锐得ppt模板数学建模
合集下载
数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。
数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。
《数学建模培训》PPT课件
数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
《数学建模》PPT课件
( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。
数学建模教学ppt
在概率模型中,我们需要确定随机变量的概率分布和参 数,并使用最大似然估计等方法来估计参数。
概率模型可以分为离散概率模型和连续概率模型,常见 的概率分布有二项分布、泊松分布、正态分布等。
概率模型的应用非常广泛,例如在统计学、保险精算、 可靠性工程等领域都有广泛应用。
优化模型
优化模型是一种寻找最优解的 数学模型,通过找到满足一定 约束条件下目标函数的最优值
教学目标和内容
教学目标
通过数学建模教学,学生应掌握数学 建模的基本概念、方法和技能,能够 运用数学建模解决实际问题,并培养 创新思维和合作精神。
教学内容
包括数学建模的基本概念、建模方法 、常用数学软件和工具、案例分析等 ,以及实践环节和项目式学习等内容 。
02 数学建模基础知识
数学建模的基本概念
股票价格预测模型。通过分析股 票价格的历史数据,建立股票价 格预测模型,预测未来股票价格
的走势。
案例三
最优路径问题。给定起点和终点 以及一些中间节点,寻找一条最 优路径,使得路径总长度最短或
花费时间最少。
05 数学建模教学反思与展望
教学反思
教学内容的反思
总结了数学建模教学中涉及的主要知识点,包括数学建模的基本概念、建模过程、 常用数学方法和模型等。
数学建模的定义
数学建模的步骤ຫໍສະໝຸດ 数学建模是指通过数学语言和工具, 对现实世界的问题进行抽象、简化, 并建立数学模型的过程。
数学建模通常包括问题分析、建立模 型、求解模型和模型验证等步骤。
数学建模的意义
数学建模是解决实际问题的重要手段, 能够帮助学生理解数学在实际生活中 的应用,提高解决问题的能力。
数学建模的基本步骤
关系和变化规律。
概率模型可以分为离散概率模型和连续概率模型,常见 的概率分布有二项分布、泊松分布、正态分布等。
概率模型的应用非常广泛,例如在统计学、保险精算、 可靠性工程等领域都有广泛应用。
优化模型
优化模型是一种寻找最优解的 数学模型,通过找到满足一定 约束条件下目标函数的最优值
教学目标和内容
教学目标
通过数学建模教学,学生应掌握数学 建模的基本概念、方法和技能,能够 运用数学建模解决实际问题,并培养 创新思维和合作精神。
教学内容
包括数学建模的基本概念、建模方法 、常用数学软件和工具、案例分析等 ,以及实践环节和项目式学习等内容 。
02 数学建模基础知识
数学建模的基本概念
股票价格预测模型。通过分析股 票价格的历史数据,建立股票价 格预测模型,预测未来股票价格
的走势。
案例三
最优路径问题。给定起点和终点 以及一些中间节点,寻找一条最 优路径,使得路径总长度最短或
花费时间最少。
05 数学建模教学反思与展望
教学反思
教学内容的反思
总结了数学建模教学中涉及的主要知识点,包括数学建模的基本概念、建模过程、 常用数学方法和模型等。
数学建模的定义
数学建模的步骤ຫໍສະໝຸດ 数学建模是指通过数学语言和工具, 对现实世界的问题进行抽象、简化, 并建立数学模型的过程。
数学建模通常包括问题分析、建立模 型、求解模型和模型验证等步骤。
数学建模的意义
数学建模是解决实际问题的重要手段, 能够帮助学生理解数学在实际生活中 的应用,提高解决问题的能力。
数学建模的基本步骤
关系和变化规律。
数学建模介绍PPT课件
•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答
解
释
数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5
数学建模简介PPT课件
证明:存在0,使f(0) = g(0) = 0.
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
如虎添翼
数学建模
计算机技术
知识经济
1.3 数学建模示例
1.3.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
河 小船(至多2人)
但是乘船渡河的方案由商人决定.
商人们怎样才能安全过河?
问题分析
多步决策过程
3名商人 3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经有限 步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态
• 1、培养创新意识和创造能力 • 2、训练快速获取信息和资料的能力 • 3、锻炼快速了解和掌握新知识的技能 • 4、培养团队合作意识和团队合作精神 • 5、增强写作技能和排版技术 • 6、更重要的是训练人的逻辑思维和开放性
思考方式
数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
如虎添翼
数学建模
计算机技术
知识经济
1.3 数学建模示例
1.3.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
河 小船(至多2人)
但是乘船渡河的方案由商人决定.
