空间向量及其运算

合集下载

空间向量及线性运算

空间向量及线性运算

如图,如果表示向量的有向线段所在的直线OA与直线平行或重
合,那么称向量平行于直线.
如果直线OA平行于平面α或在平面α内,那么称向量平行于平面α.平
行于同一个平面的向量,叫做共面向量.






我们知道,任意两个空间向量总
是共面的,但三个空间向量既可能是
共面的,也可能是不共面的.那么,
线所表示的向量.
B'
D
A
C
B
知识点二 空间向量的加减运算及运算律
探究 对任意两个空间向量与,如果=λ (λ∈R),与有什么位置关
系?反过来,与有什么位置关系时,=λ?
对任意两个空间向, (≠0), ∥ 的充要条件是存在实数,
使 = .
知识点二 空间向量的加减运算及运算律
(4) +
解析:(1) ′ − = ’-=’ + =’;
(2)′ + +’’=’+’’=’;
(3) − + ’’=+’’=+=0
(4) + =+=
'
A'
D
A
C'
C
F
E
B
―→
―→
2.已知非零向量 e1,e2 不共线,如果 AB =e1+e2, AC =
量的线性运算推广到空间,定义空间向量的加法、减法以及数乘运算:
1 + = + =
与平面向量一样,空间向量的线性运算满足
2 − = − =
以下运算律(其中λ,μ∈R):
3 当 > 0时, = =
当 < 0时, = =

空间向量及其运算

空间向量及其运算

空间向量及其运算引言空间向量是三维空间中的一种重要的数学概念,用于描述具有大小和方向的物理量。

本文将介绍空间向量的基本概念、表示方法和运算规则。

基本概念空间向量是由三个实数组成的有序三元组,分别表示向量在三个坐标轴上的分量。

通常用箭头在字母上方表示向量,如向量A表示为$\vec{A}$。

表示方法空间向量可以用坐标表示或者用一个点表示。

坐标表示法将向量的三个分量写成一个有序三元组$(x。

y。

z)$,表示向量在$x$轴上的分量为$x$,在$y$轴上的分量为$y$,在$z$轴上的分量为$z$。

点表示法将向量的起点放在坐标原点,然后将向量的终点绘制在空间中,用一条箭头连接起来。

运算规则空间向量的运算包括加法、减法和数量乘法。

加法:两个向量相加,就是将它们的对应分量相加得到一个新的向量。

例如,$\vec{A} = (x_1.y_1.z_1)$,$\vec{B} =(x_2.y_2.z_2)$,则$\vec{A} + \vec{B} = (x_1 + x_2.y_1 + y_2.z_1 + z_2)$。

减法:两个向量相减,就是将它们的对应分量相减得到一个新的向量。

例如,$\vec{A} = (x_1.y_1.z_1)$,$\vec{B} =(x_2.y_2.z_2)$,则$\vec{A} - \vec{B} = (x_1 - x_2.y_1 - y_2.z_1 - z_2)$。

数量乘法:一个向量与一个实数相乘,就是将向量的每个分量都乘以这个实数。

例如,$\vec{A} = (x。

y。

z)$,$k$为实数,则$k\vec{A} = (kx。

ky。

kz)$。

总结空间向量是三维空间中描述大小和方向的数学概念。

它可以用坐标表示法或者点表示法来表示。

空间向量的运算包括加法、减法和数量乘法。

以上是关于空间向量及其运算的简要介绍,希望能对您有所帮助。

空间向量及其运算

空间向量及其运算

(3|a|+2|c|)(|a|-|c|)=0,∴|a|-|c|=0,即|a|=|c|.
即当==1时,A1C⊥平面C1BD.
【分析点评】
向量是解决立体几何问题的重要工具,利用向量可解决线面平行、线面垂 直、三点共线、四点共面,以及距离和成角等问题,而利用向量解决立体 几何问题关键在于适当选取基底,将几何问题转化为向量问题. 本题第二问用向量法解决是非常好的选择,大大简化了推理和运算过程. 这样就很好地解决:“会做的题目花费时间过多”这一矛盾,考试过程中 方法的选择就显的尤为重要.
解法二:(1)证明:取
由已知|a|=|b|,且〈a,b〉=〈b,c〉=〈c,a〉=60°,
BD=CD-CB=a-b,C1C·B=c·(a-b)=c·a-c·b
=|c||a|-|c||b|=0,
,∴C1C⊥BD.
(2)若A1C⊥平面C1BD,则A1C⊥C1D,CA1=a+b+c,C1D=a-c.
∴CA1·C1D=0,即(a+b+c)·(a-c)=0.整理得:3a2-|a||c|-2c2=0,
点击此处进入 作业手册
(3)空间的两个向量可用 同一平面内 的两条有向线段来表示.
2.空间向量的运算
定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算,如
下:
=a+b;

3.运算律:(1)加法交换律:a+)数乘分配律:λ(a+b)= λa+λb .
4.共线向量定理:空间任意两个向量a、 b(b≠0), a∥b的充要条件是存在实 数λ,使 a =λb .
5.共面向量定理:如果两个向量a,b不共线,p与向量a,b共面的充要条件 是存在实数x,y使 p=xa+yb .
6.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量

8.6 空间向量及其运算

8.6  空间向量及其运算
x 2, 所以A、 B 、C、D 四点共面. y 3,
题型分类 深度剖析
题型一 空间向量的线性运算
【例1】 如图所示,在平行六面体ABCDA1B1C1D1中,设 AA1=a,AB =b, AD =c,
M,N,P分别是AA1,BC,C1D1的中点, 试用a,b,c表示以下各向量:
同向,则 AB > CD
D.若两个非零向量 AB与 CD 满足 AB + CD =0, 则 AB ∥ CD
解析
A错.因为空间任两向量平移之后可共面,
所以空间任意两向量均共面. B错.因为|a|=|b|仅表示a与b的模相等,与方向
无关.
C错.因为空间向量不研究大小关系,只能对向量 的长度进行比较,因此也就没有AB > CD 这种写法. D对.∵AB + CD =0,∴ AB =- CD , ∴AB与 CD 共线,故 AB ∥ CD 正确.
直线l1,l2上的三点,而M,N,P,Q分别是线
段AA1,BA1,BB1,CC1的中点.求证:M、N、 P、Q四点共面. 证明 依题意有 BA
2 NM , A1 B1 2 NP.
又 PQ PB1 B1C1 C1Q 1 1 BB1 B1C1 C1C 2 2 1 1 ( BC CC1 C1 B1 ) B1C1 C1C 2 2
题型三
空间向量的模、夹角及数量积
【例3】 (12分)如图所示,已知空间 四边形ABCD的各边和对角线的长都
等于a,点M、N分别是AB、CD的中点.
(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长; (3)求异面直线AN与CM所成角的余弦值.
AD 思维启迪 把 MN 用 AB ,AC , 表示出来,然后 计算数量积,求模和夹角.

