重庆市万州区2012-2013学年高二上学期期末考试 数学理 Word版含答案

合集下载

二中2012-2013学年上学期高二年级期中考试数学试卷(理科)

二中2012-2013学年上学期高二年级期中考试数学试卷(理科)

重庆市万州二中2012-2013学年上学期高二年级期中考试数学试卷(理科)满分150分,考试时间120分钟 第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 空间任意四个点A 、B 、C 、D ,则BA CB CD +-等于A .DAB .ADC .DBD .AC2.正棱锥的高和底面边长都缩小为原来的12,则它的体积是原来的 A .14B .18 C . 116 D . 1323.长方体的一个顶点上三条棱长分别是3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是 A . 25π B . 50π C . 125π D . 都不对4.平面α的一个法向量n =(1,-1,0),则y 轴与平面α所成的角的大小为A .π6B .π4C .π3D .3π45.设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:①⎭⎪⎬⎪⎫α∥βα∥γ⇒β∥γ ②⎭⎪⎬⎪⎫α ⊥βm ∥α⇒m ⊥β ③⎭⎪⎬⎪⎫m ⊥αm ∥β⇒α⊥β ④⎭⎪⎬⎪⎫m ∥n n ⊂α⇒m ∥α 其中,正确的是 A .①④B .②③C .①③D .②④6.某四面体的三视图如图所示,该四面体四个面的面积中最大的是A . 6 2B .8C .10D .8 27.若已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,则原△ABC 的面积为A .32a 2 B .34a 2 C .62a 2 D .6a 2 8.已知一个直平行六面体的底面是面积等于Q 的菱形,两个对角面面积分别是M 和N ,则这个平行六面体的体积是A .12B .C .D .129.已知,棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球 与正三棱锥所得的图形,如图所示,则A . 以上四个图形都是正确的B . 只有(2)(4)是正确的C . 只有(4)是错误的D . 只有(1)(2)是正确的10.如图所示,已知在直三棱柱ABO -A 1B 1O 1中,∠AOB =π2,AO =2,BO =6,D 为A 1B 1的中点,且异面直线OD 与A 1B 垂直,则三棱柱ABO -A 1B 1O 1的高是A .3B .4C .5D .6第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分)11.两条不重合的直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是12.已知正三棱柱ABC —A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于13.已知正三棱锥P -ABC ,点P ,A ,B ,C P A ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为14.设四面体的六条棱的长分别为1,1,1,1和a ,且长为a 面,则a 的取值范围是15.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的所有图形的序号是三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(13分)如 图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .17.(13分)如图,在棱长均为4的三棱柱ABC-A1B1C1中,D、D1分别是BC和B1C1的中点,(1)求证:A1D1∥平面AB1D;(2)若平面ABC⊥平面BCC1B1,∠B1BC=60°,求三棱锥B1-ABC的体积.18.(13分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD =AC=1,O为AC的中点,PO⊥平面ABCD,PD=2,M为PD的中点.(1)证明PB∥平面ACM;(2)证明AD⊥平面P AC;(3)求直线AM与平面ABCD所成角的正切值.19.(12分)如图,在多面体ABCDE 中,⊥AE 面ABC ,AE DB //,且1====AE BC AB AC ,,2=BD F 为CD 中点。

