《步步高-学案导学》2013-2014学年高中物理人教版(选修3-1)同步-第二章-恒定电流--同步

合集下载

高中物理步步高

高中物理步步高

高中物理步步高篇一:2014年《步步高》高中物理(人教选修3-1)配套全册结综合检测卷(含解析) (1)综合检测卷(时间:90分钟,满分100分)一、单项选择题(共5小题,每小题4分,共20分)1.物理学的发展是许多物理学家奋斗的结果,下面关于一些物理学家的贡献说法正确的是( )A.安培通过实验发现了通电导线对磁体有作用力,首次揭示了电与磁的联系B.奥斯特认为安培力是带电粒子所受磁场力的宏观表现,并提出了著名的洛伦兹力公式C.库仑在前人工作的基础上通过实验研究确认了真空中两个静止点电荷之间的相互作用力遵循的规律——库仑定律D.安培不仅提出了电场的概念,而且采用了画电场线这个简洁的方法描述电场答案 C解析奥斯特将通电导体放在小磁针上方时,小磁针发生了偏转,说明通电导体周围存在磁场,奥斯特是第一个发现了电与磁之间的联系的物理学家,故A错误;洛伦兹认为安培力是带电粒子所受磁场力的宏观表现,并提出了洛伦兹力公式,故B错误;真空中两个点电荷间存在相互的作用.库仑利用扭秤装置,研究出两个静止点电荷间的相互作用规律:点电荷间的相互作用力跟两个点电荷的电荷量有关,跟它们之间的距离有关,这个规律就是库仑定律,故C正确;19世纪30年代,法拉第提出电荷周围存在一种场,并且是最早提出用电场线描述电场的物理学家,故D错误.所以选C.2.如图1所示,在等量的异种点电荷形成的电场中,有A、B、C三点,A点为两点电荷连线的中点,B点为连线上距A点距离为d的一点,C点为连线中垂线距A点距离也为d 的一点,则下面关于三点电场强度的大小、电势高低的比较,正确的是()图1A.EA=ECEB;φA=φCφBB.EBEAEC;φA=φCφBC.EA<EB,EA<EC;φAφB,φAφCD.因为零电势点未规定,所以无法判断电势的高低答案B解析电场线分布如图所示,电场线在B处最密集,在C 处最稀疏,故EBEAEC,中垂线为等势线,φA=φC;沿电场线方向电势降低,φAφB.综上所述,选项B正确.3.如图2所示,B是一个螺线管,C是与螺线管相连接的金属线圈,在B的正上方用绝缘丝线悬挂一个金属圆环A,A的环面水平且与螺线管的横截面平行.若仅在金属线圈C 所处的空间加上与C环面垂直的变化磁场,发现在t1至t2时间段内金属圆环的面积有缩小的趋势,则金属线圈C处所加磁场的磁感应强度随时间变化的B-t图象可能是()图2答案D解析金属环A的面积有缩小的趋势,说明B产生的磁场在增强,即B中的电流在增大,C中产生的感应电动势在增大,故D正确.4.如图3所示,金属板M、N水平放置,相距为d,其左侧有一对竖直金属板P、Q,板P上小孔S正对板Q上的小孔O,M、N间有垂直纸面向里的匀强磁场,在小孔S处有一带负电粒子,其重力和初速度均不计,当变阻器的滑动触头在AB的中点时,带负电粒子恰能在M、N间做直线运动,当滑动变阻器滑片向A点滑动过程中()图3A.粒子在M、N间运动过程中,动能一定不变B.粒子在M、N间运动过程中,动能一定减小C.粒子在M、N间仍做直线运动D.粒子可能沿M板的右边缘飞出答案B解析滑动触头在中点时,粒子恰能做直线运动,此时M、N间为一速度选择器模型.当滑动触头滑向A点时,M、N 间电压减小,电场力变小,粒子向下偏,所以粒子在其间运动时电场力做负功,动能减小,B选项正确.因为粒子向下偏,所以不可能从M板的右边缘飞出.5.如图4所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r相同,则它们一定具有相同的()图4①速度②质量③电荷量④比荷A.①②B.①③C.①④D.②④答案CE解析离子束在区域Ⅰ中不偏转,一定有qE=qvB1,v =,①正确.进入区域Ⅱ后,做匀B1mv速圆周运动的半径相同,由rv、B2相同,所以只能是比荷相同,故④正确,故qB2选C.6.如图5所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是()图5A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变小C.线圈a有缩小的趋势D.线圈a对水平桌面的压力FN将减小答案C解析若将滑动变阻器的滑片P向下滑动,螺线管b中的电流增大,根据楞次定律,线圈a中将产生俯视逆时针方向的感应电流,穿过线圈a的磁通量变大,线圈a有缩小的趋势,线圈a对水平桌面的压力FN将变大,选项C正确,D错误.二、不定项选择题(共4小题,每小题4分,共16分,在每小题给出的四个选项中,至少有一个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)7.一个微型吸尘器的直流电动机的额定电压为U,额定电流为I,线圈电阻为R,将它接在电动势为E,内阻为r的直流电源的两极间,电动机恰好能正常工作,则( )A.电动机消耗的总功率为UIU2B.电动机消耗的热功率为RC.电源的输出功率为EIIrD.电源的效率为1-E答案AD解析电动机消耗的总功率为UI,选项A正确;电动机消耗的热功率为I2R,选项B错误;Ir电源的总功率为EI,电源的输出功率为EI-I2r,所以电源的效率为1-,选项C错误,DE正确.8.如图6所示,虚线a、b、c代表电场中的三个等势面,相邻等势面之间的电势差相等,即Uab=Ubc,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q是这条轨迹上的两点,据此可知()图6A.三个等势面中,a的电势最高B.带电质点通过P点时的电势能较Q点大C.带电质点通过P点时的动能较Q点大D.带电质点通过P点时的加速度较Q点大答案ABD解析由于质点只受电场力作用,根据运动轨迹可知电场力指向运动轨迹的内侧即斜向右下方,由于质点带正电,因此电场线方向也指向右下方;电势能变化可以通过电场力做功情况判断;电场线和等势线垂直,且等势线密的地方电场线密,电场强度大.电荷所受电场力指向轨迹内侧,由于电荷带正电,因此电场线指向右下方,沿电场线电势降低,故a的电势最高,c 的电势最低,A正确.根据质点受力情况可知,从P到Q过程中电场力做正功,电势能减小,动能增大,故P点的电势能大于Q点的电势能,P点的动能小于Q点的动能,B正确,C错误.等势线密的地方电场线密,电场强度大,由题图可知P 点场强大于Q点场强,由牛顿第二定律可知,带电质点通过P点时的加速度较Q点大,D正确.故选A、B、D.9.在如图7所示的电路中,E为电源的电动势,r为电源的内电阻,R1、R2为可变电阻.在下列叙述的操作中,可以使灯泡L的亮度变暗的是()图7A.仅使R1的阻值增大B.仅使R1的阻值减小C.仅使R2的阻值增大D.仅使R2的阻值减小答案AD解析由“串反并同”可知要使灯泡变暗,则要求与其串联(包括间接串联)的器件阻值增大或与其并联(包括间接并联)的器件阻值减小,故A、D正确,B、C错误.10.如图8所示,足够长的U型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN和PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计.金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,(来自: 小龙文档网:高中物理步步高)如棒接入电路的电阻为R,当流过ab棒某一横截面的电荷量为q时,ab棒速度的大小为v,则金属棒ab在这一过程中()图8A.运动的平均速度大小为v/2B.下滑位移的大小为qR/BLC.产生的焦耳热为qBLvD.机械能转化为内能答案BD三、实验题(本题共2小题,共16分)11.(8分)如图9所示为J0411多用电表示意图.其中A、B、C为三个可调节的部件.某同学在实验室中用它测量一阻值约为1 kΩ~3 kΩ的电阻.他测量的操作步骤如下:篇二:步步高2015高三物理(新课标)一轮讲义:4.3圆周运动第3课时圆周运动考纲解读 1.掌握描述圆周运动的物理量及其之间的关系.2.理解向心力公式并能应用;了解物体做离心运动的条件.1.[匀速圆周运动的条件和性质]质点做匀速圆周运动时,下列说法正确的是( )A.速度的大小和方向都改变B.匀速圆周运动是匀变速曲线运动C.当物体所受合力全部用来提供向心力时,物体做匀速圆周运动D.向心加速度大小不变,方向时刻改变答案CD解析匀速圆周运动的速度的大小不变,方向时刻变化,A错;它的加速度大小不变,但方向时刻改变,不是匀变速曲线运动,B错,D对;由匀速圆周运动的条件可知,C对. 2.[圆周运动的相关公式]关于质点做匀速圆周运动的下列说法正确的是( )v2A.由a=a与r成反比rB.由a=ω2r知,a与r成正比vC.由ω=知,ω与r成反比rD.由ω=2πn知,ω与转速n成正比答案Dv2解析由a=v一定时,a才与r成反比,如果v不一定,则a与r不成r反比,同理,只有当ω一定时,a才与r成正比;v一定时,ω与r成反比;因2π是定值,故ω与n成正比.3.[向心力来源分析]如图1所示,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中()图1A.B对A的支持力越来越大B.B对A的支持力越来越小C.B对A的摩擦力越来越小D.B对A的摩擦力越来越大答案BC解析因做匀速圆周运动,所以其向心力大小不变,方向始终指向圆心,故对木块A,在a→b的过程中,竖直方向的分加速度向下且增大,而竖直方向的力是由A的重力减去B对A的支持力提供的,因重力不变,所以支持力越来越小,即A错,B对;在水平方向上A的加速度向左且减小,至b 时减为0,因水平方向的加速度是由摩擦力提供的,故B对A的摩擦力越来越小,所以C对,D错.4.[对离心现象的理解]下列关于离心现象的说法正确的是( )A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做曲线运动答案 C解析物体只要受到力,必有施力物体,但“离心力”是没有施力物体的,故所谓的离心力是不存在的,只要物体所受合外力不足以提供其所需向心力,物体就做离心运动,故A 选项错;做匀速圆周运动的物体,当所受的一切力突然消失后,物体将沿切线做匀速直线运动,故B、D选项错,C选项对.一、描述圆周运动的物理量1.线速度:描述物体圆周运动快慢的物理量.Δs2πrv=ΔtT2.角速度:描述物体绕圆心转动快慢的物理量.Δθ2πωΔtT32πr1TT=.f4v24π2an=rω=ωv=r.rT25Fn=man. 2π6.相互关系:(1)v=r=.Tv24π22(2)an=rω=ωv==4π2f2r.rTv24π22(3)Fn=man=m=mω=22.rT二、匀速圆周运动和非匀速圆周运动1.匀速圆周运动(1) .(2) (3)质点做匀速圆周运动的条件合力大小不变,方向始终与速度方向垂直且指向圆心.2.非匀速圆周运动(1) (2)合力的作用①合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的方向.②合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的大小.三、离心运动1 2.受力特点(如图2所示)图2(1)当F=2时,物体做匀速圆周运动.(2)当F=0(3)当F<2时,物体逐渐远离圆心,F为实际提供的向心力.(4)当Fmrω2时,物体逐渐向圆心靠近,做向心运动.考点一描述圆周运动的物理量的求解1.对公式v=ωr的理解当r一定时,v与ω成正比.当ω一定时,v与r成正比.当v一定时,ω与r成反比.v22.对a=ω2r=ωv的理解r在v一定时,a与r成反比;在ω一定时,a与r成正比.特别提醒在讨论v、ω、r之间的关系时,应运用控制变量法.例1 如图3所示,轮O1、O3固定在同一转轴上,轮O1、O2用皮带连接且不打滑.在O1、O2、O3三个轮的边缘各取一点A、B、C,已知三个轮的半径比r1∶r2∶r3=2∶1∶1,求:图3(1)A、B、C三点的线速度大小之比vA∶vB∶vC;(2)A、B、C三点的角速度之比ωA∶ωB∶ωC;(3)A、B、C三点的向心加速度大小之比aA∶aB∶aC.解析(1)令vA=v,由于皮带转动时不打滑,所以vB=v.因ωA=ωC,由公式v=ωr知,1当角速度一定时,线速度跟半径成正比,故vC=v,所以vA∶vB∶vC=2∶2∶1.2v(2)令ωA=ω,由于共轴转动,所以ωC=ω.因vA=vB,由公式ω=知,当线速度一定r时,角速度跟半径成反比,故ωB=2ω.所以ωA∶ωB∶ωC=1∶2∶1.v2(3)令A点向心加速度为aA=a,因vA=vB,由公式a=r 速度跟半径成反比,所以aB=2a.又因为ωA=ωC,由公式a=ω2r知,当角速度一定时,1向心加速度跟半径成正比,故aC=.所以aA∶aB∶aC=2∶4∶1.2答案(1)2∶2∶1 (2)1∶2∶1 (3)2∶4∶11.高中阶段所接触的传动主要有:(1)皮带传动(线速度大小相等);(2)同轴传动(角速度相等);(3)齿轮传动(线速度大小相等);(4)摩擦传动(线速度大小相等).2.传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.突破训练1 如图4所示是一个玩具陀螺,a、b和c是陀螺表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()图4A.a、b和c三点的线速度大小相等B.b、c两点的线速度始终相同C.b、c两点的角速度比a点的大D.b、c两点的加速度比a点的大答案 D解析当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,a、b和c三点的角速度相同,a半径小,线速度要比b、c的小,A、C错;b、c两点的线速度大小始终相同,但方向不相同,B错;由a=ω2r可得b、c两点的加速度比a点的大,D对.考点二圆周运动中的动力学分析1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力,就是向心力.图5例2 (2013·重庆·8)如图5所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为60°,重力加速度大小为g. (1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;篇三:步步高2015高三物理(新课标)一轮讲义:4.2平抛运动第2课时平抛运动考纲解读 1.掌握平抛运动的特点和性质.2.掌握研究平抛运动的方法,并能应用解题.1.[对平抛运动性质和特点的理解]关于平抛运动,下列说法错误的是( )A.平抛运动是一种在恒力作用下的曲线运动B.平抛运动的轨迹为抛物线,速度方向时刻变化,加速度方向也时刻变化C.做平抛运动的物体在Δt时间内速度变化量的方向可以是任意的D.做平抛运动的物体的初速度越大,在空中的运动时间越长答案BCD解析做平抛运动的物体只受重力作用,加速度为g恒定,任意时间内速度变化量的方向竖直向下(Δv=gt),运动时间由抛出时的高度决定,选项B、C、D错误.2.[斜抛运动的特点]做斜上抛运动的物体,到达最高点时( )A.速度为零,加速度向下B.速度为零,加速度为零C.具有水平方向的速度和竖直向下的加速度D.具有水平方向的速度和加速度答案 C解析斜上抛运动可以分解为水平方向的匀速直线运动和竖直上抛运动.因物体只受重力,且方向竖直向下,所以水平方向的分速度不变,竖直方向上的加速度也不变,所以只有C选项正确.3.[用分解思想处理类平抛运动问题]如图1所示,两个足够大的倾角分别为30°、45°的光滑斜面放在同一水平面上,两斜面间距大于小球直径,斜面高度相等,有三个完全相同的小球a、b、c,开始均静止于斜面同一高度处,其中b小球在两斜面之间.若同时释放a、b、c小球到达该水平面的时间分别为t1、t2、t3.若同时沿水平方向抛出,初速度方向如图所示,到达水平面的时间分别为t1′、t2′、t3′.下列关于时间的关系不正确的是()图1A.t1t3t2 B.t1=t1′、t2=t2′、t3=t3′ C.t1′t3′t2′ D.t1<t1′、t2<t2′、t3<t3′ 答案Dh18h122解析由静止释放三个小球时对a:gsin 30°·t2.对b:h=2,则1,则t1=sin 30°2g22hh14h2t2.对c:=gsin 45°·t2t1t3t2.当平抛三个小球时,小球b2=3,则t3gsin 45°2g做平抛运动,小球a、c在斜面内做类平抛运动.沿斜面方向的运动同第一种情况,所以t1=t1′,t2=t2′,t3=t3′.故选D.一、平抛运动1.性质:加速度为重力加速度g2.基本规律:以抛出点为原点,水平方向(初速度v0方向)为x轴,竖直向下方向为y轴,建立平面直角坐标系,则:(1)vxx1(2)vy=gt,位移y=gt2.2vygt(3)合速度:v=vx+vy,方向与水平方向的夹角为θ,则tan θ==. x0ygt(4)合位移:s=x+y,方向与水平方向的夹角为α,tan α=x2v0二、斜抛运动1.运动性质加速度为g的匀变速曲线运动,轨迹为抛物线.2.基本规律(以斜向上抛为例说明,如图2所示)图2(1)水平方向:v0x=vF合x=0. (2)竖直方向:v0y=v,F合y=mg.考点一平抛运动的基本规律1.飞行时间:由t=2.水平射程:x=v0t=v0素无关.h,与初速度v0无关.g,即水平射程由初速度v0和下落高度h共同决定,与其他因g3.落地速度:vt=vx+vyv0+2gh,以θ表示落地速度与x轴正方向的夹角,有tan θvy2gh=,所以落地速度也只与初速度v0和下落高度h有关.x0 4.速度改变量:因为平抛运动的加速度为重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图3所示.图35.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图4中A点和B点所示.图4(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.例 1 有一项人体飞镖项目,可将该运动简化为以下模型(如图5所示):手握飞镖的小孩用一根不可伸长的细绳系于天花板下,在A处被其父亲沿垂直细绳方向推出,摆至最低处B时小孩松手,飞镖依靠惯性沿BC飞出命中竖直放置的圆形靶的靶心O,圆形靶的最高点C与B点在同一高度,A、B、C三点处在同一竖直平面内,且BC与圆形靶平面垂直.已知小孩质量为m,细绳长为L,B、C两点之间的距离为d,靶的半径为R,A、B 两点之间的高度差为h.不计空气阻力,小孩和飞镖均可视为质点,重力加速度为g.图5(1)求小孩在A处被推出时的初速度大小;(2)如果飞镖脱手时沿BC方向速度不变,但由于小孩手臂的水平抖动使其获得了一个垂直于BC的水平速度v1,要让飞镖能够击中圆形靶,求v1的取值范围.解析(1)设飞镖从B点平抛运动到O点的时间为t,从B 点抛出的速度为v,则有d=vt 1R=gt22由机械能守恒定律得121mv0+mgh=v2 22联立以上三式解得v0=-2gh 2R(2)因BC方向的速度不变,则从B到靶的时间t不变,竖直方向上的位移仍为R,则靶上的击中点一定与靶心O在同一高度上,则垂直于BC的水平位移一定小于R,因此有v1t<R 可得v1< 答案(1)22gh (2)v1< 2R2“化曲为直”思想——平抛运动的基本求解方法平抛运动的三种分解思路(1)分解速度:v合=vx+vy=v0+?gt?1y(2)分解位移:x=v0t,y=gt2,tan θ=2x(3)分解加速度突破训练1 如图6,从半径为R=1 m的半圆AB上的A 点水平抛出一个可视为质点的小球,经t=0.4 s小球落到半圆上,已知当地的重力加速度g=10 m/s2,则小球的初速度v0可能为( )图6A.1 m/s B.2 m/s C.3 m/s D.4 m/s 答案AD1解析由于小球经0.4 s落到半圆上,下落的高度h=2=0.8 m,位置可能有两处,如2图所示.第一种可能:小球落在半圆左侧,v0t=RR-h=0.4 m,v0=1 m/s 第二种可能:小球落在半圆右侧,v0t=RR-h,v0=4 m/s,选项A、D正确.考点二斜面上的平抛运动问题斜面上的平抛运动问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:例2 如图7所示,一名跳台滑雪运动员经过一段时间的加速滑行后从O点水平飞出,经过3 s落到斜坡上的A点.已知O点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50 kg.不计空气阻力(sin 37°=0.6,cos 37°=0.8;g取10 m/s2).求:。

