新高考总复习 数学 第七章 第2节 空间点、直线、平面之间的位置关系
高中数学总复习:空间点、直线、平面之间的位置关系
练后悟通
共面、共线、共点问题的证明方法
目录
高中总复习·数学(提升版)
空间两条直线的位置关系
考向1 空间两条直线位置关系的判断
【例1】 (1)已知α,β,γ是三个平面,α∩β= a ,α∩γ= b ,β∩γ
= c ,且 a ∩ b = O ,则下列结论正确的是(
)
A. 直线 b 与直线 c 可能是异面直线
1, F 四点共面.
目录
高中总复习·数学(提升版)
(2) CE , D 1 F , DA 三线共点;
证明:∵ EF ∥ CD 1, EF < CD 1,
∴ CE 与 D 1 F 必相交,
设交点为 P ,如图所示.
则由 P ∈ CE , CE ⊂平面 ABCD ,
得 P ∈平面 ABCD .
同理 P ∈平面 ADD 1 A 1.
D. 没有公共点
解析: 直线 m 与平面α平行,且直线 a ⊂α,则直线 m 和直线 a 的
位置关系可能平行,可能异面,即没有公共点,但不可能相交,故
选C.
目录
高中总复习·数学(提升版)
2. 如果直线 a ⊂平面α,直线 b ⊂平面β,且α∥β,则 a 与 b (
)
高中总复习·数学(提升版)
2. 在三棱锥 A - BCD 的边 AB , BC , CD , DA 上分别取 E , F , G , H
四点,如果 EF ∩ HG = P ,则点 P (
)
A. 一定在直线 BD 上
B. 一定在直线 AC 上
C. 在直线 AC 或 BD 上
D. 不在直线 AC 上,也不在直线 BD 上
)
目录
高中总复习·数学(提升版)
高三数学总复习 8.3空间点、直线、平面之间的位置关系
河北省抚宁县第六中学高三数学总复习 8.3空间点、直线、平面之间的位置关系选用教材高中总复习优化设计知识模块立体几何课型复习教学目标知识与技能理解空间直线、平面位置关系的定义过程与方法了解四个公理和等角定理,并能以此作为推理的依据情感态度价值观建立立体感重点理解空间直线、平面位置关系的定义难点了解四个公理和等角定理,并能以此作为推理的依据关键对组成空间的基本元素:点、线、面之间的位置关系要掌握教学方法及课前准备学生自主探究讲练结合教学流程多媒体辅助教学内容一、平面的基本性质【例1】定线段AB所在的直线与定平面α相交,P为直线AB外一点,且P不在α内,若直线AP,BP 与α分别交于C,D点,求证:不论P在什么位置,直线CD必过一定点.证明:设定线段AB所在直线为l,与平面α交于O点,即l∩α=O.由题意可知,AP∩α=C,BP∩α=D,∴C∈α,D∈α.又∵AP∩BP=P,∴AP,BP可确定一平面β,且C∈β,D∈β.∴CD=α∩β.∵A∈β,B∈β,∴lβ.∴O∈β.∴O∈α∩β,即O∈CD.∴不论P在什么位置,直线CD必过一定点.方法提炼证明三点共线通常有两种方法:一是首先找出两个平面,然后证明这三点都是这两个平面的公共点,于是可得这三点都在这两个平面的交线上,即三点共线;二是选择其中两点确定一条直线,然后证明另一点也在这条直线上,从而得出三点共线.二、空间中两条直线的位置关系【例2】在正方体ABCDA1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.求证:直线FG平面ABCD,且直线FG∥直线A1B1.【例2】证明:已知E是CD的中点,在正方体ABCDA1B1C1D1中,有A∈平面ABCD,E∈平面ABCD,所以AE平面ABCD.又因为AE∩BC=F,所以F∈AE.从而F∈平面ABCD.同理G∈平面ABCD,所以FG平面ABCD.因为EC 12 AB,故在Rt△FBA中,CF=B C,同理DG=AD.又在正方形ABCD中,BC AD,所以CF DG.所以四边形CFGD是平行四边形.所以FG∥CD.又CD∥AB,AB∥A1B1,所以直线FG∥直线A1B1.方法提炼1.证明或判断空间两直线平行最常用的方法是公理4.平行线的传递性即若a∥b,b∥c,则a∥c. 2.判断两直线为异面直线的常用方法.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图.【典例】 已知正方体ABCD A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为__________.解析:设正方体的棱长为a.连接A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角,在△AEA 1中,cos ∠AEA 12222235a a a a a ⎛⎫⎛⎫+++- ⎪ ⎪=. 答案:35答题指导:1.(1)在用平行平移的方法将异面直线所成的角转化为三角形内角时,忽视对三角形内角“即为两异面直线所成角或其补角”的叙述.(2)通过解三角形得到某一内角的余弦值为负值后,忽视角的范围,不知将其转化为正值来处理.2.求异面直线所成角一般用平移法:①一作:即找或作平行线,作出异面直线所成的角.②二证:即证明作出的角是异面直线所成的角.③三求:解三角形,求出所作的角,注意为锐角或直角.1.关于直线m ,n 与平面α,β,有以下四个命题:①若m ∥α,n ∥β且α∥β,则m ∥n m ∥n ⊥β且α⊥β,则m ∥n ;③若m ⊥α,n ∥β且α∥β,则m ⊥n ;④若m ⊥α,n ⊥β且α其中真命题有( )..若,BBCAD若四面体ABCDCAD。
《空间中点、直线、平面之间的位置关系》知识点总结
《空间中点、直线、平面之间的位置关系》知识点总结1.内容归纳总结 (1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。
已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。
(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。
(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点(4)空间中平面与平面之间的位置关系 平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线直线、平面平行的判定及其性质1.内容归纳总结(1)四个定理定理定理内容符号表示分析解决问题的常用方法直线与平面平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行,,////a b a baααα⊄⊂⇒且在已知平面内“找出”一条直线与已知直线平行就可以判定直线与平面平行。
空间点、直线、平面之间的位置关系题型归纳
空间点、直线、平面之间的位置关系题型归纳知识的精讲一、平面的基本性质平面的基本性质如表8-4所示. 表8-4 名称 图形文字语言符号语言公理 1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内 A l B l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭公理2过不在同一直线上的三点有且只有一个平面 A ,B ,C 不共线⇒A ,B ,C α∈且α是唯一确定的 公理2的推论推论1经过一条直线和该直线外一点有且只有一个平面 若点A α∉,则经过点A 和直线a 有且仅有一个平面α推论2两条相交直线确定一个平面 a b P =⇒有且只有一个平面α,使,a b αα⊂⊂推论3两条平行直线确定一个平面 a ∥b ⇒有且只有一个平面α,使,a b αα⊂⊂ 公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 若,P αβ∈则,a αβ=且P a ∈二、空间直线与直线的位置关系 1.位置关系如表8-5所示. 表8-5 位置关系 相交(共面) 平行(共面) 异面图形符号 a b P =a ∥b,,a A b A b αα=⊂∉公共点个数 1特征两条相交直线确定一个平面两条平行直线确定一个平面两条异面直线不同在如何一个平面内3.