商人们怎样才能安全过河?
问题分析
多步决策过程
3名商人 3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经有限 步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态
• 1、培养创新意识和创造能力 • 2、训练快速获取信息和资料的能力 • 3、锻炼快速了解和掌握新知识的技能 • 4、培养团队合作意识和团队合作精神 • 5、增强写作技能和排版技术 • 6、更重要的是训练人的逻辑思维和开放性
思考方式
数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
数学建模常用方法介绍ppt课件
遗传算法一般步骤
1. 完成了预先给定的进 化代数 2. 种群中的最优个体在 连续若干代后没有改进 3. 平均适应度在连续若 干代后基本没有改进
竞赛中的群体思维方法
✓平等地位、相互尊重、充分交流 ✓杜绝武断评价 ✓不要回避责任 ✓不要对交流失去信心
竞赛中的发散性思维方法
➢ 借助于一系列问题来展开思路
与模糊数学相关的问题(二)
模糊聚类分析—根据研究对象本身的属性构造 模糊矩阵,在此基础上根据一定的隶属度来 确定其分类关系
模糊层次分析法—两两比较指标的确定
模糊综合评判—综合评判就是对受到多个因素 制约的事物或对象作出一个总的评价,如产 品质量评定、科技成果鉴定、某种作物种植 适应性的评价等,都属于综合评判问题。由 于从多方面对事物进行评价难免带有模糊性 和主观性,采用模糊数学的方法进行综合评 判将使结果尽量客观从而取得更好的实际效 果
3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当
前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(判别分析)
➢ 判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。
这个问题与什么问题相似? 如果将问题分解成两个或几个部分会怎样? 极限情形(或理想状态)如何? 综合问题的条件可得到什么结果? 要实现问题的目标需要什么条件?
➢ 借助于下意识的联想(灵感)来展开思路
抓住问题的个别条件或关键词展开联想或猜想 综合所得到的联想和猜想,得到一些结论 进一步思考找出新思路和方法
数学建模培训精品课件ppt
Python在数学建模中的应用
开源、跨平台
VS
Python是一种开源的、跨平台的编 程语言,被广泛应用于数学建模领域 。Python具有简洁的语法和丰富的 库,可以方便地进行数值计算和数据 可视化。
Python在数学建模中的应用
科学计算、数据分析
Python拥有许多科学计算和数据分析的库,如 NumPy、Pandas和SciPy等,可以方便地进行矩阵运 算、统计分析等。
MATLAB在数学建模中的应用
功能强大、广泛使用
MATLAB是一款由MathWorks公司开发的商业数学软件,主要用于算法开发、 数据可视化、数据分析以及数值计算。在数学建模领域,MATLAB因其强大的矩 阵运算和绘图功能被广泛使用。
MATLAB在数学建模中的应用
数值计算、算法开发
MATLAB提供了大量的内置函数,可以方便地进行数值计算,包括线性代数、微积分、常微分方程求解等。同时,它也支持 用户自定义函数,可以方便地进行算法开发。
2023 WORK SUMMARY
数学建模培训精品课 件
汇报人:可编辑
2023-12-26
REPORTING
目录
• 数学建模基础 • 数学建模应用实例 • 数学建模软件介绍 • 数学建模竞赛经验分享 • 数学建模前沿动态 • 数学建模课程建议与展望
PART 01
数学建模基础
数学建模的定义与重要性
方案优化等。
未来数学建模的发展趋势
跨学科融合
大数据与机器学习
随着各学科的交叉融合,数学建模将与其 他领域更加紧密地结合,形成新的研究领 域和应用方向。
随着大数据和机器学习技术的发展,数学 建模将更多地应用于数据分析和预测等领 域。
数学建模培训精品课件ppt
03
数学建模基础知识
代数基础
代数基本概念:定义、性质、 分类等
代数运算:加法、减法、乘法、 除法等
代数方程:一元一次方程、一 元二次方程等
代数不等式:一元一次不等式、 一元二次不等式等
几何基础
空间点、线、 面
方向导数与梯 度
欧几里得距离 公式
曲线和曲面的 切线与法平面
概率统计基础
概率论基本概念:事件、概率、 独立性等
添加标题
添加标题
添加标题
添加标题
数学建模是一种将数学语言应用 于实际问题的过程