空间向量及其运算

空间向量及其运算
6. 两个向量的数量积: (1)定义 : 已知空间两向量 a, b, 则 a ·b =| a |·b |cos< a, b > ,叫做向 | 量 a,b 的数量积. 其中| a | · cos< a, b >叫做 a 在 b方向上的投影,且 b |a|· cos< a, b > = a · |b|
|a|· cos< a, b > ·b |b| (2)性质:
叫做 a 在 b方向上的正射影。简称射影。
① a · = e · =|a| · e a cos< a, e > . ②若非零向量 a, b,则 ab a · = 0 . b ③ | a |2 = a ·a = a 2 . ④对于非零向量 a, b, 有cos< a, b > = (3)向量的数量积满足交换律、分配律: ① ( a ) ·b = ( a, b ) . ②交换律: a · = b · . b a a· b | a |·b | |
知识归纳
1.空间向量的有关概念: (1)向量:在空间具有大小和方向的量叫做向量.并且仍用有 向线段表示空间向量. (2)相等向量:长度相等且方向相同的向量叫做相等的向量. (3)零向量:长度为零的向量叫做零向量,记作 0 . (4)单位向量:长度为1个单位长度的向量叫做单位向量。 (5)相反向量:长度相等且方向相反的向量叫做相反向量。 (6)平行向量:方向相同或相反的向量叫做平行向量,或叫 共线向量。记作 a∥b .
或对空间任一点O,有OP=OM+x MA+y MB.
注: 可以证明,在平面MAB内,点P对应的实数对(x,y)是唯一 的.上式叫做平面MAB的向量表示式. 又可知: 满足上面两个关系式的点P都在平面MAB内;反之, 平面MAB内任一点P都满足这个关系式.这个充要条件常用于 证明四点共面.

空间向量及其运算(内容详细,题目典型,适合新授课)

空间向量及其运算(内容详细,题目典型,适合新授课)
(3).空间向量的数乘运算满足分配律及结合律
即: (a b) a b ( ) a a a ( )a ( )a
四、空间向量加法与数乘向量运算律
化简( AB CD) ( AC BD)
解: 方法一: 将减法转化为加法进行 化简 AB CD AB DC ( AB CD ) ( AC BD) AB DC AC BD AB DC CA BD AB BD DC CA AD DA 0
五、共线向量: 1.空间共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.空间共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
由此可判断空间中两直线平行或三点共线问题
你能对(3)(4)结论进行推广吗?
四、空间向量加法与数乘向量运算律
A1 A2 A2 A3 An 1 An _____ A1 An
(3) A1 A2 A2 A3 A3 A4 A1 A4
A1 An A2 A3
An-1

A 4 首尾相接的若干向量之和,等于由起始向量的起 点指向末尾向量的终点的向量.
B
b
a
O
A
O′
结论:空间任意两个向量都可以平移到同一个平面内, 内,成为同一平面内的两个向量。
一、空间向量的基本概念
说明 ⒈空间向量的运算就是平面向量运算的推广.
2.凡是只涉及空间任意两个向量的问题,平面向量 中有关结论仍适用于它们。
一、空间向量的基本概念