2012-2013学年第一学期期末高二数学(理科)试题及答案

2012-2013学年第一学期期末高二数学(理科)试题及答案

2012-2013学年第⼀学期期末⾼⼆数学(理科)试题及答案⾼⼆数学(理科)试题第1页共4页试卷类型:A肇庆市中⼩学教学质量评估2012—2013学年第⼀学期统⼀检测题⾼⼆数学(理科)注意事项:1. 答卷前,考⽣务必⽤⿊⾊字迹的钢笔或签字笔将⾃⼰的班别、姓名、考号填写在答题卷的密封线内.2. 选择题每⼩题选出答案后,⽤2B 铅笔把答题卷上对应题⽬的答案标号涂⿊;如需要改动,⽤橡⽪擦⼲净后,再选涂其它答案,答案不能写在试卷上.3. ⾮选择题必须⽤⿊⾊字迹的钢笔或签字笔作答,答案必须写在另发的答题卷各题⽬指定区域内相应的位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使⽤铅笔和涂改液.不按以上要求作答的答案⽆效.参考公式:球的体积公式:334R V π=,球的表⾯积公式:24R S π=,其中R 为球的半径⼀、选择题:本⼤题共8⼩题,每⼩题5分,满分40分. 在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.命题“若x >5,则x >0”的否命题是A .若x ≤5,则x ≤0B .若x ≤0,则x ≤5C .若x >5,则x ≤0D .若x >0,则x >5 2.若a ∈R ,则“a =1”是“(a -1)(a +3)=0”的A .充要条件B .充分⽽不必要条件C .必要⽽不充分条件D .既不充分⼜不必要条件3.双曲线125422=-y x 的渐近线⽅程是 A .x y 425±= B .x y 254±= C .x y 25±= D .x y 52±= 4.已知直线l 1经过两点(-1,-2)、(-1,4),直线l 2经过两点(2,1)、(x ,6),且l 1// l 2,则x =A .4B .1C .-2D .2 5.已知p 、q 是两个命题,若“?(p ∨q )”是真命题,则A .p 、q 都是真命题B .p 、q 都是假命题C .p 是假命题且q 是真命题D .p 是真命题且q 是假命题⾼⼆数学(理科)试题第2页共4页6.若椭圆)0(12222>>=+b a b y a x 的离⼼率为22,则双曲线12222=-by a x 的离⼼率为A .26 B .332 C .2 D . 37.将长⽅体截去⼀个四棱锥,得到的⼏何体如图所⽰,则该⼏何体的侧视图为8.已知M 是抛物线)0(22>=p px y 上的点,若M 到此抛物线的准线和对称轴的距离分别为5和4,则点M 的横坐标为A .1B .1或4C .1或5D .4或5⼆、填空题:本⼤题共6⼩题,每⼩题5分,满分30分. 9.已知命题p :?x ∈R ,322=+x x ,则?P 是▲ .10.空间四边形OABC 中,=,=,=,点M 在OA 上,且OM =2MA ,N为BC 的中点,则= ▲ .11.抛物线24x y -=,则它的焦点坐标为▲ .12.圆锥轴截⾯是等腰直⾓三⾓形,其底⾯积为10,则它的侧⾯积为▲ .13.直线)1(-=x k y 与双曲线422=-y x 没有公共点,则k 的取值范围是▲ .14.如图,半径为2的圆O 中,∠AOB =90?,D 为OB 的中点,AD 的延长线交圆O 于点E ,则线段DE 的长为▲ .三、解答题:本⼤题共6⼩题,满分80分. 解答须写出⽂字说明、证明过程和演算步骤. 15.(本⼩题满分12分)三⾓形的三个顶点是A (4,0),B (6,7),C (0,3). (1)求BC 边上的⾼所在直线的⽅程;(2)求BC 边上的中线所在直线的⽅程;(3)求BC 边的垂直平分线的⽅程.ABCDABDE⾼⼆数学(理科)试题第3页共4页16.(本⼩题满分13分)⼀个长、宽、⾼分别是80cm 、60cm 、55cm 的⽔槽中有⽔200000cm 3,现放⼊⼀个直径为50cm 的⽊球,且⽊球的三分之⼆在⽔中,三分之⼀在⽔上,那么⽔是否会从⽔槽中流出?17.(本⼩题满分13分)如图,四棱锥P —ABCD 的底⾯为正⽅形,侧棱P A ⊥平⾯ABCD ,且P A =AD =2,E 、F 、H 分别是线段P A 、PD 、AB 的中点. (1)求证:PD ⊥平⾯AHF ;(2)求证:平⾯PBC //平⾯EFH .18.(本⼩题满分14分)设⽅程0916)41(2)3(24222=++-++-+m y m x m y x 表⽰⼀个圆. (1)求m 的取值范围;(2)m 取何值时,圆的半径最⼤?并求出最⼤半径;(3)求圆⼼的轨迹⽅程.⾼⼆数学(理科)试题第4页共4页19.(本⼩题满分14分)如图,在三棱柱ABC —A 1B 1C 1中,H 是正⽅形AA 1B 1B 的中⼼,221=AA ,C 1H ⊥平⾯AA 1B 1B ,且51=H C .(1)求异⾯直线AC 与A 1B 1所成⾓的余弦值;(2)求⼆⾯⾓A —A 1C 1—B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平⾯AA 1B 1B 内,且MN ⊥平⾯A 1B 1C 1,求线段BM 的长.20.(本⼩题满分14分)已知点P 是圆F 1:16)3(22=++y x 上任意⼀点,点F 2与点F 1关于原点对称. 线段PF 2的中垂线与PF 1交于M 点.(1)求点M 的轨迹C 的⽅程;(2)设轨迹C 与x 轴的两个左右交点分别为A ,B ,点K 是轨迹C 上异于A ,B 的任意⼀点,KH ⊥x 轴,H 为垂⾜,延长HK 到点Q 使得HK =KQ ,连结AQ 延长交过B 且垂直于x 轴的直线l 于点D ,N 为DB 的中点.试判断直线QN 与以AB 为直径的圆O 的位置关系.⾼⼆数学(理科)试题第5页共4页2012—2013学年第⼀学期统⼀检测题⾼⼆数学(理科)参考答案及评分标准⼀、选择题⼆、填空题9.?x ∈R ,322≠+x x 10.212132++-11.(0,161-) 12.210 13.),332()332,(+∞--∞ 14.553三、解答题 15.