定理:空间中若两个角的两边分别对应平行,则这两个角相等(同向)或互补(反向). 三、空间中的直线与平面的位置关系(见表8-6) 位置关系 包含(面内线)相交(面外线)平行(面外线)图形符号 l α⊂l P α=l ∥α公共点个数无数个 1四、空间中的平面与平面的位置关系(见表8-7) 表8-7 位置关系 平行相交(但不垂直)垂直图形符号 α∥βl αβ= αβ⊥,l αβ=公共点个数无数个公共点且都在唯一的一条直线上无数个公共点且都在唯一的一条直线上注:垂直是相交(成90o)的特殊情形,异面直线经平移后相交成90o也叫垂直.题型归纳及思路提示题型1证明“点共面”、“线共面”或“点共线”及“线共点” 思路提示要证明“点共面”、“线共面”可先由部分直线活点确定一个平面,再证其余直线或点也在该平面内(即纳入法);证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线,证明 “线共点”问题是证明三条或三条以上直线交于一点,思路是:先证明两条直线交于一点,再证明交点在第三条直线上.例8.19如图8-73所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,090,BAD FAB ∠=∠=11,.22BCAD BE AF 求证:C ,D ,F ,E 四点共面.分析 证明四点共面,利用平面的确定公理,即两条相交直线确定一个平面,本题可证明DC ,FE 相交与一点.解析 如图8-74所示,延长DC 交AB 的延长线与点G ,由1,2BCAD 得1,2GB GC BC GA GD AD ===延长FE 交AB 的延长线于G ',同理可得''1,''2G E G B BE G F G A AF ===故','G B GBG A GA =即G '与G 重合,因此,直线CD和EF 相交与点G ,即C ,D ,F ,E 四点共面.变式1 如图8-75所示,已知ABCD -A 1B 1C 1D 1是正方体,点F 在CC 1上,且AE =FC 1,求证E ,B ,F ,D 1四点共面.变式2 如图8-76所示,在六面体ABCD -A 1B 1C 1D 1中,上下底面均为正方形,1DD ⊥平面A 1B 1C 1D 1,1DD ⊥平面ABCD .求证:A 1C 1与AC 共面,B 1D 1与BD 共面.例8.20 如图8-77所示,空间四边形ABCD 中,E ,F ,G 分别在AB ,BC ,CD 上,且满足AE :EB =CF :FB =2:1,CG :GD =3:1,过E ,F ,G 的平面交AD 于H ,连接EH ,HG .(1)求AH :HD ;(2)求证:EH ,FG ,BD 三线共点.解析 (1)因为2AE CFEB FB==,所以EF ∥AC ,又EF ⊄平面ACD ,所以EF ∥平面ACD ,而EF ⊂平面EFGH ,且平面EFGH 平面ACD =GH ,所以EF ∥GH ,而EF ∥AC ,所以AC ∥GH ,所以3AH CGHD GD==,即AH :HD =3:1. (2)证明:因为EF ∥GH ,且11,34EF GH AC AC ==,所以EF ≠GH ,所以四边形EFGH 为梯形.令EH FG P =,则,,P EH P FG ∈∈,而EH ⊂平面ABD ,FG ⊂平面BCD ,平面ABD 平面BCD =BD ,所以,P BD ∈,故EH ,FG ,BD 三线共点.评注 所谓“线共点”问题就是证明三条或三条以上直线交于一点,证明三线共点的思路为:先证明两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在线上的问题.实际上,点共线、线共点的问题都可以转化为点在直线上的问题.变式1 如图8-78所示,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点.求证:(1)E ,C , D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.BF C GHAED图8-77变式2如图8-79所示,点E ,F ,C ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点,证明:EF ,HG ,DC 三线共点.题型2 截面问题 思路提示截面问题是平面基本性质的具体应用,先由确定平面的条件确定平面,然后做出该截面,并确定该截面的形状.例8.21如图8-80所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截该正方体所得截面记为S ,则下列命题正确的是 .(写出所以正确命题的编号). ①当102CQ <<时,S 为四边形; ②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与C 1D 1的交点R 满足113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 的面积为62.分析 本题重点考查了截面问题,对于截面问题要利用平面的确定公理作为理论背景,尤其是两条平行直线确定一个平面.解析 对于①②,因为正方体ABCD -A 1B 1C 1D 1的棱长为1,当12CQ =时,22PQ =,这时过,,A P Q 的截面与正方体表面交与点1D ,且PQ 1AD ,截面S ,如图8-81(a )所示,15,2AP D Q ==截面S 为等腰梯形,当102CQ <<时,过,,A P Q 三点的截面与正方体表面的交点在棱1DD 上,截面S 为四边形,如图8-81(b )所示,故①②正确;③如图8-81(c )所示,当34CQ =时,111,3C R C Q CT QC ==又CT =1,得113C R =;④如图8-81(d )所示,当45CQ =时,过点,,A P Q 的平面截正方体所得的截面为五边形APQRS ;⑤如图8-81(e )所示当1CQ =时,则过点,,A P Q 的截面为,,,S A P Q ,其截面为菱形,对角线2,3,SP AQ ==所以S 的面积为1623.22⨯⨯=综上,正确的命题序号是①②③⑤.变式1 如图8-82所示,M 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,给出下列四个命题:①过M 点有且只有一条直线与直线11,AB B C 都相交; ②过M 点有且只有一条直线与直线11,AB B C 都垂直; ③过M 点有且只有一个平面与直线11,AB B C 都相交; ④过M 点有且只有一个平面与直线11,AB B C 都平行. 其中真命题是( ).A .②③④B . ①③④C . ①②④D . ①②③变式2 在棱长为1的正方体ABCD -A 1B 1C 1D 1,过对角线1BD 的一个平面交1AA 于E ,交1CC 与F ,得四边形1BFD E ,给出下列结论:①四边形1BFD E 有可能是梯形; ②四边形1BFD E 有可能是菱形;③四边形1BFD E 在底面ABCD 内的投影一定是正方形; ④四边形1BFD E 有可能垂直与平面11BB D D ; ⑤四边形1BFD E 面积的最小值为62. 其中正确的是( )A .①②③④B . ②③④⑤C . ①③④⑤D . ①②④⑤ 题型3 异面直线的判定 思路提示判定空间两条直线是异面直线的方法如下:(1)直接法:平面外一点A 与平面内一点B 的连线和平面内不经过B 点的直线是异面直线. (2)间接法:平面两条不可能共面(平行,相交)从而得到两线异面.例8.22 一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是( ). A.平行或异面 B.相交或异面 C.异面 D.相交解析 假设a 与b 是异面直线,而c ∥a,则c 显然与b 不平行(否则c ∥b ,则有a ∥b ,矛盾),因此c 与b 可能相交或异面,故选B .