第七章第6讲 空间向量及其运算

第七章第6讲 空间向量及其运算

第6讲 空间向量及其运算[学生用书P144])1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n·a =0,n·b =0.5.空间位置关系的向量表示1.辨明四个易误点(1)注意向量夹角与两直线夹角的区别.(2)共线向量定理中a ∥b ⇔存在唯一的实数λ∈R ,使a =λb 易忽视b ≠0. (3)共面向量定理中,注意有序实数对(x ,y )是唯一存在的.(4)向量的数量积满足交换律、分配律,但不满足结合律,即(a ·b )c =a (b ·c )不一定成立. 2.建立空间直角坐标系的原则(1)合理利用几何体中的垂直关系,特别是面面垂直. (2)尽可能地让相关点落在坐标轴或坐标平面上. 3.利用空间向量坐标运算求解问题的方法用空间向量解决立体几何中的平行或共线问题一般用向量共线定理;求两点间距离或某一线段的长度,一般用向量的模来解决;解决垂直问题一般可转化为向量的数量积为零;求异面直线所成的角,一般可转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.1.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥bD .以上都不对C [解析] 因为c =(-4,-6,2)=2a ,所以a ∥c .又a ·b =0,故a ⊥b .2.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|P A |=|PB |,则P 点坐标为( )A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)C [解析] 设P (0,0,z ),则有 (1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.3.教材习题改编 在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB .12a +12b +cC .-12a -12b +cD .12a -12b +cA [解析] 由题意,根据向量运算的几何运算法则,BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .4.教材习题改编 已知a =(2,4,x ),b =(2,y ,2),若|a |=6,且a ⊥b ,则x +y 的值为________.[解析] 因为a =(2,4,x ),|a |=6,则x =±4, 又b =(2,y ,2),a ⊥b , 当x =4时,y =-3,x +y =1. 当x =-4时,y =1,x +y =-3. [答案] 1或-35.若平面α的一个法向量为u 1=(-3,y ,2),平面β的一个法向量为u 2=(6,-2,z ),且α∥β,则y +z =________.[解析] 因为α∥β,所以u 1∥u 2,所以-36=y -2=2z ,所以y =1,z =-4,所以y +z =-3. [答案] -3空间向量的线性运算[学生用书P145][典例引领]如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点. (1)化简A 1O →-12AB →-12AD →=________.(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.【解析】 (1)A 1O →-12AB →-12AD →=A 1O →-12(AB →+AD →)=A 1O →-AO →=A 1O →+OA →=A 1A →.(2)因为OC →=12AC →=12(AB →+AD →).所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 【答案】 (1)A 1A →(2)12AB →+12AD →+AA 1→若本例条件不变,结论改为:设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD→+zAA 1→,试求x ,y ,z 的值.[解] EO →=ED →+DO → =-23DD 1→+12(DA →+DC →)=12AB →-12AD →-23AA 1→,由条件知,x =12,y =-12,z =-23.用基向量表示指定向量的方法(1)应结合已知和所求向量观察图形.(2)将已知向量和未知向量转化至三角形或平行四边形中.(3)利用三角形法则或平行四边形法则,把所求向量用已知基向量表示出来.如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.[解] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎫a +c +12b =12a +12b +c . 因为N 是BC 的中点, 所以NC 1→=NC →+CC 1→=12BC →+AA 1→ =12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫a +12c =32a +12b +32c .共线、共面向量定理的应用[学生用书P146][典例引领]已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .【证明】 (1)连接BG (图略), 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由共面向量定理的推论知,E ,F ,G ,H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(1)证明空间三点P 、A 、B 共线的方法 ①P A →=λPB →(λ∈R );②对空间任一点O ,OP →=OA →+tAB →(t ∈R ); ③对空间任一点O ,OP →=xOA →+yOB →(x +y =1). (2)证明空间四点P 、M 、A 、B 共面的方法 ①MP →=xMA →+yMB →;②对空间任一点O ,OP →=OM →+xMA →+yMB →;③对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); ④PM →∥AB →(或P A →∥MB →或PB →∥AM →).已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM→=13(OA →+OB →+OC →). (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. [解] (1)由题知OA →+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面, 从而点M 在平面ABC 内.空间向量的数量积与坐标运算[学生用书P146][典例引领](1)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,P i (i =1,2,…,8)是上底面上其余的八个点,则AB →·AP i →(i =1,2,…,8)的不同值的个数为( )A .1B .2C .4D .8(2)正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( ) A.23B .33 C.23D .63(3)已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29,且λ>0,则λ=________. 【解析】 (1)由题图知,AB 与上底面垂直,因此AB ⊥BP i (i =1,2,…,8),AB →·AP i→=|AB →||AP i →|cos ∠BAP i =|AB →|·|AB →|=1(i =1,2,…,8).故选A.(2)不妨设正方体的棱长为1,如图,建立空间直角坐标系,则D (0,0,0),B (1,1,0),B 1(1,1,1),平面ACD 1的法向量为DB 1→=(1,1,1),又BB 1→=(0,0,1),所以cos 〈DB 1→,BB 1→〉=DB 1→·BB 1→|DB 1→||BB 1→|=13×1=33, 所以BB 1与平面ACD 1所成角的余弦值为1-⎝⎛⎭⎫332=63.(3)λa +b =λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),由已知得|λa +b |=42+(1-λ)2+λ2=29,且λ>0,解得λ=3.【答案】 (1)A (2)D (3)3(1)空间向量数量积计算的两种方法 ①基向量法:a ·b =|a ||b |cos 〈a ,b 〉.②坐标法:设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则a ·b =x 1x 2+y 1y 2+z 1z 2. (2)利用数量积解决有关垂直、夹角、长度问题 ①a ≠0,b ≠0,a ⊥b ⇔a ·b =0. ②|a |=a 2. ③cos 〈a ,b 〉=a ·b|a ||b |.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4).设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.[解] 因为A (-2,0,2),B (-1,1,2),C (-3,0,4),a =AB →,b =AC →,所以a =(1,1,0),b =(-1,0,2).(1)cos θ=a·b |a ||b |=-1+0+02×5=-1010,所以a 和b 的夹角θ的余弦值为-1010. (2)因为k a +b =k (1,1,0)+(-1,0,2)=(k -1,k ,2), k a -2b =(k +2,k ,-4)且(k a +b )⊥(k a -2b ),所以(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=2k 2+k -10=0. 解得k =-52或k =2.利用空间向量证明平行和垂直(高频考点)[学生用书P147]空间几何中的平行与垂直问题是高考试题中的热点问题.考查形式灵活多样,可以是小题,也可以是解答题的一部分,或解答题的某个环节,是高考中的重要得分点.高考对空间向量解决此类问题有以下两个命题角度:(1)证明平行问题; (2)证明垂直问题.[典例引领](1)(2015·高考湖南卷节选)如图,已知四棱台ABCD -A 1B 1C 1D 1的上、下底面分别是边长为3和6的正方形,A 1A =6,且A 1A ⊥底面ABCD ,点P ,Q 分别在棱DD 1,BC 上.若P 是DD 1的中点,证明:AB 1⊥PQ .(2)如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:PB ∥平面EFG .【证明】 (1)由题设知,AA 1,AB ,AD 两两垂直.以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A (0,0,0),B 1(3,0,6),D (0,6,0),D 1(0,3,6),Q (6,m ,0),其中m =BQ ,0≤m ≤6.若P 是DD 1的中点,则P ⎝⎛⎭⎫0,92,3,PQ →=(6,m -92,-3). 又AB 1→=(3,0,6),于是AB 1→·PQ →=18-18=0, 所以AB 1→⊥PQ →,即AB 1⊥PQ .(2)因为平面P AD ⊥平面ABCD 且ABCD 为正方形,所以AB ,AP ,AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1),设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), 所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →, 又因为FE →与FG →不共线, 所以PB →与FE →,FG →共面.因为PB ⊄平面EFG ,所以PB ∥平面EFG .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4.⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.[题点通关]角度一 证明平行问题 1.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.