(本⼩题满分12分)解:(1)BC 边所在的直线的斜率320637=--=k ,(2分)因为BC 边上的⾼与BC 垂直,所以BC 边上的⾼所在直线的斜率为23-. (3分)⼜BC 边上的⾼经过点A (4,0),所以BC 边上的⾼所在的直线⽅程为)4(230--=-x y ,即01223=-+y x . (5分)(2)由已知得,BC 边中点E 的坐标是(3,5). (7分)⼜A (4,0),所以直线AE 的⽅程为430540--=--x y ,即0205=-+y x . (9分)(3)由(1)得,BC 边所在的直线的斜率32=k ,所以BC 边的垂直平分线的斜率为23-,(10分)由(2)得,BC 边中点E 的坐标是(3,5),所以BC 边的垂直平分线的⽅程是)3(235--=-x y ,即01923=-+y x . (12分)16.(本⼩题满分13分)解:⽔槽的容积为264000556080=??=⽔槽V (cm 3)(4分)因为⽊球的三分之⼆在⽔中,所以⽊球在⽔中部分的体积为πππ9125000)250(983432331=?=?=R V (cm 3),(8分)所以⽔槽中⽔的体积与⽊球在⽔中部分的体积之和为⾼⼆数学(理科)试题第6页共260000491250002000009125000200000=πV (cm 3),(12分)所以V17.(本⼩题满分13分)证明:(1)因为AP =AD ,且F 为PD 的中点,所以PD ⊥AF . (1分)因为P A ⊥平⾯ABCD ,且AH ?平⾯ABCD ,所以AH ⊥P A ;(2分)因为ABCD 为正⽅形,所以AH ⊥AD ;(3分)⼜P A ∩AD =A ,所以AH ⊥平⾯P AD . (4分)因为PD ?平⾯P AD ,所以AH ⊥PD . (5分)⼜AH ∩AF =A ,所以PD ⊥平⾯AHF . (6分)(2)因为E 、H 分别是线段P A 、AB 的中点,所以EH //PB . (7分)⼜PB ?平⾯PBC ,EH ?平⾯PBC ,所以EH //平⾯PBC . (8分)因为E 、F 分别是线段P A 、PD 的中点,所以EF //AD ,(9分)因为ABCD 为正⽅形,所以AD //BC ,所以EF //BC ,(10分)⼜BC ?平⾯PBC ,EF ?平⾯PBC ,所以EF //平⾯PBC . (11分)因为EF ∩EH =E ,且EF ?平⾯EFH ,EH ?平⾯EFH ,所以平⾯PBC //平⾯EFH . (13分)18.(本⼩题满分14分)解:(1)由0422>-+F E D 得:0)916(4)41(4)3(44222>+--++m m m ,(2分)化简得:01672<--m m ,解得171<<-m . (4分)所以m 的取值范围是(71-,1)(5分)(2)因为圆的半径716)73(71674212222+--=++-=-+=m m m F E D r ,(7分)所以,当73=m 时,圆的半径最⼤,最⼤半径为774max =r . (9分)(3)设圆⼼C (x ,y ),则-=+=, 14,32m y m x 消去m 得,1)3(42--=x y . (12分)因为171<<-m ,所以4720<--=x y (4720<19.(本⼩题满分14分)解:如图所⽰,以B 为原点,建⽴空间直⾓坐标⾼⼆数学(理科)试题第7页共4页系,依题意得,A (22,0,0),B (0,0,0), C (2,2-,5),)0,22,22(1A , )0,22,0(1B ,)5,2,2(1C . (2分)(1)易得,)5,2,2(--=,)0,0,22(11-=B A ,(3分)所以322234||||,cos 111111==>=32. (5分)(2)易得,)0,22,0(1=,)5,2,2(11--=C A . (6分)设平⾯AA 1C 1的法向量),,(z y x =,则=?=?.0,0111C A AA m即=+--=.0522,022z y x y 不妨令5=x ,可得)2,0,5(=m . (7分)设平⾯A 1B 1C 1的法向量),,(z y x =,则=?=?. 0,01111B A C A n即=-=+--.022,0522x z y x 不妨令5=y ,可得)2,5,0(=. (8分)于是,72772||||,cos ==>==<,所以⼆⾯⾓A —A 1C 1—B 1的正弦值为753. (10分)(3)由N 为棱B 1C 1的中点得,)25,223,22(N .设M (a ,b ,0),则)25,223,22(b a --=,(11分)由MN ⊥平⾯A 1B 1C 1,得=?=?.0,01111C A MN B A即=?+-?-+-?-=-?-.0525)2()223()22()22(,0)22()22(b a a (12分)⾼⼆数学(理科)试题第8页共4页解得==.42,22b a 故)0,42,22(M (13分)因此41008121||=++=,即线段BM 的长为410. (14分)20.(本⼩题满分14分)解:(1)由题意得,())12,F F (1分)圆1F 的半径为4,且2||||MF MP = (2分)从⽽12112||||||||4||MF MF MF MP F F +=+=>= (3分)所以点M 的轨迹是以12,F F 为焦点的椭圆,其中长轴24a =,焦距2c =则短半轴1b =,(4分)椭圆⽅程为:2214x y += (5分)(2)设()00,K x y ,则220014x y +=.因为HK KQ =,所以()00,2Q x y ,所以2OQ =,(6分)所以Q 点在以O 为圆⼼,2为半径的的圆上.即Q 点在以AB 为直径的圆O 上.(7分)⼜()2,0A -,所以直线AQ 的⽅程为()00222y y x x =++.(8分)令2x =,得0082,2y D x ??+.(9分)⼜()2,0B ,N 为DB 的中点,所以0042,2y N x ??+.(10分)所以()00,2OQ x y =,000022,2x y NQ x x ??=- ?+?.(11分)所以()()()()2200000000000000004242222222x x x y x y OQ NQ x x y x x x x x x x -?=-+?=-+=-++++ ()()0000220x x x x =-+-=.(13分)所以OQ NQ ⊥.故直线QN 与圆O 相切. (14分)。