2014年《步步高》高中物理配套Word版文档(人教选修3-1)第一章 学案4

2014年《步步高》高中物理配套Word版文档(人教选修3-1)第一章  学案4

学案4 电场线[学习目标定位] 1.理解电场强度的概念及公式,并会进行有关的计算.2.会用电场线表示电场,并熟记几种常见电场的电场线分布特征.3.理解点电荷的电场强度及场强叠加原理.一、电场法拉第认为在电荷的周围存在着由它产生的 ,处在电场中的其他电荷受到的 就是这个电场给予的.近代物理学认为电场以及磁场是一种客观存在,并且是互相联系的,统称为 , 与 是物质存在的两种不同形式. 二、电场强度试探电荷在电场中某个位置 与它的 的比值叫电场强度,用公式E =Fq 表示;单位是 ,符号为 ;电场强度是矢量,方向与 的受力方向相同. 三、电场线电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.在同一幅图中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏,电场线不是实际存在的线,而是为了形象地描述电场而假想的线.三、电场线 匀强电场 [问题设计]1.电场线是如何表示电场方向和强弱的?2.电场线是真实存在的吗?能不能相交?[要点提炼]1.电场线的特点有:(1)起始于无限远或正电荷,终止于负电荷或无限远.(2)任意两条电场线不相交.(3)在同一幅图中,电场线的疏密表示场强的大小,电场线某点的切线方向表示该点电场强度的方向.2.匀强电场中各点的电场强度大小相等,方向相同;电场线是间距相等的平行线.[延伸思考]1.点电荷、等量同号点电荷、等量异号点电荷电场的电场线有何特点?答案点电荷的电场:正电荷的电场线从正电荷出发延伸到无限远处,负电荷的电场线由无限远处延伸到负电荷,如图所示,其特点有:(1)点电荷形成的电场中,不存在场强相同的点.(2)若以点电荷为球心作一个球面,电场线处处与球面垂直.在此球面上场强大小处处相等,方向各不相同.等量同号点电荷的电场:电场线分布如图所示(以等量正点电荷为例),其特点有:(1)两点电荷连线上,中点O处场强为零,向两侧场强逐渐增大,方向指向中点.(2)两点电荷连线中点O沿中垂面(中垂线)到无限远,电场线先变密后变疏,即场强先变大后变小,方向背离中点.等量异号点电荷的电场:电场分布如图所示,其特点有:(1)两点电荷连线上的各点场强方向从正电荷指向负电荷,沿电场线方向场强先变小再变大,中点处场强最小.(2)两点电荷连线的中垂面(中垂线)上,电场线的方向均相同,即电场强度方向都相同,总与中垂面(或中垂线)垂直且指向负点电荷一侧.沿中垂面(中垂线)从中点到无限远处,场强大小一直减小,中点处场强最大.2.电场线和带电粒子在电场中的运动轨迹相同吗?答案不一定相同.电场线是为了形象地描述电场而引入的假想曲线,规定电场线上每点的切线方向为该点的场强方向,也是正电荷在该点的受力方向(与负电荷受力方向相反).运动轨迹是带电粒子在电场中实际通过的径迹,径迹上每点的切线方向为粒子在该点的速度方向.在力学的学习中我们就已经知道,物体运动速度的方向和它的加速度的方向是两回事,不一定相同,因此,电场线与运动轨迹不能混为一谈,不能认为电场线就是带电粒子在电场中运动的轨迹.只有当电场线是直线,且带电粒子只受静电力作用(或受其他力,但方向沿电场线所在直线),同时带电粒子的初速度为零或初速度方向沿电场线所在直线时,运动轨迹才和电场线重合,这只是一种特殊情况.一、电场线的理解和应用例1某电场的电场线分布如图5所示,下列说法正确的是()图5A.c点的电场强度大于b点的电场强度B.若将一试探电荷+q由a点静止释放,它将沿电场线运动到b点C.b点的电场强度大于d点的电场强度D.a点和b点的电场强度的方向相同例2关于电场线的特征,下列说法中正确的是()A.如果某空间中的电场线是曲线,那么在同一条电场线上各处的场强不相同B.如果某空间中的电场线是直线,那么在同一条电场线上各处的场强相同C.如果空间中只存在一个孤立的点电荷,那么这个空间中的任意两条电场线相交;如果空间中存在两个以上的点电荷,那么这个空间中有许多电场线相交D.电场中任意两条电场线都不相交例3下列各电场中,A、B两点电场强度相同的是()例4如图所示是某静电场的一部分电场线分布情况,下列说法中正确的是()A.这个电场可能是负点电荷的电场B.点电荷q在A点处受到的电场力比在B点处受到的电场力大C.负电荷在B点处受到的电场力的方向沿电场线的切线方向D.点电荷q在A点处的瞬时加速度比在B点处的瞬时加速度小(不计重力)例5如图所示,有一水平方向的匀强电场,场强大小为900 N/C,在电场内一水平面上作半径为10 cm的圆心为O的圆,圆上取A、B两点,AO沿电场方向,BO⊥OA,另在圆心处放一电荷量为10-9C的正点电荷,则A处场强大小E A=________ N/C,B处场强大小E B=________ N/C.1.如图6所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则()图6A.A、B两处的场强方向相同B.因为A、B在一条电场线上,且电场线是直线,所以E A=E BC.电场线从A指向B,所以E A>E BD.不知A、B附近电场线的分布情况,E A、E B的大小不能确定2.如图2所示是点电荷Q周围的电场线,图中A到Q的距离小于B到Q的距离.以下判断正确的是()图2A.Q是正电荷,A点的电场强度大于B点的电场强度B.Q是正电荷,A点的电场强度小于B点的电场强度C.Q是负电荷,A点的电场强度大于B点的电场强度D.Q是负电荷,A点的电场强度小于B点的电场强度3.如图5所示,实线是一簇未标明方向的由点电荷Q产生的电场线,若带电粒子q(|Q|≫|q|)由a运动到b,静电力做正功.已知在a、b两点粒子所受静电力分别为F a、F b,则下列判断正确的是()图5A.若Q为正电荷,则q带正电,F a>F bB.若Q为正电荷,则q带正电,F a<F bC.若Q为负电荷,则q带正电,F a>F bD.若Q为负电荷,则q带正电,F a<F b。

