2019-2020学年甘肃省平凉市静宁县田堡中学八年级下学期期中数学试卷 (解析版)
2019-2020学年度下学期期中考试八年级数学精品试卷
2019-2020学年度下学期期中考试八年级数 学 试 卷注意:将答案都填在答题卷相应的位置上。
一、选择题:(本大题共10小题,每小题3分,共30分,每题只有一项是正确的.) 1.下列根式中,最简二次根式是( )A .9aB .22a b +C .2aD .0.52.下列运算正确的是( )A .B .C .D .3.如果=2a -1,那么…( ) A .aB .a ≤C .aD .a ≥4.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B .7,24,25a b c ===C .6,8,10a b c ===D .3,4,5a b c === 5.矩形具有而平行四边形不一定具有的性质是( )A .对角线互相平分B .两组对角相等C .对角线相等D .两组对边相等6.顺次连接一个四边形的各边中点,得到了一个矩形,则此四边形的是( )①平行四边形;②菱形;③对角线互相垂直的四边形. A .①③ B .②③ C .①② D .均可以 7.如图,已知圆柱的底面直径BC =,高AB =3,小虫在圆柱表面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程为( )A .B .C .D .8.如图所示, ABCD 的周长为l6cm ,对角线AC 与BD 相交于点O ,交AD 于E ,连接CE ,则△DCE 的周长为( )A .10cmB .8cmC .6cmD .4cm9.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于点M ,若CM =5,则CE 2+CF 2等于( )A .75B .100C .120D .12510. 如图所示,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE =15°,则下面的结论:①△ODC 是等边三角形;②BC =2AB ;③∠AOE =135°;④S △AOE =S △COE ;⑤2AC CE =,其中正确结论有( ) A .2 B .3 C .4 D .5二、填空题(本大题共6小题,每小题3分,共18分) 11.已知x =5-12,则1x= . 12. 若11422y x x =-+--,则xy = . 13.如图,在直角△ABC 中,∠BAC =90°,AB =8,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为 . ,14.如图,在菱形ABCD 中,M 、N 分别在AB 、CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO ,若∠DAC =28°,则∠OBC 的度数为 .15.如图,矩形ABCD ,边长AB 与AD 之比为3:1,DE ⊥AC 于点E ,BF ⊥AC 于点F ,连接BE ,DF ,则四边形DEBF 与矩形ABCD 的面积之比为 .16.如图,在平行四边形A BCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠CEF =40°,则∠EFD = . 三、解答下列各题(共8大题,共72分,解答应写文字说明、演算步骤或证明过程.) 17.(本小题8分) ⑴27-8-12+81⑵(3+2)(3-2)18.(本小题6分) 已知实数a ,b ,c 在数轴上的位置如图所示.化简:a 2+|a +c|-(a -b )2+|1-b|.E FD A B C FEB C A D 第13题图 第14题图 第15题图 第16题图第7题图第10题图第9题图 第8题图19.(本小题8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可);20.(本小题8分)有一块直角三角形纸片,两直角边AC = 6cm,BC = 8cm.(1)如图①,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,则CD = _________ cm.(2)如图②,若将直角∠C沿MN折叠,点C与AB中点O重合,点M、N分别在AC、BC上,求证:222MNBNAM=+.21.(本小题10分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.22.(本小题10分)如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF ⊥BD,垂足分别为E,F,延长AE,CF分别交CD,AB于点M,N.(1)求证:四边形AMCN是平行四边形;(2)已知DM=4,BF=3,求FN的长.23. (本小题10分)已知四边形ABCD是边长为4的菱形,∠ADC=120°,对角线AC与BD交于点O,过点O的直线EF交A B于点E,交C D于点F.(1)求证:△A OE≌△COF;(2)若∠DOF=30°,求AF的长.24.(本小题12分)如图①,在矩形纸片ABCD中,AB=6cm,AD=10cm,折叠纸片使D点落在边BC上的F处,折痕为ME,过点F作FG∥CD交ME于F,连接DG.(1)①求证:四边形DEFG为菱形;②若点G为ME的中点,求菱形DEFG的边长;(2)当点F在BC边上移动时,折痕的端点M、E也随之移动,当点M与点A重合时(如图②),求折痕ME的长;(3)若限定M、E分别在边AD、CD上移动,当点F在矩形ABCD内部移动时(如图③),则点F与点C 之间的最短距离是.A(M)B CDEF图②AB C图①EMFGD AB C图③EMFDAEOFDCAC B图①AC BOM图②FA DECBG第21题图。
2019-2020学年八年级下学期期中考试数学试卷(解析版)
2019-2020学年八年级下学期期中考试数学试卷一.填空题(每小题4分,共24分)1.若,则的值是.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥09.下列各数中,与的积为有理数的是()A.B.C.D.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.211.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.14.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD的面积为()A.24B.36C.40D.48三.解答题(共44分)15.(5分)计算(1).(2).16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.参考答案与试题解析一.填空题(每小题4分,共24分)1.若,则的值是2.【分析】直接利用二次根式的性质计算得出答案.【解答】解:∵,∴a=,b=﹣1,∴=2÷=2.故答案为:2.【点评】此题主要考查了非负数的性质以及二次根式的乘除运算,正确掌握相关运算法则是解题关键.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为6.【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义得到AD,然后根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8,设CD=x,则AC=16﹣x,∵AC2=AD2+CD2,∴(16﹣x)2=82+x2,∴x=6,∴CD=6,故答案为:6.【点评】本题考查等腰三角形的性质,勾股定理,由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为4cm2.【分析】先根据两个小正方形的面积分别是6cm2和2cm2求出正方形的边长,进而可得出矩形的长和宽,进而得出结论.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB =A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥0【分析】直接利用二次根式的性质分析得出答案.【解答】解:等式成立的条件是:,解得:a>5.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9.下列各数中,与的积为有理数的是()A.B.C.D.【分析】利用二次根式乘法法则判断即可.【解答】解:•2=6,故选:C.【点评】此题考查了分母有理化,熟练掌握二次根式乘法法则是解本题的关键.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.2【分析】此题可借助于方程.设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4;把xy看作整体求解即可.【解答】解:设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4,则(x+y)2=x2+y2+2xy,∴6=4+2xy,∴xy=1,∴这个三角形的面积是xy==0.5,故选:B.【点评】此题考查了勾股定理的应用,解题时注意方程思想与整体思想的应用.11.