数学建模是一种将数学模型应用 于实际问题的过程
数学建模的应用领域
工程科学:机械工程、电子 工程、土木工程、化学工程 等
自然科学:物理学、化学、 生物学、地球科学等
社会科学:经济学、社会学、 政治学、历史学等
医学与健康:生物医学、临 床医学、预防医学等
数学建模培训精品 课件ppt
单击此处添加副标题
汇报人:XXX
目录
添加目录项标题 数学建模基础知识 数学建模案例分析 数学建模培训总结与展望
数学建模概述 数学建模方法与技巧 数学建模实践项目
01
添加章节标题
02
数学建模概述
数学建模的定义
数学建模是一种用数学方法解决 实际问题的手段
数学建模是一种将实际问题抽象 为数学模型的过程
统计推断方法:参数估计和假设 检验
添加标题
添加标题
添加标题
添加标题
随机变量及其分布:离散型和连 续型随机变量
回归分析:线性回归和非线性回 归模型
微积分基础
导数与微分
积分
微积分的应用
微积分与数学 建模的联系
数模ppt课件
数模在科技发展中的作用
促进科技创新
数模方法在科技发展中扮演着重要的 角色,通过建立数学模型,可以深入 探索自然现象和解决实际问题,推动 科技创新和进步。
优化资源配置
预测和决策支持
数模方法可以对未来趋势进行预测, 为决策者提供科学依据,支持决策制 定和实施。
数模方法可以帮助决策者优化资源配 置,提高资源利用效率,降低成本, 实现可持续发展。
熟练掌握常用的数学软件,如 MATLAB、Python等,能够 快速进行模型验证和结果展示 。
04
模拟练习
在竞赛前进行模拟练习,熟悉 竞赛的流程和时间安排,提高 实际竞赛中的应对能力。
数模竞赛中的团队协作
合理利用时间
明确分工
在团队中明确每个成员的分工 ,确保每个人都能够发挥自己 的长处,提高团队整体效率。
详细描述
MATLAB具有强大的矩阵计算和数值分析功能,支持多种编程语言和应用程序接口,可以用于解决各种数学问 题,如线性代数、微积分、概率统计等。它还提供了丰富的工具箱,包括信号处理、控制系统、图像处理等, 方便用户进行专业领域的计算和分析。
Python(包括NumPy和Pandas库)
总结词
Python是一种解释型、面向对象的编程语言,具有简单易学、代码可读性高、跨平台 等特点。NumPy和Pandas是Python中常用的数学和数据分析库。
总结词
Excel是一款由微软开发的电子表格软件,广泛应用于数据处理、分析和可视化等领域。
详细描述
Excel提供了丰富的函数和工具,可以进行各种数据处理和分析,如数据筛选、排序、图表制作等。它还支持宏 编程,可以通过VBA语言进行自动化处理和定制开发。Excel在商业、财务、管理等领域应用广泛,是数据处理 和分析的常用工具之一。
数学建模培训精品课件ppt
03
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
数学建模培训之一ppt
概率统计建模方法是利用概率论和统计学原理来 解决实际问题的建模方法。
概率统计建模方法的优点是能够处理不确定性和 随机性,提供较为准确的预测和决策支持。
这类方法主要应用于解决一些不确定性问题,如 风险评估、预测等问题,如贝叶斯推断、马尔可 夫链蒙特卡洛等方法。
然而,概率统计建模方法需要较高的数学基础和 统计学知识,对于初学者有一定的难度。
模型验证与评估
对建立的模型进行验证和 评估,确保模型的可靠性 和有效性。
如何提高数学建模能力
基础知识学习
掌握数学建模所需的基本知识和 技能,如概率论、统计学、线性
代数等。
案例分析与实践
通过案例分析和实践,加深对数学 建模的理解和应用能力。
参加竞赛与培训
参加数学建模竞赛和培训课程,提 高数学建模的实战能力和技巧。
数学建模的基本步骤
01
02
03
04
问题分析
对实际问题进行分析,明确问 题的目标、条件和限制。
建立模型
根据问题分析的结果,选择适 当的数学方法和工具,建立数 学模型。
求解模型
使用适当的数学方法和工具, 求解建立的数学模型,得到结 果。
结果分析
对求解结果进行分析,解释结 果的意义,并回答实际问题。
02
团队合作
鼓励学生分组进行项目实 践,培养团队协作和沟通 能力。
创新性思维
鼓励学生尝试不同的建模 方法和思路,培养创新性 思维和解决问题的能力。
解决实际问题的挑战与方法
数据获取与处理
面对实际问题时,如何获 取和处理数据是关键,需 要掌握数据分析和处理的 方法和技术。
模型选择与优化
根据问题的性质和需求, 选择合适的数学模型并进 行优化,以提高模型的准 确性和实用性。
概率统计建模方法的优点是能够处理不确定性和 随机性,提供较为准确的预测和决策支持。
