:是.12.解:∵,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′B′的一半,∴∠A'=30°.故答案为:30°13.解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2019÷6=336…3,当点P第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P的坐标为(6,4)∴它与AB边的碰撞次数是=336×2+1=673次故答案为67314.解:∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵∠ADC=119°,DF⊥BC,∴∠ADF=90°,则∠EDH=29°,∵BE⊥DC,∴∠DEH=90°,∴∠DHE=∠BHF=90°﹣29°=61°.故答案为:61.15.解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S=AC×BD=24,菱形ABCD∴AC=6,∴OC=AC=3,∴BC==5,=BC×AH=24,∵S菱形ABCD∴AH=;故答案为:.16.解:△CBD绕点C顺时针旋转90°得到的图形如上图所示.∵D的坐标为(3,1),∴OA=3,AD=1∵在正方形OABC中,OA=AB,∴BD=AB﹣AD=2,∴OD'=BD=2,∴D'的坐标为(﹣2,0),故答案为(﹣2,0).三.解答题(共11小题)17.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=tan30°BE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.18.(1)证明:∵BE=CF,∴BE+EC=CF+EC,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,∴四边形ABED是平行四边形.19.(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=220.解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.21.证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.22.(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠2,∵EF是BD的中垂线,∴OD=OB,∠3=∠4=90°,∴△DOF≌△BOE,∴OE=OF;(2)作DG⊥AB,垂足为G,∵∠A=60°,AD=6,∴∠ADG=30°,∴AG=AD=3,∴DG=,∵AB=2AD,∴AB=2×6=12,BG=AB﹣AG=12﹣3=9,∴tan∠ABD=24.证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.25.(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.26.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=227.解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=M′E=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AD==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AD=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=4。
2021年中考九年级数学压轴题专题复习:四边形 综合练习(无答案)
2021年中考九年级数学压轴题专题复习:四边形综合练习1、如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.2、如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF ⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.3、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.4、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。
已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。
(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形。
5、如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.6、如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处。
(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积。
7、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.8、如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF 绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.9、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.10、在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB 边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DH=DA时,①填空:∠HGA= 度;②若EF∥HG,求∠AHE的度数,并求此时的最小值;(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG ⊥AB,G为垂足,求a的值.11、已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF。
2021年中考九年级数学第一轮专题复习:四边形 综合压轴题分类练习(无答案)
2021年中考九年级数学第一轮专题复习:四边形综合压轴题分类练习1、如图1,四边形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD+CD.(1)过点A作AE∥DC交BD于点E,求证:AE=BE;(2)如图2,将△ABD沿AB翻折得到△ABD'.①求证:BD'∥CD;②若AD'∥BC,求证:CD2=2OD•BD.2、如图,在矩形ABCD中,E是AD上的一点,沿CE将△CDE对折,点D刚好落在AB边的点F上.(1)求证:△AEF∽△BFC.(2)若AB=20cm,BC=16cm,求tan∠DCE.45,3、如图,在四边形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,,∠C=0点P 是BC 边上一动点,设PB 长为x.(1)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. (2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.(3)点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.4、如图,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分∠BAC ,交BD 于点F.(1)EF+AC =AB ; (2)点C 1从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点A 1从点A 出发,沿着BA 的延长线运动,点C 1与点A 1运动速度相同,当动点C 1停止运动时,另一动点A 1也随之停止运动.如图,AF 1平分∠B A 1 C 1,交BD 于F 1,过F 1作F 1E 1⊥A 1 C 1,垂足为E 1,试猜想F 1E 1,A 1 C 1与AB 之间的数量关系,并证明你的猜想. (3)在(2)的条件下,当A 1 E 1=3,C 1 E 1=2时,求BD 的长.21215、在四边形ABCD中,E、F分别是BD、BC上的点,∠BAE=∠BDA.(1)如图1,求证:AB2=BE•BD;(2)如图2,若四边形ABCD是平行四边形,A、E、F三点在同一条直线上,,∠ABC=60°,求的值;(3)如图3,若A、E、F不在同一条直线,∠DEF=∠C,AB=2,BD=4,,,则CD=(直接写出结果).6、如图,在四边形ABCD中,AB∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P从开始沿AB边向点B以每秒3cm的速度移动,点Q从开始沿CD边向点D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。
2021年中考数学压轴题专项训练:《四边形》
1.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG= 2 cm,图②中,m= 2 ;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∵EF⊥AE,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△ABE∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.2.问题提出:(1)如图1,△ABC的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D,连接BD、CD,则△ABC的面积=△DBC的面积.问题探究:(2)如图2,在菱形ABCD和菱形BGFE中,BG=6,∠A=60°,求△DGE的面积;问题解决:(3)如图3,在矩形ABCD中,AB=12,BC=10,在矩形ABCD内(也可以在边上)存在一点P,使得△ABP的面积等于矩形ABCD的面积的,求△ABP周长的最小值.解:问题提出:(1)∵两条平行线间的距离一定,∴△ABC与△DBC同底等高,即△ABC的面积=△DBC的面积,故答案为:=;问题探究:(2)如图2,连接BD,∵四边形ABCD,四边形BGFE是菱形,∴AD∥BC,BC∥EF,AD=AB,BG=BE,∴∠A=∠CBE=60°,∴△ADB是等边三角形,△BGE是等边三角形,∴∠ABD=∠GBE=60°,∴BD∥GE,∴S△DGE=S△BGE=BG2=9;(3)如图3,过点P作PE∥AB,交AD于点E,∵△ABP的面积等于矩形ABCD的面积的,∴×12×AE=×12×10∴AE=8,作点A关于PE的对称点A',连接A'B交PE于点P,此时△ABP周长最小, ∴A'E=AE=8,∴AA'=16,∴A'B===20,∴△ABP周长的最小值=AP+AB+PB=A'P+PB+AB=20+12=32.3.(1)方法感悟:如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.(2)方法迁移:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).解:(1)方法感悟:∵将△ADE绕点A顺时针旋转90°得到△ABG,∴GB=DE=2,∵△GAF≌△EAF∴GF=EF,∵CD=6,DE=2∴CE=4,∵EF2=CF2+CE2,∴EF2=(8﹣EF)2+16,∴EF=5;(2)方法迁移:DE+BF=EF,理由如下:如图②,将△ADE绕点A顺时针旋转90°得到△ABH,由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,∵∠EAF=∠DAB,∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,∴∠HAF=∠EAF,∵∠ABH+∠ABF=∠D+∠ABF=180°,∴点H、B、F三点共线,在△AEF和△AHF中,∴△AEF≌△AHF(SAS),∴EF=HF,∵HF=BH+BF,∴EF=DE+BF.(3)问题拓展:EF=BF﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS)∴∠BAH=∠DAF,AH=AD,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AD,∴△HAE≌△FAE(SAS)∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.4.如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?解:(1)∵AB=3cm,BC=5cm,AC⊥AB,∴AC==4cm,∵MN∥AB,PQ∥MN,∴PQ∥AB,∴,∴,∴t=s(2)如图2,过点Q作QE⊥AC,则QE∥AB,∴,∴,∴CE=,QE=t,∵∠CPQ=45°,∴PE=QE=t,∴t+t+t=4,∴t=s(3)如图2,过点P作PF⊥BC于F点,过点M作MH⊥BC,交BC延长线于点H, ∴四边形PMHF是矩形,∴PM=FH=5,∵∠A=∠PFC=90°,∠ACB=∠PCF,∴△ABC∽△FPC,∴,∴=∴PF=,CF=,∴QH=5﹣FQ=5﹣(CF﹣CQ)=,∵PQ⊥MQ,∴∠PQF+∠MQH=90°,且∠PQF+∠FPQ=90°,∴∠FPQ=∠MQH,且∠PFQ=∠H=90°,∴△PFQ∽△QHM,∴,∴∴t=s.5.问题背景:如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得四边形EFGH是正方形.类比探究:如图2,在正△ABC的内部,作∠1=∠2=∠3,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)如图3,进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC=AC,又∵∠1=∠2=∠3,∴∠ABD=∠BCE=∠CAF,在△ABD、△BCE和△CAF中,,∴△ABD≌△BCE≌△CAF(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)c2=a2+ab+b2.作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.6.如图,在四边形ABCD中,AC是对角线,∠ABC=∠CDA=90°,BC=CD,延长BC交AD的延长线于点E.(1)求证:AB=AD;(2)若AE=BE+DE,求∠BAC的值;(3)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P,连接PB.设PB=a,点O是直线AE上的动点,当MO+PO的值最小时,点O与点E是否可能重合?若可能,请说明理由并求此时MO+PO的值(用含a的式子表示);若不可能,请说明理由.(1)证明:∵∠ABC=∠CDA=90°,∵BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL).∴AB=AD.(2)解:∵AE=BE+DE,又∵AE=AD+DE,∴AD=BE.∵AB=AD,∴AB=BE.∴∠BAD=∠BEA.∵∠ABC=90°,∴∠BAD═45°.∵由(1)得△ABC≌△ADC,∴∠BAC=∠DAC.∴∠BAC═22.5°.(3)解:当MO+PO的值最小时,点O与点E可以重合,理由如下: ∵ME∥AB,∴∠ABC=∠MEC=90°,∠MAB=∠EMA.∵MP⊥DC,∴∠MPC=90°.∴∠MPC=∠ADC=90°.∴PM∥AD.∴∠EAM=∠PMA.由(1)得,Rt△ABC≌Rt△ADC,∴∠EAC=∠MAB,∴∠EMA=∠AMP.即MC平分∠PME.又∵MP⊥CP,ME⊥CE,∴PC=EC.如图,连接PB,连接PE,延长ME交PD的延长线于点Q.设∠EAM=α,则∠MAP=α.在Rt△ABE中,∠BEA=90°﹣2α.在Rt△CDE中,∠ECD=90°﹣∠BEA=2α.∵PC=EC,∴∠PEB=∠EPC=∠ECD=α.∴∠PED=∠BEA+∠PEB=90°﹣α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE(ASA).∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°﹣α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合.此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD(SAS).∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线.当∠ABD=60°时,在△PEA中,∠PAE=∠PEA=60°.∴∠EPA=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠EMA=∠EAM=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.7.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF.(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.解:(1)补全图形如图1所示:(2)线段DE,EF,BF的数量关系为:EF=DE+BF.理由如下: 延长AD到点H,使DH=BF,连接CH,如图2所示:∵四边形ABCD是正方形,∴∠BCD=∠ADC=∠B=90°,BC=DC,∴∠CDH=90°=∠B,在△CDH和△CBF中,,∴△CDH≌△CBF(SAS).∴CH=CF,∠DCH=∠BCF.∵∠ECF=45°,∴∠ECH=∠ECD+∠DCH=∠ECD+∠BCF=45°.∴∠ECH=∠ECF=45°.在△ECH和△ECF中,,∴△EC H≌△ECF(SAS).∴EH=EF.∵EH=DE+DH,∴EF=DE+BF;(3)由(2)得:△ECH≌△ECF(SAS),∴∠CEH=∠CEF,∵CD⊥AD,CG⊥EF,∴CD=CG=4,∴点G的运动轨迹是以C为圆心4为半径的弧DB,∴点G运动的路线长==2π.8.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE.连接DE并延长交射线AP于点F,连接BF.(1)若∠BAP=α,直接写出∠ADF的大小(用含α的式子表示);(2)求证:BF⊥DF;(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下: 过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.9.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;10.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,'∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.11.已知,如图1,在边长为2的正方形ABCD中,E是边AB的中点,点F在边AD上,过点A 作AG⊥EF,分别交线段CD、EF于点G、H(点G不与线段CD的端点重合).(1)如图2,当G是边CD中点时,求AF的长;(2)设AF=x,四边形FHGD的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)联结ED,当∠FED=45°时,求AF的长.解:(1)∵E是AB的中点,AB=2,∴AE=AB=1,同理可得DG=1,∵AG⊥EF,∴∠AHF=∠HAF+∠AFH=90°,∵四边形ABCD是正方形,∴∠ADG=90°=∠DAG+∠AGD,∴∠AFH=∠AGD,∴△EAF∽△ADG,∴,即,∴AF=;(2)如图1,由(1)知:△EAF∽△ADG,∴,即,∴DG=2x,∵∠HAF=∠DAG,∠AHF=∠ADG=90°,∴∠AHF∽△ADG,∴=,∴=,∴AH==,FH==, ∴y=S△ADG﹣S△AFH,=,=2x﹣,如图2,当G与C重合时,∵EF⊥AG,∴∠AHE=90°,∵∠EAH=45°,∴∠AEH=45°,∴AF=AE=1,∴0<x<1;∴y关于x的函数关系式为:y=2x﹣(0<x<1);(3)如图3,过D作DM⊥AG,交BC于M,连接EM,延长EA至N,使AN=CM,连接DN,设CM=a,则AN=a,∵AD=CD,∠NAD=∠DCM=90°,∴△NAD≌△MCD(SAS),∴∠ADN=∠CDM,DN=DM,∵EF⊥AG,DM⊥AG,∴EF∥DM,∴∠EDM=∠FED=45°,∴∠ADE+∠CDM=∠EDM=45°,∴∠NDA+∠ADE=∠NDE=∠EDM,∵ED=ED,∴△NDE≌△MDE(SAS),∴EN=EM=a+1,∵BM=2﹣a,在Rt△EBM中,由勾股定理得:BE2+BM2=EM2,∴12+(2﹣a)2=(a+1)2,a=,∵∠AEF+∠EAG=∠EAG+∠DAG,∴∠AEF=∠DAG=∠CDM,∴tan∠AEF=tan∠CDM,∴,∴,∴AF=.12.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,△ACB中,∠ACB=90°,AC⊥AG且AC=AG,AB⊥AE且AE=AB,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形,理由如下:连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴四边形ABCD是垂美四边形;(2)∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;故答案为:AB2+CD2=AD2+BC2;(3)∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE, 在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.13.如图1,四边形ACEB,连接BC,∠ACB=∠BEC=90°,D在AB上,连接CD,∠ACD=∠ABC,BE=CD.(1)求证:四边形CDBE为矩形;(2)如图2,连接DE,DE交BC于点O,若tan∠A=2,在不添加任何辅助线和字母的情况下,请直接写出图中所有长度与AD的长度相等的线段.(1)证明:∵∠ACB=90°,∴∠A+∠ABC=90°,∵∠ACD=∠ABC,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠BDC=180°﹣90°=90°=∠BEC,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴BD=CE,∵CD=BE,∴四边形CDBE是平行四边形,又∵∠BEC=90°,∴四边形CDBE为矩形;(2)解:图中所有长度与AD的长度相等的线段为AC=OC=OB=OD=OE=AD .理由如下:由(1)得:四边形CDBE为矩形,∠ADC=90°,∴BC=DE,OD=OE,OB=OC,∴OC=OB=OD=OE=BC,∵∠ADC=∠ACB=90°,∴tan∠A=2==,∴CD=2AD,BC=2AC,∴AC===AD,∴DE=BC=2AC,∴OC=OB=OD=OE=BC=AC=AD,∴AC=OC=OB=OD=OE=AD.14.如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.(1)求A点和D点的坐标;(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.解:(1)∵(a﹣3)2+|b﹣|=0,∴a=3,b=,∴D(0,),A(3,0);(2)DE=OD+EB;理由如下:如图1,在CO的延长线上找一点F,使OF=BE,连接AF, 在△AOF和△ABE中,,∴△AOF≌△ABE(SAS),∴AF=AE,∠OAF=∠BAE,又∵∠OAB=90°,∠DAE=,∴∠BAE+∠DAO=45°,∴∠DAF=∠OAF+∠DAO=45°,∴∠DAF=∠EAD,在△AFD和△AED中,,∴△AFD≌△AED(SAS),∴DF=DE=OD+EB;(3)有3种情况共6个点:①当DA=DP时,如图2,Rt△ADO中,OD=,OA=3,∴AD===2, ∴P1(﹣3,0),P2(0,3),P3(0,﹣);②当AP4=DP4时,如图3,∴∠ADP4=∠DAP4=30°,∴∠OP4D=60°,Rt△ODP4中,∠ODP4=30°,OD=,∴OP4=1,∴P4(1,0);③当AD=AP时,如图4,∴AD=AP5=AP6=2,∴P5(3+2,0),P6(3﹣2,0),综上,点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).证明:P5(3+2,0),∵∠OAD=30°且△ADO是直角三角形,又∵AO=3,DO=,∴DA=2,而P5A=|3+2﹣3|=2,∴P5A=DA,∴△P5AD是等腰三角形.15.已知,在四边形ABCD中,点M、N、P、Q分别为边AB、AD、CD、BC的中点,连接MN、NP、PQ、MQ.(1)如图1,求证:四边形MNPQ为平行四边形;(2)如图2,连接AC,AC分别交MN、PQ于点E、F,连接BD,BD分别交MQ、NP于点G、H,AC与BD交于点O,且AC⊥BD,若tan∠ADB=,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于OD的线段.(1)证明:如图1,连接BD.∵Q,P分别是BC,CD的中点,所以PQ∥BD,PQ=BD.∵M,N分别是AB,AD的中点.∴MN∥BD,MN=BD.∴PQ∥MN,且PQ=MN.∴四边形MNPQ是平行四边形.(2)解:∵四边形MNPQ是平行四边形,AC⊥BD,∴四边形MNPQ是矩形,∴四边形NHOE和四边形EOGM都是矩形,∴NH=OE=MG=AE=,∵tan∠ADB=,∴,∴NH=OE=MG=AE=.即长度等于OD的线段有NH,OE,MG,AE.。