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选:B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质得出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠AED=∠EAD=60°,AE=AD,求出∠BAE=150°,AB=AE,∠ABE=∠AEB=15°,求出∠AFB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AED是等边三角形,∴∠AED=∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠DFE=∠AFB=90°﹣15°=75°,故选:D.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠ABE的度数,难度适中.13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.【分析】本题主要根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB 与△ABC同底且△AOB的高是△ABC高的得出结论.【解答】解:∵四边形为矩形,∴OB =OD =OA =OC ,在△EBO 与△FDO 中, ∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.14.如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,且▱ABCD 的周长为40,则▱ABCD 的面积为( )A .24B .36C .40D .48【分析】根据平行四边形的周长求出BC +CD =20,再根据平行四边形的面积求出BC =CD ,然后求出CD 的值,再根据平行四边形的面积公式计算即可得解.【解答】解:∵▱ABCD 的周长=2(BC +CD )=40,∴BC +CD =20①,∵AE ⊥BC 于E ,AF ⊥CD 于F ,AE =4,AF =6,∴S ▱ABCD =4BC =6CD ,整理得,BC =CD ②,联立①②解得,CD =8,∴▱ABCD 的面积=AF •CD =6CD =6×8=48.故选:D .【点评】本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.三.解答题(共44分)15.(5分)计算(1).(2).【分析】(1)直接利用二次根式的性质以及零指数幂的性质、绝对值的性质分别化简得出答案;(2)利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣﹣(﹣1)﹣1+=﹣﹣+1﹣1+=0;(2)原式=1﹣12﹣(1+3﹣2)=﹣15+2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.【分析】先化简,再代入计算即可,注意x>2.【解答】解:原式=×=当x=4时,原式=2.【点评】本题考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质,注意一定要先化简再代入求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.【分析】(1)可先证明四边形DAEF是平行四边形,再由角的关系求得∠AED=∠1,根据等角对等边得AD=AE,再依据有一组邻边相等的平行四边形是菱形可得四边形AEFD是菱形;(2)由已知求得两条对角线的长,根据菱形的面积等于两条对角线的积的一半,求得菱形的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DF∥AE,∵EF∥AD,∴四边形DAEF是平行四边形,∵∠2=∠AED,∵DE是▱ABCD的∠ADC的平分线∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF与DE相交于O,则EO=.∴OA==.∴AF=5.=AF•DE=.∴S菱形AEFD【点评】此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【分析】(1)利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.(2)利用(1)的结论可知,DE=DF,再加上三个角都是直角,可证出四边形DFAE是正方形.【解答】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.∵△BED≌△CFD,∴DE=DF.∴四边形DFAE为正方形.【点评】本题利用了全等三角形的判定和性质以及矩形、正方形的判定.解答此题的关键是利用等腰三角形的两个底角相等,从而证明Rt△BED和Rt△CFD中的两个锐角对应相等.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.。
2019-2020学年甘肃省平凉市静宁县田堡中学八年级(下)期中数学试卷 解析版
2019-2020学年甘肃省平凉市静宁县田堡中学八年级(下)期中数学试卷一、选择题(本题有10小题,每题3分,共30分).1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x=0B.x≥0C.x>﹣4D.x≥﹣42.(3分)用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cmC.1cm,2cm,cm D.2cm,3cm,4cm3.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.4.(3分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.55.(3分)如图,平行四边形ABCD中,∠DAB的平分线AE交CD于E,DC=5,BC=3,则EC的长是()A.1B.1.5C.2D.36.(3分)平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm7.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或8.(3分)若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形9.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.510.(3分)如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距()A.20海里B.40海里C.35海里D.30海里二、填空题(本题有8小题,每题4分,共32分).11.(4分)在实数范围内因式分解:x2﹣2=.12.(4分)若1<x<2,则化简的结果是.13.(4分)直角三角形两条直角边的长分别为12和5,则斜边上的中线等于.14.(4分)矩形的两条对角线的夹角为60°,较短的边长为5cm,则对角线长为cm.15.(4分)在△ABC中,AB=15,AC=13,高AD=12,则BC的长.16.(4分)如图,延长正方形ABCD的边AB到E,使BE=BD,则∠E=.17.(4分)如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为m.18.(4分)如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.三、解答题(本题有9小题,共88分)19.(10分)计算:(1)3;(2)(4).20.(6分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.21.(10分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?22.(10分)有如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米.(1)试判断以点A、点B、点C为顶点的三角形是什么三角形?并说明理由.(2)求这块地的面积.23.(10分)如图,M、N是平行四边形ABCD对角线BD上两点.BM=DN,求证:四边形AMCN为平行四边形.24.(10分)如图在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形.25.(10分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE ∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.26.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.27.(12分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB 方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.2019-2020学年甘肃省平凉市静宁县田堡中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分).1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x=0B.x≥0C.x>﹣4D.x≥﹣4【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x+4≥0,解得x≥﹣4.故选:D.2.