评注 判定和证明两条直线是异面直线,常用反证法和定义法.变式1 已知空间三条直线,,l m n ,若l 与m 异面,且l 与n 异面,则( )A. m 与n 异面B. m 与n 相交C. m 与n 平行D. m 与n 异面、相交、平行均有可能 变式2 已知,a b 为不垂直的异面直线,α是一个平面,则,a b 在α上的射影可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点,则在上面的结论中,正确的结论的编号是 (写出所有正确的编号).变式3 若直线l 不平行于平面α,且l α⊄,则( )A. α内的所有直线与l 异面B. α内不存在与l 平行的直线C. α内存在唯一的直线与l 平行D. α内的直线与l 都相交例8.23如图8-83所示,已知两个正方形ABCD 和DCEF 不在同一个平面内,M 和N 分别AB 和DF 为的中点,用反证法证明:直线ME 与BN 是异面直线.解析 假设直线ME 与BN 共面,连接,,AN NE EB ,则AB ⊂平面MBEN ,且平面MBEN 与平面交于,由已知,两正方形ABCD 和DCEF 不在同一平面,故AB ⊄平面DCEF ,又AB ∥CD ,所以AB ∥平面DCEF ,又平面MBEN 平面DCEF EN =,所以AB ∥EN ,又AB ∥CD ∥EF ,所以EF ∥EN ,这与EF EN E =矛盾,故假设不成立,所以直线ME 与BN 不共面,直线ME 与BN 是异面直线.变式1在正方体ABCD A B C D ''''-中,棱,BB C D '''的中点分别是,F H ,如图8-84所示,判断点,,,A D F H '是否共面?并说明理由.最有效训练题1.下列命题正确的是( )A. 若两条直线和同一个平面所成的角相等,则这两条直线平行B. 若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D. 若两个平面都垂直于第三个平面,则这两个平面平行2.下列四个命题:①若直线,a b 是异面直线,,b c 是异面直线,则,a c 是异面直线;②若直线,a b 相交,,b c 相交,则,a c 相交;③若a ∥b ,则,a b 与c 所成的角相等;④若,a b b c ⊥⊥,则a ∥c ,其中真命题的个数是( )A.4B. 3C. 2D. 13.设直线m 与平面α相交但不垂直,则下列说法中正确的是( ) A. 在平面α内有且只有一条直线与直线m 垂直 B. 过直线m 有且只有一个平面与平面α垂直 C. 与直线m 垂直的直线不可能与平面α平行 D. 与直线m 平行的平面不可能与平面α垂直4.平行六面体1111ABCD A B C D -中,既与AB 共面也与1CC 共面的棱的条数为( ) A.3 B. 4 C. 5 D. 65.如图8-85所示,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列四个命题: ①过M 点有且只有一条直线与直线11,AB B C 都相交; ②过M 点有且只有一条直线与直线11,AB B C 都垂直; ③过M 点有且只有一个平面与直线11,AB B C 都相交; ④过M 点有且只有一个平面与直线11,AB B C 都平行;其中真命题是( )A.②③④B. ①③④C. ①②④D. ①②③6.如图8-86所示,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( ) A. AC BD ⊥ B. AC ∥截面PQMNC. AC BD =D.异面直线PM 与BD 所成的角为45图8-867.过正方体1111ABCD A B C D -的顶点A 作直线l ,使l 与直线1,,AB AD AA 所成的角都相等,这样的直线l 可以作 条8.如图8-87所示,是正方体的表面展开图,,,,E F G H 分别是棱的中点,EF 与GH 在原正方体中的位置关系为9.下列命题中不正确的是 ①没有公共点的两条直线是异面直线;②分别和两条异面直线都相交的两条直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面;10.在正方体的顶点中任意选择4个顶点,对于有这4个顶点构成的四面体的以下判断中,所有正确的结论是 (写出所有正确结论的编号) ①能构成每个面都是等边三角形的四面体; ②能构成每个面都是直角三角形的四面体;③能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体;11.如图8-88所示,空间四边形ABCD 中,,E F 分别是,AB AD 的中点,,G H 分别在,BC CD 上,且::1:2BG GC DH HC ==(1)求证:,,,E F G H 四点共圆;(2)设EG 与FH 交于点P ,求证:,,P A C 三点共线12.如图8-89所示,正方体1111ABCD A B C D -中,,M N 分别是11A B ,11B C 的中点,问: (1)AM 和CN 是否为异面直线?说明理由; (2)1D B 和1CC 是否为异面直线?说明理由;。
2022高三总复习数学 空间点、直线、平面之间的位置关系(含解析)
空间点、直线、平面之间的位置关系A级——基础达标1.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论正确的是()A.OB∥O1B1且方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行解析:选D如图①,∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,但OB与O1B1不平行,故排除A、B;如图②,∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,此时OB∥O1B1,故排除C,故选D.2.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线α和直线b可能平行或异面或相交,故选A.3.在正三棱柱ABC-A1B1C1中,AB=2BB1,则AB1与BC1所成角的大小为() A.30°B.60°C.75°D.90°解析:选D将正三棱柱ABC-A1B1C1补为四棱柱ABCD-A1B1C1D1,连接C1D,BD(图略),则C1D∥B1A,∠BC1D为所求角或其补角.设BB1=2,则BC=CD=2,∠BCD=120°,BD=23,又因为BC1=C1D=6,所以∠BC1D=90°.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:选A连接A1C1,AC(图略),则A1C1∥AC,∴A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上.∴A,M,O三点共线.5.(多选)如图,点E,F,G,H分别是正方体ABCD-A1B1C1D1中棱AA1,AB,BC,C1D1的中点,则()A.GH=2EFB.GH≠2EFC.直线EF,GH是异面直线D.直线EF,GH是相交直线解析:选BD如图,取棱CC1的中点N,A1D1的中点M,连接EM,MH,HN,NG,FG,AC,A1C1,在正方体ABCD-A1B1C1D1中,∵MH∥A1C1∥AC∥FG,∴M,H,F,G四点共面,同理可得E,M,G,N四点共面,E,F,H,N四点共面,∴E,M,H,N,G,F六点共面,均在平面EFGNHM内,∵EF∥HN,HN∩HG=H,HN,HG,EF⊂平面EFGNHM,∴EF与GH是相交直线.由正方体的结构特征及中位线定理可得EF=HN=NG=FG =EM=MH,∴3EF=GH,即GH≠2EF.故选B、D.6.(多选)(2021·潍坊模拟)已知平面α∩平面β=直线l,点A,C∈平面α,点B,D∈平面β,且A,B,C,D∉l,点M,N分别是线段AB,CD的中点,则下列说法错误的是()A.