利用向量方法证明:直线MN ∥平面OCD .[证明] 作AP ⊥CD 于点P ,连接OP ,如图,分别以AB ,AP ,AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P ⎝⎛⎭⎫0,22,0,D ⎝⎛⎭⎫-22,22,0,O (0,0,2),M (0,0,1),N ⎝⎛⎭⎫1-24,24,0,MN →=⎝⎛⎭⎫1-24,24,-1,OP →=⎝⎛⎭⎫0,22,-2,OD →=⎝⎛⎭⎫-22,22,-2. 设平面OCD 的一个法向量为n =(x ,y ,z ), 则n ·OP →=0,n ·OD →=0,即⎩⎨⎧22y -2z =0,-22x +22y -2z =0.取z =2,得n =(0,4,2).因为MN →·n =⎝⎛⎭⎫1-24,24,-1·(0,4,2)=0,所以MN →⊥n ,且MN ⊄平面OCD ,所以MN ∥平面OCD .角度二 证明垂直问题2.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC . [证明] (1)如图所示,以O 为坐标原点,以射线OD 为y 轴正半轴,射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4). 于是AP →=(0,3,4),BC →=(-8,0,0), 所以AP →·BC →=(0,3,4)·(-8,0,0)=0, 所以AP →⊥BC →,即AP ⊥BC . (2)连接MB ,MC .由(1)知AP =5, 又AM =3,且点M 在线段AP 上,所以AM →=35AP →=⎝⎛⎭⎫0,95,125,又BA →=(-4,-5,0), 所以BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则AP →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, 所以AP →⊥BM →,即AP ⊥BM , 又根据(1)的结论知AP ⊥BC ,所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .[学生用书P360(独立成册)]1.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2 B .-143C.145D .2D [解析] 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, 所以14-7λ=0,解得λ=2.2.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直B [解析] 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →,所以AB →与CD →共线,又AB →与CD →没有公共点.所以AB ∥CD .3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( )A.627 B .9 C.647D .657D [解析] 由题意知存在实数x ,y 使得c =x a +y b , 即(7,5,λ)=x (2,-1,3)+y (-1,4,-2), 由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y .解得x =337,y =177,所以λ=997-347=657.4.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定B [解析] 如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.5.如图所示,PD 垂直于正方形ABCD 所在平面,AB =2,E 为PB 的中点,cos 〈DP →,AE →〉=33,若以DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则点E 的坐标为( )A .(1,1,1)B .⎝⎛⎭⎫1,1,12 C.⎝⎛⎭⎫1,1,32 D .(1,1,2)A [解析] 设P (0,0,z ),依题意知A (2,0,0),B (2,2,0),则E ⎝⎛⎭⎫1,1,z2, 于是DP →=(0,0,z ),AE →=⎝⎛⎭⎫-1,1,z 2, cos 〈DP →,AE →〉=DP →·AE →|DP →||AE →|=z 22|z |·z24+2=33. 解得z =±2,由题图知z =2,故E (1,1,1).6.(2017·唐山统考)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC→1,N为B 1B 的中点,则|MN →|为( ) A.216a B .66a C.156a D .153a A [解析] 以D 为原点建立如图所示的空间直角坐标系Dxyz ,则A (a ,0,0),C 1(0,a ,a ), N ⎝⎛⎭⎫a ,a ,a2.设M (x ,y ,z ), 因为点M 在AC 1上且AM →=12MC 1→,所以(x -a ,y ,z )=12(-x ,a -y ,a -z ),所以x =23a ,y =a 3,z =a3. 所以M ⎝⎛⎭⎫2a 3,a 3,a 3,所以|MN →| =⎝⎛⎭⎫a -23a 2+⎝⎛⎭⎫a -a 32+⎝⎛⎭⎫a 2-a 32=216a . 7.在空间直角坐标系中,点P (1,2,3),过点P 作平面yOz 的垂线PQ ,点Q 在平面yOz 上,则垂足Q 的坐标为________.[解析] 由题意知点Q 即为点P 在平面yOz 内的射影, 所以垂足Q 的坐标为(0,2,3). [答案] (0,2,3)8.在空间直角坐标系中,以点A (4,1,9),B (10,-1,6),C (x ,4,3)为顶点的△ABC 是以BC 为斜边的等腰直角三角形,则实数x 的值为__________.[解析] 由题意知AB →=(6,-2,-3), AC →=(x -4,3,-6).又AB →·AC →=0,|AB →|=|AC →|,可得x =2. [答案] 29.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.[解析] 由题意得,(2a +b )·c =0+10-20=-10. 即2a ·c +b ·c =-10,又因为a ·c =4,所以b ·c =-18, 所以cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,所以〈b ,c 〉=120°,所以两直线的夹角为60°. [答案] 60°10.已知空间四边形OABC ,点M 、N 分别是OA 、BC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a 、b 、c 表示向量MN →=________.[解析] 如图所示,MN →=12(MB →+MC →)=12[(OB →-OM →)+(OC →-OM →)]=12(OB →+OC →-2OM →)=12(OB →+OC →-OA →)=12(b +c -a ). [答案] 12(b +c -a )11.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →; (2)EG 的长.[解] 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22.12.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). (1)求以AB ,AC 为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标. [解] (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2), 所以cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.所以sin 〈AB →,AC →〉=32,所以以AB ,AC 为边的平行四边形的面积为 S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3. (2)设a =(x ,y ,z ), 由题意得⎩⎪⎨⎪⎧x 2+y 2+z 2=3,-2x -y +3z =0,x -3y +2z =0,解得⎩⎪⎨⎪⎧x =1,y =1,z =1或⎩⎪⎨⎪⎧x =-1,y =-1,z =-1,所以向量a 的坐标为(1,1,1)或(-1,-1,-1).13.有下列命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3D .4B [解析] ①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立.③正确.④中若M ,A ,B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确.14.已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.[解析] 对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),说明当x =x 0,y =y 0时,|b -(x e 1+y e 2)|取得最小值1.|b -(x e 1+y e 2)|2=|b |2+(x e 1+y e 2)2-2b ·(x e 1+y e 2)=|b |2+x 2+y 2+xy -4x -5y ,要使|b |2+x 2+y 2+xy -4x -5y 取得最小值,需要把x 2+y 2+xy -4x -5y 看成关于x 的二次函数,即f (x )=x 2+(y -4)x +y 2-5y ,其图象是开口向上的抛物线,对称轴方程为x =2-y2,所以当x=2-y 2时,f (x )取得最小值,代入化简得f (x )=34(y -2)2-7,显然当y =2时,f (x )min =-7,此时x =2-y2=1,所以x 0=1,y 0=2.此时|b |2-7=1,可得|b |=2 2.[答案] 1 2 2 2 15.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .[证明] (1)设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a ,0,0), B (0,0,a ),D (a ,3a ,0), E (a ,3a ,2a ). 因为F 为CD 的中点, 所以F ⎝⎛⎭⎫32a ,32a ,0.AF →=⎝⎛⎭⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a ,0,-a ).因为AF →=12(BE →+BC →),AF ⊄平面BCE ,所以AF ∥平面BCE .(2)因为AF →=⎝⎛⎭⎫32a ,32a ,0,CD →=(-a ,3a ,0),ED →=(0,0,-2a ),所以AF →·CD →=0,AF →·ED →=0, 所以AF ⊥CD ,AF ⊥ED .又CD ∩DE =D ,所以AF ⊥平面CDE . 又AF ∥平面BCE ,所以平面BCE ⊥平面CDE .16.如图,正三角形ABC 的边长为4,CD 是AB 边上的高,E 、F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)AB ∥平面DEF ,理由如下: 在△ABC 中,由E 、F 分别是AC 、BC 的中点, 得EF ∥AB .又因为AB ⊄平面DEF ,EF ⊂平面DEF , 所以AB ∥平面DEF .(2)以点D 为坐标原点,直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系(如图所示),则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),故DE →=(0,3,1). 假设存在点P (x ,y ,0)满足条件,则AP →=(x ,y ,-2), AP →·DE →=3y -2=0, 所以y =233.又BP →=(x -2,y ,0),PC →=(-x ,23-y ,0), BP →∥PC →,所以(x -2)(23-y )=-xy , 所以3x +y =2 3.把y =233代入上式得x =43,所以BP →=13BC →,所以在线段BC 上存在点P 使AP ⊥DE ,此时BP BC =13.。