【新步步高】高二物理教科版选修导学案:第一章第讲简谐运动的图像和公式含解析

【新步步高】高二物理教科版选修导学案:第一章第讲简谐运动的图像和公式含解析

第3讲简谐运动的图像和公式[目标定位] 1.知道所有简谐运动的图像都是正弦(或余弦)曲线.2.会根据简谐运动的图像找出物体振动的周期和振幅,并能分析有关问题.3.理解简谐运动的表达式,能从该表达式中获取振幅、周期(频率)、相位、初相等相关信息.一、简谐运动的图像1.坐标系的建立:以横坐标表示时间,纵坐标表示位移,描绘出简谐运动中振动物体离开平衡位置的位移x随时间t变化的图像,称为简谐运动的图像(或称振动图像).2.图像形状:严格的理论和实验都证明所有简谐运动的运动图像都是正弦(或余弦)曲线.3. 由简谐运动图像,可找出物体振动的周期和振幅.想一想在描述简谐运动图像时,为什么能用薄板移动的距离表示时间?答案匀速拉动薄板时,薄板的位移与时间成正比,即x=v t,因此,一定的位移就对应一定的时间,这样匀速拉动薄板时薄板移动的距离就能表示时间.二、简谐运动的表达式x=A sin(ωt+φ)其中ω=2πT,f=1T,综合可得x=A sin(2πT t+φ)=A sin(2πft+φ).式中A表示振动的振幅,T和f分别表示物体振动的周期和频率.物体在不同的初始位置开始振动,φ值不同.三、简谐运动的相位、相位差1.相位在式x=A sin(2πft+φ)中,“2πft+φ”这个量叫做简谐运动的相位.t=0时的相位φ叫做初相位,简称初相.2.相位差指两振动的相位之差.一、对简谐运动图像的认识1.形状:正(余)弦曲线2.物理意义表示振动质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律.3.获取信息(1)简谐运动的振幅A和周期T,再根据f=1T求出频率.(2)任意时刻质点的位移的大小和方向.如图1-3-1所示,质点在t1、t2时刻的位移分别为x1和-x2.图1-3-1图1-3-2(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-2中a点,下一时刻离平衡位置更远,故a此刻质点向x轴正方向振动.(4)判断质点的速度、加速度、位移的变化情况:若远离平衡位置,则速度越来越小,加速度、位移越来越大;若靠近平衡位置,则速度越来越大,加速度、位移越来越小.注意:振动图像描述的是振动质点的位移随时间的变化关系,而非质点运动的轨迹.比如弹簧振子沿一直线做往复运动,其轨迹为一直线,而它的振动图像却是正弦曲线.图1-3-3【例1】如图1-3-3所示为某物体做简谐运动的图像,下列说法中正确的是()A.由P→Q,位移在增大B.由P→Q,速度在增大C.由M→N,位移先减小后增大D.由M→N,加速度先增大后减小解析由P→Q,位置坐标越来越大,质点远离平衡位置运动,位移在增大而速度在减小,选项A正确,选项B错误;由M→N,质点先向平衡位置运动,经平衡位置后又远离平衡位置,因此位移先减小后增大,由a=Fm=-kxm可知,加速度先减小后增大,选项C正确,选项D错误.答案AC借题发挥简谐运动图像的应用(1)可以从图像中直接读出某时刻质点的位移大小和方向、速度方向、加速度方向、质点的最大位移.(2)可比较不同时刻质点位移的大小、速度的大小、加速度的大小.(3)可以预测一段时间后质点位于平衡位置的正向或负向,质点位移的大小与方向,速度、加速度的大小和方向的变化趋势.针对训练1一质点做简谐运动,其位移x与时间t的关系图像如图1-3-4所示,由图可知()图1-3-4A.质点振动的频率是4 HzB.质点振动的振幅是2 cmC.t=3 s时,质点的速度最大D.在t=3 s时,质点的振幅为零解析由题图可以直接看出振幅为2 cm,周期为4 s,所以频率为0.25 Hz,所以选项A错误,B正确;t=3 s时,质点经过平衡位置,速度最大,所以选项C正确;振幅等于质点偏离平衡位置的最大位移,与质点的位移有着本质的区别,t =3 s 时,质点的位移为零,但振幅仍为2 cm ,所以选项D 错误. 答案 BC二、简谐运动的表达式与相位、相位差 做简谐运动的物体位移随时间t 变化的表达式x =A sin(2πft +φ)1.由简谐运动的表达式我们可以直接读出振幅A ,频率f 和初相φ.可根据T =1f 求周期,可以求某一时刻质点的位移x .2.关于两个相同频率的简谐运动的相位差Δφ=φ2-φ1的理解 (1)取值范围:-π≤Δφ≤π.(2)Δφ=0,表明两振动步调完全相同,称为同相. Δφ=π,表明两振动步调完全相反,称为反相. (3)Δφ>0,表示振动2比振动1超前. Δφ<0,表示振动2比振动1滞后.【例2】 一个小球和轻质弹簧组成的系统按x 1=5sin ⎝ ⎛⎭⎪⎫8πt +π4cm 的规律振动.(1)求该振动的周期、频率、振幅和初相.(2)另一简谐运动的表达式为x 2=5sin ⎝ ⎛⎭⎪⎫8πt +54πcm ,求它们的相位差.解析 (1)已知ω=8π rad/s ,由ω=2πT 得T =14 s , f =1T =4 Hz.A =5 cm ,φ1=π4.(2)由Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1得,Δφ=54π-π4=π. 答案 (1)14 s 4 Hz 5 cm π4 (2)π针对训练2 有两个振动,其表达式分别是x 1=4sin ⎝ ⎛⎭⎪⎫100πt +π3cm ,x 2=5sin ⎝ ⎛⎭⎪⎫100πt +π6cm ,下列说法正确的是 ( ) A .它们的振幅相同B .它们的周期相同C.它们的相位差恒定D.它们的振动步调一致解析由简谐运动的公式可看出,振幅分别为4 cm、5 cm,故不同;ω都是100πrad/s,所以周期(T=2πω)都是150s;由Δφ=(100πt+π3)-(100πt+π6)=π6得相位差(为π6)恒定;Δφ≠0,即振动步调不一致.答案BC简谐运动的图像图1-3-51.如图1-3-5表示某质点简谐运动的图像,以下说法正确的是()A.t1、t2时刻的速度相同B.从t1到t2这段时间内,速度与位移同向C.从t2到t3这段时间内,速度变大,位移变小D.t1、t3时刻的回复力方向相反解析t1时刻振子速度最大,t2时刻振子速度为零,故A不正确;t1到t2这段时间内,质点远离平衡位置,故速度、位移均背离平衡位置,所以二者方向相同,则B正确;在t2到t3这段时间内,质点向平衡位置运动,速度在增大,而位移在减小,故C正确;t1和t3时刻质点在平衡位置,回复力为零,故D错误.答案BC图1-3-62.装有砂粒的试管竖直静立于水面,如图1-3-6所示,将管竖直提起少许,然后由静止释放并开始计时,在一定时间内试管在竖直方向近似做简谐运动.若取竖直向上为正方向,则如图所示描述试管振动的图像中可能正确的是( )解析 试管在竖直方向上做简谐运动,平衡位置是在重力与浮力相等的位置,开始时向上提起的距离,就是其偏离平衡位置的位移,为正向最大位移.故正确答案为D. 答案 D简谐运动的表达式3.一弹簧振子A 的位移y 随时间t 变化的关系式为y =0.1sin 2.5πt ,位移y 的单位为m ,时间t 的单位为s.则( ) A .弹簧振子的振幅为0.2 m B .弹簧振子的周期为1.25 sC .在t =0.2 s 时,振子的运动速度为零D .若另一弹簧振子B 的位移y 随时间变化的关系式为y =0.2 sin ⎝ ⎛⎭⎪⎫2.5πt +π4,则振动A 滞后B π4解析 由振动方程为y =0.1 sin2.5πt ,可读出振幅A =0.1 m ,圆频率ω=2.5π,故周期T =2πω=2π2.5π=0.8 s ,故A 、B 错误;在t =0.2 s 时,振子的位移最大,故速度最小,为零,故C 正确;两振动的相位差Δφ=φ2-φ1=2.5πt +π4-2.5πt =π4,即B 超前A π4,或说A 滞后B π4,选项D 正确. 答案 CD4.物体A 做简谐运动的振动方程是x A =3sin ⎝ ⎛⎭⎪⎫100t +π2 m ,物体B 做简谐运动的振动方程是x B =5sin ⎝ ⎛⎭⎪⎫100t +π6 m .比较A 、B 的运动( ) A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 m B .周期是标量,A 、B 周期相等,都为100 s C .A 振动的频率f A 等于B 振动的频率f B D .A 的相位始终超前B 的相位π3解析 振幅是标量,A 、B 的振动范围分别是6 m,10 m ,但振幅分别为3 m,5 m ,A 错;A 、B 的周期均为T =2πω=2π100 s =6.28×10-2 s ,B 错;因为T A =T B ,故f A =f B ,C 对;Δφ=φA -φB =π3,为定值,D 对. 答案 CD题组一 简谐运动的图像1.关于简谐运动的图像,下列说法中正确的是( ) A .表示质点振动的轨迹是正弦或余弦曲线B .由图像可判断任一时刻质点相对平衡位置的位移大小与方向C .表示质点的位移随时间变化的规律D .由图像可判断任一时刻质点的速度方向解析 振动图像表示位移随时间的变化规律,不是运动轨迹,A 错,C 对;由振动图像可判断质点位移和速度大小及方向,B 、D 正确. 答案 BCD2.如图1-3-7所示是一做简谐运动的物体的振动图像,下列说法正确的是( )图1-3-7A.振动周期是2×10-2 sB.第2个10-2 s内物体的位移是-10 cmC.物体的振动频率为25 HzD.物体的振幅是10 cm解析振动周期是完成一次全振动所用的时间,在图像上是两相邻极大值间的距离,所以周期是4×10-2 s.又f=1T,所以f=25 Hz,则A项错误,C项正确;正、负最大值表示物体的振幅,所以振幅A=10 cm,则D项正确;第2个10-2 s的初位置是10 cm,末位置是0,根据位移的概念有x=-10 cm,则B项正确.答案BCD图1-3-83.一质点做简谐运动的振动图像如图1-3-8所示,则该质点()A.在0~0.01 s内,速度与加速度同向B.在0.01 s~0.02 s内,速度与回复力同向C.在0.025 s时,速度为正,加速度为正D.在0.04 s时,速度最大,回复力为零解析F、a与x始终反向,所以由x的正负就能确定a的正负.在x-t图像上,图线各点切线的斜率表示该点的速度,由斜率的正负又可确定v的正负,由此判断A、C正确.答案AC4.图1-3-9甲所示为以O点为平衡位置,在A、B两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是()图1-3-9A.在t=0.2 s时,弹簧振子可能运动到B位置B.在t=0.1 s与t=0.3 s两个时刻,弹簧振子的速度相同C.从t=0到t=0.2 s的时间内,弹簧振子的动能持续地增加D.在t=0.2 s与t=0.6 s两个时刻,弹簧振子的加速度相同答案 A图1-3-105.如图1-3-10所示是某一质点做简谐运动的图像,下列说法正确的是() A.在第1 s内,质点速度逐渐增大B.在第1 s内,质点加速度逐渐增大C.在第1 s内,质点的回复力逐渐增大D.在第4 s内质点的动能逐渐增大E.在第4 s内质点的势能逐渐增大F.在第4 s内质点的机械能逐渐增大解析在第1 s内,质点由平衡位置向正向最大位移处运动,速度减小,位移增大,回复力和加速度都增大;在第4 s内,质点由负向最大位移处向平衡位置运动,速度增大,位移减小,动能增大,势能减小,但机械能守恒,选项B、C、D正确.答案BCD6.一个弹簧振子沿x轴做简谐运动,取平衡位置O为x轴坐标原点.从某时刻开始计时,经过四分之一周期,振子具有沿x轴正方向的最大加速度.能正确反映振子位移x与时间t关系的图像是()解析根据F=-kx及牛顿第二定律得a=Fm=-km x,当振子具有沿x轴正方向的最大加速度时,具有沿x轴负方向的最大位移,故选项A正确,选项B、C、D错误.答案 A图1-3-117.图1-3-11为甲、乙两单摆的振动图像,则()A.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比l甲∶l乙=2∶1 B.若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比l甲∶l乙=4∶1 C.若甲、乙两摆摆长相同,且在不同的星球上摆动,则甲、乙两摆所在星球的重力加速度之比g甲∶g乙=4∶1D.若甲、乙两摆摆长相同,且在不同的星球上摆动,则甲、乙两摆所在星球的重力加速度之比g甲∶g乙=1∶4解析由图像可知T甲∶T乙=2∶1,若两单摆在同一地点,则两摆长之比为l甲∶l乙=4∶1;若两摆长相等,则所在星球的重力加速度之比为g甲∶g乙=1∶4.答案BD8.如图1-3-12甲、乙所示为一单摆及其振动图像,由图回答:图1-3-12(1)单摆的振幅为________,频率为________,摆长约为________;图中所示周期内位移x最大的时刻为____________.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中的________点.一个周期内加速度为正且减小,并与速度同方向的时间范围是________.势能增加且速度为正的时间范围是________.解析 (1)由纵坐标的最大位移可直接读取振幅为3 cm.从横坐标可直接读取完成一个全振动的时间即周期T =2 s ,进而算出频率f =1T =0.5 Hz ,算出摆长l =gT 24π2=1 m.从题图中看出纵坐标有最大值的时刻为0.5 s 末和1.5 s 末.(2)题图中O 点位移为零,O 到A 的过程位移为正,且增大,A 处最大,历时14周期,显然摆球是从平衡位置E 起振并向G 方向运动的,所以O 点对应E 点,A 点对应G 点.A 点到B 点的过程分析方法相同,因而O 、A 、B 、C 点对应E 、G 、E 、F 点.摆动中EF 间加速度为正,靠近平衡位置过程中速度逐渐减小且加速度与速度方向相同,即从F 到E 的运动过程对应题图中C 到D 的过程,时间范围是1.5 s ~2 s .摆球远离平衡位置势能增加,即从E 向两侧摆动,又因速度为正,显然是从E 到G 的过程.对应题图中为O 到A 的过程,时间范围是0~0.5 s.答案 (1)3 cm 0.5 Hz 1 m 0.5 s 末和1.5 s 末 (2)E 、G 、E 、F 1.5 s ~2 s 0~0.5 s 题组二 简谐运动的表达式与相位、相位差9.有一个弹簧振子,振幅为0.8 cm ,周期为0.5 s ,初始时具有负方向最大加速度,则它的振动方程是( ) A .x =8×10-3sin ⎝ ⎛⎭⎪⎫4πt +π2mB .x =8×10-3sin ⎝ ⎛⎭⎪⎫4πt -π2mC .x =8×10-1sin ⎝ ⎛⎭⎪⎫πt +32πmD .x =8×10-1sin ⎝ ⎛⎭⎪⎫4πt +π2m解析 ω=2πT =4π,当t =0时,具有负向最大加速度,则x =A ,所以初相φ=π2,表达式为x =8×10-3·sin ⎝ ⎛⎭⎪⎫4πt +π2m ,A 对.答案 A10.某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4t ,,则质点( )A .第1 s 末与第3 s 末的位移相同B .第1 s 末与第3 s 末的速度相同C .第3 s 末与第5 s 末的位移方向相同D .第3 s 末与第5 s 末的速度方向相同解析 根据x =A sin π4t 可求得该质点振动周期为T = 8 s ,则该质点振动图像如右图所示,图像的斜率为正表示速度为正,反之为负,由图可以看出第1 s 末和第3 s 末的位移相同,但斜率一正一负,故速度方向相反,选项A 正确,B 错误;第3 s 末和第5 s 末的位移方向相反,但两点的斜率均为负,故速度方向相同,选项C 错误,D 正确. 答案 AD11.一个质点做简谐运动的图像如图1-3-13所示,下列叙述中正确的是( )图1-3-13A .质点的振动频率为4 HzB .在10 s 内质点经过的路程为20 cmC .在5 s 末,质点做简谐运动的相位为32πD .t =1.5 s 和t =4.5 s 两时刻质点的位移大小相等,都是 2 cm解析 由振动图像可直接得到周期T =4 s ,频率f =1T =0.25 Hz ,故选项A 错误;一个周期内做简谐运动的质点经过的路程是4A =8 cm,10 s 为2.5个周期,故质点经过的路程为20 cm ,选项B 正确;由图像知位移与时间的关系为x =A sin(ωt +φ0)=0.02sin ⎝ ⎛⎭⎪⎫π2t m.当t =5 s 时,其相位ωt +φ0=π2×5=52π,故选项C 错误;在1.5 s 和4.5 s 两时刻,质点位移相同,与振幅的关系是x =A sin 135°=22A = 2 cm ,故D 正确. 答案 BD图1-3-1412.如图1-3-14所示,一弹簧振子在M 、N 间沿光滑水平杆做简谐运动,坐标原点O 为平衡位置,MN =8 cm.从小球经过图中N 点时开始计时,到第一次经过O 点的时间为0.2 s ,则小球的振动周期为________s ,振动方程为x =________cm .解析 从N 点到O 点刚好为T 4,则有T 4=0.2 s ,故T =0.8 s ;由于ω=2πT =5π2,而振幅为4 cm ,从最大位移处开始振动,所以振动方程为x =4cos 5π2t cm. 答案 0.8 4cos 5π2t 13.图1-3-15如图1-3-15所示为A 、B 两个简谐运动的位移-时间图像.请根据图像写出: (1)A 的振幅是________ cm ,周期是________ s ;B 的振幅是________cm ,周期是________s.(2)这两个简谐运动的位移随时间变化的关系式; (3)在时间t =0.05 s 时两质点的位移分别是多少?解析 (1)由图像知:A 的振幅是0.5 cm ,周期是0.4 s ;B 的振幅是0.2 cm ,周期是0.8 s.(2)由图像知:t =0时刻A 中振动的质点从平衡位置开始沿负方向振动,φ=π,由T =0.4 s ,得ω=2πT =5π.则简谐运动的表达式为x A =0.5sin(5πt +π) cm.t =0时刻B 中振动的质点从平衡位置沿正方向已振动了14周期,φ=π2,由T =0.8 s 得ω=2πT =2.5π,则简谐运动的表达式为x B =0.2sin ⎝ ⎛⎭⎪⎫2.5πt +π2cm. (3)将t =0.05 s 分别代入两个表达式中得:x A =0.5sin(5π×0.05+π) cm =-0.5×22 cm =-24 cm ,x B =0.2sin ⎝ ⎛⎭⎪⎫2.5π×0.05+π2cm =0.2sin 58π cm.答案 (1)0.5 0.4 0.2 0.8 (2)x A =0.5sin(5πt +π)cm ,x B =0.2sin ⎝ ⎛⎭⎪⎫2.5πt +π2cm (3)x A =-24cm , x B =0.2sin 58π cm.14.有一弹簧振子在水平方向上的B 、C 之间做简谐运动,已知B 、C 间的距离为20 cm ,振子在2 s 内完成了10次全振动.若从某时刻振子经过平衡位置时开始计时(t =0),经过14周期振子有正向最大加速度.图1-3-16(1)求振子的振幅和周期;(2)在图1-3-16中作出该振子的位移—时间图像; (3)写出振子的振动方程.解析 (1)x BC =20 cm ,t =2 s ,n =10,由题意可知:A =x BC 2=20 cm2=10 cm ,T =t n =2 s10=0.2 s.(2)由振子经过平衡位置开始计时经过14周期振子有正向最大加速度,可知振子此时在负方向最大位移处.所以位移—时间图像如图所示.(3)由A =10 cm ,T =0.2 s ,ω=2πT =10π rad/s ,故振子的振动方程为x =10sin(10πt +π)cm.答案 (1)10 cm 0.2 s (2)如解析图所示 (3)x =10sin(10πt +π)cm。

升学e网通

升学e网通

高中物理人教版选修3-1教学案:1电源和电流【知识要点】1、串联电路:把电阻一个接一个地依次连接起来,就组成串联电路电流:I 1=I2=I3= (I)电压:U1+U2+U3+……=U电阻:R=R1+R2+R3+……+R n(R=nr)电压、电流、电阻关系:U1/R1=U2/R2=……=U n/R n=I2、并联电路:把若干个电阻或电学元件并列地连接起来组成电路。

电压:U1=U2=……=U n电流:I=I1+I2+……+I n电阻:1/R=1/R1+1/R2+……+1/R n并联电路的总电阻小于任一支路电阻;电压、电阻、电流关系I1R1=I2R2=……=I n R n=U(R=r/n)3、混联电路:既有串联又有并联的电路若混联电路中一个滑动变阻器接在两个支路中,滑动触头移动时引起总阻值变化比较复杂,可能是先变大后变小,也可能是一直变大或一直变小.如图,当滑片P从左端滑到右端的过程中AB间的电阻一直变小;当滑片P从右端滑到左端的过程中,A B间的电阻一直变大.【典型例题】例1.下列说法中正确的是()A.一个电阻和一根无电阻的理想导线并联,总电阻为零B.并联电路任一支路的电阻都大于电路的总电阻C.并联电路任一支路的电阻增大(其他支路不变),则总电阻也增大D.并联电路任一支路的电阻增大(其他支路不变),则总电阻一定减小例2.电阻R1 和R2 并联在电路中时,通过R1的电流是通过R2的电流的n倍,则当R l和R2串联在电路中时,R1两端的电压U1与R2两端的电压U2之比U1/U2为()A.n B.n2C.1/n D.1/n2例3.变阻器接成分压器电路来调节用电器或工作电路所需电压的大小。

c、d接用电器,通过调节P,使用电器电压变化,求:(1)甲、乙图中电压的变化的范围及滑动片P对应的位置。

(2)甲、图中P在变阻器中点的U cd与U比较。

(3)乙图中要使U cd=U/2,P大约在何位置?乙图练习:如U=10V,R变=3kΩ,R=1.5kΩ要想使R获得5V的电压,变阻器的触头应在何处?【课后作业】1.三个阻值都为12Ω的电阻,它们任意连接、组合,总电阻可能为( )A.4Ω B.24Ω C.8Ω D.36Ω2.将阻值分别为R1=5Ω,R2=10Ω,R3=15Ω的三个导体并联起来接入电路,通过它们的电流之比为()A.1∶2∶3 B.3∶2∶1C.2∶3∶6 D.6∶3∶23.如图,两个电阻R1、R2串联起来接在电压为10V的电路中,若电阻R2发生断路,则用电压表先后测量c、d间和d、e间的电压,其读数分别为()A .5V ,5VB .10V ,0C .0,10VD .10V ,10V4.如图所示,4只电阻串联于某电路中.已测出U AC =9V , U BD =6V , R 2=R 4则U AE 为( )A .3VB .7.5VC .15VD .无法确定5.把两个阻值分别为10Ω和6Ω的导体并联起来,并联电路的总电阻为 ,通过它们的电流之比为 。

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第一章 1.1.6

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修2【配套备课资源】第一章 1.1.6
答 棱台的表面积或全面积等于侧面积与底面积的和.
研一研· 问题探究、课堂更高效
1.1.6
探究点三

本 课 时 栏 目 开 关
圆柱、圆锥、球的表面积
问题 1 如何根据圆柱的展开图,求圆柱的表面积?
图柱的侧面展开图是矩形,长是圆柱底面 圆周长,宽是圆柱的高(母线), 设圆柱的底面半 径为 r,母线长为 l,
面面积等于它的大圆面积的四倍.
研一研· 问题探究、课堂更高效
1.1.6
[问题情境]
本 课 时 栏 目 开 关
已知 ABB1A1 是圆柱的轴截面,AA1=a,AB=b,P 是 BB1 的中点;一小虫沿圆柱的侧面从 A1 爬到 P,如何求小虫爬 过的最短路程?要解决这个问题需要将圆柱的侧面展开, 本节我们将借助几何体的侧面展开图来研究几何体的表面 积.
答 涂 100 个这样的花盆需油漆 1 000 毫升.
练一练· 当堂检测、目标达成落实处
1.1.6
1.用长为 4,宽为 2 的矩形做侧面围成一个圆柱,此圆柱轴
本 课 时 栏 目 开 关
截面面积为 A.8 8 B. π 4 C. π 2 D. π
(
)
解析 围成圆柱有两种方式,一种是以 2 为圆柱的母线, 4 圆柱底面圆的周长为 4,所以圆半径为 , 2π 4 8 圆柱轴截面面积为 2×2×2π=π,
研一研· 问题探究、课堂更高效
1.1.6
问题 2 下图是直六棱柱的展开图,你能根据展开图,归纳出 直棱柱的侧面面积公式吗?
本 课 时 栏 目 开 关