(3分)用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cmC.1cm,2cm,cm D.2cm,3cm,4cm【分析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【解答】解:A、∵12+22≠32,∴不能构成直角三角形;B、∵2+2≠2,∴不能构成直角三角形;C、∵12+2=22,∴能构成直角三角形;D、∵22+32=≠42,∴不能构成直角三角形.故选:C.3.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.【分析】根据最简二次根式的定义对各选项分析判断,利用排除法求解.【解答】解:A、2是最简二次根式,故本选项正确;B、=,故本选项错误;C、=,故本选项错误;D、=|x|•,故本选项错误.故选:A.4.(3分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选:D.5.(3分)如图,平行四边形ABCD中,∠DAB的平分线AE交CD于E,DC=5,BC=3,则EC的长是()A.1B.1.5C.2D.3【分析】由平行四边形的性质知AD=BC=3,DC∥AB,据此得∠BAE=∠AED,再由角平分线性质知∠BAE=∠DAE,从而得∠AED=∠DAE,据此知AD=DE=3,根据EC =DC﹣DE可得答案.【解答】解:∵四边形ABCD是平行四边形,BC=3,∴AD=BC=3,DC∥AB,∴∠BAE=∠AED,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AED=∠DAE,∴AD=DE=3,∵DC=5,∴EC=DC﹣DE=5﹣3=2,故选:C.6.(3分)平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm【分析】因为四边形ABCD是平行四边形,所以OA=OC;又因为点E是BC的中点,所以OE是△ABC的中位线,由OE=3cm,即可求得AB=6cm.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm).故选:B.7.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或【分析】由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【解答】解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.8.(3分)若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.9.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.5【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.10.(3分)如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距()A.20海里B.40海里C.35海里D.30海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:=40(海里).故选:B.二、填空题(本题有8小题,每题4分,共32分).11.(4分)在实数范围内因式分解:x2﹣2=(x﹣)(x+).【分析】利用平方差公式即可分解.【解答】解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).12.(4分)若1<x<2,则化简的结果是2﹣x.【分析】首先将被开方数变形为完全平方式的形式,然后根据=|a|进行化简求解即可.【解答】解:∵1<x<2,∴x﹣2<0,∴原式==|x﹣2|=2﹣x.故答案为:2﹣x.13.(4分)直角三角形两条直角边的长分别为12和5,则斜边上的中线等于 6.5.【分析】利用勾股定理求得直角三角形的斜边,然后利用直角三角形斜边上的中线等于斜边的一半解题.【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB==13,∵CD为斜边AB上的中线,∴CD=AB==6.5.故答案为:6.5.14.(4分)矩形的两条对角线的夹角为60°,较短的边长为5cm,则对角线长为10cm.【分析】根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.【解答】解:如图:AB=5cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=5cm,BD=2OB=2×5=10cm.故答案为:10.15.(4分)在△ABC中,AB=15,AC=13,高AD=12,则BC的长14和4.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=BD﹣CD.【解答】解:(1)如图,锐角△ABC中,AC=13,AB=15,BC边上高AD=12,∵在Rt△ACD中AC=13,AD=12,∴CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴CD=9,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AC=13,AB=15,BC边上高AD=12,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为DB﹣BC=9﹣5=4.故答案为14或4.16.(4分)如图,延长正方形ABCD的边AB到E,使BE=BD,则∠E=22.5°.【分析】只要证明∠ABD=45°,∠BDE=∠E,利用三角形的外角的性质即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠ABC=45°,∵BD=BE,∴∠BDE=∠E,∵∠ABD=∠BDE+∠E,∴∠E=22.5°故答案为22.5°17.(4分)如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为150m.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB==150(米).故答案为:150.18.(4分)如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【解答】解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.三、解答题(本题有9小题,共88分)19.(10分)计算:(1)3;(2)(4).【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的除法法则运算.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=2﹣.20.(6分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【分析】(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.【解答】解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.21.(10分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据AC =AA1+CA1即可求得CA1的长度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB1的长度,根据BB1=CB1﹣CB即可求得BB1的长度.【解答】解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC==2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5﹣0.7=0.8m答:梯足向外移动了0.8m.22.(10分)有如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米.(1)试判断以点A、点B、点C为顶点的三角形是什么三角形?并说明理由.(2)求这块地的面积.【分析】(1)连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC 是直角三角形,(2)根据△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:(1)连接AC,由勾股定理可知:AC=,又∵AC2+BC2=52+122=132=AB2∴△ABC是直角三角形;(2)这块地的面积=△ABC的面积﹣△ACD的面积,=×5×12﹣×3×4=24(m2).23.(10分)如图,M、N是平行四边形ABCD对角线BD上两点.BM=DN,求证:四边形AMCN为平行四边形.【分析】连接AC,交BD于点O,由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,∴OM=ON,∴四边形AMCN为平行四边形;24.(10分)如图在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形.【分析】根据三角形的中位线定理推出BF=AB,BD=BC,EF∥BC,DE∥AB,得到平行四边形BDEF,和BF=BD,即可推出答案.