空间向量的运算(空间向量与立体几何知识点_空间向量总结)

空间向量的运算(空间向量与立体几何知识点_空间向量总结)

⑴ DM
1(a b) c 2
⑵ AG
A
1(a b c) 3
D
B
G
M
C
例3(课本例1)如图,已知平行四边形ABCD,从平 面AC外一点O引向量 OE kOA, OF kOB, OG kOC , OH kOD , 求证: ⑴四点E、F、G、H共面; ⑵平面EG//平面AC.
例3 (课本例1)已知 ABCD ,从平面AC外一点O引向量
是存在唯一有序实数对(x, y), 使 OP OA x AB y AC ③ 注:①、②、③式都称为平面的向量表示式,
即平面由空间一点及两个不共线向量唯一确定.
21
思考 2(课本 P88 思考) 已知空间任意一点 O 和不共线的三点 A、B 、C ,
满 足 向 量 关 系 式 OP xOA yOB zOC ( 其 中 x y z 1 )的点 P 与点 A、B 、C 是否共面?
量 p 与向量 a 、b 共面的充要条件是存在唯一的有
序实数对 ( x, y) 使 p xa yb .
bC
p
P
AaB
20
思考 1:如图,平面 为经过已知点 A 且平行两不共线
的非零向量 a 、b 的平面,如何表示平面 A 上的任一点 P
呢?
⑴∵ AP与a 、b 共面,
bC
p
P
AaB
∴ 唯一有序实数对(x, y),
A1 A2 A2 A3 A3 A4 An1 An An A1 0
A1
An 1
A2
An
A3
A4
⑵向量的减法 三角形法则
b a
减向量终点指向被减向量终点
一、空间向量的基本概念
空间向量 既有大小,又有方向的量

空间向量及其运算(共22张PPT)

空间向量及其运算(共22张PPT)
向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS

空间向量及其运算

空间向量及其运算

C1
AB1
A1 D A
B1
B
() 2 AB BB1 B1C1 ? AC1
C
() 3 AB BB1 B1C1 C1 D1 ? AD1 首尾相连,首尾连. () 4 AB BB1 B1C1 C1 D1 D1 A ? 0
推广:
A1 A2 A2 A3 A3 A4 An1 An A1 An
到同一平面内?为什么?
B
b
M
A
思考:平面是否唯一?
a
结论:空间任意两个向量都可以平移到同一个平面内, 成为同一个平面内的两个向量. 因此凡是涉及空间任意两个向量的问题,平面向量中 有关结论仍适用于它们.
探究二:如何对空间任意两个向量进行加减运
算?
C O· B
b
A
b

a
首尾相连,首尾连.
a b OA AB
加法交换律 a b b a 加法结合律
空间向量
具有大小和方向的量
运 算 律
加法交换律 a b b ቤተ መጻሕፍቲ ባይዱa 加法结合律
(a b) c a (b c)
(a b) c a (b c)
作业
空间四边形 ABCD中, AB a , BC =b , AD c , 试用a, b, c来表示CD, AC, BD.
B B C
b
M
b
M
a
A
a
A
向量加法的三角形法则
B
向量加法的平行四边形法则
b
M
a
A
向量减法的三角形法则
⒊平面向量的加法运算律
加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c)

空间向量及其运算

空间向量及其运算

空间向量及其运算1.空间向量(1)定义:空间中既有大小又有方向的量称为空间向量. (2)模(或长度):向量的大小. (3)表示方法:①几何表示法:可以用有向线段来直观的表示向量,如始点为A 终点为B 的向量,记为AB →,模为|AB →|.②字母表示法:可以用字母a ,b ,c ,…表示,模为|a |,|b |,|c |,…. 2.【几类特殊的向量】(1)零向量:始点和终点相同的向量称为零向量,记作0. (2)单位向量:模等于1的向量称为单位向量.(3)相等向量:大小相等、方向相同的向量称为相等向量. (4)相反向量:方向相反,大小相等的向量称为相反向量.(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合.通常规定零向量与任意向量平行. (6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面. 3.空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算.图1 图2(1)如图1,OB →=OA →+AB →=a +b ,CA →=OA →-OC →=a -b . (2)如图2,DA →+DC →+DD 1→=DB 1→.即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量.(3)给定一个实数λ与任意一个空间向量a ,则实数λ与空间向量a 相乘的运算称为数乘向量,记作λa .其中:①当λ≠0且a ≠0时,λa 的模为|λ||a |,而且λa 的方向:(ⅰ)当λ>0时,与a 的方向相同;(ⅰ)当λ<0时,与a 的方向相反. ②当λ=0或a =0时,λa =0.(4)空间向量的线性运算满足如下运算律:对于实数λ与μ,向量a 与b ,有①λa +μa =(λ+μ)a ;②λ(a +b )=λa +λb . 4.空间向量的数量积 (1)空间向量的夹角如果〈a ,b 〉=π2,那么向量a ,b 互相垂直,记作a ⊥b . (2)空间向量数量积的定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积(或内积),记作a·b . (3)数量积的几何意义 ①向量的投影如图所示, 过向量a 的始点和终点分别向b 所在的直线作垂线,即可得到向量a 在向量b 上的投影a ′.②数量积的几何意义:a 与b 的数量积等于a 在b 上的投影a ′的数量与b 的长度的乘积,特别地,a 与单位向量e 的数量积等于a 在e 上的投影a ′的数量.规定零向量与任意向量的数量积为0. (4)空间向量数量积的性质:①a ⊥b ⇔a ·b =0;②a ·a =|a |2=a 2;③|a ·b |≤|a ||b |;④(λa )·b =λ(a ·b );⑤a ·b =b ·a (交换律);5.共面向量定理如果两个向量a,b不共线,则向量a,b,c共面的充要条件是存在唯一的实数对(x,y),使c=x a+y b.思考1:平面向量基本定理中对于向量a与b有什么条件,在空间中能成立吗?【名师提醒】平面向量基本定理中要求向量a与b不共线,在空间中仍然成立.【新高二数学专题】考点一概念的辨析【例1】(2020·全国高二课时练习)下列命题中,假命题是()A.同平面向量一样,任意两个空间向量都不能比较大小B.两个相等的向量,若起点相同,则终点也相同C.只有零向量的模等于0D.共线的单位向量都相等【新高二数学专题】1.(2020•龙岩期末)在平行六面体中,与向量相等的向量共有A. 1个B. 2个C. 3个D. 4个2.(2020·全国高二课时练习)在下列命题中:①若向量,a b共线,则,a b所在的直线平行;②若向量,a b所在的直线是异面直线,则,a b一定不共面;③若三个向量,a b c,三个向量一定也共面;,两两共面,则,a b c④已知三个向量,a b c=++.,,则空间任意一个向量p总可以唯一表示为p xa yb zc 其中正确命题的个数为()A.0B.1C.2D.3考点二 空间向量的线性运算【例2】2020·江西赣州.高二期中(理))在四面体ABCD 中,点F 在AD 上,且2AF FD =,E 为BC 中点,则EF 等于()A .1223EF AC AB AD →→→→=+-B .112223EF AC AB AD →→→→=--+C .112223EF AC AB AD →→→→=-+D .112223EF AC AB AD →→→→=-+-【新高二数学专题】1.(多选题)已知平行六面体ABCD A B C D ''''-,则下列四式中其中正确的有( ) A .AB CB AC -= B .AC AB B C CC ''''=++ C .AA CC ''=D .AB BB BC C C AC '''+++=2.(2020·宝山.上海交大附中高二期末)在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++B .1122a b c --+C .1122a b c -+D .1122-++a b c3.(2020·张家口市宣化第一中学高二月考)如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD +12(BC -BD )等于( )A .ADB .FAC .AFD .EF 考点三 空间向量的共线、共面问题【例3】如图所示,在空间四边形ABCD 中,点E ,F 分别是AB ,CD 的中点,请判断向量EF 与AD +BC 是否共线?【例4】(2020•珠海期末)已知A ,B ,C 三点不共线,点M 满足.,,三个向量是否共面点M 是否在平面ABC 内【新高二数学专题】1.(2020·全国高二)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =______. 2.(2020•日照期末)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且,.求证:向量,,共面.3.(2020·浙江高二期末)在棱长为1的正方体1111ABCD A BC D -中,,,E F G 分别在棱1,,BB BC BA 上,且满足134BE BB =,12BF BC =,12BG BA =,O 是平面1B GF ,平面ACE 与平面11B BDD 的一个公共点,设BO xBG yBF zBE =++,则x y z ++= A.45B.65C.75D.85考点四 空间向量的数量积【例5】 (2020·山东高二期末(理))在棱长为2的正四面体ABCD 中,E ,F 分别是BC ,AD 的中点,则(AE CF ⋅= ) A .0B .2-C .2D .3-【例6】 (2020·全国高二课时练习)已知平行六面体ABCD ﹣A ′B ′C ′D ′中,AB =4,AD =3,AA ′=5,∠BAD =90°,∠BAA ′=∠DAA ′=60°.。