2012-2013学年高二第一学期期末考试数学(理)卷1

2012-2013学年高二第一学期期末考试数学(理)卷1

2012-2013学年高二第一学期期末考试 数学(理)试题 2013.1本试卷共100分,考试时间90分钟.一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 如果a b <, 则( )A .0a b +>B .ac bc <C .0a b -<D .22b a < 2.已知数列{}n a 满足1n n a a d +-=(其中d 为常数),若131,11a a ==, 则d =( ) A . 4 B .5 C .6 D .7 3. 下列四个点中,在不等式组⎩⎨⎧≥-≤+0,1y x y x 所表示的平面区域内的点是( )A .)0,2(B .)0,2(-C .)2,0(D .)2,0(- 4. 已知数列{}n a 满足212n n a -=,则( )A. 数列{}n a 是公比为2的等比数列B. 数列{}n a 是公比为4的等比数列C. 数列{}n a 是公差为2的等差数列D. 数列{}n a 是公差为4的等差数列5.“21a >”是“方程2221x y a+=表示椭圆”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知点00(,)A x y 为抛物线28y x =上的一点,F 为该抛物线的焦点,若||6AF =,则0x 的值为( )A. 4B.C. 8D. 7. 已知点P 为椭圆:C 22143x y +=上动点,1F ,2F 分别是椭圆C 的焦点,则21PF PF ⋅的最大值为( )A. 2B. 3C.D. 48. 设1F ,2F 分别是椭圆2222:1(0)x y C a b a b +=>>的焦点,若椭圆C 上存在点P ,使线段1PF 的垂直平分线过点2F ,则椭圆离心率的取值范围是( )A.1(0,]3B. 12(,)23C. 1[,1)3D. 12[,)33二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.9.双曲线2214x y -=的渐近线方程为_____________.10.命题22:,,2p a b a b ab ∀∈+≥R ,则命题p ⌝是 .11.已知集合A 是不等式220x x +≤的解集,集合{|}B x x m =>.若A B =∅ ,则m 的最小值是_______________.12.已知点P 为椭圆:C 22214x y b += (0)b >上的动点,且||OP 的最小值为1,其中O 为坐标原点,则b =________.13. 设x ∈R ,0x ≠. 给出下面4个式子:①21x +;②222x x -+;③1x x+;④221x x +.其中恒大于1的是 .(写出所有满足条件的式子的序号) 14.已知数列{}n a 满足11,2,n n n a n a a n ++⎧=⎨-⎩为奇数,为偶数,且11a =,则31a a -=____________;若设222n n n b a a +=-,则数列{}n b 的通项公式为__________________.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分10分)已知直线l 交抛物线:C 22y px =)0(>p 于A,B 两点,且90AOB ∠=︒, 其中,点O 为坐标原点,点A 的坐标为(1,2).(I )求抛物线C 的方程; (II )求点B 的坐标.已知数列{}n a 的前n 项和2*10()n S n n n =-∈N . (I)求数列{}n a 的通项公式; (II)求n S 的最大值;(III)设n n a b =,求数列{}n b 的前n 项和n T .17. (本小题满分10分)已知函数)1)(2()(---=a x a x x f .(I )当1a >时,解关于x 的不等式()0f x ≤;(II )若(5,7)x ∀∈,不等式0)(≤x f 恒成立,求实数a 的取值范围.椭圆C 的中心为坐标原点O ,点12,A A 分别是椭圆的左、右顶点,B 为椭圆的上顶点,一个焦点为F ,离心点M 是椭圆C 上在第一象限内的一个动点,直线1A M 与y 轴交于点P ,直线2A M 与y 轴交于点Q . (I )求椭圆C 的标准方程;(II )若把直线12,MA MA 的斜率分别记作12,k k ,求证:1214k k =-; (III) 是否存在点M 使1||||2PB BQ =,若存在,求出点M 的坐标,若不存在,说明理由.高二年级第一学期期末练习数 学(理科) 参考答案及评分标准2013.1一. 选择题:本大题共8小题, 每小题4分,共32分.二.填空题:本大题共6小题, 每小题4分,共24分. 9. x y 21±= 10. ∈∃b a ,R ,ab b a 222<+ 11. 0 12. 1 13. ①④ 14. 5-;()152n n b -=--(第一空2分,第二空2分)三.解答题:本大题共4小题,共44分. 15. (本小题满分10分)解: (I )因为点()2,1A 在抛物线px y 22=上,所以p 222=, -------------2分 解得2=p , -------------3分 故抛物线C 的方程为x y 42=. -------------4分 (II )设点B 的坐标为()00,y x ,由题意可知00≠x ,直线OA 的斜率2=OA k ,直线OB 的斜率0x y k OB =, 因为90AOB ∠=︒,所以120-==⋅x y k k OB OA , -------------6分 又因为点()00,y x B 在抛物线x y 42=上,所以0204x y = , -------------7分联立200004,2,y x y x ⎧=⎨=-⎩ 解得⎩⎨⎧-==81600y x 或 ⎩⎨⎧==0000y x (舍), -------------9分所以点B 的坐标为()8,16-. -------------10分16.(本小题满分12分)解: (I )当1=n 时,911011=-==S a ; -------------1分当2≥n 时,()()22110[1011]211n n n a S S n n n n n -=-=-----=-+.-----3分综上可知,数列{}n a 的通项公式为112+-=n a n . -------------4分 (II )解法1:()2551022+--=-=n n n S n , -------------6分所以,当5=n 时,n S 取得最大值25. -------------7分 解法2:令0112≥+-=n a n ,得211≤n , 即此等差数列前5项为正数,从第6项起开始为负数,所以,5S 最大, -------------6分 故255510)(25max =-⨯==S S n . -------------7分 (III) 令0112≥+-=n a n ,得211≤n . -------------8分 n n n a a a a b b b b T ++++=++++= 321321,当5≤n 时,210n n S T n n -==. -------------9分 当5>n 时,56543212S S a a a a a a a T n n n +-=---++++=21050n n +-=. -------------11分 综上可知,数列{}n b 的前n 项和⎪⎩⎪⎨⎧>+-≤-=5,10505,1022n n n n n n T n . -------12分17.(本小题满分10分)解: (I )令,0)1)(2(=---a x a x 得,1,221+==a x a x -------------1分 ()11221-=+-=-a a a x x ,因为1>a ,所以01>-a ,即12+>a a , -------------2分 由()()()012≤---=a x a x x f ,解得a x a 21≤≤+ . -------------4分(II )解法1:当1=a 时,12+=a a , ()()22-=x x f ,不符合题意. -----5分当1>a 时,12+>a a ,若(5,7)x ∀∈,不等式0)(≤x f 恒成立,15,a +≤⎧7当1<a 时,12+<a a ,若(5,7)x ∀∈,不等式0)(≤x f 恒成立,则有25,17,a a ≤⎧⎨+≥⎩a 无解. ------------9分综上,实数a 的取值范围是427≤≤a . -------------10分 解法2:()()()21f x x a x a =---的图像是开口向上的抛物线, --------5分 若(5,7)x ∀∈,不等式0)(≤x f 恒成立,需且仅需(5)0,(7)0,f f ≤⎧⎨≤⎩-------------7分解得54,276,2a a ⎧≤≤⎪⎪⎨⎪≤≤⎪⎩ 所以.427≤≤a故实数a 的取值范围是427≤≤a . -------------10分 18.(本小题满分12分)解: (I )由题意,可设椭圆C 的方程为()012222>>=+b a b y a x ,则3=c ,23=a c ,所以2=a ,1222=-=c a b , -------------2分所以椭圆C 的方程为1422=+y x . -------------3分(II )由椭圆C 的方程可知,点1A 的坐标为()0,2-,点2A 的坐标为()0,2,设动点M 的坐标为()00,y x ,由题意可知200<<x , 直线1MA 的斜率01002y k x =>+,直线2MA 的斜率02002y k x =>-, 所以4202021-=⋅x yk k , -------------4分因为点()00,y x M 在椭圆1422=+y x 上,所以142020=+y x ,即412020x y -=, -------------5分所以.41441202021-=--=⋅x x k k -------------6分(III )设直线1MA 的方程为()12y k x =+,令0=x ,得12y k =,所以点P 的坐标为()10,2k , --------7分 设直线2MA 的方程为()22y k x =-,令0=x ,得22y k =-,所以点Q 的坐标为()20,2k -, ---------8分 由椭圆方程可知,点B 的坐标为()1,0,由BQ PB 21=,得121|12||21|2k k -=--, 由题意,可得12112(21)2k k -=--整理得12423k k -=, ---------9分与1214k k =-联立,消1k 可得2222310k k ++=, 解得21k =-或212k =- , ---------10分所以直线2MA 的直线方程为)2(--=x y 或1(2)2y x =--,因为1(2)2y x =--与椭圆交于上顶点,不符合题意.把(2)y x =--代入椭圆方程,得2516120x x -+=, 解得65x =或2, ---------11分 因为002x <<,所以点M 的坐标为⎪⎭⎫⎝⎛54,56. ---------12分 说明:解答题有其它正确解法的请酌情给分.。