S 直棱柱侧面积=ch.即直棱柱的侧面积等于它的底面周长和
高的乘积.
研一研· 问题探究、课堂更高效
1.1.6

高中物理物理 选修3-1(人教版)--《电势能和电势》教案--优化方案

高中物理物理 选修3-1(人教版)--《电势能和电势》教案--优化方案

1.4 电势能和电势三维目标1.理解静电力做功的特点、电势能的概念、电势能与电场力做功的关系;2.理解电势的概念,知道电势是描述电场能的性质的物理量;3.明确电势能、电势、静电力做功、电势能的关系;4.了解电势与电场线的关系;5.了解等势面的意义及与电场线的关系。

教学重点理解掌握电势能、电势、等势面的概念及意义。

教学难点掌握电势能与做功的关系,并能用此解决相关问题。

教学方法类比法、讲练法、推理归纳法。

教具准备投影仪、多媒体课件。

课时安排2课时教学过程[新课导入]问题:电场的两个基本性质是什么?电场的两个基本性质:电场对放入其中的电荷有力的作用(电场的力的性质),并使之具有能(电场的能的性质)。

我们已经建立了电场强度的概念,知道它是描述电场性质的物理量。

倘若把一个静止的试探电荷放入电场中,它将在静电力的作用下做加速运动,经过一段时间后获得一定的速度,试探电荷的动能增加了。

我们知道,这是静电力做功的结果,而功又是能量变化的量度,那么,在这一过程中,是什么能转化成试探电荷的动能呢?为此,我们首先要研究静电力做功的特点和电场力做功与能量变化之间的关系。

前面已经学习了电场的力的性质──用场强来描述,今天我们从电场力做功和能量的角度来研究电场的能的性质。

[新课教学]一、静电力做功的特点要考虑电场的能的性质,必涉及到电场力的做功。

对它的讨论可类比于重力场中的重力做功。

问题:重力做功有什么特点?结论:重力做功与路径无关,仅跟物体的重力,物体移动的两位置的高度差有关。

对同一物体,两位置的高度差越大,重力做功就越多。

只要两位置确定,即高度差确定,移动同一物体重力做功就相同。

问题:同样为场力做功,电场力做功是否也具有同样的特点呢?试探电荷q在电场强度为E的匀强电场中沿几条不同路径从A点移动到B点,我们计算这几种情况下静电力所做的功。

A M推导:q在沿直线从A移往B的过程中,受到的静电力F=qE,静电力与位移AB的夹角为θ,静电力对q所的功为W=F cosθ·|AB|=qE·|AM|q在沿折线AMB从A移往B的过程中,在线段AM上静电力对q所的功W1=qE·|AM|。

2025高考物理步步高同步练习选修3第二章 气体、固体和液体固体含答案

2025高考物理步步高同步练习选修3第二章 气体、固体和液体固体含答案

2025高考物理步步高同步练习选修3第二章气体、固体和液体4固体[学习目标] 1.知道晶体和非晶体的特点及区分方法.2.知道单晶体和多晶体的区别.3.了解晶体的微观结构.一、晶体和非晶体1.固体可以分为晶体和非晶体两类.晶体又可以分为单晶体与多晶体.2.石英、云母、明矾、食盐、硫酸铜、味精等是晶体,玻璃、蜂蜡、松香、沥青、橡胶等是非晶体.3.非晶体(1)没有(填“有”或“没有”)规则的外形.(2)物理性质:①没有(填“有”或“没有”)确定的熔化温度;②导电、导热、光学等物理性质表现为各向同性(填“异性”或“同性”).4.晶体(1)单晶体:①有(填“有”或“没有”)天然的、规则的几何形状②a.有(填“有”或“没有”)确定的熔点;b.导电、导热、光学等某些物理性质表现为各向异性(填“异性”或“同性”).(2)多晶体:①没有(填“有”或“没有”)规则的几何形状②a.有(填“有”或“没有”)确定的熔点;b.导电、导热、光学等物理性质表现为各向同性(填“异性”或“同性”)二、晶体的微观结构1.在各种晶体中,原子(或分子、离子)都是按照一定的规则排列的,具有空间上的周期性.2.有的物质在不同条件下能够生成不同的晶体.那是因为组成它们的微粒能够按照不同规则在空间分布,例如碳原子按不同的空间分布排列可形成石墨和金刚石.3.同一种物质也可能以晶体和非晶体两种不同的形态出现.有些非晶体在一定条件下也可以转化为晶体.1.判断下列说法的正误.(1)所有晶体都具有天然、规则的几何外形.(×)(2)没有确定的熔化温度的固体一定是非晶体.(√)(3)物理性质表现为各向同性的一定是非晶体.(×)(4)同一种物质只能形成一种晶体.(×)(5)有些非晶体在一定条件下可以转化为晶体.(√)2.某球形固体物质,其各向导热性能不相同,则该物体一定是________.答案单晶体一、晶体和非晶体导学探究(1)如图甲所示是日常生活中常见的几种晶体,图乙是生活中常见的几种非晶体,请在图片基础上思考以下问题:①晶体与非晶体在外观上有什么不同?②没有规则几何外形的固体一定是非晶体吗?(2)在玻璃片和云母片上分别涂上一层很薄的石蜡,然后用烧热的钢针去接触玻璃片及云母片的另一面,石蜡熔化,如图所示,那么你看到的现象及得出的结论是什么?答案(1)①单晶体有规则的几何形状,多晶体和非晶体无规则的几何形状.②不是.由于多晶体是许多单晶体杂乱无章地组合而成的,所以多晶体也没有规则的几何形状.(2)玻璃片上石蜡的熔化区呈圆形,说明玻璃沿各个方向的导热性能相同.云母片上石蜡的熔化区呈椭圆形,说明云母沿不同方向的导热性能不相同.知识深化1.单晶体、多晶体及非晶体的比较分类微观结构宏观表现外形物理性质晶体单晶体组成晶体的物质微粒(原子、分子、离子)在空间按一定规则排列——空间点阵有天然、规则的几何形状各向异性有确定的熔点多晶体由无数的晶体微粒(小晶粒)无规则排列组成没有天然、规则的几何形状各向同性非晶体内部物质微粒是无规则排列的没有确定的熔化温度2.对单晶体的各向异性的理解(1)单晶体的各向异性是指单晶体在不同方向上的物理性质不同,也就是沿不同方向去测试单晶体的物理性质时,测试结果不同.通常所说的物理性质包括弹性、硬度、导热性能、导电性能、磁性等.(2)单晶体具有各向异性,并不是说每一种单晶体都能在各种物理性质上表现出各向异性,举例如下:①云母晶体在导热性能上表现出显著的各向异性——沿不同方向传热的快慢不同.②方铅矿石晶体在导电性能上表现出显著的各向异性——沿不同方向电阻率不同.③立方体形的铜晶体在弹性上表现出显著的各向异性——沿不同方向的弹性不同.④方解石晶体在光的折射上表现出各向异性——沿不同方向的折射率不同.例1(2021·江苏常州高二期中)2020年,“嫦娥五号”探测器胜利完成月球采样任务并返回地球.探测器上装有用石英制成的传感器,其受压时表面会产生大小相等、符号相反的电荷,即“压电效应”.如图所示,石英晶体沿垂直于x轴晶面上的压电效应最显著.石英晶体()A.没有确定的熔点B.具有各向同性的压电效应C.没有确定的几何形状D.是单晶体答案 D解析晶体有确定的熔点,非晶体没有确定的熔化温度,石英是单晶体,有确定的熔点,有确定的几何形状,A、C错误,D正确;沿垂直于x轴晶面上的压电效应最显著,其他方向不明显,故具有各向异性的压电效应,B错误.判断晶体与非晶体、单晶体与多晶体的方法1.区分晶体与非晶体的方法:看其有无确定的熔点,晶体具有确定的熔点,而非晶体没有确定的熔化温度.仅从各向同性或者几何形状不能判断某一固体是晶体还是非晶体.2.区分单晶体和多晶体的方法:看其是否具有各向异性,单晶体某些物理性质表现出各向异性,而多晶体表现出各向同性.例2(2021·广州市培正中学高二月考)在甲、乙、丙三种固体薄片上涂上蜡,用烧热的针接触其背面一点,蜡熔化的范围如图(a)所示,而甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系图像如图(b)所示,则()A.甲、乙是非晶体,丙是晶体B.甲、丙是晶体,乙是非晶体C.甲、丙是非晶体,乙是晶体D.甲是非晶体,乙是多晶体,丙是单晶体答案 B解析由题图(b)知,甲、丙有确定的熔点,乙没有确定的熔化温度,所以甲、丙是晶体,乙是非晶体,由题图(a)知,甲、乙的导热性能呈各向同性,丙的导热性能呈各向异性,所以丙是单晶体,B正确.二、晶体的微观结构导学探究(1)单晶体具有规则的几何形状,物理性质方面表现为各向异性,而非晶体没有规则的几何外形,并且物理性质方面表现为各向同性.产生这些不同的根本原因是什么呢?(2)金刚石和石墨都是由碳原子构成的,但它们在硬度上差别很大,这说明什么问题?答案(1)它们的微观结构不同.(2)金刚石是网状结构,原子间的作用力强,所以金刚石的硬度大.石墨是层状结构,层与层间距离较大,原子间的作用力较弱,所以石墨的硬度小.这说明组成物质的微粒按照不同的规则在空间分布会形成不同的晶体.知识深化对晶体的微观解释(1)对单晶体各向异性的解释如图为在一个平面上单晶体物质微粒的排列情况.在沿不同方向所画的等长线段AB、AC、AD上物质微粒的数目不同.线段AB上物质微粒较多,线段AD上较少,线段AC上更少.因为在不同方向上物质微粒的排列情况不同,才引起单晶体在不同方向上物理性质的不同.(2)对晶体具有确定熔点的解释晶体加热到一定温度时,一部分微粒有足够的动能克服微粒间的作用力,离开平衡位置,使规则的排列被破坏,晶体开始熔化,熔化时晶体吸收的热量全部用来破坏规则的排列,温度不发生变化.例3下列叙述中错误的是()A.晶体的各向异性是由于它的微粒是按各自的规则排列着的B.单晶体具有规则的几何外形是由于它的微粒按一定规律排列C.非晶体的内部微粒是无规则排列的D.石墨的硬度与金刚石差很多,是由于它的微粒没有按空间点阵分布答案 D解析晶体内部微粒排列的空间结构决定着晶体的物理性质不同;也正是由于它的微粒按一定规律排列,使单晶体具有规则的几何外形,选项A、B正确;非晶体的内部微粒是无规则排列的,选项C正确;石墨与金刚石的硬度相差甚远是由于它们内部微粒的排列结构不同,石墨的层状结构决定了它的质地松软,而金刚石的网状结构决定了其中碳原子间的作用力很强,所以金刚石有很大的硬度,选项D错误.例4(2021·安徽芜湖高二期中)关于石墨和金刚石的区别,下列说法正确的是()A.石墨和金刚石是同种物质微粒组成的空间结构相同的晶体B.金刚石晶体结构紧密,所以质地坚硬,石墨晶体是层状结构,所以质地松软C.石墨与金刚石是不同的物质微粒组成的不同晶体D.石墨导电、金刚石不导电是由于组成它们的化学元素不同答案 B解析石墨和金刚石是碳的同素异形体,其化学性质相同;组成它们的微粒的空间结构不同,石墨中的碳原子排列为层状结构,层与层间距离很大,所以其质地松软;金刚石中的碳原子排列紧密,相互间作用力很强,所以其质地坚硬,故选项B正确.考点一晶体和非晶体1.在P、Q两块不同材料的薄片上均匀涂上一层石蜡,然后用灼热的金属针尖点在薄片的另一侧面,结果熔化区域得到如图所示的两种图样,则()A.P、Q薄片一定都是晶体B.P、Q薄片一定都是非晶体C.P薄片可能是非晶体,Q薄片一定是单晶体D.P薄片一定是晶体,Q薄片可能是非晶体答案 C解析单晶体是各向异性的,熔化在单晶体表面的石蜡是椭圆形;非晶体和多晶体是各向同性的,则熔化在表面的石蜡是圆形,所以P薄片可能是非晶体,Q薄片一定是单晶体,故C 正确.2.(2022·江苏如东县高二期末)关于晶体和非晶体,下列说法错误的是()A.有些晶体在不同的方向上有不同的光学性质B.将一块晶体敲碎后,得到的小颗粒是非晶体C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.在合适的条件下,某些晶体可以转化为非晶体,某些非晶体也可以转化为晶体答案 B解析固体可以分为晶体和非晶体两类,单晶体有各向异性,有些晶体在不同的方向上具有不同的光学性质,A正确,不符合题意;将一块晶体敲碎后,得到的小颗粒还是晶体,B错误,符合题意;由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体,例如石墨和金刚石,C正确,不符合题意;在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体,例如天然石英是晶体,而熔化以后再凝固的水晶(即石英玻璃)却是非晶体;把晶体硫加热熔化,倒入冷水中,会变成柔软的非晶体硫,再经一些时间又会转变成晶体硫,D正确,不符合题意.3.(2021·江苏省扬州中学高二月考)固体M、N在一定压强下的熔化曲线如图所示,则()A.固体M有可能是玻璃、橡胶B.固体M的bc段表示固液共存状态C.固体N的分子(或原子、离子)排列一定有规则D.固体N的物理性质可能是各向异性的答案 B解析晶体是在固定的温度下熔化为液体,而非晶体是随着温度的升高逐渐由硬变软,最后变成液体,bc段表示晶体的固液共存状态,而玻璃、橡胶是非晶体,没有固定的熔化温度,A错误,B正确.曲线N是非晶体在一定压强下的熔化过程,所以非晶体的分子(或原子、离子)排列没有规则,非晶体的物理性质表现为各向同性,C、D错误.考点二晶体的微观结构4.石墨和金刚石性质有很大差异,是由于()A.石墨是各向异性的,而金刚石是各向同性的B.它们的化学成分不同C.它们都是各向同性的D.组成它们的物质微粒按不同的规则排列答案 D5.(2021·苏州市苏州高新区第一中学高二月考)有关晶体的排列结构,下列说法正确的有()A.同种元素原子按不同结构排列有相同的物理性质B.同种元素原子按相同结构排列有不同的物理性质C.同种元素形成晶体只能有一种排列规律D.同种元素形成晶体可能有不同的排列规律答案 D解析原子排列结构不同,同种元素可以按照不同规则排列;即具有不同的空间点阵,物理性质不同,如石墨和金刚石的密度、机械强度、导热性、导电性、光学性质等都有很大的区别,故D正确.6.晶体内部的分子有序排列为如图所示的空间点阵(图中的小黑点表示晶体分子),图中AB、AC、AD为等长的三条线段.下列说法正确的是()A.A处的晶体分子可以沿三条线方向发生定向移动B.三条线段上晶体分子的数目相同,表明晶体的物理性质是各向同性的C.三条线段上晶体分子的数目不同,表明晶体的物理性质是各向异性的D.以上说法均不正确答案 C解析晶体中的分子只在平衡位置附近振动,不会沿三条线方向发生定向移动,故A错误;三条线段上晶体分子的数目不同,表明晶体的物理性质是各向异性的,故B、D错误,C 正确.7.(2021·山东济南高二期末)关于物质的结构,以下说法错误的是()A.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则B.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同C.多晶体是由小晶粒杂乱无章的排列在一起的,故多晶体物理性质表现为各向同性D.粘在一起的糖块是多晶体,单个的蔗糖晶体颗粒是单晶体答案 A解析天然石英是晶体,表现为各向异性,是由于该物质的微粒在空间按各自的规则排列着,故A错误,符合题意;石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同,故B正确,不符合题意;多晶体是由小晶粒杂乱无章的排列在一起的,故多晶体物理性质表现为各向同性,故C正确,不符合题意;粘在一起的糖块是多晶体,单个的蔗糖晶体颗粒是单晶体,故D正确,不符合题意.8.某实验小组想测试两种材料的导电性能,他们将这两种材料加工成厚度均匀、横截面为正方形的几何体,分别如图甲、乙所示,经测试发现,材料甲沿ab、cd两个方向的电阻相等,材料乙沿ef方向的电阻大于沿gh方向的电阻,关于这两种材料,下列说法中正确的是()A.材料甲一定是晶体B.材料甲一定是非晶体C.材料乙一定是单晶体D.材料乙一定是多晶体答案 C解析测试发现,材料甲沿ab、cd两个方向的电阻相等,材料乙沿ef方向的电阻大于沿gh 方向的电阻,说明了甲具有各向同性,而乙具有各向异性,单晶体是各向异性的,所以乙一定是单晶体,而多晶体和非晶体是各向同性的,所以甲可能是多晶体,也可能是非晶体,故C正确,A、B、D错误.9.有一块长方形的铜条,有关它的三种说法:①这是一块单晶体,因为它有规则的几何形状;②这是一块多晶体,因为它内部的分子排列是不规则的;③这是一块非晶体,因为它的物理性质表现为各向同性.这三种说法中()A.只有①②是错的B.只有②③是错的C.只有①③是错的D.都是错的答案 D解析铜条虽具有规则的几何形状,但它是多晶体,它的内部分子排列是规则的,但构成多晶体的单晶体颗粒的排列是不规则的,所以D正确.10.下列关于固体的说法中,正确的是()A.晶体熔化时,温度不变,但内能变化B.单晶体一定是单质,有确定的几何形状,有确定的熔点C.多晶体没有确定的几何形状,也没有确定的熔点D.晶体都是各向异性的,而非晶体都是各向同性的答案 A解析晶体熔化时,其温度虽然不变,但其内部结构可能发生变化,其吸收的热量转化为分子的势能,内能增大,故A正确;单晶体不一定是单质,故B错误;多晶体没有确定的几何形状,但有确定的熔点,故C错误;单晶体表现为各向异性,但多晶体表现为各向同性,故D错误.11.(2021·江苏响水中学高二期末)关于晶体和非晶体,下列说法中正确的是()A.凡是晶体,都具有确定的几何外形B.晶体有确定的熔点,非晶体没有确定的熔化温度C.晶体内部的物质微粒是静止的,而非晶体内部的物质微粒是不停地运动着的D.具有各向同性的物质一定是多晶体答案 B解析多晶体没有确定的几何外形,所以A错误;晶体有确定的熔点,非晶体没有确定的熔化温度,所以B正确;晶体、非晶体内部的物质微粒都是不停地运动着的,所以C错误;多晶体与非晶体都具有各向同性,所以D错误.12.利用扫描隧道显微镜(STM)可以得到物质表面原子排列的图像,从而可以研究物质的构成规律.如图所示的照片是一些晶体材料表面的STM图像,通过观察、比较,可以看到这些材料都是由原子在空间排列而构成的,具有一定的结构特征.则构成这些材料的原子在物质表面排列的共同特点是:(1)________________________________________________________________________;(2)________________________________________________________________________.答案(1)在确定方向上原子有规律地排列,在不同方向上原子的排列规律一般不同(2)原子排列具有一定的对称性解析从题图中可以看出,这几种材料的原子排列均有一定的规则,因此是晶体,具有晶体的特点.5液体[学习目标] 1.了解液体的表面张力,能解释液体表面张力产生的原因.2.了解浸润和不浸润现象及毛细现象产生的原因.3.了解液晶的特点及其应用.一、液体的表面张力1.表面层:液体表面跟气体接触的薄层.2.表面张力:(1)定义:在表面层,分子比较稀疏,分子间的作用力表现为引力,这种力使液体表面绷紧,叫作液体的表面张力.(2)方向:总是跟液面相切,且与分界面垂直.二、浸润和不浸润1.浸润和不浸润(1)浸润:一种液体会润湿某种固体并附着在固体的表面上的现象.(2)不浸润:一种液体不会润湿某种固体,不会附着在这种固体的表面上的现象.(3)当液体和与之接触的固体的相互作用比液体分子之间的相互作用强时,液体能够浸润固体.反之,液体则不浸润固体.2.毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象.三、液晶1.液晶:是介于固态和液态之间的一种物质状态.2.特点:(1)液晶态既具有液体的流动性,又在一定程度上具有晶体分子的规则排列的性质.(2)具有光学各向异性.1.判断下列说法的正误.(1)表面张力的作用是使液面具有收缩的趋势,是分子力的宏观表现.(√)(2)水对所有固体都浸润.(×)(3)毛细管插入水中,管的内径越大,管内水面升得越高.(×)(4)液晶是液体和晶体的混合物.(×)2.要增强雨伞的防水作用,伞面可选择对水是________(选填“浸润”或“不浸润”)的布料;布料经纬线间空隙很小,小水珠落在伞面上由于________的作用,不能透过空隙.答案不浸润表面张力一、液体的表面张力导学探究如图所示是液体表面附近分子分布的大致情况.请结合图片思考:(1)液体表面层内的分子间距离和分子力各有什么特点?(2)小昆虫、缝衣针在水面上不下沉与小木块浮在水面上的道理相同吗?答案(1)液体表面层内分子间距离大于r0,分子间作用力表现为引力.(2)不同.小昆虫、缝衣针能在水面上不下沉是液体表面张力在起作用.小木块浮在水面上是重力和水的浮力平衡的结果.知识深化1.液体表面张力的成因分析液体表面层分子比较稀疏,分子间的作用力表现为引力,该引力使液面产生了表面张力,使液体表面形成一层绷紧的膜.2.表面张力及其作用(1)表面张力使液体表面具有收缩趋势,使液体表面积趋于最小.而在体积相同的条件下,球形的表面积最小.例如,吹出的肥皂泡呈球形,滴在洁净玻璃板上的水银滴呈球形(但由于受重力的影响,往往呈扁球形,在完全失重条件下才呈球形).(2)表面张力的大小除了跟边界线长度有关外,还跟液体的种类、温度有关.(3)表面张力的方向:和液面相切,垂直于液面上的各条分界线,如图所示.例1(2021·江苏徐州高二期中)关于液体的表面张力,下列说法正确的是()A.表面张力产生在液体表面层,它的方向跟液面垂直B.表面张力是液体内部各部分之间的相互作用力C.由于液体表面有收缩的趋势,故液体表面的分子间不存在斥力D.有些小昆虫能在水面自由行走,这是由于有表面张力的缘故答案 D解析表面张力产生在液体表面层,它的方向与液体表面相切,而非与液面垂直,故A错误;表面张力是液体表面层分子间的相互作用,而不是液体内部各部分间的相互作用,故B错误;液体表面的分子之间引力和斥力同时存在,故C错误;有些小昆虫能在水面自由行走是因为液体表面张力的作用,故D正确.例2(2021·江苏扬州高二期中)以下现象中,与表面张力无关的是()A.处于完全失重状态的水银滴呈球形B.某些小型昆虫可以在水面上行走C.玻璃管的裂口在火焰上烧熔,它的尖端会变钝D.湿的衣服很难脱下来答案 D解析处于完全失重状态下的水银在表面张力的作用下,其表面被绷紧,表面积也将趋于最小,最终呈球形,故A不符合题意;水在表面张力的作用下形成了一层水膜,当昆虫重力很小时,这层水膜可以支撑昆虫行走,故B不符合题意;玻璃管的裂口在火焰上烧熔后,由固态变为液态,在表面张力的作用下会趋于球形,所以尖端会变钝,故C不符合题意;湿的衣服很难脱下来,是由于衣服变湿后与身体之间的附着力增大的缘故,与表面张力无关,故D 符合题意.二、浸润和不浸润导学探究(1)把一块玻璃分别浸入水和水银里再取出来,可观察到从水银中取出的玻璃上没有附着水银,从水中取出的玻璃上会沾上一层水.为什么会出现上述不同的现象呢?(2)如图所示,在灌溉完土地后农民伯伯往往利用翻松地表土壤的方法来保存土壤里的水分,你知道这是为什么吗?答案(1)水银不浸润玻璃,而水浸润玻璃.(2)把地表土壤锄松,破坏了土壤表层的毛细管,地下的水分就不会沿毛细管上升到地面而被蒸发掉.知识深化1.浸润和不浸润的形成原因(1)附着层内分子受力情况液体和固体接触时,附着层的液体分子除受液体内部的分子吸引外,还受到固体分子的吸引.(2)浸润的成因当固体分子吸引力大于液体内部分子力时,这时表现为液体浸润固体.(3)不浸润的成因当固体分子吸引力小于液体内部分子力时,这时表现为液体不浸润固体.特别提醒浸润和不浸润是发生在两种材料(液体与固体)之间的,与这两种物质的性质都有关系,不能单说哪一种材料浸润或不浸润.例如:水能浸润玻璃,但不能浸润石蜡;水银不能浸润玻璃,但能浸润铅.。