四边形-2021届中考数学压轴大题专项训练(解析版)
专题02 四边形 2021届中考数学压轴大题专项训练(解析版)1.如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF =45°,将∠ADF 绕点A 顺时针旋转90°后,得到∠ABQ ,连接EQ .(1)求证:EA 是∠QED 的平分线; (2)已知BE =1,DF =3,求EF 的长. 【详解】证明:(1)∠将∠ADF 绕点A 顺时针旋转90°后,得到∠ABQ , ∠QB =DF ,AQ =AF ,∠BAQ =∠DAF , ∠∠EAF =45°, ∠∠DAF +∠BAE =45°, ∠∠QAE =45°, ∠∠QAE =∠F AE , 在∠AQE 和∠AFE 中,AQ AF QAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩, ∠∠AQE ∠∠AFE (SAS ), ∠∠AEQ =∠AEF ,∠EA是∠QED的平分线;(2)由(1)得∠AQE∠∠AFE,∠QE=EF,∠ADF=∠ABQ,∠四边形ABCD是正方形,∠∠ADB=∠ABD=45°,∠∠ABQ=45°,∠∠QBE=∠ABQ+∠ABD=90°,在Rt∠QBE中,QB2+BE2=QE2,又∠QB=DF,∠EF2=BE2+DF2=1+9=10,∠EF.2.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF∠DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)当线段DE与正方形ABCD的某条边的夹角是35°时,求∠EFC的度数.【详解】解:(1)证明:如图,作EP∠CD于P,EQ∠BC于Q,四边形ABCD 为正方形, ∠∠DCA =∠BCA =45°, ∠EQ =EP , 矩形DEFG ,∴ ∠PED+∠PEF =90°,∠∠QEF+∠PEF =90°, ∠∠QEF =∠PED , 在Rt∠EQF 和Rt∠EPD 中,QEF PED EQ EPEQF EPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠Rt EQF △∠Rt EPD △(ASA ), ∠EF =ED ,∠矩形DEFG 是正方形;(2)∠当DE 与AD 的夹角为35°时, 如图2,∠∠ADE=35°,∠ADC=90°,∠∠EDC=55°,∴∠=︒-︒-︒-︒=︒EFC360909055125,∠当DE与DC的夹角为35°时,DC EF交于H,如图3,即,∠=∠=︒∠=∠DEH DCF DHE FHC90,,∠EDC=∠EFC=35°,综上所述:∠EFC=35°或125°.∥,以DC,DE为边作平行四边形DCFE,EC的延长线交AF 3.如图所示,四边形ACED中,CE AD=.于B,求证:AB FB【详解】证明:如图,延长FC交AD于点G,∠四边形CDEF为平行四边形,∠CF∠DE,CF=DE,又∠CE∠AD,∠四边形CEDG为平行四边形,∠CG=DE,∠CF=CG,且BC∠AG,∠BC是∠F AG的中位线,∠B为AF的中点,即AB=FB.4.如图1,已知正方形ABCD和正方形CEGF,点,,F C B在同一直线上,连接BE,DF,DF与EG相交于点M.(1)求证:BE FD=.(2)如图2,N是BC边上的一点,连接AN交BE于点H,且BN GM BC GE=.∠求证:BN EC =; ∠若2CE DE =,直接写出BNAB的值. 【详解】解:(1)∠四边形ABCD 和四边形CEGF 是正方形, ∠BC=CD=AB ,CE=CF ,∠BCE=∠DCF=90° ∠∠BCE∠∠DCF (SAS ), ∠BE=FD ;(2)∠∠四边形ABCD 和四边形CEGF 是正方形, ∠CD//GE ,GF=EC ∠DEM FGM ,∠==GM GF ECEM DE DE ∠=GM ECEG DC∠BN GMBC GE=∠=BN ECBC DC∠BC=CD ∠BN EC = ∠∠2CE DE = ∠23=CE DC ∠BN EC =∠23= BNDC∠AB=CD∠23= BNAB5.如图1,已知正方形ABCD,AB=4,以顶点B为直角顶点的等腰Rt∠BEF绕点B旋转,BE=BF,连结AE,CF.(1)求证:∠ABE∠∠CBF.(2)如图2,连结DE,当DE=BE时,求S∠BCF的值.(3)如图3,当Rt∠BEF旋转到正方形ABCD外部,且线段AE与线段CF存在交点G时,若M是CD的中点,P是线段DG上的一个动点,当满足MP+2PG的值最小时,求MP的值.【详解】解:(1)∠四边形ABCD是正方形,∠AB=BC,∠ABC=90°,∠∠EBF=90°=∠ABC,∠∠ABE=∠CBF,又∠BE=BF,AB=BC,∠∠ABE∠∠CBF(SAS);∠∠ABE∠∠CBF,∠S∠ABE=S∠CBF,∠AD=AB,AE=AE,DE=BE,∠∠ADE∠∠ABE(SSS),∠∠DAE=∠BAE=45°,∠EH∠AB,∠∠EAB=∠AEH=45°,∠AH=EH,∠BE2=BH2+EH2,∠10=BE2+(4﹣BE)2,∠BE=1或3,当BE=1时∠S∠ABE=S∠CBF=12AB×EH=12×4×1=1,当BE=3时∠S∠ABE=S∠CBF=12AB×EH=12×4×3=6,由(1)同理可得∠ABE∠∠CBF,∠∠EAB=∠BCF,∠∠BAE+∠CAE+∠ACB=90°,∠∠BCF+∠CAE+∠ACB=90°,∠∠AGC=90°,∠∠AGC=∠ADC=90°,∠点A,点G,点C,点D四点共圆,∠∠ACD=∠AGD=45°,∠PK∠AG,∠∠PGK=∠GPK=45°,∠PK=GK PG,PG=MP+PK,∠MP+2PG值最小,∠当点M,点P,点K三点共线时,且点E,点G重合时,MP+2如图4,过点B 作BQ ∠CF 于Q ,∠BE =BF ,∠EBF =90°,BQ ∠EF ,∠EF =BQ =EQ =FQ∠CQ∠CE =CQ ﹣EQ ∠MK ∠AE ,CE ∠AE , ∠MK ∠CE , ∠DM MPDC CE=, 又∠M 是CD 的中点, ∠DC =2DM ,∠MP =12CE . 6.如图,在正方形ABCD 中,点E 、F 均为中点,连接AF 、DE 交于点P ,连接PC ,证明:PE PF +=.【详解】证明:如图,延长DE 至N ,使得EN PF =,连接CN , 在正方形ABCD 中,E 、F 分别是BC 、CD 的中点, CE DF ∴=,在ADF 和DCE 中,,90,,AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩()ADF DCE SAS ∴△≌△,AFD DEC ∴∠=∠, CFP CEN ∴∠=∠,在CEN 和CFP 中,,,,CE CF CEN CFP EN PF =⎧⎪∠=∠⎨⎪=⎩()CEN CFP SAS ∴△≌△,CN CP ∴=,ECN PCF ∠=∠,90PCF BCP ∠+∠=︒,90ECN BCP NCP ∴∠+∠=∠=︒, NCP ∴△是等腰直角三角形,PN PE NE ∴=+=.即PE PF +=.7.如图,正方形ABCD 中,E 为BC 上一点,过点B 作BG AE ⊥于G ,延长BG 至点F 使45CFB ︒∠=. (1)求证:BAG CBF ∠=∠; (2)求证:AG FG =;(3)若2,GF BG CF ==AB 的长.【详解】(1)证明:因为ABCD 是正方形 所以90ABG CBF ︒∠+∠=在三角形BGA 中,因为,BG AE BAG CBF ⊥∴∠=∠ (2)过点C 作CH BF ⊥,,AG BF CH BF ⊥⊥90AGB BHC ︒∴∠=∠=因为ABCD 是正方形, 所以AB =BC ,由(1)BAG CBF ∴∠=∠ 所以AGB BHC ∆≅∆,AG BH BG CH ∴==在三角形CHF 中,45,CBF FH CH ︒∠==GF GH FH GH CH GH BG BH AG ∴=+=+=+==,所以AG FG =. (3)在三角形CHF 中,45,2CFB CF ︒∠==1CH HF ∴== BG CH =2CF BG = 2FG ∴=AG FG =∴=AB8.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.(1)如图1,DE∠FG,求证:BF=AE+AG;(2)如图2,DE∠DF,P为EF中点,求证:BE PC;(3)如图3,EH交FG于O,∠GOH=45°,若CD=4,BF=DG=1,则线段EH的长为.【详解】解:(1)如图1,过点G作GM∠BC于M,则∠GMB=∠GMF=90°,∠四边形ABCD是正方形,∠AD=AB,∠A=∠B=90°,∠四边形ABMG是矩形,∠AG=BM,韩哥智慧之窗-精品文档∠DE∠GF,∠∠ADE+∠DGF=∠ADE+∠AED=90°,∠∠AED=∠DGF,又∠DGF=∠MFG,∠∠AED=∠MFG,∠∠DAE∠∠GMF(AAS),∠AE=MF,则BF=BM+MF=AG+AE;(2)如图2,过点E作EQ∠PC,交BC于点Q,∠P是EF的中点,∠PC是∠EQF的中位线,则EQ=2PC,QC=CF,∠∠ADC=∠EDF=90°,∠∠ADE=∠CDF,又∠∠A=∠DCF=90°,AD=CD,∠∠ADE∠∠CDF(ASA),∠AE=CF=QC,∠AB=BC,∠BE=BQ,则∠BEQ=45°,∠EQ BE,则2PC,∠BE PC;(3)如图3所示,作BM∠GF交AD于M,作BN∠EH交CD于N,则四边形BFGM和四边形BEHN是平行四边形,∠BM=GF,BF=MG=1,BN=EH,∠DG=1,CD=AD=4,∠AM=2,延长DC到P,使CP=AM=2,∠BA=BC,∠A=∠BCP=90°,∠∠BAM∠∠BCP(SAS),∠∠ABM=∠CBP,BM=BP,∠∠GOH=45°,BN∠EH,BM∠GF,∠∠MBN=45°,∠∠ABM+∠CBN =45°,∠∠CBP+∠CBN =45°,即∠PBN =45°, ∠∠MBN∠∠PBN (SAS ), ∠MN =PN ,设CN =x ,则MN =PN =CN+PC =x+2,DN =4﹣x ,在Rt∠DMN 中,由DM 2+DN 2=MN 2可得22+(4﹣x )2=(x+2)2, 解得x =43,则EH =BN 3,.9.已知:四边形ABCD 为正方形,AMN ∆是等腰Rt ∆,90AMN ∠=︒.(1)如图:当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 相交于点E 、F ,连接EF ,试证明:EF DF BE =+.(2)如图,当Rt AMN ∆绕点A 旋转时,若边AM 、AN 分别与BC 、CD 的延长线相交于点E 、F ,连接EF .∠试写出此时三线段EF 、DF 、BE 的数量关系并加以证明.∠若6CE =,2DF =,求:正方形ABCD 的边长以及AEF ∆中AE 边上的高. 【详解】(1)证明:如图1,延长CB 到G ,使BG=DF ,连接AG ,∠四边形ABCD 是正方形,∠∠D=∠ABC=∠DAB=∠ABG=90°,AD=AB , 在∠ADF 和∠ABG 中,AD AB D ABG DF BG ⎧⎪∠∠⎨⎪⎩===, ∠∠ADF∠∠ABG (SAS ), ∠AG=AF ,∠DAF=∠BAG ,∠∠EAF=45°,∠∠EAG=∠EAB+∠BAG=∠EAB+∠DAF=45°, ∠∠EAF=∠EAG , ∠AE=AE , ∠∠EAF∠∠EAG ,∠EF=EG=EB+BG=EB+DF .(2)∠三线段EF 、DF 、BE 的数量关系是:EF BE DF =-,理由如下: 如图2,在BC 上取一点G ,使BG DF =连接AG ,同(1)可证ABG ADF ∆∆≌, ∠AG=AF ,∠DAF=∠BAG , ∠AMN ∆是等腰直角三角形, ∠45MNA N ∠=∠=︒, ∠45FAD DAE ∠+∠=︒, ∠45DAE BAG ∠+∠=︒, ∠90DAB ∠=︒,∠904545GAE FAE ∠=︒-︒=︒=∠,在FAE ∆和GAE ∆中,AF AG FAE GAF AE AE =⎧⎪∠=∠⎨⎪=⎩∠()FAE GAE SAS ∆∆≌, ∠EF EG BE BG ==-, ∠BG DF =, ∠EF BE DF =-.∠如图2,过F 作FH∠AE 于H ,设正方形ABCD 的边长是x ,则BC=CD=x , ∠CE=6,DF=BG=2,∠EF=GE=CG+CE=BC -BG+CE=x -2+6=x+4, 在Rt∠FCE 中,由勾股定理得:EF 2=FC 2+CE 2, ∠(x+4)2=(x+2)2+62, 解得:x=6,∠AG=AF== ∠∠FAM=45°,∠FH=2AF=2⨯, 即∠AEF 中AE边上的高为10.如图,在边长为a 的正方形ABCD 中,作∠ACD 的平分线交AD 于F ,过F 作直线AC 的垂线交AC 于P ,交CD 的延长线于Q ,又过P 作AD 的平行线与直线CF 交于点E ,连接DE ,AE ,PD ,PB .韩哥智慧之窗-精品文档(1)求AC,DQ的长;(2)四边形DFPE是菱形吗?为什么?(3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;(4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.【详解】解:(1)=,∠CF平分∠BCD,FD∠CD,FP∠AC,∠FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,∠∠FDQ∠∠FPA(ASA),∠QD=AP,∠点P在正方形ABCD对角线AC上,∠CD=CP=a,∠QD=AP=AC-PC=)1a;(2)∠FD=FP,CD=CP,∠CF垂直平分DP,即DP∠CF,∠ED=EP,则∠EDP=∠EPD,∠FD=FP,∠∠FDP=∠FPD,而EP∠DF,∠∠EPD=∠FDP,韩哥智慧之窗-精品文档∠∠FPD=∠EPD,∠∠EDP=∠FPD,∠DE∠PF,而EP∠DF,∠四边形DFPE是平行四边形,∠EF∠DP,∠四边形DFPE是菱形;(3)DP2+ EF2=4QD2,理由是:∠四边形DFPE是菱形,设DP与EF交于点G,∠2DG=DP,2GF=EF,∠∠ACD=45°,FP∠AC,∠∠PCQ为等腰直角三角形,∠∠Q=45°,可得∠QDF为等腰直角三角形,∠QD=DF,在∠DGF中,DG2+FG2=DF2,∠有(12DP)2+(12EF)2=QD2,整理得:DP2+ EF2=4QD2;(4)∠∠DFQ=45°,DE∠FP,∠∠EDF=45°,又∠DE=DF=DQ=AP=)1a,AD=AB,∠∠ADE∠BAP(SAS),∠AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,∠∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,∠PAB+∠DAE+∠HAP=90°,∠∠HPA+∠HAP=90°,∠∠PHA=90°,即BP∠AE,综上:BP与AE的关系是:垂直且相等.11.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。
2021年九年级数学中考复习分类压轴大题专题:四边形综合(四)
2021年九年级数学中考复习分类压轴大题专题:四边形综合(四)1.如图1,在Rt△ABC中,∠ACB=90°,点P在斜边AB上,点D、E、F分别是线段PA、PB、PC的中点,易知△DEF是直角三角形.“现把△DEF以点P为中心,顺时针旋转α,其中0°<α<360°.连接AD、BE、CF.(1)操作发现如图2,若点P是AB的中点,连接PF,可以发现=,=;(2)类比探究如图3,Rt△ABC中,CP⊥AB于点P,请判断与的大小,结合图2说明理由;(3)拓展提高在(2)的条件下,如果∠CAB=30°,且AB=4,在△DEF旋转的过程中,当以点C、D、F、P四点为顶点的四边形与以点B、E、F、P四点为顶点的四边形都是平行四边形时,直接写出线段AD、CF、BE的长.2.如图,四边形ABCO是菱形,以点O为坐标原点,OC所在直线为x轴建立平面直角坐标系.若点A的坐标为(﹣5,12),直线AC与y轴相交于点D,连接BD.(1)求菱形ABCO的边长;(2)证明△DCB为直角三角形;(3)直线BD上是否存在一点P使得△BCP的面积与△BCA的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.3.如图所示,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y轴的正半轴上.点C的坐标为(4,2).动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.(1)①点B的坐标.②求菱形ABCD的面积;(2)当t=3时,问线段AC上是否存在点E,使得PE+DE最小,如果存在,求出PE+DE 最小值;如果不存在,请说明理由;(3)若点P到AC的距离是1,则点P运动的时间t等于.4.如图,正方形OABC中,O为坐标原点,点A、点C分别落在y轴、x轴上,点B坐标为(﹣4,4),点D为x轴上任意一点,将线段DA绕点D逆时针旋转90°,得对应线段为DE,作直线EC交y轴于点F.(1)如图(1),当点D为OC的中点时,求点E的坐标;(2)如图(2),当点D在边OC上任意移动时,猜想:点F的位置是否发生变化?若不变,求出点F的坐标,若改变,请说明理由;(3)如图(3),当点D在x轴的正半轴上移动时,请在图(3)画出图形(不保留作图痕迹),并直接回答点F的位置与(2)中猜想的结论是否一致.答:(填“一致”或“不一致”).5.如图2,边长为1的正方形ABCD被两条与边平行的线段EF,GH分割成四个小长方形,EF与GH交于点P,设BF长为a,BG长为b,△GBF的周长为m.(1)①用含a,b,m的式子表示GF的长为.②用含a,b的式子表示长方形EPHD的面积为.(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1△ABC中,∠ABC=90°,则AB2+BC2=AC2.请用上述知识解决下列问题:①写出a,b,m满足的等式.②若m=1,求长方形EPHD的面积.③当m满足什么条件时,长方形EPHD的面积是一个常数?6.如图,在矩形ABCD中,E是AB边上的一个动点,把△BCE沿CE折叠,使点B落在点F 处,过点F作GH∥CE,分别交AB、CD于点G、H.(1)求证:△EFG是等腰三角形;(2)如图①,若F是GH中点,求∠FGE的度数;(3)如图②,若点G与点A重合,AB=30,BC=20,求FH的长.7.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.8.如图1,在正方形ABCD中,点E是CD上一点(不与C,D两点重合),连接BE,过点C 作CH⊥BE于点F,交对角线BD于点G,交AD边于点H,连接GE,(1)求证:△DHC≌△CEB;(2)如图2,若点E是CD的中点,当BE=8时,求线段GH的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .9.四边形ABCD 中,E 为边BC 上一点,F 为边CD 上一点,且∠AEF =90°. (1)如图1,若ABCD 为正方形,E 为BC 中点,求证:=.(2)若ABCD 为平行四边形,∠AFE =∠ADC , ①如图2,若∠AFE =60°,求的值.②如图3,若AB =BC ,EC =2CF ,直接写出cos ∠AFE 值为 .10.如图1,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =13,BD =24,在菱形ABCD 的外部以AB 为边作等边三角形ABE .点F 是对角线BD 上一动点(点F 不与点B 重合),将线段AF 绕点A 顺时针方向旋转60°得到 线段AM ,连接FM .(1)线段AO 的长为 ;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AM=AC;(3)连接EM.若△AFM的周长为3,请直接写出△AEM的面积.参考答案1.解:(1)如图2中,连接PF,BE.∵∠ACB=90°,AP=PB,∴PC=PA=PB,∵∠DFE=90°,PD=PE,∴PF=PD=PE,∵∠APC=∠DPF,∴∠APD=∠CPF,∴△APD≌△CPF(SAS),∴AD=CF,∴=1,同法可证,△BPE≌△CPF,∴CF=BE,∴=1.故答案为1,1.(2)结论:=.理由:如图3中,连接PF.