重庆高二上学期期末数学试题(解析版)

重庆高二上学期期末数学试题(解析版)

一、单选题1.若直线l 的方向向量是,则直线l 的倾斜角为( )(e = A .B .C .D .π6π32π35π6【答案】B【分析】由斜率与倾斜角,方向向量的关系求解【详解】由直线l 的方向向量是得直线(e = l设直线的倾斜角是, ()π0πtan 3αααα≤<=⇒=,故选:B.2.设向量不共面,空间一点满足,则四点共面的一,,OA OB OCP OP xOA yOB zOC =++ ,,,A B C P 组数对是( ) (),,x y z A .B .C .D .111,,432⎛⎫ ⎪⎝⎭111,,436⎛⎫- ⎪⎝⎭131,,442⎛⎫- ⎪⎝⎭121,,332⎛⎫- ⎪⎝⎭【答案】C【分析】利用空间共面向量定理的推论即可验证得到答案.【详解】空间一点满足,若四点共面,则P OP xOA yOB zOC =++,,,A B C P 1x y z ++=选项A :.判断错误; 11113143212x y z =++++=≠选项B :.判断错误;111114364x y z =++=+-+≠选项C :.判断正确;1311442x y z =-+++=+选项D :.判断错误.121513326x y z =++=+-+≠故选:C3.设为两个不同的平面,则的一个充分条件可以是( ) ,αβαβ∥A .内有无数条直线与平行 B .垂直于同一条直线 αβ,αβC .平行于同一条直线 D .垂直于同一个平面,αβ,αβ【答案】B【分析】利用线面,面面平行垂直的判定或性质对各个选项进行分析即可得到答案. 【详解】对于A ,内有无数条直线与平行不能得出两个平面可以相交,故A 错; αβ,αβ∥对于B ,垂直于同一条直线可以得出,反之当时,若垂直于某条直线,则也垂,αβαβ∥αβ∥αβ直于该条直线,正确;对于C ,平行于同一条直线,则两个平面可以平行也可以相交,故错误; ,αβ对于D ,垂直于同一平面的两个平面可以平行也可以相交,故错误; 故选:B .4.在等比数列中,,则( ) {}n a 2481,16a a a =⋅=4a =A .2 B . C .4 D .2-4-【答案】A【分析】根据给定条件,求出等比数列公比的平方即可计算作答.【详解】设等比数列的公比,则,而,,{}n a q 264282,a a q a a q ==21a =4816a a ⋅=于是得,即,解得,所以.2616q q ⋅=24()16q =22q =2422a a q =⋅=故选:A5.已知直线与圆交于两点,且,则实数的值为0(0)x y m m ++=>22:1O x y +=,A B 23AOB π∠=m ( )A .BCD .112【答案】B【分析】利用题给条件列出关于实数的方程,解之即可求得实数的值. m m 【详解】圆的圆心,半径, 22:1O x y +=(0,0)O 1r =由,可得圆心到直线的距离为,23AOB π∠=O 0(0)x y m m ++=>1122r =,解之得或(舍) 12=m =m =故选:B6.椭圆的左顶点为,点均在上,且关于轴对称.若直线2222:1(0)x y C a b a b+=>>A ,P Q C y 的斜率之积为,则的离心率为( ),AP AQ 13CA .B C .D 1323【答案】D【分析】设出,得到,根据斜率之积列出方程,得到,结合(),P m n (),Q m n -2223n a m =-,求出,求出离心率.222222b m a n a b +=2213b a =【详解】由题意得:,设,,故,(),0A a -(),P m n (),Q m n -222222b m a n a b +=,故, ,AP AQ n nk k m a m a ==+-+13n n m a m a ⋅=+-+解得:,2223n a m =-由,得到,即,22222a n m a b =-22223a n n b=2213b a =离心率e =故选:D7.如图,教室里悬挂着日光灯管,灯线,将灯管绕着过中点的,120cm AB AB =AC BD =AB AB O 铅垂线顺时针旋转至,且始终保持灯线绷紧,若旋转后该灯管升高了,则的OO '60 A B ''20cm AC 长为( )A .B .C .D .70cm 80cm 90cm 100cm 【答案】D【分析】设与交于点,过点作于,连接,在中求出,A B ''OO 'N A 'A M AC '⊥M MN A MN '△A M '在中根据勾股定理求解.R t A MC A ¢【详解】设与交于点,过点作于,连 A B ''OO 'N A 'A M AC '⊥M 接,如图所示,则中,, MN 20,CM AC A MN ='-A 1602A N AB ='=,所以,在中,由勾 60,60MN A NM ∠'== 60A M '=R t A MC A ¢股定理得,,解得.222(20)60AC AC -+=()100cm AC =故选:D8.已知抛物线的焦点为,准线交轴于点,直线过且交于不同的两2:4E y x =F l x C m C E ,A B 点,在线段上,若,则( ) B AC AB BF ⊥AF =A .B .C .D .2+3【答案】C【分析】根据和抛物线的方程可求得,再联立直线与抛物线的方程根据韦达AB BF⊥22x =m 定理可得,即可求,根据抛物线的定义即可得结果. 121=xx 12x =【详解】由题意可得:,()()1,0,1,0F C -设,则有,()()1122,,,A x y B x y 2222,11BC BF y yk k x x ==+-∵,则,可得,AB BF ⊥222222221111BC BF y y y k k x x x ===-+--22221x y +=又∵在抛物线上,则,B 2:4E y x =2224y x =联立,解得或(舍去),222222214x y y x⎧+=⎨=⎩22x =-22x =-设直线,联立方程,消去y 得,():1m y k x =+()214y k x y x ⎧=+⎨=⎩()2222220k x k xk +-+=则,即, 121=xx 1212x x ==故132pAF x =+=+故选:C .二、多选题9.有一组样本数据,由这组数据得到新的样本数据,则( ) 12,,,n x x x ⋯123,3,,3n x x x ⋯A .新样本数据的极差是原样本数据极差的3倍 B .新样本数据的方差是原样本数据方差的3倍 C .新样本数据的中位数是原样本数据中位数的3倍 D .新样本数据的平均数是原样本数据平均数的3倍 【答案】ACD【分析】根据平均数、极差、方差、中位数的定义及性质判断即可. 【详解】设样本数据,,…,的最大值为,最小值为, 1x 2x n x max x min x 平均数为,中位数为,方差为,则极差为,x x 2S max min x x -所以新的样本数据,,…,的最大值为,最小值为,13x 23x 3n x max 3x min 3x 平均数为,中位数为,方差为,则极差为, 3x 3x 22239S S =()max min max min 333x x x x -=-即新样本数据的极差是原样本数据极差的倍,新样本数据的方差是原样本数据方差的倍, 39新样本数据的中位数是原样本数据中位数的倍,新样本数据的平均数是原样本数据平均数的倍. 33故选:ACD10.记为数列的前项和,下列说法正确的是( ) n S {}n a n A .若对,有,则数列是等差数列*2,n n N ∀≥∈112n n n a a a -+=+{}n a B .若对,有,则数列是等比数列 *2,n n N ∀≥∈211n n n a a a -+=⋅{}n a C .已知,则是等差数列()2,n S pn qn p q =+∈R {}n a D .已知,则是等比数列()0nn S a m a a =⋅-≠{}n a 【答案】AC【分析】利用等差和等比数列的定义及性质,以及等差和等比数列前项和的形式,可逐一判断. n 【详解】对A ,由等差中项的性质,可知数列是等差数列,故A 正确;112n n n a a a -+=+{}n a 对B ,若,满足,,但不为等比数列,故B 错误;0n a =211n n n a a a -+=⋅2n ≥{}n a 对C ,当时,,当时,,时符合该式,易知1n =11a S p q ==+2n ≥12n n n a S S pn p q -=-=-+1n =是以为首项,为公差的等差数列,故C 正确;{}n a 1a p q =+2p 对D ,当时,,1n =11(1)a S m a ==-时,,2n ≥111(1)n n n n n n a S S a m a a m a a m m ---=-=⋅--⋅+=⋅-时符合该式,1n =当时,易知是以为首项,为公比的等比数列, 1m ≠{}n a 1(1)a m a =-m 当时,则是等于零的常数列,故D 错误. 1m ={}n a 故选:AC.11.如图,棱长为2的正方体中,为线段上动点(包括端点).则下列结论1111ABCD A B C D -P 11B D 正确的是( )A .当点为中点时,P 11B D 1A P BD ⊥B .当点在线段上运动时,点到平面的距离为定值 P 11B D P 1A BD C .当点为中点时,二面角的余弦值为P 11B D 1B A P D --13D .