物理《学案导学与随堂笔记》教科选修31课件:第二章 1 欧姆定律

物理《学案导学与随堂笔记》教科选修31课件:第二章 1 欧姆定律

C.当 n1<n2 时,电流方向从 B→A,
电流强度为 I=n2-t n1e
√D.溶液内电流方向从 A→B,电流强
度为 I=n1+t n2e
ห้องสมุดไป่ตู้图5
温馨提示
计算电流时,要分清形成电流的电荷种类,是只有正电荷或负电荷,还 是正、负电荷同时定向移动.当正、负电荷都参与定向移动时,正、负电 荷对电流的形成都有贡献.
√C.9.375×1021个
D.9.375×1020个
q=It,n=qe=Iet=9.375×1021 个.
123 4 5
3.如图10所示是A、B两电阻的U-I图像,则两电阻之比及连接相同电压 情况下的电流之比分别是 答案 解析 A.RA∶RB=2∶1,IA∶IB=2∶1
√B.RA∶RB=2∶1,IA∶IB=1∶2
第二章 直流电路
1 欧姆定律
学习目标
1.知道形成电流的条件,理解电流的定义式I=
q,并能分析相关 t
问题.
2.掌握欧姆定律的内容及其适用范围.
3.知道导体的伏安特性曲线,知道什么是线性元件和非线性元件.
内容索引
知识探究
题型探究
达标检测
1
知识探究
一、电流 导学探究 (1)金属导体中的自由电荷是什么?电解液中的自由电荷是什么?如何使 自由电荷做定向移动? 答案 自由电子 正、负离子 在导体内加上电场,使自由电荷受电场力作 用形成定向移动
C.RA∶RB=1∶2,IA∶IB=2∶1 D.RA∶RB=1∶2,IA∶IB=1∶2
图10
123 4 5
4.如图11所示为一小灯泡的伏安特性曲线,横轴和纵轴分别表示电压U和
电流I,图线上点A的坐标为(U1、I1),过点A的切线与纵轴交点的纵坐标 为I2,小灯泡两端的电压为U1时,电阻等于 答案 解析

人教版高中物理选修(3-1)-2.4《串联电路和并联电路》导学案

人教版高中物理选修(3-1)-2.4《串联电路和并联电路》导学案

串联电路和并联电路【学习目标】1.学习电路的串联和并联,理解串、并联电路的电压关系、电流关系和电阻关系,并能运用其解决有关关问题。

2.利用电路的串、并联规律分析电表改装的原理。

【学习重点】串、并联电路的规律【学习难点】电表的改装【问题导学】目标一:串联电路与并联电路1.什么是电路的串联?___________________________________________________什么是电路的并联?______________________________________________________2.电流特点串联电路: ___________________________并联电路:_____________________________,电流分配与各电阻的关系_________________________________________3.电压特点串联电路:________________________________ ,电压分配与各电阻的关系_________________________________________并联电路:__________________________________讨论:串联电路的作用:___________________________________并联电路的作用:______________________________________从电势的角度,分析串连电路电势的特点,串联电路中0、1、2、3各点电势大小的关系__________________________________________________ 并联电路中电势的特点,并联电路中0、1、2、3各点电势大小的关系____________;4、5、6各点的电势大小的关系______________________。

4.电阻特点串联电路: ____________________________________________ 并联电路:________________ ______________________________ 讨论:(1)若R 1远大于R 2,R 1和R 2并联后R=__________________;R 1和R 2串联后R=__________________(2)n 个相同电阻(R 1)串联,其总电阻R=_________________________;n 个相同电阻(R 1)并联,其总电阻R=_________________________ (3)不同阻值的电阻串联,总电阻与其中最大电阻有何关系? ____________________(4)不同阻值的电阻并联,总电阻与其中最小电阻有何关系?_____________________(5)并联电路中,某一电阻增大,总电阻如何变?_______________________________ (6)混联电路中,某一电阻增大,总电阻如何变?______________________________ 目标二: 电压表和电流表1.电流计G ——俗称表头G (1)作用:测量微小电流和电压 (2)三个主要参数:_______________________________________________________ 三者满足关系:_____________________________________________________ (3)电路图符号:(4)如图是某一电流表G 的刻度盘。