【解答】证明:∵D、E、F分别是BC、AC、AB边上的中点,∴BF=AB,BD=BC,EF∥BC,DE∥AB,∵AB=BC,∴BF=BD,四边形BDEF是平行四边形,∴四边形BDEF是菱形.25.(10分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE ∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.【分析】DC⊥OE,先证明四边形OCED是平行四边形,再由矩形的性质得出OC=OD,证出四边形OCED是菱形,得出对角线互相垂直即可.【解答】解:OE⊥DC,理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD,∴OC=OD,∴四边形OCED是菱形,∴OE⊥DC.26.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是平行四边形,证明你的结论;(2)当四边形ABCD的对角线满足互相垂直条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.【分析】(1)连接BD,根据三角形的中位线定理得到EH∥BD,EH=BD,FG∥BD,FG═BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD的对角线满足AC ⊥BD的条件时,四边形EFGH是矩形;(3)菱形的中点四边形是矩形.根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD,EF∥AC,再根据矩形的每一个角都是直角可得∠1=90°,然后根据平行线的性质求出∠3=90°,再根据垂直定义解答.【解答】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直;菱形.27.(12分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB 方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.【分析】(1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;(3)设经过t(s),四边形PQCD是等腰梯形,利用EP=2列出有关t的方程求解即可.【解答】解:(1)设经过x(s),四边形PQCD为平行四边形即PD=CQ所以24﹣x=3x,解得:x=6.(2)设经过y(s),四边形PQBA为矩形,即AP=BQ,所以y=26﹣3y,解得:y=.(3)设经过t(s),四边形PQCD是等腰梯形.过Q点作QE⊥AD,过D点作DF⊥BC,∴∠QEP=∠DFC=90°∵四边形PQCD是等腰梯形,∴PQ=DC.又∵AD∥BC,∠B=90°,∴AB=QE=DF.在Rt△EQP和Rt△FDC中,,∴Rt△EQP≌Rt△FDC(HL).∴FC=EP=BC﹣AD=26﹣24=2.又∵AE=BQ=26﹣3t,∴EP=AP﹣AE=t﹣(26﹣3t)=2.得:t=7.∴经过7s,PQ=CD.。
甘肃省平凉市八年级下学期期中测试数学试卷
甘肃省平凉市八年级下学期期中测试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共25分)1. (2分)一个射手连续射靶10次,其中1次射中10环,6次射中9环,3次射中8环,则射中()环的频数最大.A . 6B . 8C . 9D . 102. (2分)(2018·宁波) 如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A . 主视图B . 左视图C . 俯视图D . 主视图和左视图3. (2分) (2019八上·平川期中) 下列运算正确的是()A . + =B . ×(﹣)= × =C . =±3D . | ﹣ |= ﹣4. (2分)(2016·内江) 如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为()A . 8B . 9.5C . 10D . 11.55. (2分)(2019·高台模拟) 如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为36,则OH的长等于()A . 4.5B . 5C . 6D . 96. (1分)(2017·汉阳模拟) 将a 因式内移的结果为________.7. (1分)一个反比例函数的图象位于第二、四象限.请你写出一个符合条件的解析式是________ .8. (1分)平行四边形的对角________,邻角________.9. (1分) (2017八下·东台期中) 矩形的两条对角线的夹角为60°,较短的边长为2cm,则较长的边长为________cm.10. (1分)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为________ cm2 .11. (2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A . 200只B . 400只C . 800只D . 1000只12. (2分) (2019九上·岑溪期中) 对于反比例函数y=,下列说法不正确的是()A . 图象分布在第一、三象限B . 当x>0时,y随x的增大而减小C . 图象经过点(2,3)D . 若点A(x1 , y1),B(x2 , y2)都在图象上,且x1<x2 ,则y1<y213. (2分)下列判断①平行四边形的对边平行且相等.②四条边都相等且四个角也都相等的四边形是正方形.③对角线互相垂直的四边形是菱形.④对角线相等的平行四边形是矩形. 其中错误的个数有()A . 1个B . 2个C . 3个D . 4个14. (2分)如图,已知双曲线y= 与直角三角形OAB的斜边OB相交于D,与直角边AB相交于C.若BC:CA=2:1,△OAB的面积为8,则△OED的面积为如图,已知双曲线y= 与直角三角形OAB的斜边OB相交于D,与直角边AB相交于C.若BC:CA=2:1,△OAB的面积为8,则△OED的面积为()A .B . 2C .D . 415. (2分)如图,⊙O为△ABC的内切圆,∠C=90°,AO的延长线交BC于点D,AC=4,DC=1,则⊙O的半径等于()A .B .C .D .二、填空题 (共3题;共3分)16. (1分) (2017九上·赣州开学考) 函数的自变量x的取值范围是________.17. (1分) (2019八下·锦江期中) 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为________.18. (1分)如图,在梯形ABCD中,DC∥AB,AC与BD相交于O点,且,S△COD=12,则△ABC 的面积是________ .三、解答题. (共9题;共45分)19. (5分)若实数a、b、c满足,求的值.20. (5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在什么等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.21. (5分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.22. (5分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.23. (5分)如图,反比例函数y=(k为常数,且k≠5)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.24. (5分) (2015八下·淮安期中) 如图,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD 的周长.25. (5分) (2017八下·江海期末) 如图所示的一块地,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,求这块地的面积.26. (5分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.27. (5分)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,),A12(,);(2)写出点A4n的坐标(n是正整数)(,);(3)指出蚂蚁从点A2014到点A2015的移动方向为.参考答案一、选择题 (共15题;共25分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共3题;共3分)16-1、17-1、18-1、三、解答题. (共9题;共45分)19-1、20-1、21-1、21-2、21-3、22-1、23-1、24-1、25-1、26-1、26-2、27-1、。
甘肃省平凉市八年级下学期数学期中考试试卷