∵PC⊥AB,PF⊥DE,∴∠APC=∠DPF=90°,∵△APC∽△DPF,∴=,∴=,∵∠APC=∠DPF=90°,∴∠APD=∠CPF,∴=,同法可证,△CPF∽△BPE,∴=,∵∠ACB=90°,CP⊥AB,∴△APC∽△CPB,∴=,∴=.(2)如图4﹣1中,当PC∥DF时,∵∠CAB=30°,∠APC=90°,∴PC=AC,∵DF=AC,∴DF=PC,∴四边形PCFD是平行四边形,∵∠EFD=90°,∴EF⊥DF,∴EF⊥PC,∵PC⊥AB,∴PB∥EF,同法可证,BP=EF=BC,∴四边形PBEF是平行四边形,∴BE∥PF,∴∠BEP=∠EPF=90°,∵AB=4,∠CAB=30°,∠ACB=90°,∴BC=AB=2,∵CP⊥AB,∠ABC=60°,∴∠CPB=90°,∠PCB=30°,∴PB=PB=1,∵∠EPB=∠DEF=60°,∴BE=PB•sin60°=,由(2)可知,===,∴CF=,AD=.如图4﹣2中,当点D落在AC上时,四边形CDPF是矩形,四边形PEBF是矩形,此时BE=PF=,由(2)可知,===,∴CF=,AD=.综上所述,BE=,CF=,AD=.2.解:(1)过点A作AM⊥x轴于点M,AM=12,OM=5,∴,(2)∵四边形ABCO为菱形,∴OC=OA=13,∴C(13,0),又∵AB∥OC,∴B(8,12),又∵A(﹣5,12),∴,∴点,∴,,因此,BD2+BC2=DC2,所以△BCD为直角三角形;(3)延长BD交AO于点P,∵AO∥BC,∴S△BCP =S△BCA,∵A(﹣5,12),∴,由(2)知,联立得:,解得,所以点,作P关于点B的对称点P′,可根据中点得:∴,综上,点P为或.3.解:(1)①∵C(4,2),∠AOD=90°,∴DC=AD=4,DO=2,∴OA==2,∵四边形ABCD为菱形,∴AB=AD=4.∴OB=AB﹣OA=2.∴B(2,0).故答案为:(2,0).②∵在菱形ABCD中,DC=AB=4,OD=2,∴菱形ABCD的面积=AB•OD=4×2=8.(2)如图1所示:在菱形ABCD中,点P关于AC的对称点为P',AP'=3,连接DP'交AC于点E,连接PE,∴PE+DE=P'E+ED=P'D.∵OA=2,OD=2,∴OP'=1,在Rt△DOP'中,∵DO2+P'O2=P'D2,∴.∴PE+DE的最小值为.(3)如图2所示:①当点P在AD上时,过点P作PE⊥AC,垂足为E.由菱形的性质可知:∠PAE=∠DAB=30°,∵PE=1,∠PAE=30°,∠PEA=90°,∴AP=2.∴t=2.②当点P在DC上时,如图3所示:由菱形的性质可知:∠PCE=∠DCB=30°,∵PE=1,∠PCE=30°,∠PEC=90°,∴CP=2.∴AD+DP=4+2=6.∴t=6.③如图4所示:当点P在BC上时.由菱形的性质可知:∠PCE=∠DCB=30°,∵PE=1,∠PCE=30°,∠PEC=90°,∴CP=2.∴AD+DC+CP=4+4+2=10.∴t=10.④如图5所示;点P在AB上时.由菱形的性质可知:∠PAE=∠DAB=30°,∵PE=1,∠PAE=30°,∠PEA=90°,∴AP=2.∴AD+DC+BC+BP=4+4+4+2=14.∴t=14.综上所述,当t=2或t=6或t=10或t=14时,点P到AC的距离是1.故答案为:2,6,10,14.4.解:(1)如图1中,过点E作EH⊥OC于H.∵四边形OABC是正方形,B(﹣4,4),∴OA=OC=4,∵D是OC中点,∴CD=OD=2,∵∠EHD=∠AOD=∠ADE=90°,∴∠EDH+∠ADO=90°,∠ADO+∠DAO=90°,∴∠EDH=∠DAO,∵DE=DA,∴△DHE≌△AOD(AAS),∴EH=OD=2,DH=OA=4,∴OH=DH+OD=6,∴E(﹣6,2).(2)点F的位置不变化.理由如下:∵△DHE≌△AOD,∴DH=OA,EH=OD,∵OA=OC,∴DH=CO,∴CH=OD=EH,∵∠EHC=90°,∴∠ECH=∠OCF=45°,∵∠COF=90°,∴∠OCF=∠OFC=45°,∴OF=OC=4,∴F(0,﹣4).(3)一致.理由如下:过点E作EH⊥OC于H,同法可证△DHE≌△AOD,∴DH=OA,EH=OD,∵OA=OC,∴DH=CO,∴CH=OD=EH,∵∠EHC=90°,∴∠ECH=∠OCF=45°,∵∠COF=90°,∴∠OCF=∠OFC=45°,∴OF=OC=4,∴F(0,﹣4).故答案为一致.5.解:(1)①∵BF长为a,BG长为b,△GBF的周长为m,∴GF=m﹣a﹣b,故答案为:m﹣a﹣b;②∵正方形ABCD边长为1,∴AB=BC=1,∵BF长为a,BG长为b,∴AG=1﹣b,FC=1﹣a,∴EP=AG=1﹣b,PH=FC﹣1﹣a,∴长方形EPHD的面积为:(1﹣a)(1﹣b)=1﹣a﹣b+ab,故答案为:1﹣a﹣b+ab;(2)①∵△ABC中,∠ABC=90°,则AB2+BC2=AC2.∴在△GBF中,GF=m﹣a﹣b,∴(m﹣a﹣b)2=a2+b2,化简得,m2﹣2ma﹣2mb+2ab=0,故答案为:m2﹣2ma﹣2mb+2ab=0;②∵BF长为a,BG长为b,∴AG=1﹣b,FC=1﹣a,在Rt△GBF中,GF2=BF2+BG2=a2+b2,∵△GBF的周长为m=1,∴BF+BG+GF=a+b+=1,即=1﹣a﹣b,两边平方得,a2+b2=12﹣2(a+b)+(a+b)2,整理得,1﹣2a﹣2b+2ab=0,∴a+b﹣ab=,∴长方形EPHD的面积为:PH•EP=FC•AG=(1﹣a)(1﹣b)=1﹣a﹣b+ab=1﹣=;③由①得:m2﹣2ma﹣2mb+2ab=0,∴ab=ma+mb﹣m2,∴长方形EPHD的面积为:PH•EP=FC•AG=(1﹣a)(1﹣b)=1﹣a﹣b+ab=1﹣a﹣b+ma+mb﹣m2=1+(m﹣1)a+(m﹣1)b﹣m2,所以要使长方形EPHD的面积是一个常数,只要m=1.6.解:(1)∵把△BCE沿CE折叠,使点B落在点F处,∴∠BEC=∠FEC,∵GH∥CE,∴∠FGE=∠CEB,∠GFE=∠FEC,∴∠EGF=∠EFG,∴EG=EF,∴△EFG是等腰三角形;(2)如图①,取CE的中点M,连接FM,∵把△BCE沿CE折叠,使点B落在点F处,∴∠EFC=∠B=90°,∴EM=FM,∵AB∥CD,GH∥CE,∴四边形GECH是平行四边形,∴GH=CE,∵F是GH中点,∴FG=EM,∴四边形GEMF是平行四边形,∴GE=FM,由(1)知,GE=EF,∴EG=GF=EF,∴△EFG是等边三角形,∴∠FGE=60°;(3)由(2)知,BE=EF,AE=EF,∴AE=BE=AB=15,∴CH=AE=15,∴DH=30﹣15=15,∴AH===25,如图②,过E作EN⊥AF于N,∴∠ANE=∠B=90°,∵CE∥AH,∴∠EAN=∠BEC,∴△AEN∽△ECB,∴=,∴=,∴AN=9,∴AF=18,∴FH=25﹣18=7.7.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.8.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.9.(1)证明:如图1中,设正方形的边长为2a.∵四边形ABCD是正方形,∴∠B=∠C=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,∠FEC+∠EFC=90°,∴∠AEB=∠EFC,∴△ABE∽△ECF,∴,∵BE=EC=a,AB=CD=2a,∴CF=a,DF=CD﹣CF=a,∴.(2)①在AD上截取DM=DF,连接MF.∵∠ADC=60°,∴△DMF是等边三角形,∴DF=MF,∠DMF=∠DFM=60°,∴∠AMF=120°,∵四边形ABCD为平行四边形,AD∥BC,∴∠ECF=120°,∴∠AMF=∠ECF,∵∠AFE=60°,∴∠AFM+∠EFC=60°,∵∠EFC+∠FEC=60°,∴∠AFM=∠FEC,∴△AMF∽△FCE,∴,∵∠AFE=60°,∠AEF=90°,∴,∴.②如图3,作FT=FD交AD于点T,作FH⊥AD于H,则∠FTD=∠FDT,∴180°﹣∠FTD=180°﹣∠D,∴∠ATF=∠C,又∵∠TAF+∠D=∠AFE+∠CFE,且∠D=∠AFE,∴∠TAF=∠CFE,∴△FCE∽△ATF,∴,设CF=2,则CE=4,可设AT=x,则TF=2x,AD=CD=2x+2,∴DH=DT=,且,由cos∠AFE=cos∠D,得,解得x=6,∴cos∠AFE=.故答案为:.10.解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=12,在Rt△AOB中,AB=13,根据勾股定理得,AO===5,故答案为5;(2)由旋转知,AM=AF,∠MAF=60°,∴△AMF是等边三角形,∴∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠AFC=180°﹣∠AFM=120°,∵菱形ABCD的对角线AC与BD相交于O,∴OA=OC=AC,在△AOF和△COF中,,∴△AOF≌△COF(SAS),∴∠AFO=∠AFC=60°,在Rt△AOF中,sin∠AFO=,AF===OA=AC,∴AM=AC;(3)①当点F在线段OB上时,如图,由(2)知,△AMF是等边三角形,∵△AFM的周长为3,∴AF=,在Rt△AOF中,根据勾股定理得,OF==2,∴BF=OB﹣OF=12﹣2=10,连接EM,∵△ABE是等边三角形,∴AE=AB=13,∠BAE=60°,由(1)知,AM=AF,∠FAM=60°,∴∠BAE=∠EAM,∴∠EAM=∠BAF,∴△AEM≌△ABF(SAS),∴EM=BF=10,∠AEM=∠ABF,过点M作MN⊥AE于N,∴∠MNE=∠AOB=90°,∴△MNE∽△AOB,∴,∴,∴MN=,∴S=AE•MN=×13×=25,△AEM②当点F在OD上时,同①的方法得,MN=,S=AE•MN=×13×=35,△AEM即:△AEM的面积为25或35.。
2021年中考九年级数学专题复习过关训练:四边形综合型压轴题
2021年中考九年级数学专题复习过关训练:四边形综合型压轴题1、如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.2、如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.求证:AM⊥DF.3、在⊥ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知⊥A=60°;(1)若BC =8,AB =6,当AP 的长为多少时,⊥CPE 的面积最大,并求出面积的最大值. (2)试探究当⊥CPE ⊥⊥CPB 时,⊥ABCD 的两边AB 与BC 应满足什么关系?4、已知:如图9,正方形ABCD 中,P 是边BC 上一点,BE ⊥AP ,DF ⊥AP ,垂足分别是E 、F .(1)求证:EF=AE–BE ;(2)连接BF ,如果BF AF ADDF,求证:EF=EP .5、如图,在⊥ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF=BC ,求证:四边形OCFE 是平行四边形.6、如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=︒,求tan ADP ∠的值.7、如图1,2,已知四边形ABCD 为正方形,在射线AC 上有一动点P ,作PE ⊥AD (或延长线)于E ,作PF ⊥DC (或延长线)于F ,作射线BP 交EF 于G .(1)在图1中,设正方形ABCD 的边长为2, 四边形ABFE 的面积为y , AP =x ,求y 关于x 的函数表达式.(2)结论GB ⊥EF 对图13,图14都是成立的,请任选一图形给出证明; (3)请根据图14证明:△FGC ∽△PFB .8、在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE DE ,,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若20PAB ∠=︒,求ADF ∠的度数;(3)如图2,若4590PAB ︒<∠<︒,用等式表示线段AB FE FD ,,之间的数量关系,并证明.9、如图,矩形ABCD 中,AB=20,BC=10,点P 为AB 边上一动点,OP 交AC 于点Q . (1)求证:⊥APQ ⊥⊥CDQ ;(2)P 点从A 点出发沿AB 边以每秒1个单位长度的速度向B 点移动,移动时间为t 秒. ①当t 为何值时,DP ⊥AC ?图 1PD CBA A BCDP图 2②设S⊥APQ+S⊥DCQ=y,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.10、如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,⊥AEP=90°,且EP 交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.11、分别以□ABCD (CDA ∠≠90°) 的三边AB ,CD ,DA 为斜边作等腰直角三角形,△ABE ,△CDG ,△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.12、如图,在矩形ABCD 中,AB=4,BC=3,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD ﹣DO ﹣OC 以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ ⊥AB 于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与⊥ABD 重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒). (1)求点N 落在BD 上时t 的值;(2)直接写出点O 在正方形PQMN 内部时t 的取值范围;(3)当点P 在折线AD ﹣DO 上运动时,求S 与t 之间的函数关系式; (4)直接写出直线DN 平分⊥BCD 面积时t 的值.ABCDGF E图1ABCDGFE图213、菱形ABCD 的对角线AC,BD 相交于点O ,4AC BD ==,动点P 在线段BD 上从点B 向点D 运动,PP ′⊥AB 于点P ′,四边形PFBG 关于BD 对称。
2021年九年级中考数学 一轮专题训练:正方形及四边形综合问题(含答案)
2021中考数学一轮专题训练:正方形及四边形综合问题一、选择题(本大题共10道小题)1. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形2. 下列说法,正确的个数有 ()①正方形既是菱形又是矩形;②有两个角是直角的四边形是矩形;③菱形的对角线相等;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个3. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次4. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.25. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是()A. 3B. 4C. 5D. 66. 如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF=60°,则CF的长是()A.B.C.-1 D.7. (2020·威海)如图,在▱ABCD中,对角线BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,直线EO交CD于点F,连结DE,BF.下列结论不成立的是()A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形8. (2020·温州)如图,在R t△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为A.14 B.15 C.D.9. (2020·湖北孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A 顺时针旋转90°,到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G,若BG=3,CG=2,则CE的长为( )A. B. C.4 D.10. 已知在平面直角坐标系中放置了5个如图X3-1-10所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()A.3+318 B.3+118 C.3+36D.3+16二、填空题(本大题共7道小题)11. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)12. 如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且E,A,B三点共线,AB=4,则阴影部分的面积是.13. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.14. 如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,若△EFC的周长为12,则EC的长为.15. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC 的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.16. 七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.由边长为4的正方形ABCD可以制作一副如图①所示的七巧板,现将这副七巧板在正方形EFGH内拼成如图②所示的“拼搏兔”造型(其中点Q,R分别与图②中的点E,G 重合,点P在边EH上),则“拼搏兔”所在正方形EFGH的边长是.17. 如图,正方形ABCD的面积为3 cm2,E为BC边上一点,∠BAE=30°,F 为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________cm.三、解答题(本大题共4道小题)18. 如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED 交DE于点F,交CD于点G.(1)求证:△ADG≌△DCE;(2)连接BF,求证:AB=FB.19. 如图,已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图①,点E在CD上,点G在BC的延长线上,判断DM,EM的数量关系与位置关系,请直接写出结论.(2)如图②,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.20. 如图,在直角梯形ABCD中,∠A=∠D=90°,AB=8 cm,CD=10 cm,AD =6 cm,点E从点A出发,沿A→D→C方向运动,运动速度为2 cm/s,点F同时从点A出发,沿A→B方向运动,运动速度为1 cm/s.设运动时间为t(s),△CEF 的面积为S(cm2).(1)当0≤t≤3时,t=________,EF=10.(2)当0≤t≤3时(如图①),求S与t的函数关系式,并化为S=a(t-h)2+k的形式,指出当t为何值时,S有最大值,最大值为多少?(3)当3≤t≤8时(如图②),求S与t的函数关系式,并求出当t为何值时,S有最大值,最大值为多少?21. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.2021中考数学一轮专题训练:正方形及四边形综合问题-答案一、选择题(本大题共10道小题)1. 【答案】B2. 【答案】B3. 【答案】B4. 【答案】D[解析]由旋转的性质可知,△ADE≌△ABF,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D.5. 【答案】B【解析】设CH=x,∵BE∶EC=2∶1,BC=9,∴EC=3,由折叠可知,EH=DH=9-x,在Rt△ECH中,由勾股定理得:(9-x)2=32+x2,解得:x=4.6. 【答案】C[解析]连接EF.∵AE=AF,∠EAF=60°,∴△AEF为等边三角形,∴AE=EF.∵四边形ABCD为正方形,∴∠B=∠D=∠C=90°,AB=AD,∴Rt△ABE ≌Rt△ADF(HL),∴BE=DF,∴EC=CF.设CF=x,则EC=x,AE=EF==x,BE=1-x.在Rt△ABE中,AB2+BE2=AE2,∴1+(1-x)2=(x)2,解得x=-1(舍负).故选C.7. 【答案】:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE =5, 又∵∠ADB =90°, ∴DEAB =5,∴DE =BE ,∴四边形DEBF 为菱形. 故C 选项结论正确,∵AE =3.6时,四边形DEBF 为矩形,AE =5时,四边形DEBF 为菱形, ∴AE =4.8时,四边形DEBF 不可能是正方形. 故D 不正确. 故选:D .8. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP ∽△CBQ ,所以CD DPCB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x.∴DC =,BC =,所以AB =10,△ABC的斜边上的高=4AC BC AB ⋅==,所以CR =14,所以因此本题选A .9. 【答案】B【解析】由旋转的性质得△ABF ≌△ADE ,∴BF=DE ,AF=AE ,又∵AH ⊥EF ,∴FH=EH ,∵四边形ABCD 是正方形,∴∠C=90°,∠EFC=∠EFC ,∴△FHG ∽△FCE ,∴FG FHFE FC=, ∵BG=3,CG=2,∴BC=5,设EC=x ,则BF=DE=5-x ,FG=BG+BF=3+5-x =8-x ,CF=BC+BF=5+5-x =10-x ,EF=22EC CF +=,FH=22(10)x x +-,210x =-,解得:x =154.故选B.10. 【答案】⎝⎛⎭⎪⎫72,0D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F .∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°, ∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12,∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13.则D 3C 3=13. 根据题意得出:∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°, ∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36. 则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16.二、填空题(本大题共7道小题)11. 【答案】-1 [解析]∵四边形ABCD 为正方形, ∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到正方形FECG 的位置,使得点D 落在对角线CF 上, ∴CF=,∠CFE=45°,∴△DFH 为等腰直角三角形,∴DH=DF=CF -CD=-1.