过点平行于平面的平面截正方体截得多边形的周长为P 1A BD α1111ABCD A B C D -【答案】ABC【分析】求得位置关系判断选项A ;求得点到平面的距离变化情况判断选项B ;1A P BD 、P 1A BD 求得二面角的余弦值判断选项C ;求得截面多边形的周长判断选项D. 1B A P D --【详解】对于,当点为中点时,由于为正方形,所以, A P 11B D 1111D C B A 111A P B D ⊥又,所以,故A 正确;11//BD B D 1A P BD ⊥对于,由于,平面,平面 B 11//B D BD 11B D ⊄1A BD BD ⊂1A BD 则 平面,又,11B D //1A BD 11P B D ∈所以在任何位置时到平面的距离为定值,故B 正确;P 1A BD 对于,易得平面,平面,所以, C 1D D ⊥11BB D D 1A P ⊂11BB D D 11D D A P ⊥因为,平面,1BD D D D ⋂=1,BD D D ⊂11BB D D 所以平面,由平面可得,1A P ⊥11BB D D ,BP DP ⊂11BB D D 11,BP A P DP A P ⊥⊥则为二面角的平面角, ,故C BPD ∠1B A P D --2221cos 23BP DP BD BPD BP DP ∠+-===⋅正确;对于,连接.D 11B C D C 、因为,所以四边形是平行四边形, 1111,A B //CD A B =CD 11A B CD 所以,又平面,平面 11//A D B C 1B C ⊄1A BD 1A D ⊂1A BD 则 平面,又平面,1B C //1A BD 11B D //1A BD ,平面,平面, 1111B C B D B ⋂=1B C ⊂11B CD 11B D ⊂11B CD 则平面平面,则截面为, 11B CD //1A BD 11B CD A所以截面周长为错误. D 故选:ABC .12.已知为双曲线上的动点,过点作的两条渐近线的垂线,垂足分别为M 22:13x C y -=M C ,P Q,设直线的斜率分别为,则下列结论正确的是( ) ,MP MQ 12,k k A . B . 23PMQ π∠=123k k =C .D . 38MP MQ ⋅=- 32PQ ≥【答案】ACD【分析】求出双曲线的渐近线即可判断选项A ;根据渐近线的方程即可判断选项B ;根据条件得出C ;利用余弦定理和基本不等式即可判断选项D.【详解】双曲线的渐近线方程为,即,,,故正y x =0x =π3POQ ∠∴=2π3PMQ ∠=A 确;分别与两条渐近线垂直,,故B 错误;MP MQ 、(123k k ∴==-设,则,即,00(,)P x y 220013x y -=220033x y -=MQ,故C 正确;2200313cos 428x y MP MQ MP MQ PMQ ∠-⎛⎫∴⋅==⋅-=- ⎪⎝⎭222222π9||||||2||||cos||||||||3||||34PQ MP MQ MP MQ MP MQ MP MQ MP MQ =+-=++≥=当且仅当时等号成立,,故D 正确. MP MQ =32PQ ∴≥故选:.ACD三、填空题13.甲乙两名实习生每人各加工一个零件,若甲实习生加工的零件为一等品的概率为,乙实习生13加工的零件为一等品的概率为,两个零件中能否被加工成一等品相互独立,则这两个零件中恰好14有一个一等品的概率为__________. 【答案】512【分析】两个零件中恰好有一个一等品,即甲加工的零件为一等品且乙加工的零件不是一等品,或乙加工的零件为一等品且甲加工的零件不是一等品,计算概率即可.【详解】甲加工的零件为一等品且乙加工的零件不是一等品的概率为,1111344⎛⎫⨯-= ⎪⎝⎭乙加工的零件为一等品且甲加工的零件不是一等品的概率为,1111436⎛⎫⨯-= ⎪⎝⎭所以两个零件中恰好有一个一等品的概率为.1156412+=故答案为:. 51214.写出与圆和都相切的一条直线的方程221:(1)(3)1C x y +++=222:(3)(1)9C x y -++=__________.【答案】######0x =4y =-430x y -=34100x y ++=【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得或为公切线,0x =4y =-设切线方程为,根据圆心到直线的距离等于半径列出关于方程组,求解. y kx b =+,k b 【详解】因为圆的圆心为,半径 1C ()11,3C --11r =圆的圆心为,半径2C ()23,1C -23r =又因为 14C C =>所以圆与圆相离,所以有4条公切线.1C 2C易得或是圆和的公切线:0a x =:4n y =-221:(1)(3)1C x y +++=222:(3)(1)9C x y -++=设另两条公切线方程为: y kx b =+圆到直线1C y kx b =+圆到直线2C y kx b =+所以3133k b b k ++=-+所以或 31339k b b k ++=-+31339k b b k ++=-+-或34k b =+52b =-当52b =-1所以,切线方程为34k =-34100x y ++=当34k b =+3=所以 ()()225249b b +=++所以 240b b +=所以或 0b =4b =-当时,切线方程为 0b =43k =430x y -=当时,切线方程为4b =-0k =4y =-故答案为:或或或0x =4y =-430x y -=34100x y ++=15.已知是各项为整数的递增数列,且,若,则的最大值为{}n a 13a ≥12350n a a a a +++⋯+=n ____.【分析】先由题意确定数列是公差为1的等差数列,进而求得的最大值. {}n a n 【详解】数列是递增的整数数列, {}n a 要取最大,递增幅度尽可能为小的整数,n ∴假设递增的幅度为, 11,3,2n a a n =∴=+ 则, ()232522nn n n n S +++==数列为递增数列,252n n ⎧⎫+⎨⎬⎩⎭, 74250S =<, 85250S =>即为最大值. 7n =故答案为:716.已知正三棱柱的所有棱长为111ABC A B C -1A 11BCC B 的交线长为__________. 【答案】4π3【分析】根据题意结合正三棱柱的性质和球的性质即可求解.【详解】设的中点为,易知,又因为面面,且面11B C M 111A M B C ⊥111A B C ⊥11BCC B 11B C =111A B C Ç面,所以面,所以题中所求交线即为以为圆心,11BCC B 1A M ⊥11BCC B M为半径的一段圆弧.设该圆弧与的交点分别为,球与侧2==11,BB CC ,P Q面的交线如图所示,则 11BCC B 12,PM B M ==易知, 11π6PMB QMC ∠∠==所以该圆弧所对的圆心角为, 2π3PMQ ∠=故所求弧长为, 2π4π233⨯=故答案为:. 4π3四、解答题17.已知是公差为的等差数列,是数列的前项和,是公比为的等比数列,且{}n a d n S {}n a n {}n b q . 73447,2S b b a ==(1)求;q (2)若,证明:. 684b a =11a b =【答案】(1)2; (2)证明见解析.【分析】(1)由,,得,再根据,得到即可.747S a =737S b =43a b =442b a =432b b =(2)由两式相除得,再将和代入,得,再由得68444,2b a b a ==842a a =1a d 1n a na =442b a =即可.11824b a =⋅【详解】(1)由等差数列得,{}n a ()1774772a a S a +==又, 737Sb =得, 43a b =又, 442b a =得, 432b b =因此.2q =(2)证明:由两式相除得, 68444,2b a b a ==842a a =即, ()11723a d a d +=+则,因此.1a d =1n a na =再由得,即.442b a =11824b a =⋅11a b =18.已知两点及圆为经过点的一条动直线. ()()4,2,5,0D M 22:(2)(1)5,C x y l -+-=M (1)若直线经过点,求证:直线与圆相切;l D l C (2)若直线与圆相交于两点,从下列条件中选择一个作为已知条件,并求的面积.l C ,A B ABD △条件①:直线平分圆;条件②:直线的斜率为.l C l 13-【答案】(1)证明见解析;(2)【分析】(1)求出直线的方程,利用点到直线的距离公式求出圆心到直线的距离,与半径比较得l l 出结论;(2) 选择条件①可得直线过圆心,直线的方程为,利用点到直线的距离和三l ()2,1C l 350x y +-=角形面积公式即可求解;若选择条件②:若直线的斜率为,则直线的方程为,l 13-l 350x y +-=利用点到直线的距离和三角形面积公式即可求解;【详解】(1)若直线经过点,则直线的方程为,即. l D l ()25y x =--2100x y +-=由题意,圆的圆心为,半径, C ()2,1C r =则圆心到直线,所以直线与圆相切.