甘肃省平凉市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·永登期末) 若式子在实数范围内有意义,则x的取值范围是()A . x≥-2B . x>-2C . x≥2D . x≤22. (2分)下列各式:① ,② ,③ ,④ 中,最简二次根式有()A . 1个B . 2个C . 3个D . 4个3. (2分)在▱ABCD中,∠BAD的平分线AE交BC于点E,且BE=3.若▱ABCD的周长是16,则EC的长为()A . 5B . 3C . 2D . 14. (2分) (2020八下·防城港期末) 已知正比例函数的图象过点,下面也在这条直线上的点是()A .B .C .D .5. (2分)若b<0,化简的正确结果是()A .B . bC . -bD . -b6. (2分) (2019八下·鄂伦春期末) 函数的图象不经过第二象限,则的取值范围是()A .B .C .D .7. (2分) (2018八上·长春期末) 若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3 ,则△ABC是()A . 等边三角形B . 等腰三角形C . 直角三角形D . 等腰或直角三角形8. (2分)下面几组条件中,能判断一个四边形是平行四边形的是()A . 一组对边相等,一组对边平行B . 两条对角线互相平分C . 一组对边平行,一组邻角相等D . 两条对角线互相垂直9. (2分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO 沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A . 4B . -2C .D . -10. (2分)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A .B .C .D .二、填空题 (共10题;共10分)11. (1分) (2019八下·邵东期末) 已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.12. (1分)(2017·揭阳模拟) 如图,在Rt△ABC中,∠BAC=90°,AB=AC=2 ,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1 ,矩形PDFE的面积为S2 , y=S1+S2 ,则y与x的关系式是________.13. (1分) (2019八上·毕节月考) 在 ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.14. (1分) (2020八下·贵阳开学考) 如图,直线与直线相交于点,则方程组的解是________.15. (1分) (2019八下·端州月考) 一艘帆船由于风向的原因先向正东方向航行了16km,然后向正北方向航行了12km,这时它离出发点有________km.16. (1分) (2017八下·兴化期中) 若(m≠0),则的值是________.17. (1分) (2019七下·杭锦旗期中) 在平面直角坐标系中,将点P(﹣1,5)向左平移2个单位长度后得到点P的坐标是________.18. (1分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4),其中正确的是________(填序号).19. (1分) (2019七上·宽城期中) 如图,是上一点,是的中点,交的延长线于 .若,,则的长为________.20. (1分) (2018七上·宜兴月考) 已知整数a1 , a2 , a3 , a4 ,满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,,依次类推,则a2014的值为________.三、解答题 (共7题;共67分)21. (5分) (2017八上·新化期末) 计算:(1+ )(﹣1)﹣|2﹣ |+(﹣2016)0 .22. (11分)(2018·大连) 如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为________;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.23. (10分)(2018·宁夏) 已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)24. (10分) (2017九上·海口期中) 如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)△CDP与△PAE相似吗?如果相似,请写出证明过程;(2)是否存在这样的点P,使△CDP的周长等于△PAE周长的2倍?若存在,求DP的长;若不存在,请说明理由.25. (11分) (2019七下·郑州期中) 如图,一条笔直的公路上有 A,B,C 三地,甲、乙两辆汽车分别从A、B 两地同时开出,沿公路匀速相向而行,驶往B、A 两地. 甲、乙两车到C地距离y1、y2(千米)与行驶时间x(时)的部分函数图象如图所示,回答下列问题:(1) A、B 两地距离为________千米;(2)如图中M点对应的是多少小时?(3)两车行驶多长时间时,两车到C 地的距离相等?26. (5分) (2019八下·陕西期末) 正方形的对角线相交于点O,点O又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的 .27. (15分)(2017·揭阳模拟) 将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)用含t的代数式表示OP,OQ;(2)当t=1时,如图1,将沿△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;(3)连接AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共67分)21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、27-1、27-2、27-3、。
甘肃省平凉市八年级下学期数学期中考试试卷
甘肃省平凉市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列式子中,不是分式的是()A .B .C .D .2. (2分)(2018·建邺模拟) 下列计算结果为负数的是()A . (-3)+(-4)B . (-3)-(-4)C . (-3)´(-4)D . (-3)-43. (2分)分式方程﹣1= 的解是()A . x=1B . x=﹣1+C . x=2D . 无解4. (2分) (2017八上·鞍山期末) 已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为()A . 2B . 6C . 8D . 2或85. (2分) (2017七下·兴隆期末) 下列语句中是真命题的有()个①一条直线的垂线有且只有一条②不相等的两个角一定不是对顶角⑧同位角相等④不在同一直线上的四个点最多可以画六条直线.A . 1B . 2C . 3D . 46. (2分)如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A . 80°B . 50°C . 30°D . 20°7. (2分)如图,在菱形ABCD中,E、F分别在BC和CD上,且△AEF是等边三角形,AE=AB,则∠BAD的度数是()A . 95°B . 100°C . 105°D . 120°8. (2分)如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是()A . 相等B . 互补C . 互余D . 相等或互补9. (2分)(2019·靖远模拟) 体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是米/秒,则所列方程正确的是()A .B .C .D .10. (2分)(2018·东营模拟) 下列运算正确的是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分) (2018八上·嘉峪关期末) 若代数式有意义,则的取值范围是________ .12. (1分) (2016八上·苏州期中) 如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABC的周长为26cm,则△ABD的周长为________ cm.13. (1分)(2012·玉林) 某种原子直径为1.2×10﹣2纳米,把这个数化为小数是________纳米.14. (1分)计算:•= ________.15. (1分)(2018·玄武模拟) 如图,在⊙O中,AE是直径,半径OD⊥弦AB,垂足为C,连接CE.若OC=3,△ACE的面积为12,则CD=________.16. (1分)(2017·黄石) 分式方程 = ﹣2的解为________.17. (1分)一次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进行计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么,对于下列两个命题:①俩人的说法都是正确的,②至少有一人说错了.其中真命题是________(用序号①、②填写).18. (1分)(2019·永定模拟) 如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE 沿CE折叠,使点B落在矩形内点F处,下列结论正确的是________(写出所有符合题意结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF .三、解答题 (共6题;共47分)19. (5分)已知=,求实数A和B的值.20. (2分) (2016七下·邹城期中) 已知:如图,∠B=∠ADE,∠EDC=∠GFB,GF⊥AB.求证:CD⊥AB.21. (10分) (2017八下·海安期中) 如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22. (10分)(2017·兰陵模拟) 猜想与证明:如图,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM,EM.(1)试猜想写出DM与EM的数量关系,并证明你的结论.拓展与延伸:(2)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则(1)中的结论是否仍然成立?请直接写出你的判断.23. (5分)(2014·贺州) 马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.24. (15分) (2019八上·吴江期末) 如图,点在线段上,,, .平分 .求证:(1);(2) .参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共47分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、。