故答案为-1.12. 【答案】8[解析]∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠CAE +∠BAF=90°, 又∠CAE +∠ECA=90°,∴∠ECA=∠BAF ,则在△ACE 和△F AB 中,∵∴△ACE≌△F AB(AAS),∴AB=CE=4,∴阴影部分的面积=AB·CE=×4×4=8.13. 【答案】30°或150°[解析]如图①,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠1=60°.∵四边形ABCD是正方形,∴DC=DA,∠2=90°.∴∠CDE=150°,DE=DC,∴∠3=(180°-150°)=15°.同理可求得∠4=15°.∴∠BEC=30°.如图②,∵△ADE是等边三角形,∴DE=DA,∠1=∠2=60°,∵四边形ABCD是正方形,∴DC=DA,∠CDA=90°.∴DE=DC,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.14. 【答案】5[解析]∵四边形ABCD是正方形,AC为对角线,∴∠F AE=45°,又∵EF⊥AC,∴∠AFE=90°,∴∠AEF=45°,∴EF=AF=3,∵△EFC 的周长为12, ∴FC=12-3-EC=9-EC ,在Rt △EFC 中,EC 2=EF 2+FC 2, ∴EC 2=9+(9-EC )2, 解得EC=5.15. 【答案】55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.16. 【答案】4[解析]如图,连接EG ,作GM ⊥EN 交EN 的延长线于M.在Rt △EMG 中,∵GM=4,EM=2+2+4+4=12,∴EG===4,∴EH==4.17. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NGAE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图三、解答题(本大题共4道小题)18. 【答案】证明:(1)∵四边形ABCD 是正方形, ∴∠ADG=∠C=90°,AD=DC ,又∵AG ⊥DE ,∴∠DAG +∠ADF=90°=∠CDE +∠ADF ,∴∠DAG=∠CDE , ∴△ADG ≌△DCE (ASA).(2)如图,延长DE 交AB 的延长线于H , ∵E 是BC 的中点,∴BE=CE.又∵∠C=∠HBE=90°,∠DEC=∠HEB ,∴△DCE ≌△HBE (ASA),∴BH=DC=AB ,即B 是AH 的中点. 又∵∠AFH=90°,∴Rt△AFH 中,BF=AH=AB.19. 【答案】解:(1)结论:DM⊥EM,DM=EM.[解析]延长EM交AD于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)结论不变.DM⊥EM,DM=EM.证明:延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°, ∴DM ⊥EM ,DM=ME.20. 【答案】(1)2; 【解法提示】根据题意知,AF =t ,AE =2t ,∵∠A =90°,∴AF 2+AE 2=EF 2,即t 2+(2t )2=(10)2,解得:t =2(负值舍去).(2)当0≤t ≤3时,如解图①,过点C 作CP ⊥AB ,交AB 延长线于点P ,解图①∵∠A =∠D =90°,∴四边形APCD 是矩形, 则CP =AD =6 cm ,∵AB =8 cm ,AD =6 cm ,∴BF =(8-t )cm ,DE =(6-2t )cm , 则S =S 梯形ABCD -S △AEF -S △CBF -S △CDE =12×(8+10)×6-12×t ×2t -12×(8-t )×6-12×(6-2t )×10 =-t 2+13t=-(t -132)2+1694,即S =-(t -132)2+1694,∵当t <132时,S 随t 的增大而增大,∴当t =3时,S 取得最大值,最大值为30;(3)当3≤t ≤8时,如解图②,过点F 作FQ ⊥CD 于点Q ,解图②由∠A =∠D =90°,知四边形ADQF 是矩形, ∴FQ =AD =6 cm ,∵AD +DE =2t ,AD =6 cm ,CD =10 cm , ∴CE =(16-2t )cm ,则此时S =12×(16-2t )×6=48-6t ,∵-6<0,∴S 随t 的增大而减小,∴当t =3时,S 取得最大值,最大值为30cm 2.21. 【答案】解: (1). (2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=90°-2a, ∵∠B′AD=a -90°,AD=AB′,∴∠AB′D=135-2a ,∴∠EB′D=∠AB′D -∠AB′B=45°.∵DE ⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∴DB DE′.∵四边形ABCD 为正方形,∴BD CD BDC=45°.∴DB DE ′=BDCD, ∵∠EDB′=∠BDC ,∴∠EDB′+∠EDB=∠BDC+∠EDB ,即∠BDB′=∠CDE.∴△B′DB ∽△EDC ,∴2BB BDCE CD′; ②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′,设BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m ,于是得到BE B E ′2=3m mm.情形二,如图,当点B′在BE 延长线上时,由BB CE′,设BB′=2m ,.∵CE ∥B′D ,CE=B′D ,∴,在等腰直角三角形DEB′中,斜边,∴B′E=DE=m 。
(2021年整理)四边形精选(中考压轴题)
(完整)四边形精选(中考压轴题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)四边形精选(中考压轴题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)四边形精选(中考压轴题)的全部内容。
中考数学24题专线训练1。
如图,已知正方形ABCD ,点E 是BC 上一点,点F 是CD 延长线上一点,连接EF ,若BE =DF ,点P 是EF 的中点.(1) 求证:AE = AF ;(2) 若75AEB ∠=︒, 求CPD ∠的度数.2.如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE=PC ,过点P 作PF⊥A E 于F ,直线PF 分别交AB 、CD 于G 、H , (1)求证: DH =AG+BE ; (2)若BE=1,AB=3,求PE 的长.3。
如图,在梯形ABCD 中,AD ∥BC,∠ABC=90°,DG ⊥BC 于G ,BH ⊥DC 于H,CH=DH,点E 在AB 上,点F 在BC 上,并且EF ∥DC .(1)若AD=3,CG=2,求CD ;(2)若CF=AD+BF ,求证:2EF=CD .4.如图1,菱形ABCD 中,点E 、F 分别为AB 、AD 的中点,连接CE 、CF . (1)求证:CE=CF ; (2)如图2,若H 为AB 上一点,连接CH ,使∠CHB=2∠ECB ,求证:CH=AH+AB .HPGF E DCB A密 封 线 内 不 能 答 题5. 如图,在直角三角形ABC 中,D 是斜边AB 的中点,向外作正方形DBEF ,正方形CDMN ,连接NF ; (1)若20A ∠=°,求CNF ∠的度数; (2)求证:.NF AC BC =+6. 已知:如图, 在正方形ABCD 外取一点E ,连接AE 、BE 、DE ,DE 交AB 于F.⑴若点G 为DF 的中点,连接AG ,∠AED=2∠DAG,AE=2,求DF 的长;⑵若AE ⊥AB ,BE ⊥DE ,点F 为AB 的中点,求证:FG-EF=BE7.如图,P 为正方形ABCD 边BC 上一点,F 在AP 上,且AF=AD ,FE ⊥AP 交CD 于点E ,G 为CB 延长线上一点,BG=DE ,(1)求证:DAPBAP PAG ∠+∠=∠21(2)若DE =2,AB =4,求AP 的长8.如图,在矩形ABCD 中,点M 、N 在线段AD 上,60MBC NCB ∠=∠=︒,点E 、F 分别为线段CN 、BC 上的点,连接EF 并延长,交MB 的延长线于点G ,EF=FG.(1)点K 为线BM 的中点,.若线段AK=2,MN=3,求矩形ABCD 的面积;(2)求证:MB=NE+BG.K NM GFE DCB ANMPDCBA9.如图,菱形ABCD 中,点E 、M 在AD 上,且CD CM =,点F 为AB 上的点,且12ECF B ∠=∠。
2021年九年级数学中考复习分类压轴大题专题:四边形综合(三)
2021年九年级数学中考复习分类压轴大题专题:四边形综合(三)1.问题探究:小红遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使DE=AD,连接BE,证明△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小红证明△BED≌△CAD的判定定理是:;(2)AD的取值范围是;方法运用:(3)如图2,AD是△ABC的中线,在AD上取一点F,连结BF并延长交AC于点E,使AE =EF,求证:BF=AC.(4)如图3,在矩形ABCD中,=,在BD上取一点F,以BF为斜边作Rt△BEF,且=,点G是DF的中点,连接EG,CG,求证:EG=CG.2.点P是平行四边形ABCD的对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F.点O为AC的中点.(1)如图1,当点P与点O重合时,线段OE和OF的关系是;(2)当点P运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?(3)如图3,点P在线段OA的延长线上运动,当∠OEF=30°时,试探究线段CF、AE、OE之间的关系.3.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF•FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求的值.4.在正方形ABCD中,线段EF交对角线AC于点G.(1)如图1,若点E、F分别在AB、CD边上,且AE=CF,求证:FG=EG;(2)如图2,若点E在AB边上,点F在BC边的延长线上,且AE=CF.(1)中结论是否依然成立?请说明理由;(3)在(2)的条件下,连结DG并延长交BC于点H,若BH=5,BE=12.求正方形ABCD 的面积.5.如图1,将矩形OABC放在直角坐标系中,O为原点,点C在x轴上,点A在y轴上,OA =4,OC=8.把矩形OABC沿对角线OB所在直线翻折,点C落到点D处,OD交AB于点E.(1)求点E坐标.(2)如图2,过点D作DG∥BC,交OB于点G,交AB于点H,连接CG,试判断四边形BCGD 的形状,并说明理由.(3)在(2)的条件下,点M是坐标轴上一点,直线OB上是否存在一点N,使以O、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N坐标;若不存在,请说明理由.6.如图①,在菱形ABCD中,∠ABC=60°,P、Q是对角线BD上的两个动点,点P从点D 出发沿BD方向以1cm/s的速度向点B运动,运动终点为B;点Q从点B出发沿着BD的方向以2cm/s的速度向点D运动,运动终点为D.两点同时出发,设运动时间为x(s),以A、Q、C、P为顶点的图形面积为y(cm2),y与x的函数图象如图②所示,根据图象回答下列问题:(1)BD=,a=;(2)当x为何值时,以A、Q、C、P为顶点的图形面积为4cm2?(3)在整个运动的过程中,若△AQP为直角三角形,请直接写出符合条件的所有x的值:.7.在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A的路径运动,运动时间为t(秒).以BE为边在矩形ABCD的内部作正方形BEHG.(1)如图,当四边形ABCD为正方形且点H在△ABC的内部,连结AH,CH,求证:AH=CH;(2)经过点E且把矩形ABCD面积平分的直线有条;(3)当AB=9,BC=12时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.8.在数学的学习中,有很多典型的基本图形.(1)如图①,△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为D、E.试说明△ABD≌△CAE:(2)如图②,△ABC中,∠BAC=90°,AB=AC,点D、A、F在同一条直线上,BD⊥DF,AD=3,BD=4.则菱形AEFC面积为;(3)如图③,分别以Rt△ABC的直角边AC、AB向外作正方形ACDE和正方形ABFG,连接EG,AH是△ABC的高,延长HA交EG于点I,若AB=6,AC=8,求AI的长度.9.定义:如果四边形的一条对角线的中点到另外两个顶点的距离都等于这条对角线的长一半,那么我们称这样的四边形为“等距四边形”.(1)在下列图形中:①等腰梯形、②矩形、③菱形,是“等距四边形”的是.(填序号)(2)如图1,在菱形ABCD中,AB=4,∠A=60°,BE⊥CD于点E,点F是菱形ABCD边上的一点,顺次连接B、E、D、F,若四边形BEDF为“等距四边形”,求线段EF的长.(3)如图2,已知等边△ABC边长为4,点P是△ABC内一点,若过点P可将△ABC恰好分割成三个“等距四边形”,求这三个“等距四边形”的周长和.10.▱ABCD中,AE⊥BC于E,且AD=AE.(1)如图1,连结DE,过A作AF⊥AB交ED于F,在AB上截取AG=AF,连结DG,点H 为GD中点,连接AH,求证:4AH2+DF2=2AF2;(2)如图2,连结BD,把△ABD沿直线BD方向平移,得到△A′B′D′,若CD=,EC=2,求在平移过程中A'C+B'C的最小值.参考答案1.解:(1)∵AD是中线,∴BD=CD,又∵∠ADC=∠BDE,AD=DE,∴△BED≌△CAD(SAS),故答案为:SAS;(2)∵△BED≌△CAD,∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴2<2AD<10,∴1<AD<5,故答案为:1<AD<5;(3)如图2,延长AD至H,使AD=DH,连接BH,∵AD是△ABC的中线,∴BD=CD,又∵∠ADC=∠BDH,AD=DH,∴△ADC≌△HDB(SAS),∴AC=BH,∠CAD=∠H,∵AE=EF,∴∠EAF=∠AFE,∴∠H=∠BFH,∴BF=BH,∴AC=BF;(4)如图3,延长CG至N,使NG=CG,连接EN,CE,NF,∵点G是DF的中点,∴DG=GF,又∵∠NGF=∠DGC,CG=NG,∴△NGF≌△CGD(SAS),∴CD=NF,∠CDB=∠NFG,∵=,=,∴tan∠ADB=,tan∠EBF=,∴∠ADB=∠EBF,∵AD∥BC,∴∠ADB=∠DBC,∴∠EBF=∠DBC,∴∠EBC=2∠DBC,∵∠EBF+∠EFB=90°,∠DBC+∠BDC=90°,∴∠EFB=∠BDC=∠NFG,∠EBF+∠EFB+∠DBC+∠BDC=180°,∴2∠DBC+∠EFB+∠NFG=180°,又∵∠NFG+∠BFE+∠EFN=180°,∴∠EFN=2∠DBC,∴∠EBC=∠EFN,∵=,且CD=NF,∴∴△BEC∽△FEN,∴∠BEC=∠FEN,∴∠BEF=∠NEC=90°,又∵CG=NG,∴EG=NC,∴EG=GC.2.解:(1)∵四边形ABCD是平行四边形,∴AO=CO,又∵∠AEO=∠CFO=90°,∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴OE=OF,故答案为:OE=OF;(2)补全图形如图所示,结论仍然成立,理由如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,∵点O为AC的中点,∴AO=CO,又∵∠AOE=∠COG,∴△AOE≌△COG(AAS),∴OE=OG,∵∠GFE=90°,∴OE=OF;(3)点P在线段OA的延长线上运动时,线段CF、AE、OE之间的关系为OE=CF+AE,证明如下:如图,延长EO交FC的延长线于点H,由(2)可知△AOE≌△COH,∴AE=CH,OE=OH,又∵∠OEF=30°,∠HFE=90°,∴HF=EH=OE,∴OE=CF+CH=CF+AE.3.解:(1)∵四边形ABCD是矩形,∴∠C=90°,∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∠C=∠BFE=90°,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFB=∠CBF=30°,∴∠CBE=∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴,∴AF•DF=AB•DE,∵AF•DF=10,AB=5,∴DE=2,∴CE=DC﹣DE=5﹣2=3,∴EF=3,∴DF===,∴AF==2,∴BC=AD=AF+DF=2=3.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=AD=BC,∵BC=BF,∴NF=BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BFA,∴,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,AB=BG=2x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=x.∴BF=BG+GF=2x+x=x.∴=.4.(1)证明:∵四边形ABCD是正方形,∴AB∥CD,∴∠EAG=∠FCG,又∵∠FGC=∠AGE,AE=CF,∴△CFG≌△AEG(AAS),∴FG=EG;(2)(1)中结论依然成立.理由如下:如图2,过点E作EM⊥AB交AC于点M,∵四边形ABCD是正方形,∴∠CAB=45°,∠ABC=90°,∴∠MAE=∠AME=45°,∴AE=EM,又∵AE=FC,∴EM=CF,∵∠AEM=∠ABC,∴ME∥CF,∴∠MEG=∠GFC,又∵∠MGE=∠FGC,∴△MEG≌△CFG(AAS),∴EG=FG;(3)解:如图3,连接DE,DF,EH,∵正方形ABCD中,∠DAE=∠DCB=90°,DC=AD,∴∠DAE=∠DCF=90°,又∵AE=CF,∴△ADE≌△DCF(SAS),∴DE=DF,由(2)知EG=GF,∴DG⊥EF,∴DH是EF的中垂线,∴EH=FH,∵BE=12,BH=5,∴EH===13,∴FH=13,设AE=x,则CF=x,∴AB=CB=12+x,∴CH=7+x,∴FH=CF+CH=x+7+x=2x+7,∴2x+7=13,解得x=3,∴AB=15,∴正方形ABCD的面积为225.5.解:(1)如图1中,∵四边形OABC是矩形,∴AB=OC=8,AB∥OC,∴∠ABO=∠BOC,由翻折可知,∠BOC=∠BOD,∴∠EOB=∠EBO,∴EO=BE,设AE=x,则EB=EO=8﹣x,在Rt△OAE中,∵∠OAE=90°,∴OA2+AE2=OE2,∴42+x2=(8﹣x)2,∴x=3,∴E(3,4).(2)如图2中,四边形BCGD是菱形.∵DG∥BC,∴∠DGB=∠CBG,由翻折的性质可知,∠CBG=∠DBG,BC=BD,∴∠DGB=∠DBG,∴DG =BD =BC ,∵DG ∥BC ,∴四边形BCGD 是平行四边形,∵BD =BC ,∴四边形BCGD 是菱形.(3)当点N 与G 重合,点M 与A 重合,四边形DM 1ON 1是平行四边形, ∵DH ==,∴EH ===, ∴AH =3+=,∴D (,),N 1(,), 当四边形ODN 1M 是平行四边形时,N 1(,), 当四边形ODN 2M 2是平行四边形时,N 2(), 当四边形ODM 1N 3是平行四边形时,N 3((﹣,﹣), 当四边形ODM 4N 4是平行四边形时,N 4(﹣,﹣)综上所述,满足条件的点N的坐标为N1(,),N2(,),N3((﹣,﹣),N4(﹣,﹣).6.解:(1)如图①中,连接AC交BD于点O.由题意:点N的实际意义表示x=3时,点Q运动到点D,∴BD=2×3=6,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABD=∠ADB=30°,OB=OD=3,∴OA=OC=,AB=2AO=2,∴S菱形ABCD=×BD×AC=×6×2=6.∴a=6,故答案为:6,6;(2)设x秒后P,Q相遇.则3x=6,x=2,∴M(2,0),∴直线EM的解析式为:y=﹣3x+6,当y=4时,x=,∵N(3,3),F(6,6),∴直线NF的解析式为y=x,当y=4时,x=4,综上所述,满足条件的x的值为s或4s;(3)a:当0≤x≤3时,PQ=(6﹣3x)2,AQ2=3+(3﹣2x)2,AP2=3+(3﹣x)2,①当∠PAQ=90°时,PQ2=AP2+AQ2,(6﹣3x)2=3+(3﹣x)2+3+(3﹣2x)2,解得x=或(舍去),②当∠APQ=90°时,AP2+PQ2=AQ2,即3+(3﹣x)2+(6﹣3x)2=3+(3﹣2x)2,解得x=2或x=3,③当∠AQP=90°时,AP2=PQ2+AQ2,即3+(3﹣x)2=(6﹣3x)2+3+(3﹣2x)2,解得:x=2(不合题意,舍去),x=,b:3<x≤6时,此时Q已经到达终点,所以,AQ2=(2)2=12,此时PQ2=x2,AP2=3+(x﹣3)2,此时,∠AQP=30°,∴当∠APQ=90°时,AQ2=AP2+PQ2,即12=x2+3+(x﹣3)2,解得:x=3或0(舍去)当∠PAQ=90°时,PQ2=AP2+AQ2,即x2=12+3+(x﹣3)2,解得:x=4,综上所述,满足条件的x的值为或或3或4,故答案为:或或3或4.7.(1)证明:∵四边形ABCD、四边形BEHG是正方形,∴AB=BC,BE=BG=EH=GH,∠B=∠BEH=∠BGH=90°,∴AB﹣BE=BC﹣BG,∠AEH=∠CGH=90°,∴AE=CG,在△AEH和△CGH中,,∴△AEH≌△CGH(SAS),∴AH=CH;(2)解:连接BD交AC于O,如图1所示:作直线OE,则直线OE矩形ABCD面积平分,即经过点E且把矩形ABCD面积平分的直线有1条,故答案为:1;(3)解:分两种情况:①如图2所示:连接AH交BC于M,∵四边形ABCD是矩形,∴△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ABM的面积=△ACM的面积,∴BM=CM=BC=6,由题意得:BE=BG=EH=GH=t,则AE=9﹣t,GM=6﹣t,∵△ABM的面积=△AEH的面积+正方形BEHG的面积+△GHM的面积,∴×6×9=x(9﹣t)+t2+t(6﹣t),解得:t=;②如图3所示:连接AH交CD于M,交BC的延长线于K,∵四边形ABCD是矩形,∴∠MCK=∠B=∠D=∠BCD=90°,AD=BC=12,CD=AB=9,△ABC的面积=△ADC的面积,∵直线AH将矩形ABCD的面积分成1:3两部分,∴△ADM的面积=△ACM的面积,∴DM=CM=CD=,在△KCM和△ADM中,,∴△KCM≌△ADM(ASA),∴CK=DA=12,∴BK=BC+CK=24,由题意得:BE=BG=EH=GH=t,则AE=9﹣t,GK=24﹣t,∵△ABK的面积=△AEH的面积+正方形BEHG的面积+△GHK的面积,∴×24×9=t(9﹣t)+t2+t(24﹣t),解得:t=;综上所述,若直线AH将矩形ABCD的面积分成1:3两部分,t的值为或.8.