()2,1C l r =l C (2)选择条件①:若直线平分圆,l C 则直线过圆心,直线的方程为.l ()2,1C l 350x y +-=到直线的距离 2AB r ==()4,2D l h =所以. 1122ABD S AB h =⨯=⨯=△选择条件②:若直线的斜率为,则直线的方程为,l 13-l 350x y +-=此时圆心在直线上,则,点到直线的距离 ()2,1C l 2AB r ==()4,2D l h =所以. 1122ABD S AB h =⨯=⨯=△19.已知数列的前项和. {}n a n 22n S n n =+(1)求数列的通项公式;{}n a (2)设各项均为正数的等比数列的前项和为,且成等差数列,求{}n b n n T 322115314,,,T a b a b a b =+++.n T 【答案】(1); 21n a n =+(2).41162n n T -=-【分析】(1)利用数列通项与前项和的关系即可求得数列的通项公式;n {}n a (2)先利用题给条件求得等比数列的首项与公比的值,再利用公式即可求得等比数列的{}n b {}n b 前项和.n n T 【详解】(1)当时,;1n =112123S a ==+=当时,,2n ≥2212(1)2221n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦满足,故数列的通项公式. 13a =21n a n =+{}n a 21n a n =+(2)设等比数列的公比为, {}n b (0)q q >因为成等差数列,221153,,a b a b a b +++所以,即.()1225132a b a b a b +=+++()211123511b b q b q +=+++因为,所以.314T =211114b b q b q ++=联立,解之得或(舍). ()21112111231614b b q b q b b q b q ⎧+=++⎨++=⎩1812b q =⎧⎪⎨=⎪⎩1832b q =⎧⎪⎨=-⎪⎩所以. 418121161212n n n T -⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫- ⎪⎝⎭20.如图,已知四边形和四边形都是直角梯形,,,,ABCDCDEF //AB DC //DC EF 5AB =,,.设分别为的中点.3DC =1EF =60BAD CDE CBF ∠=∠=∠= ,M N ,AE BC(1)证明:;FN AD ⊥(2)求直线与平面所成角的正弦值. BM ADE 【答案】(1)证明见解析【分析】(1)依题意可得平面,即可得到,再判断是等边三角形,得到CD ⊥CBF CD FN ⊥BCF △,即可得到平面,从而得到,即可得到平面,从而得CB FN ⊥DC ⊥FCB DC FN ⊥FN⊥ABCD 证;(2)建立如图所示空间直角坐标系,利用空间向量法计算可得.【详解】(1)证明:由于,,平面, ,CD CB CD CF ⊥⊥CB CF C = ,CB CF ⊂CBF 则平面,又平面,所以. CD ⊥CBF FN ⊂CBF CD FN ⊥又,,,, 5AB =3DC =1EF =60BAD CDE CBF ∠=∠=∠=所以))CF CD EF CB AB CD =-==-=则是等边三角形,则,BCF △CB FN ⊥因为平面平面, ,,,DC FC DC BC FC BC C FC ⊥⊥⋂=⊂,FCB BC ⊂FCB 所以平面,因为平面,所以, DC ⊥FCB FN ⊂FCB DC FN ⊥又因为平面平面, ,DC CB C DC ⋂=⊂,ABCD CB ⊂ABCD 所以平面,因为平面,故; FN⊥ABCD AD ⊂ABCD FN AD⊥(2)解:由于平面,如图建立空间直角坐标系,FN ⊥ABCD于是,()()()()()0,,5,,0,0,3,1,0,3,B A F E D 则,,33,2M ⎛⎫⎪ ⎪⎝⎭()()3,2,,2,2BM DA DE ⎛⎫==-=- ⎪ ⎪⎝⎭设平面的法向量,ADE (),,n x y z =r则,,令00n DA n DE ⎧⋅=⎪⎨⋅=⎪⎩ 20230x x z ⎧-=⎪∴⎨-+=⎪⎩x =1,y z ==平面的法向量,∴ADE n =设与平面所成角为,则BM ADE θsin θ所以直线与平面 BM ADE 21.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[)75,85[)85,95[)95,105 [)105,115 []115,125 频数 62638228(1)在下表中作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)已知在这些数据中,质量指标值落在区间内的产品的质量指标值的平均数为94,方差为[)75,10540,所有这100件产品的质量指标值的平均数为100,方差为202,求质量指标值在区间[]105,125内的产品的质量指标值的方差. 【答案】(1)答案见解析 (2)平均数为100,方差为104.(3)300【分析】(1)计算每组频率,从而画出频率分布直方图;(2)由频率分布直方图中的数据结合平均数,方差的求法求解即可; (3)先计算区间内的平均数以及,再由方差公式求解.[)105,125y 3021i i y =∑【详解】(1)由题意可知,分组,,,,,对应的频率[)75,85[)85,95[)95,105[)105,115[]115,125分别为. 0.06,0.26,0.38,0.22,0.08则频率分布直方图如下图所示:(2)质量指标值的样本平均数为.800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=质量指标值的样本方差为2222(10080)0.06(10090)0.26(100100)0.38s =-⨯+-⨯+-⨯22(100110)0.22(100120)0.08+-⨯+-⨯104=(3)由题,质量指标值落在区间内的产品有70件,[)75,105设质量指标值分别为,则平均数为,方差为,1270,,,x x x 94x =240x s =质量指标值落在区间内的产品有30件,[)105,125设质量指标值分别为,则平均数为,方差为, 1230,,,y y y y 2y s 设这100件产品的质量指标值的平均数为,100z =方差为,则,2202z s =1007030z x y =+所以,又因为,则, 114y =702221170xi i s x x ==-∑7021621320i i x ==∑又因为,则, 7030222111100zi i i i s x y z ==⎛⎫=+- ⎪⎝⎭∑∑3021398880i i y ==∑所以302221130030yi i s y y ==-=∑22.已知抛物线的焦点为,直线,点,点在抛物线上,2:4C y x =F :250l x y -+=()1,1P ,M N C 直线与直线交于点,线段的中点为. l MN Q MN D (1)求的最小值; 2PD MF NF ++(2)若,求的值.,QM aMP QN bNP ==a b +【答案】(1)4 (2)2【分析】(1)求出抛物线的准线方程,设点和点到准线的距离为,, C D P l 1d 2d 由抛物线定义得到,求出; 12MF NF d +=2224PD MF NF d ++≥=(2)设点,由向量比例关系求出,代入抛物线()()()001122,,,,,Q x y M x y N x y 0011,11x a y ax y a a++==++方程,结合点在直线上,化简得到,同理得到()00,Q x y :250l x y -+=22003640a a x y -+-=,故是关于的方程,求出两根之和.22003640b b x y -+-=,a b x 22003640x x x y -+-=【详解】(1)依题意,抛物线的准线方程为. C :1l x =-设点到准线的距离为,点到准线的距离为 D l 1d P l 2d 由抛物线的定义可知,,12MF NF d +=,()112222242PD MF NF PD d PD d d ++=++≥==故的最小值为4.2PD MF NF ++(2)设点,且,()()()001122,,,,,Q x y M x y N x y ()1,1P 则, ()()101011,,1,1QM x x y y MP x y =--=-- 因为,所以,QM aMP =()()101011,1,1x x y y a x y --=--因此,即, ()()1011011,1x x a x y y a y -=--=-0011,11x a y ax y a a++==++又在抛物线上,所以, ()11,M x y 2:4C y x =()200411x a y a a a ++⎛⎫= ⎪++⎝⎭故①.()220000322240a x y a x y ++-+-=由于点在直线上,()00,Q x y :250l x y -+=所以,把此式代入①式并化简得:②,00223x y +-=-22003640a a x y -+-=同理由可得③,QN bNP = 22003640b b x y -+-=由②③得是关于的方程的两根,此时判别式大于0,,a b x 22003640x x x y -+-=由根与系数的关系,得.2a b +=【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决; (2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.。