甘肃省八年级下学期数学期中考试试卷
部编人教版七年级下册语文名著阅读训练试题含答案(Word版)一、部编七年级语文下册名著阅读1.阅读下面文段,完成小题。
但当A和他的副手扑到它身上去的时候,这个东西喷出一道黑色的液体,这是从它肚子中的一个口袋分泌出来的黑水。
我们的眼睛都被弄得昏花看不见了。
……这次战斗延长至一刻钟之久。
怪物打败了,受伤了,死了,最后给我们让出地方来,溜入水中不见了。
A全身血红,站在探照灯附近,一动也不动,眼盯着吞噬了他的一个同伴的大海,大滴的泪珠从他的眼里淌了出来。
(1)以上文段选自《海底两万里》,A处的人物是________(填写人名)。
(2)“这次战斗”指小说中哪个精彩片段?请简要叙述该片段的故事情节,并分析该情节表现了A怎样的性格特征。
【答案】(1)尼摩(船长)(2)“这次战斗”指的是“章鱼袭击”片段。
在大西洋,“鹦鹉螺号”遭到章鱼的袭击,被迫浮出海面,船上的人在尼摩船长的带领下,拿斧头刀叉与章鱼展开血战,一名船员惨死,尼德·兰也遭遇危险,幸为尼摩船长所救。
经过持续一刻钟的战斗,终于打败了章鱼。
这一情节表现了尼摩船长英勇顽强、不畏艰险、富有同情心的性格特征。
【解析】【分析】(1)此题非常简单,根据对《海底两万里》的人物的了解可知答案。
(2)根据对这部名著故事情节的积累分析和概括即可。
故答案为:⑴尼摩(船长)⑵“这次战斗”指的是“章鱼袭击”片段。
在大西洋,“鹦鹉螺号”遭到章鱼的袭击,被迫浮出海面,船上的人在尼摩船长的带领下,拿斧头刀叉与章鱼展开血战,一名船员惨死,尼德·兰也遭遇危险,幸为尼摩船长所救。
经过持续一刻钟的战斗,终于打败了章鱼。
这一情节表现了尼摩船长英勇顽强、不畏艰险、富有同情心的性格特征。
【点评】⑴本题考查对《海底两万里》人物和情节的熟悉程度,平时阅读这部小说时,要积累其中比较重要的人物和章节内容,这样就能轻而易举地答此类的题了。
⑵此题考查人物形象和故事情节的积累。
课本中“名著导读”所推荐的篇目都应该认真阅读,包括主要内容、故事情节,人物形象等都应该熟记,做题时,静下心来,按照题干要求,仔细回忆思考作答。
甘肃省八年级下学期期中测试数学试卷
甘肃省八年级下学期期中测试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共25分)1. (2分)某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下列说法正确的是()A . 出现正面的频率是6B . 出现正面的频率是60%C . 出现正面的频率是4D . 出现正面的频率是40%2. (2分)(2020·临沂) 下列交通标志中,是中心对称图形的是()A .B .C .D .3. (2分) (2020八下·澄迈期末) 下列计算正确的是()A .B .C .D .4. (2分) (2019七下·巴南期中) 如图,在▱ABCD中,BC=7,CD=5,∠D=50°,BE平分∠ABC,则下列结论中不正确的是()A . ∠C=130°B . AE=5C . ∠BED=130°D . ED=25. (2分) (2018九上·金华期中) 如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A .B .C .D .6. (1分) (2019八下·杭州期中) 化简: 1.7. (1分)函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当,x>3时,y2>y1;③当x=1时,BC=8,④当逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是1 .8. (1分)(2021·嘉兴) 如图,在▱ABCD中,对角线AC , BD交于点O ,AB⊥AC ,AH⊥BD于点H ,若AB=2,BC=2 ,则AH的长为1.9. (1分) (2021八下·增城期末) 已知菱形ABCD的两条对角线分别长6和8,则它的面积是1.10. (1分)(2018·甘孜) 如图,在菱形中,对角线与相交于点 , , ,于点 ,交于点 ,则的长为1。
甘肃省平凉市八年级下学期数学期中考试试卷
甘肃省平凉市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019八下·乐清月考) 下列式子:① :② :③ :④ .其中一定是二次根式的有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019九上·新蔡期末) 下列各式计算正确的是()A . + =B . 4 -3 =1C . 2 ×3 =6D . ÷ =33. (2分)下列函数是二次函数的是()A . y=2x-3B . y=+1C . y=-2D . y=-4. (2分) (2017八下·临泽期末) 如图,□ABCD的周长是22 cm,△ABC的周长是17 cm,则AC的长为()A . 5 cmB . 6 cmC . 7 cmD . 8 cm5. (2分) (2017八上·高州月考) 下列条件不能判断三角形是直角三角形的是()A . 三个内角的比为3:4:5B . 三个内角的比为1:2:3C . 三边的比为3:4:5D . 三边的比为7:24:256. (2分)(2014·温州) 一次函数y=2x+4的图象与y轴交点的坐标是()A . (0,﹣4)B . (0,4)C . (2,0)D . (﹣2,0)7. (2分)如图,E , F分别是□ABCD的两对边的中点,则图中平行四边形的个数是()A . 3B . 4C . 5D . 68. (2分)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166 cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()A . 甲队B . 乙队C . 丙队D . 丁队9. (2分)(2017·大庆模拟) 二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A .B .C .D .10. (2分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,的面积为y,如果y关于x的函数图象如图2所示,则当时,点R应运动到()A . N处B . P处C . Q处D . M处11. (2分) (2018七上·唐山期末) 小华在某月的日历上圈出相邻的四个数,算出这四个数字的和为36,那么这四个数在日历上位置的形式是()A .B .C .D .12. (2分)(2017·长安模拟) 如图,对△ABC纸片进行如下操作:第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1 ,然后还原纸片;第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2 ,然后还原纸片;…按上述方法不断操作下去…,经过第n次操作后得到的折痕DnEn到BC的距离记作hn ,若h=1,则hn的值不可能是()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)(2017·慈溪模拟) 若式子在实数范围内有意义,则x的取值范围是________.14. (1分) (2019八下·温州期中) 某射击运动员射击10次的成绩统计如下:成绩(环)5678910次数(次)232111则这10次成绩的中位数为________环.15. (1分)若,则的值是________16. (1分)(2018·番禺模拟) 如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).17. (2分)(2013·成都) 已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.18. (1分) (2017八上·满洲里期末) 如图,R t△ABC中,∠B=90°,∠A=30°,AB=5,D是AC的中点,P 是AB上一动点,则CP+PD的最小值为________.