当CD=2AB时,M,N不可能重合B.M,N可能重合,但此时直线AC与l不可能相交C.当直线AB,CD相交,且AC∥l时,BD可与l相交D.当直线AB,CD异面时,MN可能与l平行解析:选ACD A选项,当CD=2AB时,若A,B,C,D四点共面且AC∥BD时,则M,N两点能重合,可知A错误;B选项,若M,N重合,则AC∥BD,则AC∥平面β,故AC∥l,此时直线AC与直线l不可能相交,可知B正确;C选项,当AB与CD相交,且AC∥l时,直线BD与l平行,可知C错误;D选项,当AB与CD是异面直线时,MN 不可能与l平行,可知D错误.故选A、C、D.7.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:58.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面PAD的位置关系为,平面AEF与平面ABCD的交线是.解析:由题易知EF∥BC,BC∥AD,所以EF∥AD,故EF∥平面PAD,因为EF∥AD,所以E,F,A,D四点共面,所以AD为平面AEF与平面ABCD的交线.答案:平行AD9.如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件时,四边形EFGH为菱形;(2)当AC,BD满足条件时,四边形EFGH为正方形.解析:(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD10.如图,已知正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,过点A,P,C1的平面截正方体所得的截面为M,则截面M的面积为.解析:如图,取A1D1,AD的中点分别为F,G.连接AF,AP,PC1,C1F,PG,D1G,AC1,PF.∵F为A1D1的中点,P为BC的中点,G为AD的中点,∴AF=FC1=AP=PC1=52,PG綊CD,AF綊D1G.由题意易知CD綊C1D1,∴PG綊C1D1,∴四边形C1D1GP为平行四边形,∴PC1綊D1G,∴PC1綊AF,∴A,P,C1,F四点共面,∴四边形APC1F为菱形.∵AC1=3,PF=2,过点A,P,C1的平面截正方体所得的截面M为菱形APC1F,∴截面M的面积S=12AC1·PF=12×3×2=62.答案:6 211.如图,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R,求证:P,Q,R三点共线.证明:∵AB∩α=P,CD∩α=P,∴AB∩CD=P.∴AB,CD可确定一个平面,设为β.∵A∈AB,C∈CD,B∈AB,D∈CD,∴A∈β,C∈β,B∈β,D∈β.∴AC⊂β,BD⊂β,平面α,β相交.∵AB∩α=P,AC∩α=Q,BD∩α=R,∴P,Q,R三点都是平面α与平面β的公共点.∴点P,Q,R都在平面α与平面β的交线上,故P,Q,R三点共线.12.如图,在正方体ABCD-A1B1C1D1中,E,F,E1,F1分别是棱AB,AD,B1C1,C1D1的中点,求证:(1)EF綊E1F1;(2)∠EA1F=∠F1CE1.证明:(1)如图,连接BD,B1D1,在△ABD中,因为E,F分别为AB,AD的中点,所以EF綊12BD.同理可证E1F1綊12B1D1.在正方体ABCD-A1B1C1D1中,BB1綊DD1,所以四边形BB1D1D为平行四边形,则BD綊B1D1.所以EF綊E1F1.(2)取A1B1的中点M,连接F1M,BM,则MF1綊B1C1,又B1C1綊BC,所以MF1綊BC.所以四边形BMF1C为平行四边形,所以BM∥CF1.因为A1M=12A1B1,BE=12AB,且A1B1綊AB,所以A1M綊BE,所以四边形BMA1E为平行四边形,所以BM∥A1E,所以A1E∥CF1.同理可证A1F∥CE1.因为∠EA1F的两边与∠F1CE1的两边分别对应平行,且方向都相反,所以∠EA1F=∠F1CE1.B级——综合应用13.(多选)(2021·海南模拟)关于正方体ABCD-A1B1C1D1有如下四个说法,其中正确的是()A .若点P 在直线BC 1上运动,则三棱锥A -D 1PC 的体积不变B .若点P 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则P 点的轨迹是直线A 1D 1 C .若点P 在线段BC 1(含端点)上运动,则直线AP 与DC 所成角的范围为⎣⎡⎦⎤0,π3 D .若点P 在线段BC 1(含端点)上运动,则直线AP 与D 1C 所成的角一定是锐角解析:选AB 对于A ,由BC 1∥AD 1,可得BC 1∥平面AD 1C , 则点P 到平面AD 1C 的距离不变, 由△AD 1C 的面积为定值,可知点P 在直线BC 1上运动时,三棱锥A -D 1PC 的体积不变,故A 正确; 对于B ,若点P 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点, 则P 点的轨迹是平面A 1BCD 1与平面A 1B 1C 1D 1的交线A 1D 1,故B 正确;对于C ,直线AP 与DC 所成角即为∠PAB ,当P 与C 1重合时,∠PAB 最大,且tan ∠PAB =2,所以∠PAB <π3,故C 错误;对于D ,当P 与C 1重合时,AP 与D 1C 所成的角为π2,故D 错误.所以其中说法正确的是A 、B.14.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,则PN 与MC 之间的位置关系是 .解析:法一:∵PA ≠PB ,PN ⊥AB ,N 为垂足,M 是AB 的中点,∴点N 与点M 不重合.∵N ∈平面ABC ,P ∉平面ABC ,CM ⊂平面ABC ,N ∉CM ,∴由异面直线的判定方法可知,直线PN 与MC 为异面直线.法二(反证法):假设PN 与MC 不是异面直线,则存在一个平面α,使得PN ⊂α,MC ⊂α,于是P ∈α,C ∈α,N ∈α,M ∈α.∵PA ≠PB ,PN ⊥AB ,N 为垂足,M 是AB 的中点, ∴点M 与点N 不重合.∵M ∈α,N ∈α,∴直线MN ⊂α,∵A ∈MN ,B ∈MN ,∴A ∈α,B ∈α,即A ,B ,C ,P 四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立.故PN与MC为异面直线.答案:异面直线15.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且AE∶EB=AH∶HD=m.CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD.试证明:EG=FH.解:(1)证明:因为AE∶EB=AH∶HD,所以EH∥BD.又CF∶FB=CG∶GD,所以FG∥BD.所以EH∥FG.所以E,F,G,H四点共面.(2)当EH∥FG,且EH=FG时,四边形EFGH为平行四边形.因为EHBD =AEAE+EB=mm+1,所以EH=mm+1BD.同理可得FG=nn+1BD.由EH=FG,得m=n.故当m=n时,四边形EFGH为平行四边形.(3)证明:当m=n时,AE∶EB=CF∶FB.所以EF∥AC.又EH∥BD,所以∠FEH是AC与BD所成的角(或其补角),因为AC⊥BD,所以∠FEH=90°.从而平行四边形EFGH为矩形,所以EG=FH.C级——迁移创新16.如图,AB,CD是圆锥面的正截面(垂直于轴的截面)上互相垂直的两条直径,过CD和母线VB的中点E作一截面.已知圆锥侧面展开图扇形的中心角为2π,求截面与圆锥的轴线所夹的角的大小,并说明截线是什么曲线.解:如图,设⊙O 的半径为R ,母线VB =l ,则圆锥侧面展开图的中心角为2πR l =2π,∴R l =22,∴sin ∠BVO =22, ∴圆锥的母线与轴的夹角α=∠BVO =π4.连接OE ,∵O ,E 分别是AB ,VB 的中点, ∴OE ∥VA .∴∠VOE =∠AVO =∠BVO =π4,∴∠VEO =π2,即VE ⊥OE .又∵AB ⊥CD ,VO ⊥CD ,AB ∩VO =O , ∴CD ⊥平面VAB . ∵VE ⊂平面VAB , ∴VE ⊥CD .又∵OE ∩CD =O ,OE ,CD ⊂平面CDE , ∴VE ⊥平面CDE .∴∠VOE 是截面与轴线的夹角, ∴截面的轴线夹角大小为π4.由圆锥的半顶角与截面与轴线的夹角相等,知截面CDE 与圆锥面的截线为一抛物线.。