(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,,∴△ABD ≌△CAE (AAS );(2)解:连接CE ,交AF 于O ,如图②所示:∵四边形AEFC 是菱形,∴CE ⊥AF ,∴∠COA =∠ADB =90°,同(1)得:△ABD ≌△CAO (AAS ),∴OC =AD =3,OA =BD =4,∴S △AOC =OA •OC =×4×3=6,∴S 菱形AEFC =4S △AOC =4×6=24,故答案为:24;(3)解:过E 作EM ⊥HI 的延长线于M ,过点G 作GN ⊥HI 于N ,如图③所示:∴∠EMI =∠GNI =90°,∵四边形ACDE 和四边形ABFG 都是正方形,∴∠CAE=∠BAG=90°,AC=AE=8,AB=AG=6,同(1)得:△ACH≌△EAM(AAS),△ABH≌△GAN(AAS),∴EM=AH=GN,在△EMI和△GNI中,,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点,∵∠CAE=∠BAG=∠BAC=90°,∴∠EAG=90°,在Rt△EAG中,由勾股定理得:EG===10,∵I是EG的中点,∴AI=EG=×10=5.9.解:(1)①等腰梯形对角线相等,但一条对角线的中点到另外两个顶点的距离的和大于另一条对角线,不符合题意;②矩形的对角线相等且互相平分,一条对角线的中点到另外两个顶点的距离等于这条对角线的一半,符合题意;③菱形的对角线互相平分,对角线不一定相等,因此一条对角线的中点到另外两个顶点的距离不等于另一条对角线的一半,不符合题意;故答案为:②;(2)根据等距四边形的定义,当点F在AD上且BF⊥AD时,四边形BFDE是等距四边形,如图1,取BD的中点O,连接OF,OE,EF,∵BF⊥AD,BE⊥DC,∴∠BFD=∠BED=90°,∴OF=OE=BD,∴四边形BFDE是等距四边形,在菱形ABCD中,AB=4,∠A=60°,AD∥BC,∴∠C=∠A=60°,∠ABC=120°,∴∠ABF=∠CBE=30°,∴∠EBF=∠ABC﹣∠ABF﹣∠CBE=60°,根据菱形的对称性得,BF=BE,∴△BEF是等边三角形,在Rt△ABF中,∠ABF=30°,∴AF=AB=2,根据勾股定理得,BF=2,∴EF=BF=2,当点F在AB上且DF⊥AB时,四边形DFBE是等距四边形,如图1﹣1,连接BD,EF,交于点O,∵DF⊥AB,DE⊥CD,∴∠BFD=∠BED=90°,∵AB∥CD,∴∠FBE=180°﹣∠BED=90°,∴∠BFD=∠BED=∠FBE,∴四边形BFDE是矩形,∴BD=EF,在菱形ABCD中,AB=AD=4,∠A=60°,∴BD=AB=4,∴EF=4;(3)过点P分别作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,如图2,同(2)的方法得,四边形ADPF,四边形BEPD,四边形ECFP是等距四边形,过点A作AG ⊥BC于G,在Rt△ABG中,∠ABC=60°,AB=4,∴∠BAG=30°,∴BG=AB=2,根据勾股定理得,AG=2,∴S△ABC=BC•AG=×4×2=4,∴S△ABC =S△APB+S△BPC+S△APC=4,∴(AB•PD+BC•PE+AC•PF)=4,∵AB=BC=AC=4,∴PD+PE+PF=2∴四边形ADPF,四边形DBEP,四边形PEFC的周长的和为AB+BC+AC+2(PD+PE+PF)=12+4.10.(1)证明:如图1中,延长AH交CD于T,连接EG,GF.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AGH=∠TDH,∵∠AHG=∠THD,HG=HD,∴△AHG≌△THD(ASA),∴AH=TH,AG=DT,∵AE⊥BC,AD∥BC,∴AE⊥AD,∵AF⊥AG,∴∠EAD=∠GAF.∴∠GAE=∠FAD,∵AD=AE,AF=AG,∴△GAE≌△FAD(SAS),∴DF=GE,∠AEG=∠ADE=45°,∵∠AED=45°,∴∠GEF=90°,∴EG2+EF2=FG2=2AF2,∵∠BAE+∠B=90°,∠BAE+∠EAF=90°,∴∠B=∠EAF,∵∠B=∠ADT,∴∠EAF=∠ADT,∵AG=AF,AG=DT,∴AF=DT,∵AE=AD,∴△EAF≌△ADT(SAS),∴EF=AT=2AH,∴DF2+4AH2=2AF2.(2)如图2中,∵A′B′=CD,A′B′∥AB∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,∵A′C+B′C=A′C+A′D=A′C+A′E≥CE,则CE的长度即为A'C+B'C的最小值,过点E作EH⊥BC于H,交AD于J,过点A作AT⊥BD于T,设DE交AA′于K,过点C作CR⊥AD于R.∵∠AEC=∠EAR=∠ARC=90°,∴四边形AECR是矩形,∴AR=EC=2,设AE=AD=x,在Rt△CRD中,则有x2+(x﹣2)2=10,解得x=3或﹣1(舍弃),∴AD=AE=BC=3,BE=BC﹣EC=1,过点B作BQ⊥DA交DA的延长线于Q,则AQ=BE=1,DQ=AQ+AD=4,BQ=AE=3,∴BD===5,=•BD•AT=•AD•BQ,∵S△ABD∴AT=,∵四边形ATDK是矩形,∴DK=AT=KD′=,在Rt△ADK中,AK===,∵S=•AD•EJ=•DE•AK,△ADE∴EJ=,在Rt△DJD′中,DJ==,∴AJ=EH=AD﹣DJ=3﹣=,∴CH=EC﹣EH=2﹣=,∵EH=EJ+JH=+3=,在Rt△CEH中,CE==,∴A'C+B'C的最小值为.。
2021年中考一轮复习数学九年级 四边形综合 专题培优训练(附答案)
2021年九年级数学中考一轮复习四边形综合专题培优训练(附答案)1.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠ACD=;⑤S四边形CDEF=其中正确的结论有()A.5个B.4个C.3个D.2个2.如图,在正方形ABCD中,若E,F分别为CD,AD边的中点,BE与CF的交点为P,连接AP,DP,则下列结论错误的是()A.AP=BP B.BE⊥CF C.AB=AP D.∠FPD=∠DPE 3.如图,在边长为2的正方形ABCD中,E,F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确都有()个.①QB=QF;②AE⊥BF;③BG=;④sin∠BQP=;⑤S四边形ECFG=2S△BGEA.5 B.4 C.3 D.24.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC 交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个5.如图,四边形ABCD、CEFG是正方形,E在CD上且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,下列四个结论:①BE⊥GD;②OH=BG;③∠AHD=45°;④GD=,其中正确的结论个数有()A.1个B.2个C.3个D.4个6.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD 于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①②B.①④C.①②④D.①③④7.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC 交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.58.如图,在矩形ABCD中,AB=4,AD=6,E,F分别是AD,BC的中点,G,H分别在DC,AB上,且∠BEG=∠DFH=90°,连结BG,DH,则△BEG与△DFH重叠部分六边形IJKLMN的周长为.9.如图,矩形ABCD的对角线AC与BD交于点O,点E在AD上,且DE=CD,连接OE,∠ABE=∠ACB,若AE=2,则OE的长为.10.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G,取DF的中点H,并连接AH.若AH=,EG=,则四边形AEFH的面积为.11.正方形ABCD中的边长为6,对角线AC、BD交于点O,E为DC边上一点,连接AE 交BD于F,BG⊥AE于点G,连接OG,若∠DGE=45°,则S△FGO=.12.如图,正方形ABCD中,E、F分别在AB、AD上(AE<BE),DE⊥CF于G,M在CG上,且MG=DG,连BM,N是BM的中点,连结CN,若CN=8,EG=13,则CF=.13.四边形ABCD,∠ABC=∠BAD=90°,BC=3AD=3,CE⊥BD于E,连AE,若tan∠DEA=,则AB=.14.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△ABG=S△AFG;⑤∠AGB+∠AED=145°.其中正确的个数有个.15.已知四边形ABCD和AEFG均为正方形.(1)观察猜想如图①,当点A,B,G三点在一条直线上时,连结BE,DG,则线段BE与DG的数量关系是,位置关系是.(2)类比探究如图②,将正方形AEFG在平面内绕点A逆时针旋转到图②时,则(1)的结论是否成立,若成立,请证明,若不成立,请说明理由;(3)拓展延伸在(2)的条件下,将正方形AEFG在平面内绕点A任意旋转,若AE=2,AB=5,则BE的最大值为,最小值为.16.在菱形ABCD中,∠B=60°,点E在射线BC上运动,点F在射线CD上,∠EAF=60°.(1)当点E在线段BC上时(如图①),猜想线段AB与EC,CF之间的数量关系,并证明你的结论;(2)当点E在线段BC的延长线上时(如图②),线段AB与EC,CF之间的数量关系又如何,写出你的结论,并加以证明;(3)连接DE,当∠ADE为直角,且AB=4时(如图③),求AF的长.17.(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)简单应用:在(1)中,如果AB=4,AD=6,求CG的长.(3)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.18.如图,在同一平面上,一个正方形纸ABCD与一个等腰直角三角形纸片ECD拼在一起,使一直角边与正方形一边完全重合,且顶点B、E分别在CD的两侧,连接AE交CD于F,点P是边AB上的动点,连接PF,作QF⊥FP交BE于Q,连接PQ,AB=4,设QC=x.(1)求当点P与点A重合时x的值;(2)是否存在这样的点P,连接PD、QD,使得PD=QD?若存在,请求出AP的长度;若不存在,请说明理由;(3)设△PQD的面积为y,求y关于x的函数关系式,并求出y的最小值.19.在正方形ABCD中,对角线AC、BD相交于点O,点E在线段OC上,点F在线段AB上,连接BE,连接EF交BD于点M,已知∠AEB=∠OME.(1)如图1,求证:EB=EF;(2)如图2,点N在线段EF上,AN=EN,AN延长线交DB于H,连接DF,求证:DF=AH;(3)如图3,在(2)的条件下连接OF,当OF∥BE,AB=6时,直接写出线段OH 的长.20.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题如图①,若E是线段AC的中点,连接EF,其他条件不变,填空:线段BE与EF的数量关系是;(2)探究问题如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=1,请直接写出AF的长度.21.在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于点F(如图1和图2),然后展开铺平,连接BE,EF.(1)操作发现:①在矩形ABCD中,任意折叠所得的△BEF是一个三角形;②当折痕经过点A时,BE与AE的数量关系为.(2)深入探究:在矩形ABCD中,AB=,BC=2.①当△BEF是等边三角形时,求出BF的长;②△BEF的面积是否存在最大值,若存在,求出此时EF的长;若不存在,请说明理由.22.如图,在直角坐标系中,矩形ABCD的边AB=4,BC=6,当顶点A在x轴正半轴上左右移动时,矩形的另一个顶点D在y轴的正半轴上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)取AD的中点M,连OM、MC,当四边形OMCD的面积为时,求OA的长;(3)直接写出OC长度的最大值.参考答案1.解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠ACD====,故④正确;∵△AEF∽△CBF,∴==,∴S△AEF=S△ABF,S△ABF=S矩形ABCD,∴S△AEF=S矩形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故⑤正确;故选:A.2.解:A.如图,连接AE,取AB中点Q,连接EQ,∵四边形ABCD是正方形,∴∠BCE=∠ADC=90°,CD=BC=AB=AD,∵E是CD边的中点,∴DE=CE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴AE=BE,∵Q是AB中点,∴EQ⊥AB,∴EQ是AB的垂直平分线,∵点P在BE上,∴点P不在AB的垂直平分线上,∴AP≠BP,故A选项错误;B.∵四边形ABCD是正方形,∴∠DCE=∠B=90°,CD=BC=AB=AD,∵E、F分别是CD,AD边的中点,∴DF=AD,CE=CD,∴DF=CE,∴△BCE≌△CDF(SAS),∴∠EBC=∠FCD,∵∠FCD+∠BCP=90°,∴∠EBC+∠BCP=90°,∴∠BPC=90°,即BE⊥CF,故B选项正确;C.如图,取BC的中点M,连接AM交BE于点N,∵M是BC中点,F是AD中点,∴AF∥CM,AF=CM,∴四边形AMCF是平行四边形,∵BE⊥FC,∴AM⊥BP,∵M是BC中点,∴N是BP中点,∴AN是BP的垂直平分线,∴AB=AP,故C选项正确;D.如图,过点D作DH⊥CF于点H,作DI⊥BE延长线于点I,延长AD和BE交于点Q,∵E是CD边的中点,∴DE=CE,在△QDE和△BCE中,,∴△QDE≌△BCE(ASA),∴QE=BE,∵BE=CF,∴QE=CF,∵△BCE≌△CDF,∴△QDE≌△CDF,∴S△QDE=S△CDF,∵DH⊥CF,DI⊥BE,∴DH=DI,∴DP平分∠FPE,∴∠FPD=∠DPE,故D选项正确.故选:A.3.解:①根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故正确;②∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故正确;③由②知,△ABE≌△BCF,则AE=BF==,∵AE⊥BF∴AB•BE=AE•BG,故BG===.故错误;④由①知,QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴sin∠BQP==,故正确;⑤∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故错误.综上所述,共有3个结论正确.故选:C.4.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.5.解:①正确,证明如下:∵BC=DC,CE=CG,∠BCE=∠DCG=90°,∴△BEC≌△DGC(SAS),∴∠EBC=∠CDG,∵∠BDC+∠DBH+∠EBC=90°,∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;②∵BE平分∠DBC,∴∠DBH=∠GBH.∵BE⊥GD,∴∠BHD=∠BHG=90°.在△BHD和△BHG中,∴△BHD≌△BHG(ASA),∴DH=GH.∵O是BD中点,∴DO=BO.∴OH是△BDG的中位线,∴OH=BG,故②正确;③由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五点都在以BD为直径的圆上;由圆周角定理知:∠DHA=∠ABD=45°,故③正确;④由③知:A、B、C、D、H五点共圆,则∠BAH=∠BDH;又∵∠ABD=∠DBG=45°,∴△ABM∽△DBG,∴AM:DG=AB:BD=1:,即DG=AM;故④正确;∴正确的个数有4个.故选:D.6.解:如图,∵P为正方形ABCD的对角线BD上任一点,∴PA=PC,∠BCD=90°,∵过点P作PE⊥BC于点E,PF⊥CD,∴∠PEC=∠DFP=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,∴PA=EF,故②正确,∵BD是正方形ABCD的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD是等腰直角三角形,故①正确,在△PAB和△PCB中,,∴△PAB≌△PCB(SAS),∴∠BAP=∠BCP,在矩形PECF中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确,∵点P是正方形对角线BD上任意一点,∴AD不一定等于PD,只有∠BAP=22.5°时,AD=PD,故③错误,故选:C.7.解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选:C.8.解:如图,连接KI,NL,∵四边形ABCD是矩形,AB=4,AD=6,∴AB∥CD,AD∥BC,AB=CD=4,AD=BC=6,∵E,F分别是AD,BC的中点,∴AE=DE=AD=3,BF=CF=BC=3,∴DE=BF,∴四边形DEBF是平行四边形,∴BE∥DF,BE=DF,∵∠BEG=∠DFH=90°,∴∠EJH=∠DFH=90°,即HK⊥BI,在Rt△ABE中,AE=3,AB=4,tan∠ABE==,由勾股定理,得BE==5,∴BE=DF=5,∵∠BEG=90°,∠BAD=90°,∴∠DEG+∠AEB=∠ABE+∠AEB=90°,∴∠DEG=∠ABE,∴△DEG∽△ABE,∴==,即==,∴DG=,EG=,∵==,=,∴=,∵∠BAE=∠BEG=90°,∴△BAE∽△BEG,∴∠ABE=∠EBG,同理可得:BH=,∴BH=DG,∴四边形BGDH是平行四边形,∴BG∥DH,∴∠EBG=∠ABE=∠EBG,由∠EBG=∠ABE,HK⊥BI,得:△BHK为等腰三角形,∴J为BI的中点,则HK垂直平分BI,则HK、BI互相垂直平分,∴四边形BHIK为菱形,∴BH=HI=IK=KB=,同理得:四边形DGLN为菱形,∴DN=LG=DG=HL=,∵∠BIH=∠ABE,∠EJH=∠BAE=90°,∴△JIH∽△ABE,∴==,∴==,解得:HJ=,JI=,∴JK=HJ=,同理得:MN=,LM=,在Rt△ADH中,AD=6,AH=AB﹣BH=,由勾股定理,得:DH==,∴IN=DH﹣HI﹣DN=,同理得:KL=,∴六边形IJKLMN的周长为:IJ+JK+KL+LM+MN+NI=+++++==9.8.故答案为:9.8.9.解:如图,作CH⊥BE于H,EF⊥BD于F.设BE与AC的交点为G.则∠HBC+∠BCH=∠BHC=90°,∵四边形ABCD为矩形,∴AD=BC,AB=CD,∠ABC=∠BAD=90°,AD∥BC,AC=BD ∴∠ABE+∠CBH=90°,∴∠ABE=∠BCH,∵∠ABE=∠ACB,∴∠BCH=∠GCH,∴BH=GH,BC=CG,∠CBH=∠CGH,设AB=x,则ED=CD=AB=x,∵AE=2,所以AD=AE+ED=2+x,∴CG=CB=2+x,∵AD∥BC,∴∠AEG=∠CBH=∠CGH=∠AGE,∴AG=AE=2,∴AC=AG+CG=4+x,在Rt△ABC中:AB2+BC2=AC2,∴x2+(x+2)2=(x+4)2,解得x1=6,x2=﹣2(舍),∴AB=CD=6,AD=AC=8,AC=BD=10,∵AC与BD交于点O,∴AO=BO=CO=DO=5,∵sin∠BDA===,cos∠BDA===,∴EF=ED=,DF=ED=∴OF=OD﹣DF=5﹣=在Rt△EFO中:OE2=OF2+EF2=()2+()2==13,∴OE=.故答案为:10.解:如图,连接HE,HC,作HM⊥AB于M.,延长MH交CD于N.∵四边形ABCD是正方形,∴DA=DC,∠ADH=∠CDH=45°,∵DH=DH,∴△ADH≌△CDH(SAS),∴AH=CH=,∵EF⊥AB,HM⊥AB,DA⊥AB∴EF∥HM∥AD,∵HF=HD,∴AM=EM,∴HA=HE=HC,∵∠AMN=∠∠ADN=90°,∴四边形AMND是矩形,∴AM=DN,∵DN=HN,AM=EM,∴EM=HN,∴Rt△HME≌Rt△CNH(HL),∴∠MHE=∠HCN,∵∠HCN+∠CHN=90°,∴∠MHE+∠CHN=90°,∴∠EHC=90°,∴EC=HE=2,∵EG=,∴GC=2﹣=,∵EF∥BC,∴==,设EF=BE=4a,则BC=AB=10a,AE=6a,AM=ME=3a,∵EF∥HM,∴=,∴=,∴HM=7a,∴S四边形AEFH=S△AMH+S梯形EFHM=×3a×7a+(4a+7a)×3a=27a2,在Rt△BEC中,∵BE2+BC2=EC2,∴16a2+100a2=4,∴a2=,∴S四边形AEFH=.故答案为.11.解:过D作DM⊥BG,交BG的延长线于M,BM交AD于H,过D作DN⊥AE于N,∵AE⊥BG,∴∠BAG+∠ABG=90°,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ADE=90°,∴∠BAG+∠DAE=90°,∴∠DAE=∠ABG,在△ABH和△DAE中,,∴△ABH≌△DAE(ASA),∴AH=DE,同理得:△AGH≌△DNE,∴AG=DN,∵∠DGE=45°=∠MGE=∠MGD,∴DM=DN,∴AG=DM=DN,又∵∠M=∠AGH,∠AHG=∠DHM,∴△AGH≌△DMH(AAS),∴AH=DH=3=DE,由勾股定理得:BD==6,AE==3,∵AB∥DE,∴△ABF∽△EDF,∴=2,∴AF=2EF,∵AF+EF=3,∴AF=2,同理得:DF=4,OF=4﹣3=,∵sin∠ABG=,∴,∴AG=,∴FG=AF﹣AG=2﹣=,∵S△AOF=×AO×FO=××=3,∴S△FGO=×3=,故答案为:.12.解:如图,过点B作BH∥FC,连接GN并延长交BH于点H,连接CH,∵BH∥FC,∴∠BHN=∠MGN,∠HBC=∠GCB,∵N是BM的中点,∴BN=MN,∵∠BHN=∠MGN,BN=MN,∠BNH=∠GNM,∴△BHN≌△MGN(AAS)∴BH=GM,HN=GN,∵DG=GM,∴BH=GD,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠DCG+∠BCG=90°,∵DE⊥CF,∴∠DCG+∠CDG=90°,∴∠BCG=∠CDG=∠HBC,且BC=CD,DG=BH,∴△DGC≌△BHC(SAS)∴CH=CG,∠BCH=∠DCG,∴∠BCH+∠BCG=∠DCG+∠BCG=90°,∴∠GCH=90°,且CG=CH,HN=NG,∴CN=NH=NG=8,CN⊥HF,∴CG===16,∵∠A=∠FGD=90°,∴∠AED+∠ADE=90°,∠ADE+∠DFG=90°,∴∠DFG=∠AED,且AD=CD,∠A=∠ADC=90°,∴△ADE≌△DCF(AAS)∴CF=DE,∠ADE=∠DCF,∵∠ADE=∠DCF,∠DGF=∠DGC,∴△DGF∽△CGD,∴∴DG2=FG•GC∴(DE﹣EG)2=(FC﹣EG)2=(16+FG﹣13)2=16•FG∴FG=9(不合题意舍去),FG=1,∴FC=FG+GC=17,故答案为:17.13.