三、解答题 (共8题;共70分)19. (2分)如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.20. (5分) (2020八上·黄石期末) 先化简,再求值:,从,1,2,3中选择一个合适的数代入并求值.21. (11分) (2020九上·泰兴期末) 为增强学生的身体素质,泰兴市教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中一共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补全频数分布直方图;(3)求表示户外活动时间 1小时的扇形圆心角的度数;(4)本次调查中,学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?22. (10分)如图:(1)利用一次函数的图象解二元一次方程组 .(2)求图中两条直线与x轴所围成的三角形的面积.23. (10分) (2017九下·江阴期中) 如图,已知点,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.(1)用含t的代数式表示点P的坐标;(2)过O作OC⊥AB于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.24. (7分)(2011·宁波) 阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB 的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.25. (15分) (2019八上·洛宁期中) 如图,在△ABC中,AB=AC , DE是过点A的直线,BD DE于点D ,CE DE 于点 E.(1)若BC在DE的同侧(如图所示),且AD=CE,求证:(2)若B、C在的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.26. (10分) (2019八上·昆山期末) 如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 ,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、19-2、20-1、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
平凉市八年级下学期期中考试数学试卷
平凉市八年级下学期期中考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有()个A . 1B . 2C . 3D . 42. (2分)二次根式中字母x的取值范围是()A . x≥2B . x>2C . x≤2D . x<23. (2分)下列方程中,是关于x的一元二次方程的是()A . 2x+1=0B . 2y2+y=0C . ax2+bx+c=0D . x(x﹣2)=04. (2分) (2015八下·新昌期中) 若实数a、b、c在数轴的位置,如图所示,则化简﹣|b﹣c|=()A . ﹣a﹣bB . a﹣b+2cC . ﹣a+b﹣2cD . ﹣a+b5. (2分)一元二次方程2x2+3x+1=0用配方法解方程,配方结果是()A . 2(x-)2-=0B . 2(x+)2-=0C . (x-)2-=0D . (x+)2-=06. (2分)若 =2﹣a,则a的值()A . a>2B . a≥2C . a<2D . a≤27. (2分)如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A . 15°B . 30°C . 45°D . 60°8. (2分)(2019·吴兴模拟) 为迎接体育中考,九年级(9)班八名同学课间练习仰卧起坐,记录成绩每分钟个数如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是()A . 40,41B . 42,41C . 41,42D . 42,409. (2分)(2017·濮阳模拟) 使得关于x的一元二次方程 x2+3x+k=0无实数根的最小整数k的值为()A . 4B . 5C . 6D . 710. (2分) (2016八上·博白期中) 根据下列已知条件,能唯一画出△ABC的是()A . AB=3,BC=4,AC=8B . ∠C=90°,AB=6C . ∠A=60°,∠B=45°,AB=4D . AB=3,BC=3,∠A=30°二、填空题 (共6题;共6分)11. (1分)若a> a+1,化简|a+ |﹣=________.12. (1分)如图,在四边形ABCD中,∠α,∠β分别是∠BAD、∠BCD相邻的补角,且∠B+∠CDA=140°,则∠α+∠β等于________.13. (1分) (2016八下·寿光期中) 计算:x =________.14. (1分)体育老师对甲、乙两名同学分别进行了5次立定跳远测试,经计算这两名同学成绩的平均数相同,甲同学成绩的方差是 0.03,乙同学成绩的方差是的0.24,那么这两名同学立定跳远成绩比较稳定的是________同学.15. (1分)如果正整数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a=________.16. (1分) (2019八下·苍南期末) 在周长为18cm的平行四边形中,相邻两条边的长度比为1:2,则这个平行四边形的较短的边长为________cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年甘肃省平凉市静宁县田堡中学八年级第二学期期中数学试卷一、选择题(共10小题).1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x=0B.x≥0C.x>﹣4D.x≥﹣42.(3分)用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cmC.1cm,2cm,cm D.2cm,3cm,4cm3.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.4.(3分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.55.(3分)如图,平行四边形ABCD中,∠DAB的平分线AE交CD于E,DC=5,BC=3,则EC的长是()A.1B.1.5C.2D.36.(3分)平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE =3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm7.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或8.(3分)若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形9.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.510.(3分)如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距()A.20海里B.40海里C.35海里D.30海里二、填空题(共8小题).11.(4分)在实数范围内因式分解:x2﹣2=.12.(4分)若1<x<2,则化简的结果是.13.(4分)直角三角形两条直角边的长分别为12和5,则斜边上的中线等于.14.(4分)矩形的两条对角线的夹角为60°,较短的边长为5cm,则对角线长为cm.15.(4分)在△ABC中,AB=15,AC=13,高AD=12,则BC的长.16.(4分)如图,延长正方形ABCD的边AB到E,使BE=BD,则∠E=.17.(4分)如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为m.18.(4分)如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.三、解答题(本题有9小题,共88分)19.(10分)计算:(1)3;(2)(4).20.(6分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.21.(10分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?22.(10分)有如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米.(1)试判断以点A、点B、点C为顶点的三角形是什么三角形?并说明理由.(2)求这块地的面积.23.(10分)如图,M、N是平行四边形ABCD对角线BD上两点.BM=DN,求证:四边形AMCN为平行四边形.24.(10分)如图在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形.25.(10分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE ∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.26.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.27.(12分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB 方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.