这类方法主要应用于解决一些不确定性问题,如 风险评估、预测等问题,如贝叶斯推断、马尔可 夫链蒙特卡洛等方法。
然而,概率统计建模方法需要较高的数学基础和 统计学知识,对于初学者有一定的难度。
模型验证与评估
对建立的模型进行验证和 评估,确保模型的可靠性 和有效性。
如何提高数学建模能力
基础知识学习
掌握数学建模所需的基本知识和 技能,如概率论、统计学、线性
代数等。
案例分析与实践
通过案例分析和实践,加深对数学 建模的理解和应用能力。
参加竞赛与培训
参加数学建模竞赛和培训课程,提 高数学建模的实战能力和技巧。
数学建模的基本步骤
01
02
03
04
问题分析
对实际问题进行分析,明确问 题的目标、条件和限制。
建立模型
根据问题分析的结果,选择适 当的数学方法和工具,建立数 学模型。
求解模型
使用适当的数学方法和工具, 求解建立的数学模型,得到结 果。
结果分析
对求解结果进行分析,解释结 果的意义,并回答实际问题。
02
团队合作
鼓励学生分组进行项目实 践,培养团队协作和沟通 能力。
创新性思维
鼓励学生尝试不同的建模 方法和思路,培养创新性 思维和解决问题的能力。
解决实际问题的挑战与方法
数据获取与处理
面对实际问题时,如何获 取和处理数据是关键,需 要掌握数据分析和处理的 方法和技术。
模型选择与优化
根据问题的性质和需求, 选择合适的数学模型并进 行优化,以提高模型的准 确性和实用性。
数学建模软件(完整)PPT幻灯片课件
在./名矩阵称的构造函和运数算点中除非常有名用称
^正 弦
a注si释n(x乘) 方 反正弦
.^余 弦 表示a一co行数s(x未组) 完乘方 反余弦
ta’n(x) /正 切 矩阵at的an转(x右)置除 反正切
ab;s(x) \绝矩对阵值中行结m尾ax;(x左)命除令结尾最大值
4. 数学函数
min(x) sqrt(x)
10
变量不用定义; 功能强大的图形处理与数值计算功能; 系统扩充方便,可以随时向系统增加函数; 先进的帮助系统; 与C等语言的接口; 与Word 6.0 的无缝结合,在Word可以直接使用 Matlab功能; 符号推导、数理统计、自动控制等扩充工具库。
11
12
§3 MATLAB基础
当今国际上公认的在科技领域方面最为优秀 的应用软件和开发环境。 成为应用线性代数、自动控制理论、数据统 计、数字信号处理、动态系统仿真、图形处 理等高级课程的基本数学工具。 国内部分重点高校已作为理工学生的必修或 选修课。
为解决数学物理理论化学或其他学科中的问题而专门研制sasstatisticaspsslindolingocamal??2通用的符号计算系统简介mathematica的特点强大的数值计算和符号计算能力友好的输出界面易移植到各种平台结构严谨属于数学分析型软件mathematicamathematica的功能数值计算任意精度高级的数学函数矩阵运算傅立叶变换求近似函数积分求根微分方程最优化及线性规划数论函数等
31
3. 处理图形
在图形上加上格珊、图例和标注
1) grid on grid off 2) xlabel(‘string’)
ylabel(‘string’) zlabel(‘string’) title(‘string’) 3) gtext(‘string’)
数学建模方法ppt课件
微
了很大作用。
分
方
应用实例:
程 模
单种群模型(Malthus Logistic )
型
两种群模型
传染病模型(SI SIS SIR)
作战模型
商品销售模型
回归分析是研究变量间统计规律的方法,属于”黑 箱“建模中常用的方法,根据自变量的数值和变化, 估计和预测因变量的相应数值和变化。有线性回归和 非线性回归。
点击添加文本
)点b2击添加文本
ax1m,1x点x21 ,击添a,m加x2nx文2本0 amnxn (, )bn
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
2.模型的求解:可利用Lin点go击软添件加进文行本求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会
min{D( p, k), D(q, k)}
点击添加文本
点击添加文本
步骤4:重复步骤2和步骤3,直至满足聚类为止。
对于不确定性问题,又可分为随机不确定性与模 糊不确定性两类。模糊数学就是研究属于不确定性, 而又具有模糊性量的变化规律的一种数学方法。
模
点击添加文本
糊
数 学
原理关键词: 模糊集 隶属函数 模糊关系 模糊矩阵
yi 0 1xi1 2 xi2 p xip , i 1,2,, n
其中, i 是随机误差,相互独立且满足E(i ) 0, var(i ) 2