解:延长CE交AB于F,连接DF,取DF的中点O,连接OA、OE.∵CE⊥BD,∴∠DAF=∠DEF=90°,∵OD=OF,∴OA=OD=OF=OE,∴A、D、E、F四点共圆,∴∠AFD=∠AED,∴tan∠AFD=tan∠AED==,∵BC=3AD=3,∴AD=1,BC=3,∴AF=2,设BF=x.∵∠CBF=∠BAD=∠BEF=90°,∴∠ABD+∠ADB=90°,∠ABD+∠BFC=90°,∴∠ADB=∠CFB,∴△CBF∽△BAD,∴=,∴=,∴x2+2x﹣3=0,∴x=1或﹣3(舍弃),∴AB=BF+AF=1+2=3.故答案为3.14.解:∵△AFE是由△ADE折叠得到,∴AF=AD,∠AFE=∠AFG=∠D=90°,又∵四边形ABCD是正方形,∴AB=AD,∠B=∠D,∴AB=AF,∠B=∠AFG=90°,在Rt△ABG和Rt△AFG中,∵,∴Rt△ABG≌Rt△AFG(HL),故①正确;∵正方形ABCD中,AB=6,CD=3DE,∵EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3,CG=6﹣3=3;∴BG=CG;∴②正确.∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;∴③正确∵Rt△ABG≌Rt△AFG,∴S△ABG=S△AFG;∴④正确;∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAE=45°,∴∠AGB+∠AED=180°﹣∠GAE=135°.∴⑤错误.故答案为:4.15.解:(1)如图1,延长BE交DG于H,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴△ABE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∵∠ADG+∠DGA=90°,∴∠ABE+∠DGA=90°,∴∠GHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)(1)的结论仍然成立,理由如下:设BE交AD于O,DG于N,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;∠ABE=∠ADG,∵∠ABE+∠AOB=90°,∴∠ADG+∠AOB=∠ADG+∠DON=90°,∴∠DNO=90°,∴BE⊥DG;(3)∵将正方形AEFG在平面内绕点A任意旋转,∴当点E在线段AB上时,BE有最小值=AB﹣AE=5﹣2=3,当点E在线段BA的延长线上时,BE有最大值=AB+AE=5+2=7,故答案为:7,3.16.解:(1)结论:AB=EC+CF.理由:如图1中,连接AC.∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ACD都是等边三角形,∴∠DAC=∠ACB=∠D=60°,AD=AC,∵∠EAF=60°,∴∠EAF=∠DAC,∴∠EAC=∠FAD,∴△EAC≌△FAD(ASA),∴EC=DF,∵EC+CF=DF+CF=CD=AB,∴AB=EC+CF.(2)结论:AB=CF﹣EC.理由:如图2中,连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠ADC=60°,∴△ABC,△ACD都是等边三角形,∴∠DAC=∠ACB=∠ADC=60°,AD=AC,∴∠ACE=∠ADF=120°,∵∠EAF=60°,∴∠EAF=∠DAC,∴∠EAC=∠FAD,∴△EAC≌△FAD(ASA),∴EC=DF,∵CF﹣CE=CF﹣DF=CD=AB,∴AB=CF﹣CE.(3)如图3中,连接AC,过点A作AG⊥BC于G.∵∠AGB=90°,AB=4,∠B=60°,∴∠BAG=30°,∴BG=AB=2,AG=BG=2,∵∠ADE=∠AGB=∠GAD=90°,∴四边形AGED是矩形,∴AG=DE=2,∴AE===2,∵△AEC≌△AFD,∴AF=AE=2.17.解:(1)GF=GC.理由如下:如图1,连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵四边形ABCD是矩形,∴∠C=∠B=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=4+x,DG=4﹣x,在Rt△ADG中,62+(4﹣x)2=(4+x)2,解得x=.∴GC=;(3)(1)中的结论仍然成立.证明:如图2,连接FC,∵E是BC的中点,∴BE=CE,∵将△ABE沿AE折叠后得到△AFE,∴BE=EF,∠B=∠AFE,∴EF=EC,∴∠EFC=∠ECF,∵矩形ABCD为平行四边形,∴∠B=∠D,∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D,∴∠ECD=∠EFG,∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,∴∠GFC=∠GCF,∴FG=CG;即(1)中的结论仍然成立.18.解:(1)如图1中,∵四边形ABCD是正方形,∴AD=BC=DC=AB,AD∥BE,∴∠ADF=∠FCE=90°∵DC=DE,∴AD=EC,∵∠AFD=∠EFC,∴△ADF≌△ECF(AAS),∴DF=CF,AF=EF,∵QF⊥AE,∴QA=QE,设QA=QE=y,在Rt△ABQ中,则有42+(8﹣y)2=y2,解得y=5,∴y=CQ=QE﹣EC=5﹣4=1.(2)如图2中,存在.过点P作PG⊥DF于G.∵∠PAD=∠ADG=∠DGP=90°,∴四边形APGD是矩形,∴AD=PG=4,AP=DG,∵∠DAP=∠DCQ=90°,DA=DC,DP=DQ,∴Rt△DAP≌Rt△DCQ(HL),∴PA=CQ=x,∵QF⊥PF,PG⊥CD,∴∠PGF=∠FCQ=∠PFQ=90°,∴∠QFC+∠FQC=90°,∠QFC+∠PFG=90°,∴∠PFG=∠FQC,∴△PGF∽△FCQ,∴=,∴=,解得x=,∴AP=.(3)如图3中,过点P作PG⊥DF于G.∵△PGF∽△FCQ,∴=,∴=,∴GF=2x,∴PA=DG=2﹣2x,PB=4﹣(2﹣2x)=2+2x,BQ=4﹣x,∴y=S正方形ABCD﹣S△PAD﹣S△PBQ﹣S△DCQ=16﹣×4×(2﹣2x)﹣×(2+2x)(4﹣x)﹣×4×x=x2﹣x+8=(x﹣)2+,∵1>0,∴x=时,y有最小值,最小值为.19.解:(1)如图1,∵四边形ABCD是正方形,∴AC⊥BD,∠1=∠2=45°,∴在Rt△OME和Rt△OEB中,∠3+∠OME=∠4+∠OEB=90°,∵∠OME=∠OEB,∴∠3=∠4,∴∠5=∠1+∠3=∠2+∠4=∠FBE,∴EF=EB;(2)如图2,连接DE,∵AN=EN,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠7=∠8=90°,∵在△AOH和△BOE中,,∴△AOH≌△BOE(ASA),∴AH=BE,∵四边形ABCD是正方形,∴DC=BC,∠1=∠2=45°,∵在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴DE=BE=AH=EF,∵AC⊥BD,∴∠6=∠AEB,∵∠3=∠4,∠4+∠AEB=90°,∴∠3+∠6=90°,即∠DEF=90°,∴△DEF是等腰直角三角形,∴DF==EF=AH;(3)如图3,∵四边形ABCD是正方形,AB=,∴AO=BO=6,∵OF∥BE,∴∠3=∠FBE,∵∠1=∠FBE,∴∠1=∠3,∵∠1+∠AFE=∠3+∠OFB=180°,∴∠AFE=∠OFB,∵四边形ABCD是正方形,∴∠OAB=∠2=45°,∴△OFB∽△EFA,∴=,∵OF∥BE,∴==,∴=,∴OE=﹣3+(舍负),∵△AOH≌△BOE,∴OH=OE=﹣3+3.20.解:(1)猜想线段BE与EF的数量关系为:BE=EF;理由如下:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF.故答案为BE=EF.(2)猜想线段BE与EF的数量关系为:BE=EF;理由如下:过点E作EG∥BC交AB于点G,如图②所示:∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC,∠BCD=120°,AB∥CD,△ABC与△ACD都是等边三角形,∴∠ACD=60°,∠DCF=∠ABC=60°,AB=AC,∴∠ECF=120°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)连接EF,过点E作EG∥BC交AB延长线于点G,如图③所示:∵四边形ABCD为菱形,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF,∵∠ABC=60°,∠EBC=30°,∴∠ABE=∠ABC+∠EBC=60°+30°=90°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BEA=180°﹣∠ABE﹣∠BAC=180°﹣90°﹣60°=30°,在Rt△ABE中,∠BEA=30°,∴AE=2AB=2×1=2,BE==,∴EF=,∵BE=EF,∴∠EBC=∠EFB=30°,∴∠BEF=180°﹣30°﹣30°=120°,∴∠AEF=∠BEF﹣∠BEA=120°﹣30°=90°,由勾股定理得:AF===.21.解:(1)①由折叠的性质得:EF=BF,∴△BEF是等腰三角形;故答案为:等腰;②当折痕经过点A时,由折叠的性质得:AF垂直平分BE,∴AE=BE,∵四边形ABCD是矩形,∴∠ABC=∠A=90°,∴△ABE是等腰直角三角形,∴BE=AE;故答案为:BE=AE;(2)①当△BEF是等边三角形时,BF=BE,∠EBF=60°,∴∠ABE=90°﹣60°=30°,∵∠A=90°,∴BE=2AE,AB=AE=,∴AE=1,BE=2,∴BF=2;②存在,理由如下:∵矩形ABCD中,CD=AB=,BC=2,∴矩形ABCD的面积=AB×BC=×2=6,第一种情况:当点F在边BC上时,如图1所示:此时可得:S△BEF≤S矩形ABCD,即当点F与点C重合时S△BEF最大,此时S△BEF=3,由折叠的性质得:CE=CB=2,即EF=2;第二种情况:当点F在边CD上时,过点F作FH∥BC交AB于点H,交BE于点K,如图2所示:∵S△EKF=KF•AH≤HF•AH=S矩形AHFD,S△BKF=KF•BH≤HF•BH=S矩形BCFH,∴S△BEF=S△EKF+S△BKF≤S矩形ABCD=3,即当点F为CD的中点时,△BEF的面积最大,此时,DF=CD=,点E与点A重合,△BEF的面积为3,∴EF===;综上所述,△BEF的面积存在最大值,此时EF的长为2或.22.解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,。
2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)
2021年九年级数学中考复习分类压轴大题专题:四边形综合题(一)1.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC,BD的交点,连接CE,DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,且∠OMD=75°,求CE的长;(3)在(2)的条件下,把正方形OEFG绕点O旋转,直接写出点B到点F的最短距离.2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).3.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是;②直线DG与直线BE之间的位置关系是;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).4.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.5.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,连接QP并延长,分别交AB、CD于点M、N.①求证:PM=QN;②若MN的最小值为2,直接写出菱形ABCD的面积为.6.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.7.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.8.如图,现有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC 上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G 处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的面积为S,求S的取值范围.9.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.10.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(二)11.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN =45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM 的延长线交于点P,交AN于Q,直接写出AQ、AP的长.12.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.13.如图1所示,边长为4的正方形ABCD与边长为a(1<a<4)的正方形CFEG的顶点C 重合,点E在对角线AC上.【问题发现】如图1所示,AE与BF的数量关系为;【类比探究】如图2所示,将正方形CFEG绕点C旋转,旋转角为α(0<α<30°),请问此时上述结论是否还成立?如成立写出推理过程,如不成立,说明理由;【拓展延伸】若点F为BC的中点,且在正方形CFEG的旋转过程中,有点A、F、G在一条直线上,直接写出此时线段AG的长度为.14.如图1,在正方形ABCD中,点E是边BC上一点,连接AE,过点E作EM⊥AE,交对角线AC于点M,过点M作MN⊥AB,垂足为N,连接NE.(1)求证:AE=NE+ME;(2)如图2,延长EM至点F,使EF=EA,连接AF,过点F作FH⊥DC,垂足为H.猜想CH与FH存在的数量关系,并证明你的结论;(3)在(2)的条件下,若点G是AF的中点,连接GH.当GH=CH时,直接写出GH与AC之间存在的数量关系.15.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.16.【探索规律】如图①,在△ABC中,点D,E,F分别在AB,BC,AC上,且DF∥BC,EF∥AB.设△ADF的边DF上的高为h1,△EFC的边CE上的高为h2.(1)若△ADF、△EFC的面积分别为3,1,则=;(2)设△ADF、△EFC、四边形BDFE的面积分别为S1,S2,S,求证:S=2;【解决问题】(3)如图②,在△ABC中,点D,E分别在AB,AC上,点F,G在BC上,且DE∥BC,DF∥EG.若△ADE、△DBF、△EGC的面积分别为3,7,5,求△ABC的面积.17.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.18.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题:如图①,若E是线段AC的中点,连接EF,其他条件不变,猜想线段BE与EF的数量关系;(2)探究问题.如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题:如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=3,请直接写出AF的长度19.定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.(1)判断:①在平行四边形、矩形、菱形中,一定是神奇四边形的是;②命题:如图1,在四边形ABCD中,AB=AD,CB=CD,则四边形ABCD是神奇四边形.此命题是(填“真”或“假”)命题;③神奇四边形的中点四边形是;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是神奇四边形;②若AC=2,AB=,求GE的长;(3)如图3,四边形ABCD是神奇四边形,若AB=6,CD=,AD、BC分别是方程x2﹣(k+4)x+4k=0的两根,求k的值.20.在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(三)21.如图,菱形ABCD中,AB=10,连接BD,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.(1)求证:AE=CE;(2)若sin∠ABD=,当点P在线段BC上时,若BP=4,求△PEC的面积;(3)若∠ABC=45°,当点P在线段BC的延长线上时,请直接写出△PEC是等腰三角形时BP的长.22.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点,以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM.若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,当AD=25,且AE<DE时,求的值;(3)如图3,当BE•EF=108时,求BP的值.24.如图①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直线上,点E在AD 上,连接DG,BE.(1)证明:BE=DG;(2)发现:当正方形AEFG绕点A旋转,如图②所示,判断BE与DG的数量关系和位置关系,并说明理由;(3)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,判断BE与DG的数量关系和位置关系是否与(2)的结论相同,并说明理由.25.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.26.已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE交BD于点F.(1)如图1,若点E与点C重合,且AF=2,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=4,请直接写出MN的最小值.27.如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.(1)当点E在线段DC上时,求证:△BAE≌△BCG;(2)在(1)的条件下,若CE=2,求CG的长;(3)连接CF,当△CFG为等腰三角形时,求DE的长.28.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.29.如图1,在正方形ABCD中,AD=9,点P是对角线BD上任意一点(不与B、D重合),点O是BD的中点,连接PC,过点P作PE⊥PC交直线AB于点E.初步感知:当点P与点O重合时,比较:PC PE(选填“>”、“<”或“=”).再次感知:如图1,当点P在线段OD上时,如何判断PC和PE数量关系呢?甲同学通过过点P分别向AB和BC作垂线,构造全等三角形,证明出PC=PE;乙同学通过连接PA,证明出PA=PC,∠PAE=∠PEA,从而证明出PC=PE.理想感悟:如图2,当点P落在线段OB上时,判断PC和PE的数量关系,并说明理由.拓展应用:连接AP,并延长AP交直线CD于点F.(1)当=时,如图3,直接写出△APE的面积为;(2)直接写出△APE面积S的取值范围.30.问题提出(1)如图①,点A在直线m上,点P在直线m外,请用尺规在直线m上找一点B,使得∠APB=60°(只作出满足条件一个图形即可);(2)如图②,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,对角线BD=10,求四边形ABCD的面积.问题解决(3)如图③,园林规划局想在正六边形草坪一角∠BOC内改建一个小型的儿童游乐场OMAN,其中OA平分∠BOC,OA=100米,∠BOC=120°,点M、N分别在射线OB和OC上,且∠MAN=90°,为了尽可能的少破坏草坪,要使游乐场OMAN面积最小.你认为园林规划局的想法能实现吗?若能,请求出游乐场OMAN面积的最小值;若不能,请说明理由.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(四)31.如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.(1)求∠D的度数;(2)若点E为CD的中点,求EF的值;(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.32.平面直角坐标系中一点(m,n)是二元一次方程Ax+By=C的解是指:将代入可得Am+Bn=C成立,如(2,3)是二元一次方程2x+y=7的解是指:代入可得2×2+3=7成立:(1)已知D(0,1),P(2,3),H(3,1),则点(填“D,P,H”)是方程x﹣2y=1的解;(2)已知关于x,y的方程组的解为坐标的点也是方程x+2y=4的解,求m的值;(3)若E、F为坐标系中两点,其中E点坐标是二元一次方程5x﹣y=4的解,F点坐标是二元一次方程x﹣y=4的解,且线段EF由线段AB平移得到,其中A(﹣4,0),B (0,﹣2)(A、B分别对应E、F),求四边形ABFE的面积.33.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2+PB2=PC2,则称点P为△ABC关于点C的勾股点.(1)如图2,在4×3的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点上,请找出所有的格点P,使点P为△ABC关于点A的勾股点.(2)如图3,△ABC为等腰直角三角形,P是斜边BC延长线上一点,连接AP,以AP 为直角边作等腰直角三角形APD(点A、P、D顺时针排列)∠PAD=90°,连接DC,DB,求证:点P为△BDC关于点D的勾股点.(3)如图4,点E是矩形ABCD外一点,且点C是△ABE关于点A的勾股点,若AD=8,CE=5,AD=DE,求AE的长.34.如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明:四边形CEGF是正方形;(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图3所示,当B,E,F三点在一条直线上时,延长CG交AD于点H,若AG=6,GH=2,求BC的长.35.