高二数学点,直线,平面之间的位置关系
点,直线,平面之间的位置关系一、知识网络二、高考考点1、空间直线,空间直线与平面,空间两个平面的平行与垂直的判定或性质.其中,线面垂直是历年高考试题涉及的容.2、上述平行与垂直的理论在以多面体为载体的几何问题中的应用;求角;求距离等.其中,三垂线定理及其逆定理的应用尤为重要.3、解答题循着先证明后计算的原则,融推理于计算之中,主要考察学生综合运用知识的能力,其中,突出考察模型法等数学方法,注重考察转化与化归思想;立体问题平面化;几何问题代数化.三、知识要点〔一〕空间直线1、空间两条直线的位置关系〔1〕相交直线——有且仅有一个公共点;〔2〕平行直线——在同一个平面,没有公共点;〔3〕异面直线——不同在任何一个平面,没有公共点.2、平行直线〔1〕公理4〔平行直线的传递性〕:平行于同一条直线的两条直线互相平行. 符号表示:设a,b,c为直线,〔2〕空间等角定理如果一个角的两边和另一个角的两边分别平行且方向一样,则这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,则这两条直线所成的锐角〔或直角〕相等.3、异面直线〔1〕定义:不同在任何一个平面的两条直线叫做异面直线.〔2〕有关概念:〔ⅰ〕设直线a,b为异面直线,经过空间任意一点O作直线a',b',并使a'//a,b'//b,则把a'和b'所成的锐角〔或直角〕叫做异面直线a和b所成的角.特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.认知:设为异面直线a,b所成的角,则 .〔ⅱ〕和两条异面直线都垂直相交的直线〔存在且唯一〕,叫做两条异面直线的公垂线.〔ⅲ〕两条异面直线的公垂线在这两条异面直线间的线段〔公垂线段〕的长度,叫做两条异面直线的距离.〔二〕空间直线与平面直线与平面的位置关系:〔1〕直线在平面——直线与平面有无数个公共点;〔2〕直线和平面相交——直线与平面有且仅有一个公共点;〔3〕直线和平面平行——直线与平面没有公共点.其中,直线和平面相交或直线和平面平行统称为直线在平面外.1、直线与平面平行〔1〕定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.〔2〕判定判定定理:如果平面外的一条直线和这个平面的一条直线平行,则这条直线和这个平面平行.认知:应用此定理证题的三个环节:指出 .〔3〕性质性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行.2、直线与平面垂直〔1〕定义:如果直线l和平面的任何一条直线都垂直,则说直线l和平面互相垂直,记作l⊥ .〔2〕判定:判定定理1:如果一条直线和一个平面的两条相交直线都垂直,则这条直线垂直于这个平面.判定定理2:如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于这个平面. 符号表示:.〔3〕性质性质定理:如果两条直线垂直于同一个平面,则这两条直线平行. 符号表示:〔4〕概念〔ⅰ〕点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.〔ⅱ〕直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.〔三〕空间两个平面1、两个平面的位置关系〔1〕定义:如果两个平面没有公共点,则说这两个平面互相平行.〔2〕两个平面的位置关系〔ⅰ〕两个平面平行——没有公共点;〔ⅱ〕两个平面相交——有一条公共直线.2、两个平面平行〔1〕判定判定定理1:如果一个平面有两条相交直线都平行于另一个平面,则这两个平面平行.判定定理2:〔线面垂直性质定理〕:垂直于同一条直线的两个平面平行.〔2〕性质性质定理1:如果两个平行平面同时和第三个平面相交,则它们的交线平行.性质定理2〔定义的推论〕:如果两个平面平行,则其中一个平面的所有直线都平行于另一个平面.3、有关概念〔1〕和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的局部,叫做这两个平行平面的公垂线段.〔2〕两个平行平面的公垂线段都相等. 〔3〕公垂线段的长度叫做两个平行平面间的距离.4、认知:两平面平行的判定定理的特征:线面平行面面平行,或线线平行面面平行;两平面平行的性质定理的特征:面面平行线面平行,或面面平行线线平行.它们恰是平行畴中同一事物的相互依存和相互贯穿的正反两个方面.四、高考真题〔一〕选择题1,设为两个不同的平面,l,m为两条不同的直线,且,有如下的两个命题:①假设;②假设则〔〕A、①是真命题,②是假命题;B、①是假命题,②是真命题;C、①②都是真命题;D、①②都是假命题.分析:这里 . 对于①,假设,则l,m可能平行,也可能异面;对于②,假设则可能垂直,也可能不垂直. 故应选D.2、m,n是两条不重合的直线,是三个两两不重合的平面,给出以下四个命题:①②③④假设m,n是异面直线,其中真命题是〔〕A、①和②B、①和③C、③和④D、①和④分析:由面面平行判定定理知①为真命题;注意到垂直于同一个平面的两个平面不一定平行,②为假命题;③显然为假命题;④由于m,n为异面直线,故可在确立两条相交直线与平行,因而为真命题. 故应选D.3,设为平面,m,n,l为直线,则m⊥的一个充分条件是〔〕分析:对于选项A,由于这里的直线m不一定在,故不一定有m⊥;对于选项B,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,则其中一个平面与第三个平面的交线垂直于另一个平面,此命题为假;对于选项C,它与m⊥构成的命题是:假设两个平面都和第三个平面垂直,且直线m垂直于其中一个平面,则m也垂直于另一个平面,此命题亦为假命题;排除法可知应选D.选项D与m⊥构成的命题是:假设直线m与两个平行平面中的一个平面垂直,则它和另一个平面也垂直,这显然为真命题.4、对于不重合的两个平面,给定以下条件:①存在平面,使得都垂直于;②存在平面,使得都平行于;③有不共线三点到的距离相等;④存在异面直线l,m,使得;其中可以判定平行的条件有〔〕A、1个B、2个C、3个D、4个分析:对于①,垂直于同一平面的两个平面可能相交;对于②,由面面平行的传递性可以判定;对于③,当相交时,仍可存在不共线三点到的距离等;对于④,在m上取定点P,经过点P在l与点P确定的平面作l'//l,则l'与m可确定平面 .由于于是可知,此题应选B.〔二〕填空题1、m,n是不同的直线,是不重合的平面,给出以下命题:①假设②假设③假设④m,n是两条异面直线,假设上面的命题中,真命题的序号是〔写出所有真命题的序号〕分析:①显然为假命题;对于②,的直线m,n不一定相交,故②亦为假命题;对于③,由题设知∴③为真命题;对于④,由前面选择题第4题知此为真命题.因此,答案为③、④.2、在正方体中,过对角线的一个平面交于E,交于F,则①四边形一定是平行四边形;②四边形有可能是正方形;③四边形在底面ABCD的投影一定是正方形;④平面有可能垂直于平面以上结论正确的为〔写出所有正确结论的编号〕分析:注意到正方体的特性,由面面平行性质定理和,故四边形为平行四边形,①正确;在这里,当时,平行四边形即为矩形,且不可能为正方形,②不正确;③正确;而当平面与底面ABCD〔或〕重合时有平面,故④正确.于是可知答案为①,③,④.〔三〕解答题1、如图1,ABCD是上下底面边长分别为2和6,高为的等腰梯形,将它沿对称轴折成直二面角,如图2.〔1〕证明:;〔2〕求二面角的大小.