一般非线性模型的形式: 其中, f 是一般的非线性函数, 是 p维参数向量, 是一随机 误差变量,E( ) 0, var( ) 2
,把 Gp 和 Gq 合并
步骤3:计算新类与其他类的距离 点击添加文本
D(r, k) min{d (r, k) r Gr , k Gk , k r} min{d ( j, k) j Gp Gq , k Gk , k j}
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实践 理论 实践
怎样学习数学建模
数学建模与其说是一门技术,不如说是一门艺术
技术大致有章可循 艺术无法归纳成普遍适用的准则
想像力
洞察力
判断力
• 学习、分析、评价、改进别人作过的模型 • 亲自动手,认真作几个实际题目
数学建模方法
一、机理分析法 从基本物理定律以及系统的结构数据来推导出模型。 . 比例分析法建立变量之间函数关系的最基本最常用的方法。 . 代数方法求解离散问题(离散的数据、符号、图形)的主要方
模型 检验
与实际现象、数据比较, 检验模型的合理性、适用性
模型应用
数学建模全过程
表述
现
现实对象的信息
数学模型
数
实
(归纳)
学
世
界
验证
求解 (演绎)
世 界
现实对象的解答
解释
数学模型的解答
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成数学问题 选择适当的数学方法求得数学模型的解答 将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
竞赛以三人(本科生)为一组,在四天时间内,就指定的问题完
成从建立模型、求解、验证到论文撰写的全部工作。竞赛每年都吸引
大量著名高校参赛。 年 有超过 个队伍参加,遍及五大洲。 已经
成为最著名的国际大学生竞赛之一。
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型 准
了解实际背景 明确建模目的 形成一个 比较清晰
法。 . 逻辑方法是数学理论研究的重要方法,对社会学和经济学等领域
的实际问题,在决策,对策等学科中得到广泛应用。 . 常微分方程解决两个变量之间的变化规律,关键是建立"瞬时变化
率"的表达式。 . 偏微分方程解决因变量与两个以上自变量之间的变化规律。
二、数据分析法 从大量的观测数据利用统计方法建立数学模型。 . 回归分析法用于对函数()的一组观测值(, )… ,确定函数的
对前二个模型的正确性进行验证 • 晚上:得到最后结果,完成整篇论文
如何查阅文献和确定题目
查阅文献
中国知网: 帐号: 密码:
维普信息:
学术:
万方外文:
程序源码及程序
中文论坛:ຫໍສະໝຸດ 技术论坛:社区:
论文的重要性
. 评定参赛队的成绩好坏、高低,获奖级别, 数模论文是唯一依据. . 论文是竞赛活动的成绩结晶的书面形式。 . 写好论文的训练,是科技写作的一种基本训练。
论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文 题目用三号黑体字、一级标题用四号黑体字,并居中。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽 量避免彩色打印。
备 搜集有关信息 掌握对象特征 的‘问题’
数学建模的一般步骤
模
针对问题特点和建模目的
型
假
作出合理的、简化的假设
设 在合理与简化之间作出折中
用数学的语言、符号描述问题 模
型 构
发挥想像力
使用类比法
成
尽量采用简单的数学工具
数学建模的一般步骤
模型 求解
各种数学方法、软件和计算机技术
模型 分析
如结果的误差分析、统计分析、 模型对数据的稳定性分析
修改,求得所需的模型结构。 . 人工现实法基于对系统过去行为的了解和对未来希望达到的目标
,并考虑到系统有关因素的可能变化,人为地组成一个系统。
竞赛技巧
小组任务及分工
三个人侧重点不同:
建模:推导数学模型,数学能力强 编程:计算机能力强 论文写作:写作能力强
竞赛时间安排
• 第一天: • 上午:确定题目,并查阅文献 • 下午:开始分析,建立初步模型 • 晚上:编程,得到初步计算结果 • : 休息 • 第二天: • 上午:得到第一个模型的合理结果 • 下午:开始写论文,并考虑对第一个模型的改进 • 第二天: • 晚上:得到第二个模型的初步结果 • : 休息 • 第三天: • 上午:得到第二个模型的合理结果 • 下午:考虑对前二个模型的进一步优化,得到第三个数学模型,或
数学建模的重要意义
• 数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题 的第一步,越来越受到人们的重视。