【优化方案】2013-2014学年高二物理(RJ.选修3-1):第一章第九节知能演练轻松闯关

【优化方案】2013-2014学年高二物理(RJ.选修3-1):第一章第九节知能演练轻松闯关

1.质子(11H)、α粒子(42He)、钠离子(Na +)三个粒子分别从静止状态经过电压为U 的同一电场加速后,获得动能最大的是( )A .质子(11H)B .α粒子(42He)C .钠离子(Na +)D .都相同解析:选B.由qU =12m v 2-0得U 相同,α粒子带2个单位的正电荷,电荷量最大,所以α粒子获得的动能最大,故选B.2.(2019·芜湖一中高二检测)如图所示,电子由静止开始从A 板向B 板运动,当到达B 板时速度为v ,保持两板间电压不变,则( )A .当增大两板间距离时,v 增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间增大解析:选CD.改变两极板之间间距但不改变电压值,电场力做功的大小不变,所以末速度不变.末速度确定,平均速度是末速度的12,距离增大,运动时间增加.故选CD. 3.平行金属板A 、B 分别带等量异种电荷,A 板带正电,B 板带负电,a 、b 两个带正电粒子,以相同的速率先后垂直于电场线从同一点进入两金属板间的匀强电场中,并分别打在B 板上的a ′、b ′两点,如图所示.若不计重力,则( )A .a 粒子的带电荷量一定大于b 粒子的带电荷量B .a 粒子的质量一定小于b 粒子的质量C .a 粒子的带电荷量与质量之比一定大于b 粒子的带电荷量与质量之比D .a 粒子的带电荷量与质量之比一定小于b 粒子的带电荷量与质量之比解析:选C.y =12·Eq m ⎝⎛⎭⎫x v 02,y 相同,x a <x b ,所以q a m a >q b m b,故选C. 4.示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图所示.如果在荧光屏上P 点出现亮斑,那么示波管中的( )A .极板X 应带正电B .极板X ′应带正电C .极板Y 应带正电D .极板Y ′应带正电解析:AC.根据亮点的位置,偏向XY 区间,说明电子受到电场力作用发生了偏转,因此极板X 、极板Y 应带正电.故选AC.5.如图所示,A 、B 为两块足够大的相距为d 的平行金属板,接在电压为U 的电源上.在A 板的中央P 点放置一个电子发射源.可以向各个方向释放电子.设电子的质量为m 、电荷量为e ,射出的初速度为v .求电子打在B 板上的区域面积?(不计电子的重力)解析:打在最边缘的电子,其初速度方向平行于金属板,在电场中做类平抛运动,在垂直于电场方向做匀速运动,即r =v t ①在平行电场方向做初速度为零的匀加速运动,即d =12at 2② 电子在平行电场方向上的加速度a =eE m =eU md③ 电子打在B 板上的区域面积S =πr 2④由①②③④得S =2πm v 2d 2eU. 答案:2πm v 2d 2eU一、选择题1.关于带电粒子(不计重力)在匀强电场中的运动情况,下列说法正确的是( )A .一定是匀变速运动B .不可能做匀减速运动C .一定做曲线运动D .可能做匀变速直线运动,不可能做匀变速曲线运动解析:选A.带电粒子在匀强电场中受到的电场力恒定不变,可能做匀变速直线运动,也可能做匀变速曲线运动,故选A.2.(2019·江苏天一中学高二测试)如图所示,M 、N 是真空中的两块平行金属板.质量为m 、电荷量为q 的带电粒子,以初速度v 0由小孔进入电场,当M 、N 间电压为U 时,粒子恰好能到达N 板.如果要使这个带电粒子到达M 、N 板间距的1/2后返回,下列措施中能满足要求的是(不计带电粒子的重力)( )A .使初速度减为原来的1/2B .使M 、N 间电压加倍C .使M 、N 间电压提高到原来的4倍D .使初速度和M 、N 间电压都减为原来的1/2解析:选BD.由题意知,带电粒子在电场中做减速运动,在粒子恰好能到达N 板时,由动能定理可得:-qU =-12m v 20要使粒子到达两极板中间后返回,设此时两极板间电压为U 1,粒子的初速度为v 1,则由动能定理可得:-q U 12=-12m v 21联立两方程得:U 12U =v 21v 20可见,选项B 、D 均符合等式的要求.故选BD.3.竖直放置的平行金属板A 、B 连接一恒定电压,两个电荷M 和N 以相同的速率分别从极板A 边缘和两板中间沿竖直方向进入板间电场,恰好从极板B 边缘射出电场,如图所示,不考虑电荷的重力和它们之间的相互作用,下列说法正确的是( )A .两电荷的电荷量可能相等B .两电荷在电场中运动的时间相等C .两电荷在电场中运动的加速度相等D .两电荷离开电场时的速度大小相等解析:选AB.由t =L v 0知两电荷运动时间相等,故B 正确;由y =12at 2和y M =2y N 知,两电荷加速度不等,故C 错误;由a =qE m 知,仅当m M =12m N 时,两电荷量相等,故A 正确;由v y =at 知,v yM ≠v yN ,则合速度不等,故D 错误.故选AB.4. 如图所示,质子(11H)和α粒子(42He),以相同的初动能垂直射入偏转电场(粒子不计重力),则这两个粒子射出电场时的侧位移y 之比为( )A .1∶1B .1∶2C .2∶1D .1∶4 解析:选B.由y =12Eq m L 2v 20和E k0=12m v 20,得:y =EL 2q 4E k0可知,y 与q 成正比,故选B. 5.(2019·济南第二中学高二检测)如图所示,有三个质量相等,分别带正电、负电和不带电的小球,从平行板电场中的P 点以相同的初速度垂直于E 进入电场,它们分别落到A 、B 、C 三点( )A .落到A 点的小球带正电,落到B 点的小球不带电B .三小球在电场中运动的时间相等C .三小球到达正极板时动能关系是E k A >E k B >E k CD .三小球在电场中运动的加速度关系是a A >a B >a C解析:选A.初速度相同的小球,落点越远,说明运动时间越长,竖直方向加速度越小.所以A 、B 、C 三个落点上的小球的带电情况分别为带正电、不带电、带负电.故选A.6.如图所示,两金属板与电源相连接,电子从负极板边缘垂直电场方向射入匀强电场,且恰好从正极板边缘飞出.现在使电子入射速度变为原来的两倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板的间距应变为原来的( )A .2倍B .4倍C.12D.14解析:选C.电子在两极板间做类平抛运动,水平方向l =v 0t ,t =l v 0,竖直方向d =12at 2=qUl 22md v 20故d 2=qUl 22m v 20,即d ∝1v 0,故选C. 7.如图所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为y ,要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转电极板的情况)( )A .增大偏转电压UB .减小加速电压U 0C .增大偏转电场的极板间距离dD .将发射电子改成发射负离子解析:选AB.在加速电场中qU 0=12m v 20,在偏转电场中y =12at 2,l =v 0t ,可得y =Ul 24U 0d ,可见增大偏转电压U ,减小加速电压U 0,减小极板间距离d 可使偏转位移y 增大,故A 、B 项正确,C 项错误.偏转位移的大小与发射的带电粒子的q 、m 无关,故D 项错误.故选AB.8.如图所示是一个说明示波管工作原理的示意图,电子经电压U 1加速后垂直进入偏转电场,离开电场时的偏转量是h ,两平行板间的距离为d ,电势差为U 2,板长为L .为了提高示波管的灵敏度(每单位电压引起的偏转量h U 2),可采用的方法是( ) A .增大两板间的电势差U 2B .尽可能使板长L 短些C .尽可能使板间距离d 小一些D .使加速电压U 1升高一些解析:选C.电子的运动过程可分为两个阶段,即加速和偏转.分别根据两个阶段的运动规律,推导出灵敏度⎝⎛⎭⎫h U 2的有关表达式,然后再判断选项是否正确,这是解决此题的基本思路.电子经电压U 1加速有eU 1=12m v 20,电子经过偏转电场的过程有L =v 0t ,h =12at 2=eU 22mdt 2=U 2L 24dU 1.由以上各式可得h U 2=L 24dU 1.因此要提高灵敏度,若只改变其中的一个量,可采取的办法为增大L ,或减小d ,或减小U 1.故选C.☆9.(2019·高考安徽卷)图甲为示波管的原理图.如果在电极YY ′之间所加的电压按图乙所示的规律变化,在电极XX ′之间所加的电压按图丙所示的规律变化,则在荧光屏上会看到的图形是图A 、B 、C 、D 中的( )解析:选B.由题图乙及题图丙知,当U Y 为正时,Y 板电势高,电子向Y 偏,而此时U X 为负,即X ′板电势高,电子向X ′板偏,故选B.二、非选择题10.在如图所示的示波器的电容器中,电子以初速度v 0沿着垂直场强的方向从O 点进入电场,以O 点为坐标原点,沿x 轴取OA =AB =BC ,再过点A 、B 、C 作y 轴的平行线与电子径迹分别交于M 、N 、P 点,求AM ∶BN ∶CP 和电子途经M 、N 、P 三点时沿x 轴的分速度之比.解析:电子在电场中做类平抛运动,即在x 轴分方向做匀速直线运动,故M 、N 、P 三点沿x 轴的分速度相等,v Mx ∶v Nx ∶v Px =1∶1∶1又OA =AB =BC所以t OA =t AB =t BC根据电子沿-y 方向做匀加速运动,由y =12at 2得:AM ∶BN ∶CP =1∶4∶9. 答案:1∶4∶9 1∶1∶1☆11.示波器的示意图如图所示,金属丝发射出来的电子被加速后从金属板的小孔穿出,进入偏转电场.电子在穿出偏转电场后沿直线前进,最后打在荧光屏上.设加速电压U 1=1 640 V ,偏转极板长l =4 m ,金属板间距d =1 cm ,当电子加速后从两金属板的中央沿板平行方向进入偏转电场.求:(1)偏转电压U 2为多大时,电子束的偏移量最大?(2)如果偏转板右端到荧光屏的距离L =20 cm ,则电子束最大偏转距离为多少?解析:(1)设电子被电压U 1加速后获得速度大小为v 0,则有qU 1=12m v 20在金属板间电子的最大偏移量y 1=d 2=0.5 cm 则y 1=12at 2=12qU 2md ·⎝⎛⎭⎫l v 02=U 2l 24dU 1解得U 2=2.05×10-2 V.(2)电子离开偏转电场后做匀速直线运动,可看做从极板的正中心沿直线射出,如图所示.由几何知识,得y 1y =l 2l 2+L 解得y =0.55 cm.答案:(1)2.05×10-2 V (2)0.55 cm☆12.反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图所示,在虚线MN 两侧分别存在着方向相反的两个匀强电场,一带电微粒从A 点由静止开始,在电场力作用下沿直线在A 、B 两点间往返运动.已知电场强度的大小分别是E 1=2.0×103 N/C 和E 2=4.0×103 N/C ,方向如图所示,带电微粒质量m =1.0×10-20 kg ,带电荷量q =-1.0×10-9 C ,A 点距虚线MN 的距离d 1=1.0 cm ,不计带电微粒的重力,忽略相对论效应.求:(1)B 点距虚线MN 的距离d 2;(2)带电微粒从A 点运动到B 点所经历的时间t .解析:(1)带电粒子由A 运动到B 的过程中,由动能定理有|q |E 1d 1-|q |E 2d 2=0,由上式解得d 2=E 1E 2d 1=0.50 cm. 或由牛顿运动定律和匀变速直线运动公式求解,由a =qE m ,得a 1=12a 2,又由d =v 22a,可知d 2=12d 1=0.50 cm. (2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律有|q |E 1=ma 1,|q |E 2=ma 2.设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式有d 1=12a 1t 21,d 2=12a 2t 22,又t =t 1+t 2,由以上各式解得t =1.5×10-8 s. 答案:(1)0.5 cm (2)1.5×10-8 s。

《步步高-学案导学设计》-高中数学苏教版选修-微积分基本定理市公开课获奖课件省名师示范课获奖课件

《步步高-学案导学设计》-高中数学苏教版选修-微积分基本定理市公开课获奖课件省名师示范课获奖课件

研一研·问题探究、课堂更高效
本课时栏目开关
由 1213aa+ +12b= b=5167

解得 a=4,b=3,故 f(x)=4x+3.
练一练·当堂检测、目标达成落实处
本课时栏目开关
π
1.ʃ
2 -π
(1+cos
x)dx=__π_+__2___.
2
解析 ∵(x+sin x)′=1+cos x,
π
π
∴ =ʃπ2-2+π2(s1in+π2-cos-x)π2d+x=si(nx+-sπ2in=x)|π-2+π2 2.
本课时栏目开关
研一研·问题探究、课堂更高效
问题2 对一个连续函数f(x)来说,是否存在唯一的F(x),使 F′(x)=f(x)? 答案 不唯一,根据导数的性质,若 F′(x)=f(x),则对任 意实数 c,[F(x)+c]′=F′(x)+c′=f(x).
本课时栏目开关
本课时栏目开关
研一研·问题探究、课堂更高效
练一练·当堂检测、目标达成落实处
本课时栏目开关
4.设函数 f(x)=ax2+c (a≠0),若 ʃ10f(x)dx=f(x0),0≤x0≤1,
3 则 x0 的值为____3____.
解析 ʃ 10(ax2+c)dx=ax20+c,∴a3=ax02, ∵a≠0,∴x02=13,

0≤x0≤1,∴x0=
本课时栏目开关
研一研·问题探究、课堂更高效
跟踪训练3 f(x)是一次函数,且ʃ01f(x)dx=5,ʃ01xf(x)dx=167, 求f(x)的解析式.
解 设f(x)=ax+b(a≠0),
则ʃ 10(ax+b)dx=ʃ10axdx+ʃ 01bdx =12ax2|10+bx|10=12a+b, ʃ 10x(ax+b)dx=ʃ 10(ax2+bx)dx =13ax3|10+12bx2|01=13a+12b,

《步步高 学案导学设计》2013-2014学年 高中数学北师大版选修2-2【配套备课资源】第3章 1.2

《步步高 学案导学设计》2013-2014学年 高中数学北师大版选修2-2【配套备课资源】第3章 1.2

研一研·问题探究、课堂更高效
1.2
结论 问题1中点d叫作函数y=f(x)的极小值点,f(d)叫作函数y
本 课 =f(x)的极小值;点e叫作函数y=f(x)的极大值点,f(e)叫作函数 时 栏 y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值 目 开 关 和极小值统称为极值.
研一研·问题探究、课堂更高效

2.极小值点与极小值:如图,在包含x0 的一个区间(a,b)内,函数y=f(x)在任
本 课 的函数值,称点x0为函数y=f(x)的 时 栏 极小值点 ,其函数值f(x0)为函数的 极小值 . 目 开 关 3.如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)
何一点的函数值 都大于或等于 x0点
解析
1 A中f′(x)=-x2,令f′(x)=0无解,
∴A中函数无极值. B中f′(x)=1-ex,令f′(x)=0可得x=0. 当x<0时,f′(x)>0,当x>0时,f′(x)<0. ∴y=f(x)在x=0处取极大值,f(0)=-1. C中f′(x)=3x2+2x+2,Δ=4-24=-20<0.
答 可导函数的极值点处导数为零,但导数值为零的点不一定 是极值点.可导函数f(x)在x0处取得极值的充要条件是f′(x0) =0且在x0两侧f′(x)的符号不同. 例如,函数f(x)=x3可导,且在x=0处满足f′(0)=0,但由于当 x<0和x>0时均有f′(x)>0,所以x=0不是函数f(x)=x3的极值点.
当a=1,b=3时,f′(x)=3x2+6x+3=3(x+1)2≥0, 所以f(x)在R上为增函数,无极值,故舍去.
当a=2,b=9时,f′(x)=3x2+12x+9=3(x+1)(x+3).

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版选修1-1【配套备课资源】1.1.1命 题

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版选修1-1【配套备课资源】1.1.1命 题

研一研·问题探究、课堂更高效
问题 4
答案
本 专 题 栏 目 开 关
1.1.1
怎样判断一个命题是真命题还是假命题?
要判断一个命题是真命题,要从条件出发,经过严
格的推理论证推出结论成立.在判断时,要有推理依据, 综合各种情况作出判断.要判断一个命题是假命题,只需 要举出一个反例即可.
研一研·问题探究、课堂更高效
行四边形的对角线相等,则该平行四边形是矩形”.条件 p: 一个平行四边形的对角线相等, 结论 q: 该平行四边形是矩形, 真命题. (3)命题“相等的两个角正切值相等”, 即“若两个角相等,则这
两个角的正切值相等”.条件 p:两个角相等,结论 q:这两 个角的正切值相等,假命题.
练一练·当堂检测、目标达成落实处
研一研·问题探究、课堂更高效
1.1.1

(1)是祈使句,不是命题.
(2)x2+4x+4=(x+2)2≥0,可以判断真假,是命题,且是真 命题.
(3)是疑问句,不是命题.
本 专 题 栏 目 开 关
(4)是真命题,有的人喜欢苹果,有的人不喜欢苹果.
(5)是假命题, 如: 3+(- 3)和 3· 3)都是有理数, 3 (- 但 和- 3都是无理数. (6)不是命题,这种含有未知数的语句,未知数的取值能否 使不等式成立,无法确定. 小结 判断一个语句是否是命题关键看它是否符合两个条 件:“是陈述句”和“可以判断真假”,而祈使句、疑问 句、感叹句等都不是命题.
本 专 题 栏 目 开 关
解析
①等底等高的三角形都是面积相等的三角形,但不一
定全等; ②当 x,y 中一个为零,另一个不为零时,|x|+|y|≠0; ③当 c=0 时不成立; ④菱形的对角线互相垂直.矩形的对角线不一定垂直. 答案 4

高中物理《步步高》教科版3-1第一章 3学案

高中物理《步步高》教科版3-1第一章 3学案

3 电场 电场强度和电场线[学习目标] 1.掌握电场强度的概念及公式,并会进行有关的计算.2.理解点电荷的电场强度公式及电场中某点场强的方向.3.会用电场线表示电场,并熟记几种常见电场的电场线分布特征.一、电场1.电场:存在于电荷周围的一种特殊物质,电荷之间的相互作用是通过电场产生的.2.电场的基本性质:电场对放入其中的电荷有力的作用. 电场力:电场对电荷的作用力.3.静电场:静止电荷周围产生的电场.二、电场强度1.检验电荷检验电荷是指用来检验电场是否存在及其强弱分布情况的电荷.检验电荷应具备两个条件:(1)电荷量充分小;(2)体积充分小.2.电场强度(1)定义:放入电场中某点的电荷所受的电场力跟它的电荷量的比值,叫做该点的电场强度.(2)定义式:E =F q. (3)单位:牛/库(N/C),伏/米(V/m).1N /C =1 V/m.(4)方向:电场强度是矢量,电场中某点的电场强度的方向与正电荷在该点所受电场力的方向相同,与负电荷在该点所受电场力的方向相反.三、点电荷的电场1.真空中点电荷的电场(1)场强公式:E =k Q r 2,其中k 是静电力常量,Q 是场源电荷的电荷量. (2)方向:如果以Q 为中心作一个球面,当Q 为正电荷时,E 的方向沿半径向外;当Q 为负电荷时,E 的方向沿半径向内.2.电场强度的叠加 场强是矢量,如果场源是多个点电荷时,电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和.四、电场线 匀强电场1.电场线(1)电场线的概念:电场线是画在电场中的一条条有方向的曲线,曲线上每一点的切线方向表示该点的电场强度方向.(2)电场线的特点 ①电场线起始于正电荷,终止于负电荷或无穷远处;或者起始于无穷远处,终止于负电荷,电场线不闭合. ②任何两条电场线不会相交. ③在同一电场中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏.(3)几种特殊的电场线分布,如图1所示.图12.匀强电场(1)定义:如果电场中各点电场强度的大小相等、方向相同,这个电场就叫做匀强电场.(2)特点:①电场方向处处相同,电场线是平行直线. ②场强大小处处相等,电场线间隔相等.(3)实例:相距很近,带有等量异号电荷的一对平行金属板之间的电场(边缘附近除外),可以看做匀强电场.[即学即用]1.判断下列说法的正误.(1)根据电场强度的定义式E =F q,可知E 与F 成正比,与q 成反比.( × ) (2)电场中某点的电场强度与正电荷受力方向相同,当该点放置负电荷时,电荷受力方向反向,则该点电场强度方向也反向.( × )(3)由E =kQ r 2知,在以点电荷Q 为球心、r 为半径的球面上,各处场强大小相等,但方向不同.( √ )(4)若空间有两个点电荷,则该空间某点的场强等于这两个点电荷产生的电场强度的代数和.( × )(5)电场线的方向与带电粒子的运动方向一定相同.( × )(6)顺着电场线的方向,电场强度一定越来越小.( × )2.在静电场中的某一点A 放一个检验电荷q =-1×10-10C ,q 受到的电场力为1×10-8N ,方向向左,则A 点的场强的大小为________,方向________;如果从A 点取走q ,A 点场强大小为________.答案 100N /C 向右 100 N/C解析 由题意知,q =-1×10-10C ,F =1×10-8N , 由场强的定义知A 点的场强的大小为:E =F |q |=1×10-81×10-10N /C =100 N/C , 场强方向与负电荷在A 点所受电场力方向相反,所以A 点的场强方向向右;电场强度是反映电场性质的物理量,与有无检验电荷无关,把这个检验电荷取走,A 点的电场强度不变,仍为100N/C.一、电场强度[导学探究] (1)电场的基本性质是什么?如何去探究电场的这种性质?(2)在空间中有一电场,把一带电荷量为q 的检验电荷放在电场中的A 点,该电荷受到的电场力为F .若把带电荷量为2q 的点电荷放在A 点,则它受到的电场力为多少?若把带电荷量为nq 的点电荷放在该点,它受到的电场力为多少?电荷受到的电场力F 与电荷量q 有何关系? 答案 (1)电场对放入其中的电荷有力的作用.可在电场中放一检验电荷,通过分析检验电荷的受力研究电场的性质.(2)2F ,nF .F 与q 成正比,即F 与q 的比值为定值.[知识深化]1.电场强度是由电场本身所决定的,与检验电荷无关.2.电场强度是矢量,其方向与在该点的正电荷所受电场力的方向相同,与在该点的负电荷所受电场力的方向相反.3.公式E =F q是电场强度的定义式,该式给出了测量电场中某一点电场强度的方法. 公式E =F q可变形为F =qE :电场强度E 与电荷量q 的乘积等于电场力的大小;正电荷所受电场力方向与电场强度方向相同,负电荷所受电场力方向与电场强度方向相反.。