空间向量及其运算

空间向量及其运算

2. 共线向量定理:空间任意两个 向量a、b(b≠0),a//b的充要条件是
存在实数l,使a=lb.
3. 向量与平面平行
4. 共面向量定理:如果两个向量a, b不共线,p与向量a,b共面的充要条 件是存在实数x,y使 p=xa+yb.
三、空间向量基本定理: 如果三个向量a,b,c不共面,那
么对空间任一向量p,存在一个唯一的 有序实数组x,y,z,使p=xa+yb+zc.
四、空间向量数量积:
已知向量a,b,则|a| |b|cosa,b 叫做a,b的数量积,记作a ·b,即 a ·b= _|_a_| |_b_|c_o_s__a_,__b_ . 其中a,b为 向量a与b的夹角,且范围是
____0_<__a_、__b__<_p_.
1.正四棱锥P - ABCD中,O为底
OAB=60°,
O
求OA与BC的夹角的余弦值.
Hale Waihona Puke ACB5、在长方体ABCD-A1B1C1D1中,
AB=BC=4,E为A1C1与B1D1的交点,F
为BC1的交点,
D1
又AFBE,求长方体 A1
的高BB1.
D A
E
C1
B1 F
C B
的模为______2_3___ .
3. 已知线段AB,BD在平面a内, BDAB,线段ACa,若AB=a, BD=b,AC=c,则C、D间的距离
为_____________a_2_. b2 c2
C
cD
a A a Bb
4、在空间四边形OABC中,OA=8,
AB=6,AC=4,BC=5, OAC=45° ,
面中心,设AB i,BC j,OP k, E

空间向量及基本运算

空间向量及基本运算
A1
A2
An1
An A3
A4
⑵首尾相接的若干向量构成一个封闭图形, 则它们的和为零向量.即: A1 A2 A2 A3 A3 A4 An1 An An A1 0
A1
A2
An1
An A3
A4
二、空间向量及其加减与数乘运算
⒈空间向量: ⑴定义:空间中具有大小和方向的量叫做向量. ⑵表示方法: ①空间向量的表示方法和平面向量一样; ②同向且等长的有向线段表示同一向量或 相等的向量; ③空间任意两个向量都可以用同一平面 内的两条有向线段表示.
A1
A2
An1
An A3
A4
⑵首尾相接的若干向量构成一个封闭图形, 则它们的和为零向量.即: A1 A2 A2 A3 A3 A4 An1 An An A1 0
A1
A2
An1
An A3
A4
平行六面体
平行四边形ABCD平移向量 a 到A’B’C’D’ 的轨迹所形成的几何体,叫做平行六面体.记 作ABCD—A’B’C’D’. D’ C’
' '
A B
E C
D
(2) AE AA x AB y AD
'
A B C
D
练习二:在正方体ABCD-A’B’C’D’中,点E是面
AC’的中心,求下列各式中的x、y的值.
(1) AC x( AB BC CC )
' '
A
E C
D
B
A B
D
C
练习二:在正方体ABCD-A’B’C’D’中,点E是面 AC’的中心,求下列各式中的x、y的值.
A
D B

第1讲 空间向量及其运算(解析版)

第1讲 空间向量及其运算(解析版)