分析:循着解决平面图形折叠问题的根本思路:〔1〕认知平面图形中有关线段的长度与联系;〔2〕了解折叠前后有关线段的长度或联系的"变"与"不变";〔3〕利用"不变"的量与"不变"的关系解题.在这里,由图1知, .至此〔1〕易证;对于〔2〕,由〔1〕知,,故,于是可利用三垂线定理构造所求二面角的平面角.解:〔1〕证明:由题设知∴∠AOB是所成的直二面角的平面角,即,∴∴OC是AC在平面上的射影①又由题设得从而②∴根据三垂线定理由①②得, .〔2〕解:由〔1〕知,,∴设,在平面AOC过点E作EF⊥AC于F,连结〔三垂线定理〕由题设知,∴∴又∴即所求二面角的大小为.点评:利用原来平面图形折叠后“不变的量〞与线段间不变的垂直或平行关系,推出立体图形中,是证明〔1〕以及解答〔2〕的根底与关键.由此可见,这类问题中认知平面图形的重要.2、在四面体P-ABC中,PA=BC=6,PC=AB=10,AC=8,PB= .F是线段PB上一点,,点E在线段AB上,且EF⊥PB.〔1〕证明:PB⊥平面CEF;〔2〕求:二面角B-CE-F的大小.分析:〔1〕要证PB⊥平面CEF,只要证PB垂直于CE或CF.这一设想的实现与否,要看对有关三角形的特性的认知与把握.在这里,,故易得BC⊥平面PAC,BC⊥AC等.注意到,,便得PB⊥CF,于是问题获证.〔2〕由〔1〕知CE⊥PB,从而CE⊥平面PAB,CE⊥AB,CE⊥EF,故∠BEF为所求二面角的平面角.至此,解题的难点得以突破.解:〔1〕证明:∵PA2+AC2=36+64=100=PC2∴△PAC是以∠PAC为直角的直角三角形,同理可证:△PAB是以∠PAB为直角的直角三角形,△PCB是以∠PCB为直角的直角三角形。
2024年高考数学一轮复习(新高考版) 《空间点、直线、平面之间的位置关系》课件ppt
命题点2 异面直线所成的角 例3 (1)如图所示,圆柱O1O2的底面半径为1,高为2, AB是一条母线,BD是圆O1的直径,C是上底面圆周上 一点,∠CBD=30°,则异面直线AC与BD所成角的余 弦值为
3 35 A. 35
4 35 B. 35
√C.3147
27 D. 7
连接AO2,设AO2的延长线交下底面圆周上的点为E, 连接CE,易知∠CAE(或其补角)即为异面直线AC与 BD所成的角,连接CD(图略),在Rt△BCD中,∠BCD =90°,BD=2,∠CBD=30°,得BC= ,3CD=1. 又 AB=DE=AE=BD=2,AC= AB2+BC2= 7,CE= DC2+DE2= 5,
√D.点C和点M
因为AB⊂γ,M∈AB,所以M∈γ. 又α∩β=l,M∈l,所以M∈β. 根据基本事实3可知,M在γ与β的交线上. 同理可知,点C也在γ与β的交线上. 所以γ与β的交线必经过点C和点M.
(2)如图所示,平面 ABEF⊥平面 ABCD,四边形 ABEF 与 ABCD 都 是 直 角 梯 形 , ∠BAD = ∠FAB = 90°, BC∥AD 且 BC=12AD,BE∥AF 且 BE=12AF,G,H 分 别为 FA,FD 的中点. ①证明:四边形BCHG是平行四边形;
由题设知,因为 G,H 分别为 FA,FD 的中点,所以 GH∥AD 且 GH=
12AD, 又 BC∥AD 且 BC=12AD, 故GH∥BC且GH=BC,
所以四边形BCHG是平行四边形.
②C,D,F,E四点是否共面?为什么?
C,D,F,E四点共面.理由如且 BE=GF,所以四边形 EFGB 是平行四边形,所 以 EF∥BG. 由①知BG∥CH,所以EF∥CH. 故EC,FH共面.又点D在直线FH上, 所以C,D,F,E四点共面.
高中数学:空间点、直线、平面之间的位置关系 (17)
③a.若直线 a⊂平面 α,a,b 异面,则 b 与 α 的关系为________. b.若直线 a⊂平面 α,a,b 相交,则 b 与 α 的关系为________. 【答案】 a.平行或相交 b.相交或 b⊂α
第20页
题型二 平面与平面之间的位置关系 例 2 (1)已知平面 α,β ,且 α∥β ,直线 a⊂α,直线 b ⊂β,则直线 a 与直线 b 具有怎样的位置关系?画出图形. (2)已知平面 α,β,直线 a,b,且 a⊂α,b⊂β,α∩β= l,则直线 a 与直线 b 具有怎样的位置关系?画出图形.
B.m∥α D.m 在平面 α 外
【答案】 A
第11页
②若直线 l∩平面 α=A,直线 b⊂α,则 l 与 b 的位置关系 为________.
【答案】 相交或异面
第12页
③若直线 l∩平面 α=A,l 与直线 b 相交或异面,则 b 与 α 的位置关系为________.
【答案】 相交、平行或 b⊂α
第26页
(3)若三个平面两两相交,则它们将空间分六、七或八个部分, 如图③,④,⑤.
第27页
探究 3 本题考查了空间想象能力,分类讨论思想,相交平 面的画法.
第28页
解立体几何题时,比如直线与几个平面之间的位置关系,你 可以把手中的笔当成直线,把课桌或者课本当作平面,把教室当 作长方体,这样就将抽象的东西变得具体了.平时,动手做一些 立体模型,如长方体、立方体、圆柱、圆锥、正四面体等几何体 模型,这些都是建立空间想象力的途径.
例 1 下列说法:
①若直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
最新高考数学总复习——第7章 第2节 空间点、直线、平面之间的位置关系
(2)因为EG∩FH=P,P∈EG,EG⊂平面ABC, 所以P∈平面ABC.同理P∈平面ADC. 所以P为平面ABC与平面ADC的公共点. 又平面ABC∩平面ADC=AC, 所以P∈AC, 所以P,A,C三点共线.
考点2 判断空间两直线的位置关系 空间中两直线位置关系的判定方法
1.若直线l1和l2是异面直线,l1在平面α内,l2在平面β 内,l是平面α与平面β的交线,则下列命题正确的是( )
法二:(模型法)如图(1),l1与l2是异面直线,l1与l平行,l2与l相 交,故A,B不正确;如图(2),l1与l2是异面直线,l1,l2都与l相交, 故C不正确.
图(1)
] 图(2)
2.(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为 正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则( )
3),D→B1=(1,1, 3),则由向量夹角公式,得cos〈A→D1,D→B1〉=
A→D1·D→B1 |A→D1|·|D→B1|
=
2 25
=
5 5
,即异面直线AD1与DB1所成角的余弦值为
55,故选C.
法三:(补体法)如图,在长方体ABCD-A1B1C1D1的一侧补上一个 相同的长方体A′B′BA-A1′B1′B1A1.连接B1B′,由长方体性质可 知,B1B′∥AD1,所以∠DB1B′为异面直线AD1与DB1所成的角或 其补角.连接DB′,由题意,得DB′= 12+1+12 = 5 ,B′B1 = 12+ 32=2,DB1= 12+12+ 32= 5.
2.如图所示,空间四边形ABCD中,E,F分别是AB,AD的中 点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.
(1)求证:E,F,G,H四点共面; (2)设EG与FH交于点P,求证:P,A,C三点共线.
新高考一轮复习人教A版第7章第2节空间点直线平面之间的位置关系课件(53张)
[对点练] 在下列各图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点, 则表示直线GH,MN是异面直线的图形的序号是________.
解析:图①中,直线 GH∥MN;
图②中,G,H,N 三点共面,但 M∉平面 GHN,因此直线 GH 与 MN 异面;
图③中,连接 MG,GM∥HN,因此 GH 与 MN 共面;
与 b′所成的__锐__角__(或__直__角__)__叫做异面直线 a 与 b 所成的角(或夹角).