2013年《步步高》人教版物理高考大一轮【word教案+学案+作业】——选修3-4

2013年《步步高》人教版物理高考大一轮【word教案+学案+作业】——选修3-4
周期是()
A.2πB.2π
C.2π(+)D.π(+)
4.做简谐运动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的()
A.频率、振幅都不变B.频率、振幅都改变
共振现象.共振曲线如图7所示.
考点一简谐运动图象及运动规律
考点解读
1.图象的应用
(1)确定振动物体在任意时刻的位移.如图8中,对应t1、t2
时刻的位移分别为x1=+7cm,x2=-5cm.
(2)确定振动的振幅.如图振幅是10cm.
(3)确定振动的周期和频率.振动图象上一个完整的正弦(余
弦)图形在时间轴上拉开的“长度”表示周期.
从最大位移处开始计时,函数表达式为x=Acosωt,图象如图3所示.
图2图3
5.简谐运动的能量
简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与________有关,________越大,能量越大.
二、单摆
[基础导引]
图4是两个单摆的振动图象.
(1)甲、乙两个摆的摆长之比是多少?
(2)以向右的方向作为摆球偏离平衡位置的位移的正方向,从t=0起,乙第一次到达右方最大位移处时,甲振动到了什么位置?向什么方向运动?
考点解读
1.受迫振动的频率等于驱动力的频率,与固有频率无关.
2.当驱动力频率等于物体固有频率时,发生共振现象,振幅最大.
典例剖析
例3一砝码和一轻弹簧构成弹簧振子,如图13甲所示,该装置可用于研究弹簧振子的受迫振动.匀速转动把手时,曲杆给弹簧振子以驱动力,使振子做受迫振动.把手匀速转动的
周期就是驱动力的周期,改变把手匀速转动的速度就可以改变驱动力的周期.若保持把手不动,给砝码一向下的初速度,砝码便做简谐运动,振动图线如图乙所示.当把手以某一速度匀速运动,受迫振动达到稳定时,砝码的振动图象如图丙所示.若用T0表示弹簧振子的固有周期,T表示驱动力的周期,Y表示受迫振动达到稳定后砝码振动的振幅,则:

高中物理《步步高》教科版3-1第三章 5学案

高中物理《步步高》教科版3-1第三章 5学案

5 洛伦兹力的应用[学习目标] 1.知道利用磁场控制带电粒子的偏转.2.掌握带电粒子在匀强磁场中做匀速圆周运动的规律和分析方法.3.理解质谱仪、回旋加速器的工作原理,并会进行有关计算.一、利用磁场控制带电粒子运动1.偏转角度:如图1所示,tan θ2=r R ,R =m v 0Bq ,则tan θ2=qBr m v 0,由此可见,对于一定的带电粒子(m 、q 一定),可以通过调节B 和v 0的大小来控制粒子的偏转角度θ.图1 2.控制特点:只改变带电粒子的运动方向,不改变带电粒子的速度大小.二、质谱仪 1.作用:常用来测定带电粒子的比荷和分析同位素等.2.原理图及特点如图2所示,S 1与S 2之间为加速电场;S 2与S 3之间的装置叫速度选择器,它要求E 与B 1垂直且E 方向向右时,B 1垂直纸面向外(若E 反向,B 1也必须反向);S 3下方为偏转磁场.图23.工作原理(1)速度选择:在P 1、P 2之间通过调节E 和B 1的大小,使速度v =E B 1的粒子进入B 2区. (2)偏转:R =m v qB 2⇒q m =v B 2R =2E B 1B 2L(L 为条纹到狭缝S 3的距离).三、回旋加速器1.构造图:如图3所示,回旋加速器的核心部件是两个D 形盒.图32.周期:粒子每经过一次加速,其轨道半径就大一些,粒子做圆周运动的周期不变.3.最大动能:由q v B =m v 2r 和E k =12m v 2得E k =q 2B 2r 22m ,当r =R 时,有最大动能E km =q 2B 2R 22m (R 为D 形盒的半径),即粒子在回旋加速器中获得的最大动能与q 、m 、B 、R 有关,与加速电压无关.[即学即用]1.判断下列说法的正误.(1)粒子以速度v 0沿半径方向进入圆形磁场区域,离开磁场时,其速度的反向延长线过磁场圆的圆心.( √ )(2)增大粒子的速度v 0,可以使粒子离开磁场时的偏转角度θ变大.( × )(3)同位素的不同原子经过速度选择器后的速度相同.( √ )(4)因不同原子的质量不同,所以同位素在质谱仪中的运动半径不同.( √ )(5)利用回旋加速器加速带电粒子,要提高加速粒子的最终能量,应尽可能增大磁感应强度B 和D 形盒的半径R .( √ )2.如图4所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子(不计重力)从S 点沿SP 方向同时射入磁场.其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,设粒子从S 到a 、b 所需时间分别为t 1和t 2,则t 1∶t 2=______________图4答案 3∶2解析 如图所示,可求出从a 点射出的粒子对应的圆心角为90°.从b 点射出的粒子对应的圆心角为60°.由t =α2πT ,可得:t 1∶t 2=3∶2.一、利用磁场控制带电粒子运动1.圆心的确定方法:两线定一点(1)圆心一定在垂直于速度的直线上.如图5甲所示,已知入射点P 和出射点M 的速度方向,可通过入射点和出射点作速度的垂线,两条直线的交点就是圆心.图5(2)圆心一定在弦的中垂线上.如图乙所示,作P 、M 连线的中垂线,与其中一个速度的垂线的交点为圆心.2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要做好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在磁场中运动时间的确定(1)粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ). (2)当v 一定时,粒子在磁场中运动的时间t =Δs v ,Δs 为带电粒子通过的弧长.。

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修3【配套备课资源】3.2.2 习题课

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修3【配套备课资源】3.2.2  习题课

研一研·题型解法、解题更高效
习题课
(1)x=4 的概率是多少?x=4 且 y=3 的概率是多少?x≥3 的概率是多少?在 x≥3 的基础上 y=3 同时成立的概率是 多少?
本 课 时 栏 目 开 关
(2)x=2 的概率是多少?a+b 的值是多少? 1+0+7+5+1 7 解 (1)P(x=4)= =25; 50 7 P(x=4,y=3)=50; P(x≥3)=P(x=3)+P(x=4)+P(x=5) 2+1+0+9+3 7 1+3+1+0+1 7 = +25+ =10. 50 50 7 当 x≥3 时,有10×50=35(人), ∴在 x≥3 的基础上,y=3 有 8 人. 8 ∴在 x≥3 的基础上 P(y=3)=35.
例2
习题课
某射击运动员射击一次射中 10 环,9 环,8 环,7 环的
概率分别为 0.24,0.28,0.19,0.16.计算这名运动员射击一次: (1)射中 10 环或 9 环的概率;
本 课 时 栏 目 开 关
(2)至少射中 7 环的概率; (3)射中环数不超过 7 环的概率.
解 记“射中 10 环”为事件 A, “射中 9 环”为事件 B, “射中 8 环”为事件 C,“射中 7 环”为事件 D. 则事件 A、B、C、D 两两互斥, 且 P(A)=0.24,P(B)=0.28,P(C)=0.19,P(D)=0.16. (1)∵射中 10 环或 9 环为事件 A∪B,
本 课 时 栏 目 开 关
有 4 种不同的取法, 其中可以构成三角形的有(2,3,4)、(2,4,5)、(3,4,5)三种, 3 故所求概率为 P=4. 4.抛掷一粒骰子,观察掷出的点数,设事件 A 为出现奇 1 1 数点,事件 B 为出现 2 点,已知 P(A)=2,P(B)=6, 2 则出现奇数点或 2 点的概率为________. 3