第1讲 空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。

2.经历由平面向量的运算及其法则推广到空间向量的过程。

3.掌握空间向量的线性运算。

4. 掌握空间向量的数量积。

知识梳理1.空间向量的概念与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模,空间向量用字母a,b,c ...表示. 2.几个常见的向量3.向量的线性运算交换律:+=+a b b a ;结合律:()();()()λμλμ+=+=a b +c a +b c a a ; 分配律:();()λμλμλλλ+=++=+a a a a b a b . 4.共面向量平行于同一平面的向量,叫做共面向量. 5.空间向量的数量积||||cos ,⋅=<>a b a b a b 零向量与任意向量的数量积为0.名师导学知识点1 空间向量的有关概念【例1-1】(咸阳期末)已知是空间的一个单位向量,则的相反向量的模为A. 1B. 2C. 3D. 4【分析】本题考查了向量的基础知识,根据向量模的概念求解即可;【解答】解:因为是空间的一个单位向量,所以的相反向量的模,故选A.【变式训练1-1】(龙岩期末)在平行六面体中,与向量相等的向量共有A. 1个B. 2个C. 3个D. 4个【分析】本题考查了相等向量及其平行六面体的性质,考查了推理能力与计算能力,属于基础题.利用相等向量及其平行六面体的性质即可得出.【解答】解:如图所示,与向量的相等的向量有以下3个:故选C.知识点2 空间向量的线性运算【例2-1】(泰安期末)如图所示,在长方体中,O为AC的中点.化简:________;用,,表示,则________.【分析】本题考查空间向量的线性运算,属于基础题.利用化简即可;将分解为,继而进行正交分解即可.【解答】解:..【例2-2】(河西区期末)在三棱锥中,,,,D为BC的中点,则A. B.C. D.【分析】本题考查空间向量的加减运算,属于基础题.若D为BC的中点,则,根据向量的减法法则即可得到答案.【解答】解:依题意得,故选A.【变式训练2-1】(东湖区校级一模)在空间四边形ABCD中,M,G分别是BC,CD的中点,则A. B. C. D.【分析】本题考查了空间向量的加减运算及数乘运算,属于基础题.根据题意,将进行转化,即可得解.【解答】解:.【变式训练2-2】(随州期末)如图,已知长方体,化简下列向量表达式,并在图中标出化简结果的向量.;.【解析】解:..向量,如图所示.知识点3 共面向量【例3-1】(珠海期末)已知A,B,C三点不共线,点M满足.,,三个向量是否共面点M是否在平面ABC内【解析】解,,,向量,,共面.由知向量,,共面,又它们有共同的起点M,且A,B,C三点不共线,,A,B,C四点共面,即点M在平面ABC内.【变式训练3-1】(日照期末)如图所示,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且,.求证:向量,,共面.【解析】证明:因为M在BD上,且,所以.同理.所以.又与不共线,根据向量共面的充要条件可知,,共面.知识点4 空间向量的数量积【例4-1】(溧阳市期末)已知长方体中,,,E为侧面的中心,F为的中点试计算:.【解析】解:如图,设,,,则,,....【变式训练4-1】(兴庆区校级期末)如图所示,在棱长为1的正四面体ABCD中,E,F分别是AB,AD的中点,求:.【解析】解,..,.,,.名师导练A组-[应知应会]1.(台江区校级期末)长方体中,若,,,则等于A. B.C. D.【分析】本题考查空间向量的运算,属基础题.根据空间向量的运算法则求解即可.【解答】解:,故选C.2.(秦皇岛期末)若空间四边形OABC的四个面均为等边三角形,则的值为A. B. C. D. 0【分析】本题主要考查了空间向量的运算、向量的数量积、向量垂直的判定,属于中档题.先求出向量的数量积,由它们的数量积为0判断,所以向量的夹角为,由此得出结论.【解答】解:,空间四边形OABC的四个面为等边三角形,,,,,,故选D.3.(定远县期末)给出下列几个命题:向量,,共面,则它们所在的直线共面;零向量的方向是任意的;若,则存在唯一的实数,使.其中真命题的个数为A. 0B. 1C. 2D. 3【分析】本题主要考查命题的真假判断与应用,比较基础. 利用向量共面的条件判断.利用零向量的性质判断.利用向量共线的定理进行判断.【解答】 解:假命题.三个向量共面时,它们所在的直线或者在平面内或者与平面平行;真命题.这是关于零向量的方向的规定; 假命题.当,则有无数多个使之成立.故选B .4. (葫芦岛期末)在下列条件中,使M 与A 、B 、C 一定共面的是A. ;B. ;C.D.【分析】本题考查空间向量基本定理,考查学生分析解决问题的能力,属于基础题. 利用空间向量基本定理,进行验证,对于C ,可得,,为共面向量,从而可得M 、A 、B 、C四点共面.【解答】解:对于A ,,无法判断M 、A 、B 、C 四点共面; 对于B ,,、A 、B 、C 四点不共面; C 中,由,得,则,,为共面向量,即M 、A 、B 、C 四点共面; 对于D ,,,系数和不为1,、A 、B 、C四点不共面.故选C .5.(多选)(点军区校级月考)已知1111ABCD A B C D -为正方体,下列说法中正确的是( ) A .221111111()3()A A A D A B A B ++= B .1111()0A C A B A A -=C .向量1AD 与向量1A B 的夹角是60︒D .正方体1111ABCD A B C D -的体积为1||AB AA AD【分析】本题考查的是用向量的知识和方法研究正方体中的线线位置关系及夹角与体积.用到向量的加法、减法、夹角及向量的数量积,研究了正方体中的线线平行、垂直,异面直线的夹角及正方体的对角线的计算、体积的计算.【解答】解:由向量的加法得到:111111A A A D A B A C ++=,221113AC A B =,∴22111()3()AC A B =,所以A 正确;1111A B A A AB -=,11AB AC ⊥,∴110A C AB =,故B 正确; 1ACD ∆是等边三角形,160AD C ∴∠=︒,又11//A B D C ,∴异面直线1AD 与1A B 所成的夹角为60︒,但是向量1AD 与向量1A B 的夹角是120︒,故C 不正确;1AB AA ⊥,∴10AB AA =,故1||0AB AA AD =,因此D 不正确.故选:AB .6. (都匀市校级期中)空间的任意三个向量,,,它们一定是________向量填“共面”或“不共面”.【分析】正确理解共面向量定理是解题的关键. 由于可用向量,线性表示,即可判断出空间中的三个向量,,是否是共面向量. 【解答】解:可用向量,线性表示,由空间中共面向量定理可知,空间中的三个向量,,一定是共面向量.7. (池州模拟)给出以下结论:两个空间向量相等,则它们的起点和终点分别相同;若空间向量,,满足,则;在正方体中,必有; 若空间向量,,满足,,则.其中不正确的命题的序号为________.【分析】本题考查的知识点是空间相等的定义,难度不大,属于基础题.根据相向相等的定义,逐一分析四个结论的真假,可得答案. 【解答】 解:若两个空间向量相等,则它们方向相同,长度相等,但起点不一定相同,终点也不一定相同,故错误; 若空间向量,,满足,但方向不相同,则,故错误;在正方体中,与方向相同,长度相等,故,故正确;若空间向量,,满足,,则,故正确;故答案为.8.(未央区校级期末)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t = .【分析】利用空间向量基本定理,及向量共面的条件,即可得到结论.【解答】解:由题意得,3148OP OA OB tOC =++,且P ,A ,B ,C 四点共面,∴31148t ++=18t ∴=,故答案为:18.9.(天津期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC 的值为 .【分析】如图所示,由正四面体的性质可得:PA BC ⊥,可得:0PA BC =.由E 是棱AB 中点,可得1()2PE PA PB =+,代入PE BC ,利用数量积运算性质即可得出.【解答】解:如图所示,由正四面体的性质可得:PA BC ⊥, 可得:0PA BC =.E 是棱AB 中点,∴1()2PE PA PB =+,∴1111()22cos12012222PE BC PA PB BC PA BC PB BC =+=+=⨯⨯⨯︒=-. 故答案为:1-.10. (三明期中)如图所示,在正六棱柱中化简,并在图中标出表示化简结果的向量 化简,并在图中标出表示化简结果的向量.【解析】解:.,在图中表示如下:.在图中表示如下:11.(都匀市校级期中)如图所示,在四棱锥中,底面ABCD为平行四边形,,,底面求证:.【解析】证明:由底面ABCD为平行四边形,,,知,则.由底面ABCD ,知,则.又, 所以,即.12.(西夏区校级月考)如图所示,平行六面体1111ABCD A B C D -中,E 、F 分别在1B B 和1D D 上,且11||||3BE BB =,12||||3DF DD =(1)求证:A 、E 、1C 、F 四点共面;(2)若1EF xAB y AD z AA =++,求x y z ++的值.【分析】(1)利用向量三角形法则、向量共线定理、共面向量基本定理即可得出. (2)利用向量三角形法则、向量共线定理、共面向量基本定理即可得出. 【解答】(1)证明:1111111212()()3333AC AB AD AA AB AD AA AA AB AA AD AA AB BE AD DF AE AF =++=+++=+++=+++=+.A ∴、E 、1C 、F 四点共面.(2)解:111211()333EF AF AE AD DF AB BE AD DD AB BB AB AD AA =-=+-+=+--=-++,1x ∴=-,1y =,13z =,13x y z ∴++=. B 组-[素养提升]1.(多选)(三明期中)定义空间两个向量的一种运算||||sin a b a b a =<⊗,b >,则关于空间向量上述运算的以下结论中恒成立的有( ) A .a b b a =⊗⊗ B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗D .若1(a x =,1)y ,2(b x =,2)y ,则1221||a b x y x y =-⊗【分析】A 和B 需要根据定义列出左边和右边的式子,再验证两边是否恒成立;C 由定义验证若a b λ=,且0λ>,结论成立,从而得到原结论不成立;D 根据数量积求出cos a <,b >,再由平方关系求出sin a <,b >的值,代入定义进行化简验证即可.【解答】解:对于A ,||||sin a b a b a =<⊗,b >,||||sin b a b a b ==<⊗,a >, 故a b b a =⊗⊗恒成立;对于:()(||||sin B a b a b a λλ=<⊗,)b >,()||||||sin a b a b a λλλ=<⊗,b >, 故()()a b a b λλ=⊗⊗不会恒成立;对于C ,若a b λ=,且0λ>,()(1)||||sin a b c b c b λ+=+<⊗,c >,()()||||sin a c b c b c b λ+=<⊗⊗,||||sin c b c b >+<,(1)||||sin c b c b λ>=+<,c >,显然()()()a b c a c b c +=+⊗⊗⊗不会恒成立;对于D ,cos a <,1212||||x x y y b a b +>=,sin a <,22121()||||x y y b a b +>=-,即有22212121212||||1()||||()||||||x x y y x x y y a b a b a b a a b ++=-=-⊗2222212222211)y y x y y +=++22121221)||y y x y x y +-.则1221||a b x y x y =-⊗恒成立.故选:AD .。