如图,在边长为2的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),PE的延长线与BC的延长线交于点Q.(1)求证:E是PQ的中点;(2)连结PB,F是BP的中点,连结EF,当PB=PQ时.①求证:四边形AFEP是平行四边形;②求AP的长.36.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.37.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.38.四边形ABCD是矩形,点E是射线BC上一点,连接AC,DE.(1)如图1,点E在边BC的延长线上,BE=AC,若∠ACB=40°,求∠E的度数;(2)如图2,点E在边BC的延长线上,BE=AC,若M是DE的中点,连接AM,CM,求证:AM⊥MC;(3)如图3,点E在边BC上,射线AE交射线DC于点F,∠AED=2∠AEB,AF=4,AB=4,则CE=.(直接写出结果)39.如图1,在矩形ABCD中,AB=6,BC=8,点E是对角线BD的中点,直角∠GEF的两直角边EF、EG分别交CD、BC于点F、G.(1)若点F是边CD的中点,求EG的长.(2)当直角∠GEF绕直角顶点E旋转,旋转过程中与边CD、BC交于点F、G.∠EFG 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠EFG的值.(3)当直角∠GEF绕顶点E旋转,旋转过程中与边CD、BC所在的直线交于点F、G.在图2中画出图形,并判断∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请直接写出tan∠EFG的值.(4)如图3,连接CE交FG于点H,若=,请求出CF的长.40.如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.2021年九年级数学中考复习分类压轴大题专题:四边形综合题(五)41.【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD 是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.42.如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;(2)将正方形CEFG绕点C旋转一周.①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.43.【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?【问题解决】如图①,已知矩形纸片ABCD(AB>AD),将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A′,折痕为DE,点E在AB上.求证:四边形AEA′D是正方形.【规律探索】由【问题解决】可知,图①中的△A′DE为等腰三角形.现将图①中的点A′沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC 上,点P在AB上,那么△PQF还是等腰三角形吗?请说明理由.【结论应用】在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则=.44.如图1,在平面直角坐标系中,四边形OABC是矩形,点A、C分别在x轴和y轴的正半轴上,连接AC.已知,OA=8,tan∠OAC=,点D在BC上,且CD=3BD,点P 为线段AB上一动点(可与A、B重合),连接DP.(1)求OC的长及点D的坐标;(2)当DP∥AC时,求AP的长;(3)如图2,将△DBP沿直线DP翻折,得△DEP,连接AE、CE,问四边形AOCE的面积是否存在最小值,若存在,求出这个最小值;(4)以线段DP为边,在DP所在直线的右上方作等边△DPF,当点P从点B运动到点A时,点F也随之运动,请直接写出点F的运动路径长.45.如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.46.如图1,在正方形ABCD中,点E为边AB上的点,BE:AE=n,连结DE、BD,过点A作AG⊥DE,垂足为点F,与BC、BD分别交于点G、H,连结EH.(1)①求证:AE=BG;②求证:DH:BH=n+1;(2)如图2,当EH∥AD时,求n的值.47.[阅读理解]构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.[经验运用]请运用上述阅读材料中所积累的经验和方法解决下列问题.(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.求证:①G是EF的中点;②CG=BE;[拓展延伸](2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,(2)中的其它条件不变,请直接写出GH的长.48.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.49.(1)问题探究:如图1,在正方形ABCD中,点E,Q分别在边BC、AB上,DQ⊥AE 于点O,点G,F分别在边CD、AB上,GF⊥AE.①判断DQ与AE的数量关系:DQ AE;②推断:的值为;(无需证明)(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M、N分别在边BC、AB上,求的值.50.如图,在矩形ABCD中,AD=2AB=8,点E是边AD的中点.连结EC,P、Q分别是射线AD、EC上的动点,且EQ=AP.连结BP,PQ.过点B,Q分别作PQ,BP的平行线交于点F.(1)当点P在线段AE上(不包含端点)时,①求证:四边形BFQP是正方形.②若BC将四边形BFQP的面积分为1:3两部分,求AP的长.(2)如图2,连结PF,若点C在对角线PF上,求△BFC的面积(直接写出答案).参考答案1.解:(1)∵正方形ABCD与正方形OEFG,对角线为AC、BD,∴DO=OC,∵DB⊥AC,∴∠DOA=∠DOC=90°,∵∠GOE=90°,∴∠GOD+∠DOE=∠DOE+∠COE=90°,∴∠GOD=∠COE,∵GO=OE,∴在△DOG和△COE中,DO=CO,∠GOD=∠COE,GD=OE,∴△DOG≌△COE(SAS);(2)∵四边形ABCD为正方形,故∠ODM=45°,故OD=,∵∠OMD=75°,∴∠DOG=60°,∵DG⊥BD,故∠ODG=90°,∴∠OGD=30°,∴OG=2OD=2,∴DG===,∵△DOG≌△COE(SAS),∴CE=DG=;(3)正方形OEFG绕点O旋转,当点O、B、F共线且点B在OF之间时,点B到点F 的距离最短,由(2)知,在正方形OEFG中,OG=2,则OF=OG=4,而OB=OD=,故OF﹣OB=4﹣.故B到点F的最短距离为4﹣.2.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠AOC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).3.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.4.解:(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,∠AHB=90°,AB=15,∴sin B==,∴AH=AB=×15=12.(2)如图2,在Rt△BDP中,∠BPD=90°,BP=3t,∴sin B==,∴cos B==,∴BD=5t,PD=4t,∴DE=DG=2t,CD=15﹣5t.∴15﹣5t=2t,∴t=.(3)①当0<t≤时,重叠部分为正方形DEFG,∴S=(2t)2=4t2;②当<t≤时,如图3,重叠部分为五边形DEFMN,∴S=S正方形DEFG﹣S△MGN=4t2﹣[2t﹣(15﹣5t)]2=﹣45t2+210t﹣225;③当<t≤3时,如图4,重叠部分为梯形DEMN,∴S=×2t(15﹣4t+15﹣5t)=﹣9t2+30t.(4)①当DG的中点O在线段AC上时,如图5,∵AB=BC,∴∠A=∠C,∵DG∥AB,∴∠COD=∠A∴∠C=∠COD,∴DC=DO,∴15﹣5t=t,解得t=;②当EG的中点O在线段AC上时,如图6,此时NC=NO,∴15﹣×5t=t+t,解得t=;③当DE的中点O在线段AC上时,如图7,此时NC=NO,∴15﹣×5t=t,解得t=.5.(1)证明:四边形ABCD是菱形,∴BC=DC,AB∥CD,∴∠PBM=∠PBC=∠ABC=30°,∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=120°由旋转的性质得:PC=QC,∠PCQ=120°,∴∠BCD=∠DCQ,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①证明:由(1)得:△BCP≌△DCQ,∴BP=DQ,∠QDC=∠PBC=∠PBM=30°.在CD上取点E,使QE=QN,如图2所示:则∠QEN=∠QNE,∴∠QED=∠QNC=∠PMB,在△PBM和△QDE中,,∴△PBM≌△QDE(AAS),∴PM=QE=QN.②解:由①知PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,则PC=2,BC=2PC=4,∴菱形ABCD的面积=2S△ABC=2××42=8;故答案为:8.6.(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k﹣2a,AC=2(k﹣a),∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k﹣2a),∴AD2=10ka,即10ka=3k2﹣4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.7.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形ABCD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CPM===.8.(1)证明:如图1中,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC===4,∴CQ=AC=2,∴QN===,∴MN=2QN=2.(3)解:当MN过点D时,如图3所示,此时,CN最短,四边形CMPN的面积最小,则S最小为S=S菱形CMPN=×4×4=4,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=×5×4=5,∴4≤S≤5,9.(1)【发现证明】证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),∴EF=FM=DF﹣DM=DF﹣BE;②如图3,将△ADF绕点A逆时针旋转90°至△ABN,∴AN=AF,∠NAF=90°,∵∠EAF=45°,∴∠NAE=45°,∴∠NAE=∠FAE,∵AE=AE,∴△AFE≌△ANE(SAS),∴EF=EN,∴BE=BN+NE=DF+EF.即BE=EF+DF.故答案为:BE=EF+DF.(3)【联想拓展】解:由(1)可知AE=AG=3,∵正方形ABCD的边长为6,∴DC=BC=AD=6,∴==3.∴BE=DG=3,∴CE=BC﹣BE=6﹣3=3,设DF=x,则EF=FG=x+3,CF=6﹣x,在Rt△EFC中,∵CF2+CE2=EF2,∴(6﹣x)2+32=(x+3)2,解得:x=2.∴DF=2,∴AF===2.10.解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°﹣,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°﹣,∴∠EB'D=∠AB'D﹣∠AB'B=135°﹣=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.如图3,若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,。
2021年人教版数学九年级中考三轮冲刺:四边形压轴
2021年人教版数学中考三轮冲刺:四边形压轴1.(1)如图①,点E、F分别在正方形ABCD的边AB、BC上,∠EDF=45°,连接EF,求证:EF=AE+FC.(2)如图②,点E,F在正方形ABCD的对角线AC上,∠EDF=45°,猜想EF、AE、FC的数量关系,并说明理由.2.在▱ABCD中,点M为AB的中点.(1)如图1,若∠A=90°,连接DM且∠BMD=3∠ADM,试探究AB与BC的数量关系;(2)如图2,若∠A为锐角,过点C作CE⊥AD于点E,连接EM,∠BME=3∠AEM,①求证:AB=2BC;②若EA=EC,求的值.3.如图,将平行四边形OABC放置在平面直角坐标系xOy内,已知A(3,0),B(0,4).(Ⅰ)点C的坐标是(,);(Ⅱ)若将平行四边形OABC绕点O逆时针旋转90°得OFDE,DF交OC于点P,交y 轴于点F,求△OPF的面积;(Ⅲ)在(Ⅱ)的情形下,若再将平行四边形OFDE沿y轴正方向平移,设平移的距离为d,当平移后的平行四边形O'F'D'E′与平行四边形OABC重叠部分为五边形时,设其面积为S,试求出S关于d的函数关系式,并直接写出x的取值范围.4.如图,四边形ABCD中,AD∥BC,∠A=∠D=90°,点E是AD的中点,连接BE,将△ABE沿BE折叠后得到△GBE,且点G在四边形ABCD内部,延长BG交DC于点F,连接EF.(1)求证:△EGF≌△EDF;(2)求证:BG=CD;(3)若点F是CD的中点,BC=8,求CD的长.5.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是;位置关系是;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.6.如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ 交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)求DE的长;(3)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B'PM,连接AB',当t为何值时,AB'的值最小?并求出最小值.7.如图,四边形ABCD是矩形,点E在AB边上,且BC=BE,连接EC、AC,过点B作BG⊥AC,垂足为G,BG分别交EC、DC于F、H两点.(1)如图1,若BC=2,∠ECA=15°,求线段EF的长.(2)如图2,延长AB到M,连接MF,使得∠BMF=∠FBC,求证:BF+FM=AC.(3)如图3,在(1)的条件下,点N是线段DC的三等分点,且DN<CN,点P是线段AD的中点,连接AN,将△ADN绕点D逆时针旋转α°(0≤α≤360)到△A'DN',连接PA',NA',当3NA'﹣PA'取最大值时,请直接写出△A'DH的面积.8.(1)如图1,正方形ABCD和正方形DEFG(其中AB>DE),连接CE,AG交于点H,请直接写出线段AG与CE的数量关系,位置关系;(2)如图2,矩形ABCD和矩形DEFG,AD=2DG,AB=2DE,AD=DE,将矩形DEFG 绕点D逆时针旋转α(0°<α<360°),连接AG,CE交于点H,(1)中线段关系还成立吗?若成立,请写出理由;若不成立,请写出线段AG,CE的数量关系和位置关系,并说明理由;(3)矩形ABCD和矩形DEFG,AD=2DG=6,AB=2DE=8,将矩形DEFG绕点D 逆时针旋转α(0°<α<360°),直线AG,CE交于点H,当点E与点H重合时,请直接写出线段AE的长.9.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD与四边形AEEG都是正方形,135°<∠AEB<180°,求证:四边形BEGD是“等垂四边形”;(2)如图②,四边形ABCD是“等垂四边形”,AD≠BC,连接BD,点E,F,G分别是AD,BC,BD的中点,连接EG,FG,EF.试判定△EFG的形状,并证明;(3)如图③,四边形ABCD是“等垂四边形”,AD=4,BC=6,试求边AB长的最小值.10.如图,正方形ABCD和正方形DEFG有公共顶点D.(1)如图1,连接AG和CE,直接写出AG和CE的关系;(2)如图2,连接AE,M为AE中点,连接DM、CG,探究DM、CG的关系,并说明理由;(3)如图3,若AB=4,DE=2,直线AG与直线CE交于点P,请直接写出AP的取值范围:.11.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P'处,AB的中点为Q,直接写出P'Q的最小值.12.如图,四边形ABCD为矩形,点E为边AB上一点,将△ADE沿DE折叠,点A落在矩形ABCD内的点F处.(1)如图①,若AB=8,AD=6,点F恰好落在矩形的对角线BD上,求线段BF的长;(2)如图②,连接BF,若△BEF为等边三角形,求的值;(3)如图③,已知E为AB中点,tan∠ADE=,连接BF,FC,若△ADE的面积为S,求△BFC的面积.(结果用关于S的代数式表示)13.已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD边于点E,连接BE.(1)如图1,求证:BD平分∠EBC;(2)如图2,延长EO交BC于点F,当BF=2AE时,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于CD的线段.14.如图①,在长方形ABCD中,已知AB=20,AD=12,动点P从点D出发,以每秒2个单位的速度沿线段DC向终点C运动,运动时间为t秒,连接AP,设点D关于AP的对称点为点E.(1)如图②,射线PE恰好经过点B,试求此时t的值.(2)当射线PE与边AB交于点Q时,①请直接写出AQ长的取值范围:;②是否存在这样的t的值,使得QE=QB?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.15.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.参考答案1.证明:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠C=∠ADC=∠DAB=90°,如图①:延长BA,使AM=CF,连接MD,在△AMD和△CFD中,,∴△AMD≌△CFD(SAS),∴∠MDA=∠CDF,MD=DF,∵∠EDF=45°,∴∠ADE+∠FDC=45°,∴∠ADM+∠ADE=45°=∠MDE,∴∠MDE=∠EDF,在△EDF和△EDM中,,∴△EDF≌△EDM(SAS),∴EF=EM,∵EM=AM+AE=AE+CF,∴EF=AE+CF;(2)EF2=AE2+CF2,理由如下:如图②,将△CDF绕点D顺时针旋转90°,可得△ADN,由旋转的性质可得DN=DF,AN=CF,∠DAN=∠DCF=45°,∠CDF=∠ADN,∴∠CAN=∠CAD+∠DAN=90°,∴EN2=AE2+AN2,∵∠EDF=45°,∴∠CDF+∠ADE=45°,∴∠ADE+∠ADN=45°=∠NDE=∠EDF,在△EDF和△EDN中,,∴△EDF≌△EDN(SAS),∴EF=EN,∴EF2=AE2+CF2.2.解:(1)BC=AB,理由如下:∵∠BMD=3∠ADM,∴∠A+∠ADM=3∠ADM,∴∠A=2∠ADM,∵∠A=90°,∴∠ADM=45°,∴△ADM是等腰直角三角形,∴AD=AM,∵四边形ABCD是平行四边形,M是AB中点,∴AD=BC,AM=AB,∴BC=AB;(2)①取CD的中点N,连接MN并延长交CE于F,如图:∵四边形ABCD是平行四边形,M是AB中点,N是CD的中点,∴DN=CN=CD=AB=AM=BM,CD∥AB,∴四边形AMND、四边形BCNM是平行四边形,∴MN∥AD∥BC,∴=,∠AEM=∠EMF,∠CMF=∠MCB,∴EF=CF,∵CE⊥AD于点E,∴MN⊥CE,∴MF是CE的垂直平分线,∴ME=MC,∴∠EMF=∠CMF,设∠AEM=α,则∠EMF=∠CMF=∠MCB=α,∠EMC=2α,∵∠BME=3∠AEM,∴∠BME=3α,∴∠BMC=∠BME﹣∠EMC=α,∴∠BMC=∠MCB=α,∴BC=BM=AB,∴AB=2BC;②如图:由①知:AB=2BC,∴CD=2AD设ED=x,EC=y,则EA=y,AD=y﹣x,CD=2(y﹣x),Rt△CDE中,ED2+EC2=CD2,∴x2+y2=4(y﹣x)2,化简整理得:3x2﹣8xy+3y2=0,解得x=y或x=y,∵DE<AE,∴x=y,∴=,即=.3.解:(Ⅰ)∵A(3,0),B(0,4),∴OA=3,OB=4,∵四边形OABC是平行四边形,∴BC=OA=3,BC∥OA,AB∥OC,∴点C的坐标为:(﹣3,4);故答案为:﹣3,4;(Ⅱ)由旋转的性质,可得:OD=OB=4,OF=OA=3,∠ODF=∠OBA,∠OFD=∠OAB,∵∠BOD=90°,∴S△DOF=OD•OF=×4×3=6,DF===5,∵AB∥OC,∴∠OBA=∠BOC,∴∠ODF=∠BOC,∵∠OFP=∠DFO,∴△OFP∽△DFO,∴=()2=()2=,∴S△OPF=S△DOF=×6=;(Ⅲ)如图,重叠部分为五边形时,F′必须位于点B上方,∵OF=3,OB=4,∴d>1,当点C在D′F′上时,重叠部分不构成五边形,设此时直线D′F′的解析式为y=x+b,将C(﹣3,4)代入,得4=×(﹣3)+b,解得:b=,∴直线D′F′的解析式为y=x+,令x=0,得y=,∴F′(0,),∴OF′=,∴FF′=OF′﹣OF=﹣3=,∴d<,∴1<d<;∵=sin∠F′OC=,∴P′F′=F′O=(d+3),同理可得:P′O=(d+3),∴S△F′P′O=P′F′•P′O=×(d+3)×(d+3)=(d+3)2,∵=cos∠D′F′O=,BF′=d﹣1,∴HF′=(d﹣1),∵=sin∠D′F′O=,∴HB=HF′=×(d﹣1)=(d﹣1),∴S△HBF′=BF′•HB=×(d﹣1)×(d﹣1)=(d﹣1)2,∵OO′=d,∴O′G=OO′•sin∠BOC=d,OG=OO′•cos∠BOC=d,∴S△OGO′=O′G•OG=×d×d=d2,∴S=S△F′P′O﹣S△HBF′﹣S△OGO′=(d+3)2﹣(d﹣1)2﹣d2=﹣d2+d+,∴S=﹣d2+d+(1<d<).4.(1)证明:∵将△ABE沿BE折叠后得到△GBE,∴△ABE≌△GBE,∴∠BGE=∠A,AE=GE,∵∠A=∠D=90°,∴∠EGF=∠D=90°,∵EA=ED,∴EG=ED,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF(HL);(2)证明:由折叠性质可得,AB=BG,∵AD∥BC,∠A=∠D=90°,∴四边形ABCD是矩形,∴AB=CD,∴BG=DC.(3)解:由折叠可知AB=GB,由(1)知Rt△EGF≌Rt△EDF,∴GF=DF,又∵∠C=90°,AB=CD,FD=CF,∴GB=2GF,BF+GF=3GF,∵BF2=BC2+CF2,∴(3GF)2=64+GF2,∴GF=2,∴CD=2GF=4.5.