高中物理选修3-1学案:1.1静电现象与电荷守恒同步练习课堂练习Word含答案

高中物理选修3-1学案:1.1静电现象与电荷守恒同步练习课堂练习Word含答案

学案1静电现象与电荷守恒[目标定位]1.知道自然界中的两种电荷及其相互作用.2.知道使物体带电的三种方式.3.掌握电荷守恒定律及元电荷的概念.一、物体起电的原因1.在干燥的实验室里,用丝绸摩擦过的玻璃棒带正电,用毛皮摩擦过的橡胶棒带负电.玻璃棒和橡胶棒带电原因是什么呢?是否产生了电荷呢?2.取一对用绝缘柱支持的导体A和B,使它们彼此接触,如图1所示.起初它们不带电,贴在下部的金属箔是闭合的.图1(1)把带正电荷的物体C移近导体A,金属箔有什么变化?(2)这时把A和B分开,然后移去C,金属箔又有什么变化?(3)再让A和B接触,又会看到什么现象?(4)再把带正电的物体C和A接触,金属箔又有什么变化?[要点总结]1.摩擦起电的原因:当两个物体相互摩擦时,一些束缚不紧的电子会从一个物体转移到另一个物体,于是原来呈电中性的物体由于得到电子而带________电,失去电子的物体则带________电.2.感应起电的原因:当一个带电体靠近导体时,由于电荷之间相互吸引或排斥,导体中的自由电子便会趋向或远离带电体,使导体靠近带电体的一端带________电荷,远离带电体的一端带________电荷.3.接触起电的原因:电荷从带电体转移到不带电的物体上.4.三种起电方式的实质都是________的转移.例1(多选)关于摩擦起电现象,下列说法正确的是()A.摩擦起电现象使本来没有电子和质子的物体中产生了电子和质子B.两种不同材料的绝缘体相互摩擦后,同时带上等量异号电荷C.摩擦起电,可能是因为摩擦导致质子从一个物体转移到了另一个物体而造成的D.丝绸摩擦玻璃棒时,电子从玻璃棒上转移到丝绸上,玻璃棒因质子数多于电子数而显正电例2(多选)如图2所示,不带电的枕形导体的A、B两端各贴有一对金箔.当枕形导体的A端靠近一带正电的导体C时()图2A.A端金箔张开,B端金箔闭合B.用手触摸枕形导体后,A端金箔仍张开,B端金箔闭合C.用手触摸枕形导体后,将手和C都移走,两对金箔均张开D.选项A中两对金箔分别带异号电荷,选项C中两对金箔带同号电荷二、电荷守恒定律1.电荷会不会像煤和石油一样总有一天会被用完呢?2.前面学习了三种不同的起电方式,其本质都是电子在物体之间或物体内部转移.那么,在一个封闭的系统中电荷的总量能增多或减少吗?[要点总结]电荷守恒定律:电荷既不能被创造,也不会被________,只能从一个物体转移到另一个物体,或者从物体的一个部分转移到另一个部分,在转移过程中,电荷的总量________.说明:(1)电荷守恒定律的关键词是“转移”和“总量不变”.(2)导体接触带电时电荷量的分配与导体的形状、大小有关.若两个完全相同的金属小球接触后再分开,将________电荷,两小球带电荷量都为Q=______________(式中电荷量Q1和Q2均包含它们的正、负号).例3(多选)原来甲、乙、丙三物体都不带电,今使甲、乙两物体相互摩擦后,乙物体再与丙物体接触,最后,得知甲物体带正电荷1.6×10-15 C,丙物体带电荷量的大小为8×10-16 C.则对于最后乙、丙两物体的带电情况,下列说法中正确的是()A.乙物体一定带有负电荷8×10-16 CB.乙物体可能带有负电荷2.4×10-15 CC.丙物体一定带有正电荷8×10-16 CD.丙物体一定带有负电荷8×10-16 C三、元电荷1.物体的带电荷量可以是任意的吗?带电荷量可以是4×10-19C吗?2.电子和质子就是元电荷吗?[要点总结]1.电荷量:物体所带________________叫做电荷量.国际单位是________,简称库,用C 表示.2.元电荷:__________________叫做元电荷,用e表示.电荷量e的数值最早是由美国物理学家__________通过实验测得的.3.电子的比荷:电子的电荷量e跟________________之比,叫做电子的比荷.说明:(1)所有带电体的带电荷量或者________e,或者是e的__________.(2)质子和电子所带电荷量与元电荷相等,但不能说电子和质子是元电荷.例4(多选)下列关于元电荷的说法中正确的是()A.元电荷实质上是指电子和质子本身B.一个带电体的带电荷量可以为205.5倍的元电荷C.元电荷没有正负之分D.元电荷e的值最早是由美国物理学家密立根通过实验测定的1.(对摩擦起电的理解)毛皮与橡胶棒摩擦后,毛皮带正电,橡胶棒带负电.这是因为() A.空气中的正电荷转移到了毛皮上B.空气中的负电荷转移到了橡胶棒上C.毛皮上的电子转移到了橡胶棒上D.橡胶棒上的电子转移到了毛皮上2. (对感应起电的理解)(多选)用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上.小明同学用绝缘材料做的笔套与头发摩擦后,将笔套自上而下慢慢靠近圆环,当距离约为0.5 cm时圆环被吸引到笔套上,如图3所示.对上述现象的判断与分析,下列说法正确的是()图3A.摩擦使笔套带电B.笔套靠近圆环时,圆环上、下部感应出异号电荷C.圆环被吸引到笔套上的过程中,圆环所受静电力的合力大于圆环的重力D.笔套碰到圆环后,笔套所带的电荷立刻被全部中和3.(对元电荷的理解)保护知识产权,抵制盗版是我们每个公民的责任与义务.盗版书籍不但影响我们的学习效率,甚至会给我们的学习带来隐患.某同学有一次购买了盗版的物理参考书,做练习时,发现有一个带电质点的电荷量数据看不清,只能看清是9.________×10-18 C,拿去问老师.如果你是老师,你认为该带电质点的电荷量可能是下列数据中的哪一个()A.9.2×10-18 C B.9.4×10-18 CC.9.6×10-18 C D.9.8×10-18 C4.(对电荷守恒定律的理解)有两个完全相同的带电金属小球A、B,分别带有电荷量为Q A=6.4×10-9 C、Q B=-3.2 ×10-9 C,让两个金属小球接触,在接触过程中,电子如何转移,转移了多少个电子?答案精析知识探究一、1.原因是玻璃棒上的负电荷向丝绸上转移,橡胶棒上的正电荷向毛皮上转移.不是产生了电荷.2.(1)C移近导体A,两侧金属箔都张开;(2)金属箔仍张开,但张角变小;(3)再让A、B接触,金属箔都闭合.(4)两侧金属箔都张开.要点总结1.负正2.异种同种4.电子典型例题例1BD[摩擦起电的实质是由于两个物体的原子核对核外电子的束缚能力不相同,因而电子可以在物体间转移.若一个物体失去电子,其质子数就会比电子数多,我们说它带正电;若一个物体得到电子,其质子数就会比电子数少,我们说它带负电.]例2BCD[根据静电感应现象,带正电的导体C放在枕形导体附近,在A端出现了负电荷,在B端出现了正电荷,故A、B端金箔均张开.选项A错误.用手触摸枕形导体后,B 端不再是最远端,人是导体,人脚下的地球是最远端,这样B端不再有电荷,金箔闭合.选项B正确.用手触摸枕形导体后,只有A端带负电,将手和C都移走,不再有静电感应,A端所带负电便会分布在整个枕形导体上,A、B端均带有负电,两对金箔均张开.选项C 正确.从以上分析看出,选项D正确.]二、1.不会.2.在一个封闭的系统中,电荷的总量保持不变.要点总结消灭不变(2)平分Q1+Q22典型例题例3AD[由于甲、乙、丙原来都不带电,甲、乙相互摩擦导致甲失去电子而带1.6×10-15 C的正电荷,乙物体得到电子而带1.6×10-15 C的负电荷;乙物体与不带电的丙物体相接触,从而使一部分负电荷转移到丙物体上,故可知乙、丙两物体都带负电荷,由电荷守恒可知乙最终所带负电荷为1.6×10-15C -8×10-16C =8×10-16C ,故A 、D 正确.]三、1.物体的带电荷量不是任意的,它只能是1.6×10-19C 的整数倍.由于4×10-19C 是1.6×10-19C 的2.5倍,所以带电荷量不能是4×10-19C.2.元电荷是电荷量的单位,不是物质;电子和质子是实实在在的粒子. 要点总结1.电荷的多少 库仑 2.最小的电荷量 密立根3.电子的质量m e (1)等于 整数倍 典型例题例4 CD [元电荷是指电子或质子所带电荷量的大小,但元电荷不是带电粒子,也没有电性之说,A 项错误,C 项正确;元电荷是最小的带电单位,所有带电体的带电荷量一定等于元电荷的整数倍,B 项错误;元电荷的电荷量e 的值最早是由美国物理学家密立根通过实验测定的,D 项正确.] 达标检测1.C 2.ABC 3.C4.电子由球B 转移到球A 3.0×1010个解析 在接触过程中,由于B 球带负电,其上多余的电子转移到A 球,中和A 球上的一部分正电荷直至B 球为中性不带电,同时,由于A 球上有净正电荷,B 球上的电子会继续转移到A 球,直至两球带上等量的正电荷. 在接触过程中,电子由球B 转移到球A .接触后两小球各自的带电荷量Q A ′=Q B ′=Q A +Q B 2=6.4×10-9-3.2×10-92C =1.6×10-9 C共转移的电子电荷量为ΔQ =-Q B +Q B ′=3.2×10-9 C +1.6×10-9 C =4.8×10-9 C转移的电子数为n =ΔQ e =4.8×10-9C1.6×10-19 C=3.0×1010个.学案2 探究电荷相互作用规律[目标定位] 1.知道点电荷的概念.2.理解库仑定律的内容、公式及其适用条件,会用库仑定律进行有关的计算.一、库仑定律1.如图1所示,用摩擦起电的方法分别让球形导体A 和通草球B 带上同种电荷,并使球形导体A 与通草球B 处在同一水平面上.图1(1)使通草球B 处于同一位置,增大或减小其所带的电荷量,通草球B 所受作用力的大小如何变化?(2)保持导体A 和通草球B 的电荷量不变,改变两者之间的距离,通草球B 所受作用力的大小如何变化?(3)以上说明,哪些因素影响电荷间的相互作用力?这些因素对作用力的大小有什么影响?2.库仑研究电荷间相互作用的装置叫库仑扭秤,该装置是利用什么方法显示力的大小?通过库仑的实验,两带电体间的作用力F 与距离r 的关系如何?[要点总结]1.库仑定律:__________两个静止的点电荷之间相互作用力的大小,跟它们的电荷量q 1与q 2的乘积__________,跟它们的________________成反比,作用力的方向沿着它们的连线.表达式:F =k q 1q 2r 2.式中的k 为静电力常量,数值为k =__________________.2.库仑定律的适用范围:______________________.3.点电荷是只有电荷量,没有________、________的带电体,是一种理想化的物理模型.当带电体间的距离比它们自身的大小大得多,以至于带电体的形状、大小及____________状况对它们之间的相互作用力的影响可以忽略时,带电体可以看做点电荷. [延伸思考]1.有人说:“点电荷是指带电荷量很小的带电体”,对吗?为什么?2.还有人根据F =k q 1q 2r 2推出当r →0时,F →∞,正确吗?例1 两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间静电力的大小为F .两小球相互接触后将其固定距离变为r2,则两球间静电力的大小为( ) A.112F B.34F C.43F D .12F针对训练 有三个完全相同的金属小球A 、B 、C ,A 所带电荷量为+7Q ,B 所带电荷量为-Q ,C 不带电.将A 、B 固定起来,然后让C 反复与A 、B 接触,最后移去C ,A 、B 间的相互作用力变为原来的( ) A.17倍 B.27倍 C.47倍 D.57倍 二、静电力的叠加已知空间中存在三个点电荷A 、B 、C ,A 对C 的静电力是否因B 的存在而受到影响?A 、B 是否对C 都有力的作用?如何求A 、B 对C 的作用力?[要点总结]1.如果存在两个以上点电荷,那么每个点电荷都要受到其他所有点电荷对它的作用力.两个点电荷之间的作用力不因第三个点电荷的存在而有所改变.因此,某点电荷受到的作用力,等于____________________对这个点电荷的作用力的__________.2.任何一个带电体都可以看成是由许多点电荷组成的.所以,如果知道带电体上的电荷分布,根据库仑定律和______________定则就可以求出带电体间的静电力的大小和方向.例2 如图2所示,分别在A 、B 两点放置点电荷Q 1=+2×10-14C 和Q 2=-2×10-14C .在AB 的垂直平分线上有一点C ,且AB =AC =BC =6×10-2 m .如果有一高能电子静止放在C点处,则它所受的静电力的大小和方向如何?图2例3 如图3所示,两个点电荷,电荷量分别为q 1=4×10-9 C 和q 2=-9×10-9 C ,分别固定于相距20 cm 的a 、b 两点,有一个点电荷q 放在a 、b 所在直线上且静止不动,该点电荷所处的位置是( )图3A .在a 点左侧40 cm 处B .在a 点右侧8 cm 处C .在b 点右侧20 cm 处D .无法确定1.(对点电荷的理解)(多选)对点电荷的理解,你认为正确的是( ) A .点电荷可以是带电荷量很大的带电体 B .点电荷的带电荷量可能是2.56×10-20CC .只要是均匀的球形带电体,不管球的大小,都能被看做点电荷D .当两个带电体的形状对它们的相互作用力的影响可忽略时,这两个带电体都能看做点电荷2.(库仑定律的理解与应用)相隔一段距离的两个点电荷,它们之间的静电力为F ,现使其中一个点电荷的电荷量变为原来的2倍,同时将它们间的距离也变为原来的2倍,则它们之间的静电力变为( ) A.F 2B .4FC .2FD.F 43. (静电力的叠加)如图4所示,等边三角形ABC ,边长为L ,在顶点A 、B 处有等量同种点电荷Q A 、Q B ,Q A =Q B =+Q ,求在顶点C 处的正点电荷Q C 所受的静电力.图44.(静电力的叠加)如图5所示,在一条直线上的三点分别放置Q A =+3×10-9 C 、Q B =-4×10-9 C 、Q C =+3×10-9 C 的A 、B 、C 点电荷,试求作用在点电荷A 上的静电力的大小.图5答案精析知识探究一、1.(1)增大通草球B 所带的电荷量,其受到的作用力增大;减小通草球B 所带的电荷量,其受到的作用力减小.(2)两者距离增大,作用力变小;距离减小,作用力变大.(3)电荷量和电荷间的距离.电荷之间的作用力随着电荷量的增大而增大,随着电荷间距离的增大而减小.2.该装置通过悬丝扭转的角度来显示力的大小,力越大,悬丝扭转的角度越大.力F 与距离r 的二次方成反比:F ∝1r 2 要点总结1.真空中 成正比 距离r 的平方 9.0×109 N·m 2/C 22.真空中的点电荷3.大小 形状 电荷分布延伸思考1.不对.点电荷是只有电荷量,没有大小、形状的带电体,是一种理想化的物理模型.当带电体间的距离比它们自身的大小大得多,以至于带电体的形状、大小及电荷分布状况对它们之间的相互作用力的影响可以忽略时,带电体可以看做点电荷.一个物体能否被看做点电荷,是相对于具体问题而言的,不能单凭其大小和形状而定.2.从数学角度分析似乎正确,但从物理意义上分析却是错误的.因为当r →0时,两带电体已不能看做点电荷,库仑定律不再适用了.典型例题例1 C [两带电金属小球接触后,它们的电荷量先中和后均分,由库仑定律得:F =k 3Q 2r 2,F ′=k Q 2(r 2)2=k 4Q 2r 2.联立得F ′=43F ,C 选项正确.] 针对训练 C二、A 对C 的静电力不受B 的影响,A 、B 对C 都有力的作用,A 、B 对C 的作用力等于A 、B 单独对C 的作用力的矢量和.要点总结1.其他点电荷单独 矢量和2.平行四边形典型例题例2 8.0×10-21 N 方向平行于AB 连线由B 指向A解析 电子带负电荷,在C 点同时受A 、B 两点电荷的作用力F A 、F B ,如图所示.由库仑定律F =k q 1q 2r 2得 F A =k Q 1e r 2 =9.0×109×2×10-14×1.6×10-19(6×10-2)2 N=8.0×10-21 NF B =k Q 2e r 2=8.0×10-21 N 由矢量的平行四边形定则和几何知识得静止放在C 点的高能电子受到的静电力F =F A =F B =8.0×10-21 N ,方向平行于AB 连线由B 指向A .例3 A [此电荷电性不确定,根据平衡条件,它应在q 1点电荷的左侧,设距q 1距离为x ,由k q 1q x 2=k q 2q (x +20)2,将数据代入,解得x =40 cm ,故A 项正确.] 达标检测1.AD2.A [F =k q 1q 2r 2,F ′=k 2q 1q 2(2r )2=12k q 1q 2r 2=F 2,选A.] 3.3k QQ C L 2,方向为与AB 连线垂直向上 解析 正点电荷Q C 在C 点的受力情况如图所示,Q A 、Q B 对Q C 的作用力大小和方向都不因其他电荷的存在而改变,仍然遵守库仑定律.Q A 对Q C 作用力:F A =k Q A Q C L 2,同种电荷相斥,Q B 对Q C 作用力:F B =k Q B Q C L 2,同种电荷相斥, 因为Q A =Q B =+Q ,所以F A =F B ,Q C 受力的大小:F =3F A =3k QQ C L 2,方向为与AB 连线垂直向上. 4.9.9×10-4 N 解析 A 受到B 、C 电荷的静电力如图所示,根据库仑定律有F BA =kQ B Q A r 2BA =9×109×4×10-9×3×10-90.012 N =1.08×10-3 N F CA =kQ C Q A r 2CA =9×109×3×10-9×3×10-90.032 N =9×10-5 N 规定沿这条直线由A 指向C 为正方向,则点电荷A 受到的合力大小为F A =F BA -F CA =(1.08×10-3-9×10-5) N =9.9×10-4 N.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8
学习·探究区
答案 (1)满足两个条件中的一个
(2)熄 亮 亮 亮
(3)
本 学
输入


A
B


0
0

0
1
输出 Y 0 1
1
0
1
1
1
1
2021/3/12
学案13
9
学习·探究区
三、“非”门
[问题设计]
如图 3 所示,当开关 A 接通时,灯泡
Y 被短路而不亮;当开关 A 断开时,
本 学
灯泡 Y 是通路而被点亮.
图4

其真值表为
开 关
输入 输出
A1
B1
Y2
0
0
1
0
1
1
1
0
1
2021/3/12
1
1
0
12
学习·探究区
学案13
2.“或非”门 一个“或”门电路和一个“非”门电路组合在一起,组 成一个“或非”门,如图 5 所示.

学 案
图5

其真值表为


输入 输出

A1 B1 Y2
001
010
100
110
2021/3/12
势升高,灯不亮,说明门电路输出端电势降低,输出
关系的电路称为_“_与__”__门__电路,简称“与”门.
其符号为______________.
2021/3/12
2
知识·储备区
学案13
3.如果几个条件中,只要有一个条件得到满足,某事件就
会发生,这种关系叫做“_或__”__逻__辑_关系;具有“_或___”__逻__辑关

系的电路叫做“或”门.

1.处理数字信号的电路叫做_数__字__电__路___,具有逻辑功能的
本 学
数字电路叫做___逻__辑__电__路___.数字电路中最基本的逻辑
案 栏
电路是门电路.
目 开
2.如果一个事件的几个条件都满足后,该事件才能发生,

我们把这种关系叫做_“_与__”__逻__辑___关__系_;具有“与”逻辑
很小,R 为变阻器,L 为小灯泡.其工作情
本 况是:当光敏电阻受到光照时小灯泡 L 不亮; 图 8
学 案
不受光照时,小灯泡 L 亮.该逻辑电路是__“__非__”__门电路,
栏 目
该控制电路可以用在__城__市___路__灯____控制系统中(举一个例
开 关
子).
解析 光照时光敏电阻阻值减小,门电路的输入端电
目 开
如图 1 所示,两个开关 A、B 串联起来
关 控制同一灯泡 L,显然,只有 A“与”B
同时闭合时,灯泡 L 才会亮.在这个事
件中,A、B 闭合是条件,灯泡 L 亮是
图1
结果.那么它们体现了什么逻辑关系呢?
2021/3/12
4
学习·探究区
学案13
(1)事件的两个条件需满足几个,事件才能发生?
(2)在下表中填写对应条件下事件的结果(灯泡 L 是亮还是
13
学习·探究区
学案13
例 1 如图 6 所示为某一门电路符号及输入端 A、B 的电势
随时间变化关系的图象,则下列选项中能正确反映该门电
本 路输出端电势随时间变化关系的图象是
学 案 栏 目 开 关
图6
()
2021/3/12
14
学习·探究区
本 学 案 栏 目 开 关
2021/3/12
学案13
15
学习·探究区
学案13
本 解析 题图为与门电路,所以 A、B 输入端都是高电势时,
学 案
输出才为高电势,故 A 正确.

目 开
答案 A

2021/3/12
16
学习·探究区
学案13
例 2 两只晶体二极管组成如图 7 所示 电路,A、B 为输入端,Y 为输出端, 试分析说明它是什么逻辑电路.

学 案 栏
图7 解析 根据二极管的特点,只要在二极管上加上正向电

栏 目
其符号为_______________.
开 关
4.输出状态和输入状态_相__反___的逻辑关系叫做“_非__”__逻__辑_关
系;具有“_非__”__逻___辑关系的电路叫做“非”门.
其符号为______________.
2021/3/12
3
学习·探究区学案13本 学源自一、“与”门案 栏
[问题设计]
答案 (1)条件 A 满足,事件 Y 不发生,二者总是相反关系.

学 (2)亮 熄

栏 (3)


输入 输出

AY
0
1
1
0
2021/3/12
11
学习·探究区
学案13
四、复合门电路
1.“与非”门 一个“与”门电路和一个“非”门电路组合在一起,组成
一个复合门电路,称为“与非”门,如图 4 所示.


案 栏
案 栏
(1)条件 A 和事件 Y 之间的关系如何?
目 开
(2)在下表中填写对应条件下事件的结

果(灯泡 Y 是亮还是熄).
条件 结果
开关 A 灯泡 Y

2021/3/12

学案13
图3
10
学习·探究区
学案13
(3)如果把开关的“通”记为 1、“断”记为 0,把灯“亮” 记为“1”、“熄”记为 0,把上面表格用 1、0 表示.
输入
A
B
0
0
0
1
输出 Y 0 0
1
0
0
1
1
1
2021/3/12
学案13
6
学习·探究区
学案13
二、“或”门
[问题设计]
如图 2 所示,两个开关 A、B 并联,控制
本 学
同一灯泡 Y,在这个电路中,A“或”B
案 栏
闭合时,灯泡 Y 就亮.
目 开
(1)条件 A、条件 B 满足几个时,事件就能

发生?
图2
目 开
压,则二极管即可导通.由题中电路结构可知,D1、D2

两个二极管只要有一个导通,或者两个都导通,则整个
电路就会导通,因此该电路是符合“或”逻辑关系的门
电路.
答案 “或”逻辑电路
2021/3/12
17
学习·探究区
学案13
例 3 由门电路构成的一简单控制电路如图 8
所示,其中 R′为光敏电阻,光照时电阻
学案13
学案 13 简单的逻辑电路
本 [学习目标定位]
学 案
1.初步了解简单的逻辑电路及表示符号.
栏 目
2.通过实验理解“与”、“或”和“非”门电路在逻辑电路

中的结果与条件的逻辑关系,会用真值表表示一些简单的

逻辑关系.
3.初步了解集成电路的作用及发展情况.
2021/3/12
1
知识·储备区
学案13
(2)在下表中填写对应条件下事件的结果(灯泡 Y 是亮还是
熄).
2021/3/12
7
学习·探究区
学案13
条件
结果
开关 A 开关 B 灯泡 Y















(3)如果把开关的“通”记为 1、“断”记为 0,把灯“亮”记
为“1”、“熄”记为 0,把上面表格用 1、0 表示.
2021/3/12
熄).

条件
结果


开关 A 开关 B 灯泡 L












(3)如果把开关的“通”记为 1,“断”记为 0,把灯“亮”
记为“1”,“熄”记为 0,把上面表格用 1、0 表示.
2021/3/12
5
学习·探究区
答案 (1)两个条件都满足
(2)熄 熄 熄 亮
(3)
本 学 案 栏 目 开 关
相关文档
最新文档