• 在一般工程技术领域数学建模大有用武之地 • 在高新技术领域数学建模几乎是必不可少的工具;
中国大学生数学建模竞赛()
中国大学生数学建模竞赛是全国高校规模最大的课外科技活动之 一。该竞赛每年月(一般在中旬某个周末的星期五至下周星期一共天 ,小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分 本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有 专科生(包括高职、高专生)可以参加)。
论文格式规范
甲组参赛队从、题中任选一题,乙组参赛队从、题中任选一题。 论文用 白色纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为 编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和 格式见本规范第三页。
论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从 第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从 “”开始连续编号。
数学建模经验交流
数学建模与程序设计教学实践基地 数学建模协会
校数学建模资源站: 数学建模协会网址: 数学建模协会群: 邮箱: :
什么是数学模型和数学建模?
数学模型
对于一个现实对象,为了一个特定目的,根据其内在 规律,作出必要的简化假设,运用适当的数学工具, 得到的一个数学结构。
数学 建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
表达式,由于处理的是静态的独立数据,故称为数理统计方法。
. 时序分析法处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法 . 计算机仿真(模拟)实质上是统计估计方法,等效于抽样试验 ① 离散系统仿真有一组状态变量。 ② 连续系统仿真有解析表达式或系统结构图。 . 因子试验法在系统上作局部试验,再根据试验结果进行不断分析
美国大学生数学建模竞赛()
美国大学生数学建模竞赛(),是一项国际级的竞赛项目,为现
今各类数学建模竞赛之鼻祖。
是 和 的缩写,即“数学建模竞赛”和“交叉学科建
模竞赛”。 始于 年, 始于 年,由 (
,美国数学及其应
用联合会)主办,得到了 ,, 等多个组织的赞助。 着重强调研究
问题、解决方案的原创性、团队合作、交流以及结果的合理性。
怎样学习数学建模
数学建模与其说是一门技术,不如说是一门艺术
技术大致有章可循 艺术无法归纳成普遍适用的准则
想像力
洞察力
判断力
• 学习、分析、评价、改进别人作过的模型 • 亲自动手,认真作几个实际题目
数学建模方法
一、机理分析法 从基本物理定律以及系统的结构数据来推导出模型。 . 比例分析法建立变量之间函数关系的最基本最常用的方法。 . 代数方法求解离散问题(离散的数据、符号、图形)的主要方
模型 检验
与实际现象、数据比较, 检验模型的合理性、适用性
模型应用
数学建模全过程
表述
现
现实对象的信息
数学模型
数
实
(归纳)
学
世
界
验证
求解 (演绎)
世 界
现实对象的解答
解释
数学模型的解答
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成数学问题 选择适当的数学方法求得数学模型的解答 将数学语言表述的解答“翻译”回实际对象 用现实对象的信息检验得到的解答
竞赛以三人(本科生)为一组,在四天时间内,就指定的问题完
成从建立模型、求解、验证到论文撰写的全部工作。竞赛每年都吸引
大量著名高校参赛。 年 有超过 个队伍参加,遍及五大洲。 已经
成为最著名的国际大学生竞赛之一。
数学建模的一般步骤
模型准备
模型假设
模型构成
模型检验
模型分析
模型求解
模型应用
模 型 准
了解实际背景 明确建模目的 形成一个 比较清晰
法。 . 逻辑方法是数学理论研究的重要方法,对社会学和经济学等领域
的实际问题,在决策,对策等学科中得到广泛应用。 . 常微分方程解决两个变量之间的变化规律,关键是建立"瞬时变化
率"的表达式。 . 偏微分方程解决因变量与两个以上自变量之间的变化规律。
二、数据分析法 从大量的观测数据利用统计方法建立数学模型。 . 回归分析法用于对函数()的一组观测值(, )… ,确定函数的
对前二个模型的正确性进行验证 • 晚上:得到最后结果,完成整篇论文
如何查阅文献和确定题目
查阅文献
中国知网: 帐号: 密码:
维普信息:
学术:
万方外文:
程序源码及程序
中文论坛:ຫໍສະໝຸດ 技术论坛:社区:
论文的重要性
. 评定参赛队的成绩好坏、高低,获奖级别, 数模论文是唯一依据. . 论文是竞赛活动的成绩结晶的书面形式。 . 写好论文的训练,是科技写作的一种基本训练。
论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 论文 题目用三号黑体字、一级标题用四号黑体字,并居中。
论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽 量避免彩色打印。
备 搜集有关信息 掌握对象特征 的‘问题’
数学建模的一般步骤
模
针对问题特点和建模目的
型
假
作出合理的、简化的假设
设 在合理与简化之间作出折中
用数学的语言、符号描述问题 模
型 构
发挥想像力
使用类比法
成
尽量采用简单的数学工具
数学建模的一般步骤
模型 求解
各种数学方法、软件和计算机技术
模型 分析
如结果的误差分析、统计分析、 模型对数据的稳定性分析
修改,求得所需的模型结构。 . 人工现实法基于对系统过去行为的了解和对未来希望达到的目标
,并考虑到系统有关因素的可能变化,人为地组成一个系统。
竞赛技巧
小组任务及分工
三个人侧重点不同:
建模:推导数学模型,数学能力强 编程:计算机能力强 论文写作:写作能力强
竞赛时间安排
• 第一天: • 上午:确定题目,并查阅文献 • 下午:开始分析,建立初步模型 • 晚上:编程,得到初步计算结果 • : 休息 • 第二天: • 上午:得到第一个模型的合理结果 • 下午:开始写论文,并考虑对第一个模型的改进 • 第二天: • 晚上:得到第二个模型的初步结果 • : 休息 • 第三天: • 上午:得到第二个模型的合理结果 • 下午:考虑对前二个模型的进一步优化,得到第三个数学模型,或
数学建模的重要意义
• 数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题 的第一步,越来越受到人们的重视。
• 在一般工程技术领域数学建模大有用武之地 • 在高新技术领域数学建模几乎是必不可少的工具;
中国大学生数学建模竞赛()
中国大学生数学建模竞赛是全国高校规模最大的课外科技活动之 一。该竞赛每年月(一般在中旬某个周末的星期五至下周星期一共天 ,小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分 本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有 专科生(包括高职、高专生)可以参加)。
论文格式规范
甲组参赛队从、题中任选一题,乙组参赛队从、题中任选一题。 论文用 白色纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。
论文第一页为承诺书,具体内容和格式见本规范第二页。 论文第二页为 编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和 格式见本规范第三页。
论文题目和摘要写在论文第三页上,从第四页开始是论文正文。 论文从 第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从 “”开始连续编号。
数学建模经验交流
数学建模与程序设计教学实践基地 数学建模协会
校数学建模资源站: 数学建模协会网址: 数学建模协会群: 邮箱: :
什么是数学模型和数学建模?
数学模型
对于一个现实对象,为了一个特定目的,根据其内在 规律,作出必要的简化假设,运用适当的数学工具, 得到的一个数学结构。
数学 建模
建立数学模型的全过程 (包括表述、求解、解释、检验等)
表达式,由于处理的是静态的独立数据,故称为数理统计方法。
. 时序分析法处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法 . 计算机仿真(模拟)实质上是统计估计方法,等效于抽样试验 ① 离散系统仿真有一组状态变量。 ② 连续系统仿真有解析表达式或系统结构图。 . 因子试验法在系统上作局部试验,再根据试验结果进行不断分析
美国大学生数学建模竞赛()
美国大学生数学建模竞赛(),是一项国际级的竞赛项目,为现
今各类数学建模竞赛之鼻祖。
是 和 的缩写,即“数学建模竞赛”和“交叉学科建
模竞赛”。 始于 年, 始于 年,由 (
,美国数学及其应
用联合会)主办,得到了 ,, 等多个组织的赞助。 着重强调研究
问题、解决方案的原创性、团队合作、交流以及结果的合理性。