解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△ABE≌△ADG(SAS),∴BE=DG;如图2,延长BE交AD于Q,交DG于H,∵△ABE≌△DAG,∴∠ABE=∠ADG,∵∠AQB+∠ABE=90°,∴∠AQB+∠ADG=90°,∵∠AQB=∠DQH,∴∠DQH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H,∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴==,∠ABE=∠ADG,∴DG=2BE,∵∠AKB+∠ABE=90°,∴∠AKB+∠ADG=90°,∵∠AKB=∠DKH,∴∠DKH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M,∵EG∥AB,∴∠DME=∠DAB=90°,在Rt△AEG中,AE=1,∴AG=2AE=2,根据勾股定理得:EG==,∵AB=,∴EG=AB,∵EG∥AB,∴四边形ABEG是平行四边形,∴AG∥BE,∵AG∥EF,∴点B,E,F在同一条直线上,如图5,∴∠AEB=90°,在Rt△ABE中,根据勾股定理得,BE===2,由(2)知,△ABE∽△ADG,∴==,即=,∴DG=4.6.解:(1)∵△ABC是等边三角形,∴∠B=60°,∴当BQ=2BP时,∠BPQ=90°,∴6+t=2(6﹣t),解得:t=2,即t=2s时,△BPQ是直角三角形;(2)过P作PK∥BC交AC于K,如图1所示:∵△ABC是等边三角形,∴∠B=∠A=60°,AC=AB=6cm,∵PK∥BC,∴∠APK=∠B=60°,∴∠A=∠APK=∠AKP=60°,∴△APK是等边三角形,∴PA=PK,∵PE⊥AK,∴AE=EK,∵AP=CQ=PK,∠PKD=∠DCQ,∠PDK=∠QDC,∴△PKD≌△QCD(AAS),∴DK=DC,∴DE=EK+DK=(AK+CK)=AC=3(cm);(3)连接AM,AB′,如图2所示:∵BM=CM=3,AB=AC,∴AM⊥BC,∴AM===3,∵AB′≥AM﹣MB′,∴AB′≥3﹣3,∴AB′的最小值为3﹣3,此时MP平分∠AMB,则点P到AM、BM的距离相等,∴=,又∵=,∴==,∴t=(6﹣t),解得:t=9﹣3,即当t为(9﹣3)s时,AB'的值最小,最小值为3﹣3.7.解:(1)如图1,过点F作FK⊥BC于K,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴∠BCE=∠BEC=45°,CE=BC=2,∵∠ECA=15°,∴∠BCA=∠BCE+∠ECA=60°,∵BG⊥AC,∴∠BGC=90°,∴∠CBG=90°﹣∠BCA=30°,∵FK⊥BC,∴∠CKF=∠BKF=90°,∴CK=FK•tan∠BCE=FK•tan45°=FK,BK===FK,∵CK+BK=BC,∴FK+FK=2,∴FK=3﹣,∴CF=FK=(3﹣)=3﹣,∴EF=CE﹣CF=2﹣(3﹣)=3﹣3.(2)如图2,延长MF交CD于T,过点T作TP⊥AB于P,∵四边形ABCD是矩形,∴AB∥CD,∠BAD=∠D=∠BCD=90°,∴∠BMF=∠CTF,∵∠BMF=∠FBC,∴∠CTF=∠FBC,∴∠TCF=∠BCD﹣∠BCE=90°﹣45°=45°,∴∠TCF=∠BCE,在△TCF和△BCF中,,∴△TCF≌△BCF(AAS),∴FT=BF,∵BG⊥AC,∴∠BGC=90°,∴∠BCG+∠FBC=90°,又∵∠BCG+∠ACD=90°,∴∠FBC=∠ACD,∵∠BMF=∠FBC,∴∠BMF=∠ACD,即∠TMP=∠ACD,∵TP⊥AB,∴∠APT=∠MPT=90°=∠BAD=∠D,∴四边形APTD是矩形,∴AD=PT,在△MTP和△CAD中,,∴△MTP≌△CAD(AAS),即FT+FM=AC,∴BF+FM=AC.(3)如图3,以D为圆心,DN、DA为半径作同心圆,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,∠ADC=∠BCD=90°,由(1)得:∠BCA=60°,∴∠CAD=∠BCA=60°,∴CD=AD•tan∠CAD=2•tan60°=6,∵点N是线段DC的三等分点,且DN<CN,∴DN=CD=×6=2,∵3NA'﹣PA'=(NA′﹣PA′),∴当3NA'﹣PA'取最大值时,NA′﹣PA′的值最大,∵DA′=DA=2,∴==,∵==,∴==,又∵∠A′DN=∠CDA′,∴△A′DN∽△CDA′,∴===,∴A′C=A′N,∴NA′﹣PA′=A′C﹣PA′≤PC,当C、P、A′在同一直线上时,NA′﹣PA′的最大值为PC,此时3NA'﹣PA'取最大值,作A′T⊥CD的延长线于T,则A′T∥DP,∴==,设A′T=x,在Rt△CDP中,PC===,∴==,∴A′C=x,CT=2x,∴TD=CT﹣CD=2x﹣6,在Rt△A′DT中,A′T2+TD2=A′D2,∴x2+(2x﹣6)2=(2)2,解得:x=,∴A′T=,由(1)知:∠CBG=30°,∴CH=BC•tan∠CBG=2×tan30°=2,∴DH=CD﹣CH=6﹣2=4,∴S△A′DH=•DH•A′T=×4×=.8.解:(1)如图1,在正方形ABCD和正方形DEFG中,∠ADC=∠EDG=90°,∴∠ADE+∠EDG=∠ADC+∠ADE,即∠ADG=∠CDE,∵DG=DE,DA=DC,∴△GDA≌△EDC(SAS),∴AG=CE,∠GAD=∠ECD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE,故答案为:相等,垂直;(2)不成立,CE=2AG,AG⊥CE,理由如下:如图2,由(1)知,∠EDC=∠ADG,∵AD=2DG,AB=2DE,AD=DE,∴,==,∴=,∴△GDA∽△EDC,∴=,即CE=2AG,∵△GDA∽△EDC,∴∠ECD=∠GAD,∵∠COD=∠AOH,∴∠AHO=∠CDO=90°,∴AG⊥CE;(3)①当点E在线段AG上时,如图3,在Rt△EGD中,DG=3,ED=4,则EG=5,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,∴△DGP∽△EGD,∴=,即,∴PD=,PG=,则AP===,则AE=AG﹣GE=AP+GP﹣GE=+﹣5=;②当点G在线段AE上时,如图4,过点D作DP⊥AG于点P,∵∠DPG=∠EDG=90°,∠DGP=∠EGD,同理得:PD=,AP=,由勾股定理得:PE==,则AE=AP+PE=+=;综上,AE的长为.9.解:(1)如图①,延长BE,DG交于点H,∵四边形ABCD与四边形AEFG都为正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四边形BEGD是“等垂四边形”.(2)△EFG是等腰直角三角形.理由如下:如图②,延长BA,CD交于点H,∵四边形ABCD是“等垂四边形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵点E,F,G分别是AD,BC,BD的中点,∴,,EG∥AB,GF∥DC,∴∠BFG=∠C,∠EGD=∠HBD,EG=GF.∴∠EGF=∠EGD+∠FGD=∠ABD+∠DBC+∠GFB=∠ABD+∠DBC+∠C=∠HBC+∠HCB =90°.∴△EFG是等腰直角三角形.(3)延长BA,CD交于点H,分别取AD,BC的中点E,F.连接HE,EF,HF,则,由(2)可知.∴AB最小值为.10.解:(1)AG=CE且AG⊥CE,理由如下:∵四边形ABCD和四边形DEFG是正方形,∴∠ADC=∠GDE=90°,AD=CD,DG=DE,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∵∠ADC=∠GDE=90°由旋转可知:AG⊥CE;故答案为:AG=CE且AG⊥CE;(2)DM、CG的关系是:DM=CG,且DM⊥CG,理由如下:如图2,延长AD至H,使AD=DH,连接EH,∵∠GDE=∠CDH=90°,∴∠GDE﹣∠CDE=∠CDH﹣∠CDE,即∠CDG=∠HDE,∵CD=DH,GD=DE,∴△DGC≌△DEH(SAS),∴CG=EH,∵M是AE的中点,AD=DH,∴DM是△AEH的中位线,∴DM∥EH,DM=EH,∴DM=CG,∵∠GDE=∠CDH=90°,∴△DGC绕点逆时针旋转90°到△DEH,∴CG⊥EH,∴DM⊥CG;(3)由(1)可知:直线AG⊥直线CE,∴∠APC=90°,∴点P在以AC为直径的圆上运动,如图3,当P与F重合时,AP最小,此时A、P、F、G共线,Rt△AGD中,DG=2,AD=4,∴AG==2,∴AP=2﹣2;如图4,当P与F重合时,AP最大,同理得:AP=2+2,∴AP的取值范围是:2﹣2≤AP≤2+2.故答案为:2﹣2≤AP≤2+2.11.解:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∠D=∠BCE=90°,∵BE⊥MN,点M和点C重合,∴MD=BC=6,∠DMN+∠BCP=90°,∠CBE+∠BCP=90°,∴∠DMN=∠CBE,在△DMN和△CBE中,,∴△DMN≌△CBE(AAS),∴MN=BE,∵AN=4,∴DN=AD﹣AN=6﹣4=2,由勾股定理得:MN===2,∴BE=2,∵∠PBC=∠CBE,∠CPB=∠ECB=90°,∴△PBC∽△CBE,∴=,∴BP===,在Rt△BPM中,由勾股定理得:PM===;(2)线段AN、MB、EC之间的数量关系为:AN+EC=MB,理由如下:过点N作NF⊥BC于N,如图2所示:则四边形ANFB为矩形,∴AN=BF,NF=AB=BC,∵MN⊥BE,∴∠EBC+∠PMB=90°,∠MNF+∠NMF=90°,∴∠EBC=∠MNF,在△EBC和△MNF中,,∴△EBC≌△MNF(ASA),∴FM=EC,∴MB=BF+FM=AN+EC,即AN+EC=MB;(3)连接BD交AC于点O,如图3所示:则△BPN的直角顶点P在AC上运动,设点P与点C重合时,则点P′与点A重合;设点P与点O重合时,则点P′的落点为O′,∵AO=OB,∠AOB=90°,∴∠OAB=∠BAO′=45°,当点P在线段CO上运动时,过点P作PG⊥AD于点G,过点P′作P′H⊥AD交DA延长线于点H,连接PD,∵点P在AC上,∴BP=PD,在△BPC和△DPC中,,∴△BPC≌△DPC(SSS),∴∠CBP=∠CDP,∵∠CDA=∠MPB=90°,∴∠PDN=∠BMP,∵BC∥AD,∴∠BMP=∠PND,∴∠PDN=∠PND,∴PD=PN,∴BP=PN,∴∠PNB=45°,∴∠PNP′=90°,∴∠P′NH+∠PNG=90°,∵∠P′NH+∠NP′H=90°,∠PNG+∠NPG=90°,∴∠NPG=∠P′NH,∠PNG=∠NP′H,由翻折性质得:PN=P′N,在△PGN和△NHP'中,,∴△PGN≌△NHP'(ASA),∴PG=NH,GN=P'H,∵AC是正方形ABCD的对角线,∴∠PAG=45°,∴△AGP是等腰直角三角形,∴PG=AG,∴GN=AH,∴AH=P'H,∴∠P'AH=45°,∴∠P'AB=45°,∴点P'在线段AO'上运动;过点Q作QK⊥AO',垂足为K,则当P′与K重合时,P'Q最短,∵点Q为AD的中点,∴AQ=3,在等腰Rt△AKQ中,KQ=AQ=×3=,∴P'Q的最小值为.12.解:(1)如图①中,∵四边形ABCD是矩形,∴∠A=90°,∴BD===10,由翻折的性质可知,DA=DF=6,∴BF=BD﹣DF=10﹣6=4.(2)如图②中,∵△EBF是等边三角形,∴EB=EF,∠BEF=60°,由翻折的性质可知,EA=EF,∠AED=∠FED,∴∠AED=∠FED=60°,设AE=EF=BE=m,则AD=AE=m,∴AB=2m,∴==.(3)如图③中,过点F作FT⊥AB于T.设BT=a.由翻折的性质可知,DE⊥AF,AE=EF,∵四边形ABCD是矩形,∴∠EAD=90°,∴∠BAF+∠DAF=90°,∠DAF+∠ADE=90°,∴∠BAF=∠ADE,同法可证∠BAF=∠BFT,∴tan∠BFT=tan∠BAF=tan∠ADE=,∴FT=3a,AT=9a,∴AB=10a,∴AE=BE=5a,AD=3AE=15a,∵S△ADE=×15a×5a=S,∴a2=S,∴S△BCF=×15a×a=a2=S.解法二:三角形ADF和三角形BCF加起来等于矩形面积的一半,四边形ADFE面积好求,先求出△AEF的面积,△AEF面积是△ABF的一半.13.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,BO=DO.又∵OE⊥BE,∴BE=DE.∴∠EBD=∠EDB.∵AD∥BC,∴∠EDB=∠CBD.即BD平分∠EBC.(2)解:长度等于CD的线段有:AE、EO、FO、CF.理由:由(1)知:∠EBO=∠FBO,在△BEO和△BFO中,,∴△BEO≌△BFO(ASA).∴OE=OF,BE=BF.∵BF=2AE,∴BE=2AE.在Rt△ABE中,∵sin∠ABE=,∴∠ABE=30°,∵tan∠ABE=,∴AE=AB•tan30°=AB.∵四边形ABCD是矩形,∴AB=CD,OA=OB=OC=OD.∴AE=CD.∵∠EBF=90°﹣∠BAE=60°,∴△BEF为等边三角形.∴∠EBF=60°,∴∠EBO=∠FBO=∠EBF=30°.∴∠ABO=∠ABE+∠EBO=60°,∴△ABO为等边三角形.∴∠BAO=∠AOB=60°,∴∠EAO=∠EOA=30°,∴AE=OE.∵AD∥BC,∴∠OCF=∠OAE=30°.∵∠FOC=∠EOA=30°,∴∠OCF=∠FOC.∴OF=FC.∴OF=FC=OE=AE=CD.14.解:(1)如图1,∵AB∥CD,∴∠DPA=∠PAB,由轴对称得:∠DPA=∠EPA,∴∠EPA=∠PAB,∴BP=AB=20,在Rt△PCB中,由勾股定理得:PC===16,∴PD=4=2t,∴t=2;(2)①解法一:如图2,过点P作PH⊥AB于H,过点Q作QG⊥CD于G,∴PH=QG=AD=12,∵∠APQ=∠PAQ,∴AQ=PQ,∵PQ2=PG2+QG2=PG2+122=144+PG2,∴AQ2=144+PG2,∵AQ=DG=DP+PG,∴(DP+PG)2=144+PG2,∵PD=2t,∴(2t+PG)2=144+PG2,解得:PG=,∵AQ=PD+PG=2t+==t+,∵t+=(t﹣)2+2≥2=12,∴AQ=t+≥12,由(1)可知:当t=2时,Q与B重合,此时AQ=AB=20,∴12≤AQ≤20;解法二:由(1)可知:当t=2时,Q与B重合,此时AQ=AB=20,如图2,当PQ⊥AB时,E与Q重合,此时AQ=AD=12,∴12≤AQ≤20,故答案为:12≤AQ≤20;②存在,分两种情况:当点E在矩形ABCD内部时,如图3,∵QE=PQ﹣PE=PQ﹣DP=PQ﹣2t,∵QE=QB,PQ=AQ,∴QB=AQ﹣2t,∵AQ+BQ=AB=20,∴AQ+AQ﹣2t=20,∴AQ=10+t,由①可知:AQ=t+,∴t+=10+t,解得:t=3.6;当点E在矩形ABCD的外部时,如图4,∵QE=PE﹣PQ=DP﹣PQ=2t﹣PQ,∵QE=QB,∴BQ=2t﹣AQ,∴AB﹣AQ=2t﹣AQ,∴AB=2t,∴t==10(此时P与C重合),综上,存在这样的t值,使得QE=QB,t的值为3.6或10.15.解:(1)∵将△DCB绕点D顺时针方向旋转60°,得到△DAB′,∴BD=B′D,∠BDB′=60°,∴△BDB′是等边三角形;故答案为:等边三角形;(2)由(1)知,△BCD≌△B′AD,∴四边形ABCD的面积=等边三角形BDB′的面积,∵BC=AB′=1,∴BB′=AB+AB′=2+1=3,∴S四边形ABCD=S△BDB′=;(3)解:将△BDM绕点D顺时针方向旋转120°,得到△DCP,∴△BDM≌△CDP,∴MD=PD,CP=BM,∠MBD=∠DCP,∠MDB=∠PDC,∵△BDC是等腰三角形,且∠BDC=120°,∴BD=CD,∠DBC=∠DCB=30°,又∵△ABC等边三角形,∴∠ABC=∠ACB=60°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠PCD=∠NCD=∠MBD=90°,∴∠DCN+∠DCP=180°,∴N,C,P三点共线,∵∠MDN=60°,∴∠MDB+∠NDC=∠PDC+∠NDC=∠BDC﹣∠MDN=60°,即∠MDN=∠PDN=60°,∴△NMD≌△NPD(SAS),∴MN=PN=NC+CP=NC+BM,∴△AMN的周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2+2=4.故△AMN的周长为4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考九年级数学一轮压轴题复习:《四边形》专题练习1、已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.2、如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.3、已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG ,若DG=BG ,则四边形BEDF 是什幺特殊四边形?请说明理由.4、如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,60B ∠=︒,10AB =,4BC =, 点P 沿线段AB 从点A 向点B 运动,设AP x =. (1)求AD 的长;(2)点P 在运动过程中,是否存在以A P D 、、为顶点的三角形与以P C B 、、为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设ADP ∆与PCB ∆的外接圆的面积分别为1S 、2S ,若12S S S =+,求S 的最小值.5、如图,矩形ABCD 中,AB=3,AD=4,E 为AB 上一点,AE=1,M 为射线AD 上一动点,AM=a (a 为大于0的常数),直线EM 与直线CD 交于点F ,过点M 作MG ⊥EM ,交直线BC 于G .(1)若M 为边AD 中点,求证:△EFG 是等腰三角形; (2)若点G 与点C 重合,求线段MG 的长;(3)请用含a 的代数式表示△EFG 的面积S ,并指出S 的最小整数值.6、在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:如图,将矩形的四边、、、分别延长至、、、,使得,,连接,,,. (1)求证:四边形为平行四边形;(2)若矩形是边长为1的正方形,且,,求的长.7、(1)如图,正方形ABCD 中,点E ,F 分别在边BC ,CD 上,∠EAF=45°,延长CD 到点G ,使DG=BE ,连结EF ,AG .求证:EF=FG .ABCD BA CB DC AD E F G H AE CG BF DH EF FG GH HE EFGH ABCD 45FEB ∠°tan 2AEH ∠AE(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.8、已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由9、猜想与证明:如图1摆放矩形纸片ABCD 与矩形纸片ECGF ,使B 、C 、G 三点在一条直线上,CE 在边CD 上,连接AF ,若M 为AF 的中点,连接DM 、ME ,试猜想DM 与ME 的关系,并证明你的结论. 拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为_____________.(2)如图2摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.10、如图①所示,已知A 、B 为直线l 上两点,点C 为直线l 上方一动点,连接AC 、BC ,分别以AC 、BC 为边向ABC ∆外作正方形CADF 和正方形CBEG ,过点D 作1DD l ⊥于点1D ,过点E 作1EE l ⊥于点1E .(1)如图②,当点E 恰好在直线l 上时(此时1E 与E 重合),试说明1DD AB =; (2)在图①中,当D 、E 两点都在直线l 的上方时,试探求三条线段1DD 、1EE 、AB 之间的数量关系,并说明理由;(3)如图③,当点E 在直线l 的下方时,请直接写出三条线段1DD 、1EE 、AB 之间的数量关系.(不需要证明)11、如图,四边形ABCD 是边长为23的正方形,长方形AEFG 的宽27=AE ,长327=EF .将长方形AEFG 绕点A 顺时针旋转15°得到长方形AMNH (如图7),这时BD 与MN 相交于点O .(1)求DOM ∠的度数; (2)在图7中,求ND 、两点间的距离;(3)若把长方形AMNH 绕点A 再顺时针旋转15°得到长方形ARTZ ,请问此时点B在矩形ARTZ 的内部、外部、还是边上?并说明理由.12、如图1,在梯形ABCD 中,AB ∥CD ,∠B =90º,AB =2,CD =1,BC =m ,P 为线段BC 上的一动点,且和B 、C 不重合,连接PA ,过P 作PE ⊥PA 交CD 所在直线于E .设BP =x ,CE =y . (1)求y 与x 的函数关系式;(2)若点P 在线段BC 上运动时,点E 总在线段..CD 上,求m 的取值范围. (3)如图2,若m =4,将△PEC 沿PE 翻折至△PEG 位置,∠BAG = 90º,求BP 长.13、已知正方形的对角线,相交于点.(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若, ①求证:; ②当时,求的长.CD AB C A D B O E G OB C O C E DG F DF C ⊥E G OE =O H C B H C EH ⊥B OB E D H C E F C O G G OE =O DG C ∠O =∠O E 1AB =C H14、如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.15、已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD 交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;:S (3)在运动过程中,是否存在某一时刻t,使S五边形S五边形O E C Q F =9:16?若存在,求出t的值;若不存在,请说明理由;△A C D(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.16、如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.17、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连结EM并延长交线段CD的延长线于点F.18、已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.(1)图形①中∠B= °,图形②中∠E= °;(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片 5 张;②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)19、如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若4∠=∠,=321∠=∠则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD 为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.。