②范围:___0_,__π2_ __.
(4)基本事实4
自然语言
图形语言
符号语言
作用
平行于同一条直线 的两条直线_平__行_
a∥b且∥c⇒ _a_∥__c__
判断两条直线 是否平行
(5)等角定理 如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.
A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线
解析:(1)如图,连接D1E并延长,与AD交于点M. 由A1E=2ED,可得M为AD的中点. 连接BF并延长,交AD于点N. 因为CF=2FA,可得N为AD的中点, 所以M,N重合,所以EF和BD1共面,且EMDE1 =12 ,MBFF =12 , 所以EMDE1 =MBFF ,所以EF∥BD1.
(1)位置关系分类
共面直线相只平公交有行共直一直点线个线;:公:在共在同点同一;一平平面面内内,,有没且有
异面直线:不同在任何一个平面内,没有
公共点.
(2)异面直线的画法:(通常用平面衬托)
(3)异面直线所成的角
①定义:设 a,b 是两条异面直线,经过空间任一点 O 作直线 a′∥a,b′∥b,把 a′
高中数学 新高考 复习试卷讲义 第7章 §7.3 空间点、直线、平面之间的位置关系
1.若直线上有两个点在平面外,则()A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内C.直线上所有点都在平面外D.直线上至多有一个点在平面内2.(多选)下列命题中不正确的是()A.空间四点共面,则其中必有三点共线B.空间四点不共面,则其中任意三点不共线C.空间四点中有三点共线,则此四点不共面D.空间四点中任意三点不共线,则此四点不共面3.已知平面α,β,γ两两垂直,直线a,b,c满足a⊂α,b⊂β,c⊂γ,则直线a,b,c不可能满足以下哪种关系()A.两两垂直B.两两平行C.两两相交D.两两异面4.在底面半径为1的圆柱OO1中,过旋转轴OO1作圆柱的轴截面ABCD,其中母线AB=2,E是BC的中点,F是AB的中点,则()A.AE=CF,AC与EF是共面直线B.AE≠CF,AC与EF是共面直线C.AE=CF,AC与EF是异面直线D.AE≠CF,AC与EF是异面直线5.如图,已知四面体ABCD的各条棱长均等于4,E,F分别是棱AD,BC的中点.若用一个与直线EF垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为()A.3 2 B.4C.4 2 D.66.(2021·全国乙卷)在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A.π2 B.π3 C.π4 D.π67.(2023·广州模拟)如图为四棱锥A -DEFG 的侧面展开图(点G 1,G 2重合为点G ),其中AD =AF ,G 1D =G 2F .E 是线段DF 的中点,请写出四棱锥A -DEFG 中一对一定相互垂直的异面直线________.(填上你认为正确的一个结论即可,不必考虑所有可能的情形)8. 如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这两个四棱柱的表面相交的交线段总长度为________.9. 如图所示,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.10. 如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.11.(多选)(2023·朝阳模拟)在三棱锥A -BCD 中,AB =CD =2,AD =BC =AC =BD =5,则( ) A .AB ⊥CDB .三棱锥A -BCD 的体积为23C .三棱锥A -BCD 外接球半径为6 D .异面直线AD 与BC 所成角的余弦值为3512. 如图,E ,F 分别为正方体ABCD -A 1B 1C 1D 1的棱CC 1,C 1D 1的中点,若AB =6,则过A ,E ,F 三点的截面的面积为( )A .92B .182 C.21172D.2717213.(2022·南阳模拟)如图,AB 和CD 是异面直线,AB =CD =3,E ,F 分别为线段AD ,BC 上的点,且AE ED =BF FC =12,EF =7,则AB 与CD 所成角的大小为________.14.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB =23,AC =2,BC =4,则:(1)球O的表面积为________;(2)若D是BC的中点,过点D作球O的截面,则截面面积的最小值是________.15.(2023·重庆模拟)如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,AB⊥BC,AB=BC=2,过AB,BB1的中点E,F作平面α与平面AA1C1C垂直,则平面α与该直三棱柱所得截面的周长为________.16. 如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AD⊥DC,AB∥DC,AB=2AD=2CD=2,点E是PB的中点.(1)线段P A上是否存在一点G,使得点D,C,E,G共面?若存在,请证明,若不存在,请说明理由;(2)若PC=2,求三棱锥P-ACE的体积.。
新教材高考数学一轮复习第七章7-2空间点直线平面之间的位置关系课件新人教A版
B.GH=2EF,且直线EF,GH是异面直线
C.GH≠2EF,且直线EF,GH是相交直线
D.GH≠2EF,且直线EF,GH是异面直线
)
答案 C
解析 设正方体的棱长为 2,则
1
EF= A1B=√2,GH=√ 2
2
+ 2 = √6,
所以GH≠2EF.设M,N分别为CC1和A1D1的中点,则六边形EFGMHN是过
推论3:经过两条平行直线,有且只有一个平面.
2.异面直线判定的一个定理
过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.
3.唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
3.(2020浙江,6)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是
“l,m,n两两相交”的(
)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案 B
解析 由条件可知,当m,n,l在同一平面内时,三条直线不一定两两相交,有可
能两条直线平行;或三条直线平行;反过来,当空间中不过同一点的三条直
C.2
D.3
答案 C
解析 ①因梯形有一组对边平行,所以梯形可以确定一个平面,故①正确;
②如等腰三角形中,AB,AC与底边直线BC所成的角相等,而直线AB,AC不平
行,故②错误;
③两两相交的三条直线,比如墙角处的三条交线最多可以确定三个平面,故
③正确;
④如果两个平面有三个共线的公共点,这两个平面不重合,故④错误.故选C.
高考数学知识点:空间点、直线、平面的位置关系知识点总结
高考数学知识点:空间点、直线、平面的位置关系知识点总
结
1、平面
(1)平面概念的理解
直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.
抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.
(2)平面的表示法
①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.
②字母表示:常用等希腊字母表示平面.
(3)涉及本部分内容的符号表示有:
①点A在直线l内,记作;②点A不在直线l内,记作;
③点A在平面内,记作;④点A不在平面内,记作;
⑤直线l在平面内,记作;⑥直线l不在平面内,记作;
注意:符号的使用与集合中这四个符号的使用的区别与联系.
(4)平面的基本性质
公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.
符号表示为:.
注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.
公理2:过不在一条直线上的三点,有且只有一个平面.
符号表示为:直线AB存在唯一的平面,使得.