空间向量及其运算

空间向量及其运算

3.1空间向量及其运算3.1.1空间向量的线性运算教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.起点与重点重合的向量叫做零向量。

空间向量及其运算_2022年学习资料

空间向量及其运算_2022年学习资料

例1:已知平行六面体ABCD-AB,CD1,化简下列向量-表达式,并标出化简结果的向量。(如图-1AB+B -2AB+AD+AA-3-4AB+AD+-CC-解:1AB+BC=AC,-2AB+AD+AA =AC+AA =AC+CC =AC-始点相同的三个不共面向量之和,等于以这三个向量-为棱的平行六面体的以公共始点为始点的 角线所示向量
练习2在立方体AC,中,点E是面AC-的中心,求下列各式中的x,y,-D①AC=AB+BC+CC-②AEA+AB+yAD-PPT课件-25
练习2在立方体AC,中,点E是面AC-的中心,求下C-②AE= +AB+yAD-PPT课件-26
练习2在立方体AC,中,点E是面AC-的中心,求下列各式中的x,y-D'2AE=AA+xAB+yAD-PP 课件-27
练习1在空间四边形ABCD中,点M、G分别是BC、-D边的中点,化简-①AB+BC+BD-2-2AG-号A +AC-合>-PPT课件-23
练习1在空间四边形ABCD中,点M、G分别是BC、-D边的中点,化简-①AB+BC+BD-2-AG-AB+ C-1原式=AB+BM+MG=AG-2原式--AB+BM+MG-AB+AC-=BM+MG+二AB-AC-= tM件MG+MB=MG-24
例2:已知平行六面体ABCD-ABCD1,-求满足下列各式的x的值。-22AD-BD =xAC 3AC+A +AD=xAC--AD+AD-BD-AD+BC-BD-=AD +DC-..x=1-P读群-21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8.5 空间向量及其运算1. 空间向量的概念(1)定义:空间中既有大小又有方向的量叫作空间向量.(2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB →,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律(1)定义空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用(1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b|a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23(a ≠0,b ≠0) .1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ). ( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2. 如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向 量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3. 已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A .x =1,y =1B .x =1,y =12C .x =12,y =12D .x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4. 同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________.答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5. 在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC的重心,用基向量OA →,OB →,OC →表示MG →,OG →.思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →.(2)OC 1→=OC →+CC 1→=12AB →+12AD →+AA 1→.题型二 共线定理、空间向量基本定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示. 证明 (1)连接BG , 则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH 平面EFGH ,BD 平面EFGH ,所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底, 易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF平面A 1B 1CD ,DB 1平面A 1B 1CD ,所以EF ∥平面A 1B 1CD . 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →. 即MN ⊥AB .同理可证MN ⊥CD .(2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a . (3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4), 且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反.解析 由题意知a ∥b ,所以x 1=x 2+y -22=y3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3.答案 1,3温馨提醒 (1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a ,b 满足a =λb (b ≠0)且λ>0则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例.方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题. 失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b =b·a ,a ·(b +c )=a·b +a·c 成立,(a·b )·c =a·(b·c )不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练 (时间:40分钟)一、选择题1. 空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点. ∴AB ∥CD .2. 已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则( )A .O ,A ,B ,C 四点不共线 B .O ,A ,B ,C 四点共面,但不共线 C .O ,A ,B ,C 四点中任意三点不共线D .O ,A ,B ,C 四点不共面 答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3. 已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A .2,12 B .-13,12 C .-3,2D .2,2 答案 A解析 由题意知:⎩⎨⎧ λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧ λ=-3,μ=12.4. 空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( ) A .共线B .共面C .不共面D .无法确定 答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4).假设四点共面,由共面向量定理得,存在实数x ,y ,使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧ 2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾.∴假设不成立,故四点不共面.5. 如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3, 则cos 〈OA →,BC →〉的值为( ) A .0B.12C.32D.22 答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b ,∴OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos π3-|a ||b |cos π3=0, ∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6. 已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°.7. 已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95,∴当t =15时,|b -a |取得最小值355.8. 如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9. 已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2.(2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E (λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25),∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b .10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6, ∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴BD 1与AC 夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1. 若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A .c ∥dB .c ⊥dC .c 不平行于d ,c 也不垂直于dD .以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2. 以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A .1B .2C .3D .4答案 B解析由共线向量知a与b所在直线可能重合知①错;若a+b,b+c,c+a共面,则存在实数x,y,使a+b=x(b+c)+y(c+a)=y a+x b+(x +y)c,∵a,b,c不共面,∴y=1,x=1,x+y=0,∴x,y无解,∴{a+b,b+c,c+a}能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x+y+z=1时,P,A,B,C四点共面,∴④不正确.故选B.3. 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1 和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25 解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直 角坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12),∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标. 解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5. 直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、 E 分别为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010.。

相关文档
最新文档