参考答案一、选择题(共10小题).1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x=0B.x≥0C.x>﹣4D.x≥﹣4解:∵式子在实数范围内有意义,∴x+4≥0,解得x≥﹣4.故选:D.2.(3分)用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cmC.1cm,2cm,cm D.2cm,3cm,4cm解:A、∵12+22≠32,∴不能构成直角三角形;B、∵2+2≠2,∴不能构成直角三角形;C、∵12+2=22,∴能构成直角三角形;D、∵22+32=≠42,∴不能构成直角三角形.故选:C.3.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.解:A、2是最简二次根式,故本选项正确;B、=,故本选项错误;C、=,故本选项错误;D、=|x|•,故本选项错误.故选:A.4.(3分)如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选:D.5.(3分)如图,平行四边形ABCD中,∠DAB的平分线AE交CD于E,DC=5,BC=3,则EC的长是()A.1B.1.5C.2D.3解:∵四边形ABCD是平行四边形,BC=3,∴AD=BC=3,DC∥AB,∴∠BAE=∠AED,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AED=∠DAE,∴AD=DE=3,∵DC=5,∴EC=DC﹣DE=5﹣3=2,故选:C.6.(3分)平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE =3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm).故选:B.7.(3分)已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34C.16或34D.4或解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选:D.8.(3分)若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,∴EH=FG=BD,EF=HG=AC,∵AC=BD∴EH=FG=FG=EF,则四边形EFGH是菱形.故选C.9.(3分)如果最简二次根式与能够合并,那么a的值为()A.2B.3C.4D.5解:根据题意得,3a﹣8=17﹣2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.10.(3分)如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距()A.20海里B.40海里C.35海里D.30海里解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:=40(海里).故选:B.二、填空题(本题有8小题,每题4分,共32分).11.(4分)在实数范围内因式分解:x2﹣2=(x﹣)(x+).解:x2﹣2=(x﹣)(x+).故答案是:(x﹣)(x+).12.(4分)若1<x<2,则化简的结果是2﹣x.解:∵1<x<2,∴x﹣2<0,∴原式==|x﹣2|=2﹣x.故答案为:2﹣x.13.(4分)直角三角形两条直角边的长分别为12和5,则斜边上的中线等于 6.5.解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB==13,∵CD为斜边AB上的中线,∴CD=AB==6.5.故答案为:6.5.14.(4分)矩形的两条对角线的夹角为60°,较短的边长为5cm,则对角线长为10cm.解:如图:AB=5cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=5cm,BD=2OB=2×5=10cm.故答案为:10.15.(4分)在△ABC中,AB=15,AC=13,高AD=12,则BC的长14和4.解:(1)如图,锐角△ABC中,AC=13,AB=15,BC边上高AD=12,∵在Rt△ACD中AC=13,AD=12,∴CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴CD=9,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AC=13,AB=15,BC边上高AD=12,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为DB﹣BC=9﹣5=4.故答案为14或4.16.(4分)如图,延长正方形ABCD的边AB到E,使BE=BD,则∠E=22.5°.解:∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠ABC=45°,∵BD=BE,∴∠BDE=∠E,∵∠ABD=∠BDE+∠E,∴∠E=22.5°故答案为22.5°17.(4分)如图,某人欲从点A处入水横渡一条河,由于水流的影响,他实际上岸的地点C偏离欲到达的地点B200m,结果他在水中实际游了250m,求该河流的宽度为150 m.解:根据图中数据,运用勾股定理求得AB==150(米).故答案为:150.18.(4分)如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.三、解答题(本题有9小题,共88分)19.(10分)计算:(1)3;(2)(4).解:(1)原式=3﹣2+﹣3=﹣;(2)原式=2﹣.20.(6分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.21.(10分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?【解答】解;在直角△ABC中,已知AB=2.5m,BC=0.7m,则AC==2.4m,∵AC=AA1+CA1∴CA1=2m,∵在直角△A1B1C中,AB=A1B1,且A1B1为斜边,∴CB1==1.5m,∴BB1=CB1﹣CB=1.5﹣0.7=0.8m答:梯足向外移动了0.8m.22.(10分)有如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米.(1)试判断以点A、点B、点C为顶点的三角形是什么三角形?并说明理由.(2)求这块地的面积.解:(1)连接AC,由勾股定理可知:AC=,又∵AC2+BC2=52+122=132=AB2∴△ABC是直角三角形;(2)这块地的面积=△ABC的面积﹣△ACD的面积,=×5×12﹣×3×4=24(m2).23.(10分)如图,M、N是平行四边形ABCD对角线BD上两点.BM=DN,求证:四边形AMCN为平行四边形.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,∴OM=ON,∴四边形AMCN为平行四边形;24.(10分)如图在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形.【解答】证明:∵D、E、F分别是BC、AC、AB边上的中点,∴BF=AB,BD=BC,EF∥BC,DE∥AB,∵AB=BC,∴BF=BD,四边形BDEF是平行四边形,∴四边形BDEF是菱形.25.(10分)如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE ∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.解:OE⊥DC,理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD,∴OC=OD,∴四边形OCED是菱形,∴OE⊥DC.26.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是平行四边形,证明你的结论;(2)当四边形ABCD的对角线满足互相垂直条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.解:(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直;菱形.27.(12分)如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB 方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.解:(1)设经过x(s),四边形PQCD为平行四边形即PD=CQ所以24﹣x=3x,解得:x=6.(2)设经过y(s),四边形PQBA为矩形,即AP=BQ,所以y=26﹣3y,解得:y=.(3)设经过t(s),四边形PQCD是等腰梯形.过Q点作QE⊥AD,过D点作DF⊥BC,∴∠QEP=∠DFC=90°∵四边形PQCD是等腰梯形,∴PQ=DC.又∵AD∥BC,∠B=90°,∴AB=QE=DF.在Rt△EQP和Rt△FDC中,,∴Rt△EQP≌Rt△FDC(HL).∴FC=EP=BC﹣AD=26﹣24=2.又∵AE=BQ=26﹣3t,∴EP=AP﹣AE=t﹣(26﹣3t)=2.得:t=7.∴经过7s,PQ=CD.。