注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多维层次练37[A级基础巩固]1.已知直线a,b分别在两个不同的平面α,β内.则“直线a 和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.答案:A2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD 平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.答案:A3.(2019·邯郸调研)如图所示,在三棱锥S-ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是( )A .相交B .平行C .异面D .以上都有可能解析:连接SG 1并延长交AB 与M ,连接SG 2并延长交AC 于N ,连接MN (图略).由题意知SM 为△SAB 的中线,且SG 1=23SM ,SN 为△SAC 的中线,且SG 2=23SN ,所以在△SMN 中,SG 1SM =SG 2SN ,所以G 1G 2∥MN ,易知MN 是△ABC 的中位线,所以MN ∥BC ,因此可得G 1G 2∥BC ,即直线G 1G 2与BC 的位置关系是平行. 答案:B4.如果两条异面直线称为“一对”,那么在正方体的十二条棱中有异面直线( )A .12对B .24对C .36对D .48对解析:如图所示,与AB 异面的直线有B 1C 1,CC 1,A 1D 1,DD 1四条,因为各棱具有相同的位置且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×42=24(对).答案:B5.(2020·湛江调研)三棱锥A-BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A.13B.24C.33D.23解析:连接DN ,取DN 的中点O ,连接MO ,BO ,因为M 是AD 的中点,所以MO ∥AN ,所以∠BMO (或其补角)是异面直线BM 与AN 所成的角,设三棱锥A-BCD 的所有棱长为2,则AN =BM =DN =22-12=3,则MO =12AN =32=NO =12DN , 则BO =BN 2+NO 2=1+34=72, 在△BMO 中,由余弦定理得cos ∠BMO =BM 2+MO 2-BO 22·BM ·MO =3+34-742×3×32=23, 所以异面直线BM 与AN 所成角的余弦值为23. 答案:D6.(2019·珠海模拟)如图所示,在矩形ABCD 中,AB =4,AD =2,P 为边AB 的中点,现将△DAP 绕直线DP 翻转至△DA ′P 处,若M 为线段A ′C 的中点,则异面直线BM 与PA ′所成角的正切值为( )A.12B .2 C.14 D .4解析:取A ′D 的中点N ,连接PN ,MN ,因为M 是A ′C 的中点,所以MN ∥CD ,且MN =12CD , 因为四边形ABCD 是矩形,P 是AB 的中点,所以PB ∥CD ,且PB =12CD , 所以MN ∥PB ,且MN =PB ,所以四边形PBMN 为平行四边形,所以MB ∥PN ,所以∠A ′PN (或其补角)是异面直线BM 与PA ′所成的角.在Rt △A ′PN 中,tan ∠A ′PN =A ′N A ′P =12, 所以异面直线BM 与PA ′所成角的正切值为12.故选A. 答案:A7.(2020·惠州质检)设正方体ABCD-A 1B 1C 1D 1的棱长为2,动点E ,F 在棱A 1B 1上,动点P 、Q 分别在棱AD 、CD 上,若EF =1,A 1E =x ,DQ =y ,DP =z (x ,y ,z >0),则下列结论中正确的是________(填序号).①EF∥平面DPQ;②三棱锥P-EFQ的体积与y的变化有关,与x,z的变化无关;③异面直线EQ和AD1所成角的大小与x,y,z的变化无关.解析:在①中,平面DPQ外一直线EF平行于平面DPQ内直线DQ,所以EF∥平面DPQ,故①正确.在②中,由点Q到EF的距离等于22,而EF=1,故S△EFQ的值为定值,而随着点P在AD上运动,点P到平面EFQ的距离为变量,从而使得三棱锥P-EFQ的体积跟着变化,所以三棱锥P-EFQ的体积与x,y大小无关,与z大小有关,故②错误.在③中,由线面垂直的判定定理得AD1⊥平面A1DCB1,而直线EQ在平面A1DCB1内运动,不论EQ怎样运动,总有EQ与AD1互相垂直,即异面直线EQ和AD1所成角为90°,与x,y,z的变化无关,故③正确.答案:①③8.(2020·南京期末)如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=3AB.记异面直线AB1与BD所成的角为θ,则cos θ的值为________.解析:因为在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=3AB,连接AD1,B1D1,所以BD∥B1D1,所以∠AB1D1是异面直线AB1与BD所成的角(或所成角的补角).设AA1=3AB =3,所以AD1=AB1=1+3=2,B1D1= 2.记异面直线AB1与BD所成的角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪4+2-42×2×2=24. 答案:249.已知正六棱锥S-ABCDEF 的底面边长和高均为1,则异面直线SC 与DE 所成角的大小为________.解析:设正六边形ABCDEF 的中心为O ,连接SO ,CO ,BO ,则由正六边形的性质知OC ∥DE ,SO ⊥平面ABCDEF ,所以∠SCO 为异面直线SC 与DE 所成角.又易知△BOC 为等边三角形,所以SO=BC =CO =1,所以△SOC 为等腰直角三角形,所以∠SCO =π4.答案:π410.(2020·石家庄调研)如图所示,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.证明:如图所示,连接BD,B1D1,则BD∩AC=O,因为BB1DD1,所以四边形BB1D1D为平行四边形.又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.故D1,H,O三点共线.[B级能力提升]11.(2019·临汾模拟)如图所示,在三棱台ABC-A1B1C1的6个顶点中任取3个点作平面α,设α∩平面ABC=l,若l∥A1C1,则这3个点可以是()A.B,C,A1B.B1,C1,A C.A1,B1,C D.A1,B,C1解析:过点B作BD∥AC,则BD∥A1C1,连接A1B,C1D,CD,如图所示,则平面α可以为平面A1BDC1,则α∩平面ABC=BD=l,且l∥A1C1,所以这3个点可以是A1、C1、B.故选D.答案:D12.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④直线B1E⊥直线BC1.解析:因为AC⊥平面BDD1B1,故①正确;因为B1D1∥平面ABCD,故②正确;记正方体的体积为V,则V E-ABC=16V,为定值,故③正确;B1E与BC1不垂直,故④错误.答案:①②③13.如图所示,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.解:(1)由已知可求得正方形ABCD 的面积S =4,所以四棱锥O-ABCD 的体积V =13×4×2=83. (2)如图所示,连接AC ,设线段AC 的中点为E ,连接ME ,DE .又M 为OA 中点,所以ME ∥OC ,则∠EMD (或其补角)为异面直线OC 与MD 所成的角,由已知可得DE =2,EM =3,MD =5,因为(2)2+(3)2=(5)2,所以△DEM 为直角三角形,所以tan ∠EMD =DE EM =23=63. 所以异面直线OC 与MD 所成角的正切值为63. [C 级 素养升华]14.下图是正四面体(各面均为正三角形)的平面展开图,G ,H ,M ,N 分别为DE ,BE ,EF ,EC 的中点,在这个正四面体中:①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.解析:把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.答案:②③④素养培育数学建模——构造平面研究直线相交问题(自主阅读)把立体几何问题转化为平面几何问题是求解立体几何题目的一种重要的思想方法.下面举例说明,如何根据确定平面的条件,构造平面研究直线相交问题.[典例1](一题多解)在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.解析:法一如图,在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN 与这三条异面直线都有交点,所以在空间中与这三条直线都相交的直线有无数条.法二在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD与平面α不平行,所以它们相交,设它们交于点Q,连接PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交.答案:无数[典例2](一题多解)设l是直线,α,β是两个不同的平面,() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β解析:法一设α∩β=a,若直线l∥α,且l⊄α,l⊄β,则l∥α,l ∥β,因此α不一定平行于β,故A错误;由于l∥α,故在α内存在直线l′∥l.又因为l⊥β.所以l′⊥β,故α⊥β,所以B正确;若α⊥β,在β内作交线的垂线l,则l⊥α,此时l在平面β内,因此C错误;已知α⊥β,若α∩β=a,l∥a,且l不在平面α,β内,则l∥α且l∥β,因此D错误.法二借助于长方体模型解决本题:对于A,如图①,α与β可相交;对于B,如图②,不论β在何位置,都有α⊥β;对于C,如图③,l可与β平行或l⊂β;对于D,如图④,l⊥β或l⊂β或l∥β.答案:B。