重庆市2012-2013学年高二数学上学期期末测试试题 理(扫描版)新人教A版

重庆市2012-2013学年高二数学上学期期末测试试题 理(扫描版)新人教A版

重庆市2012-2013学年高二数学上学期期末测试试题理(扫描版)新人教A版重庆市2012年秋高二(上)期末测试卷数学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分. 1~5 BBADC 6~10 CCDAC9.提示:(1,0)F ,设00(,)P x y ,∵||4PF =,∴014x +=即03x =, 由焦半径公式,0||4PF a ex =-=,解得2a =∴P到右准线的距离为208a x c-=+10.提示:如图,各棱长均相等的三棱锥11ACB D 在面1111A B C D 上投 影为边长为的正方形,所求三棱锥体积为正方体体积减去 四个三棱锥的体积,即111463V =-⋅=二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡相应位置上. 11.x R ∀∈,+0ax b ≤12.3213.214.15三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分)解:(Ⅰ)圆22:(2)(1)5C x y a -++=-∵圆C 与x 轴相切,∴51a -=即4a =.……………5分 (Ⅱ)圆22:(2)(1)1C x y -++=,∵过点(3,2)当切线斜率k 存在时,设切线方程:32y kx k =-+……………8分1=1=,解得43k =,4:23l y x =- 当切线斜率不存在时,显然3x =是圆C 的切线, ∴切线的方程为423y x =-或3x =.……………13分 17.(本小题满分13分)解:2:80p a a -<⇔-<<,:1q a >因为“p 且q ”为假,“p 或q ”为真,所以p 、q 一真一假……………5分D CBAD 1C 1B 1A 1若p 真q假则(a ∈-……………8分 若p 假q真则)a ∈+∞……………11分 所以a的范围为([22,)-+∞……………13分18.(本小题满分13分)解:(Ⅰ)证:连接DB ,由长方体知1DD ⊥面ABCD 所以1DD DB ⊥,又ABCD 为正方形,所以AC BD ⊥, 所以AC ⊥面1DD B ,所以1BD AC ⊥……………6分 (Ⅱ)设点1C 到面1AB C 的距离为h . 由1111C AB CA B C C V V --=得1111133AB C B C C S h S AB ∆∆⋅=⋅,所以1111B C C AB C S AB h S ∆∆⋅===……13分19.(本小题满分12分)解:(Ⅰ)由题得c a =22231a b +=,又222a b c =+,解得228,4a b == ∴椭圆方程为:22184x y +=……………5分(Ⅱ)设直线的斜率为k ,11(,)A x y ,22(,)B x y ,∴22112222184184x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得 12121212()2()0y y x x y y x x -+++⋅=-……………8分∵P 是AB 中点,∴124x x +=,122y y +=,1212y y k x x -=-代入上式得:440k +=,解得1k =-, ∴直线:30l x y +-=.………12分20.(本小题满分12分)解:(Ⅰ)∵在矩形ABEF 中,N 是AE 中点,∴N 是FB 中点, 又M 是FC 中点,∴//MN CB∵//CB AD ,∴//MN AD ,∴//MN 平面ADF ……………5分ADCBA 1D 1C 1B 1(Ⅱ)∵AD AB ⊥,平面ABEF ⊥平面ADCB ,平面ABEF 平面ADCB AB =∴AD ⊥平面ABEF ,∴CB ⊥平面ABEF ,∴CFB ∠为直线CF 与平面ABEF 所成角, 由题cos CFB ∠=,∵2CB =,∴cos FBCFB FC∠===,解得FB =∴1AF =,……………7分以A 为原点,AD 为x 轴正方向,AB 为y 轴正方向,AF 为z 轴正方向建立坐标系,则(0,0,1)F ,(2,2,0)C ,(0,2,1)E 设平面ACE 的法向量1(,,)n x y z =,(2,2,0)AC =,(0,2,1)AE =由1100n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩,得22020x y y z +=⎧⎨+=⎩,令1x =,得1(1,1,2)n =-同理可得平面ACF 的法向量2(1,1,0)n =-121212cos ,||||n n n n n n⋅<>==-⋅设二面角F AC E --的大小为θ 显然θ为锐角,∴cos θ=12分21.(本小题满分12分)解:(Ⅰ)设M(-1,0),圆M 的半径r =,由题意知||||PN PM r +=, 所以点P 的轨迹是以M 、N 为焦点,长轴长为的椭圆,于是由1a c ==得1b =,所以点P 的轨迹C 的方程为2212x y +=.……………4分(Ⅱ)因为点N 恰为ABE ∆的垂心,所以EN AB ⊥,EB AN ⊥.由EN AB ⊥得1EN k k ⋅=-,而1EN k =-,所以1k =,故方程为y x m =+.由2212y x m x y =+⎧⎪⎨+=⎪⎩消去y 得:2234220xmx m ++-=, 由22480m ∆=->得m <<,设11(,)A x y 、22(,)B x y ,则1243m x x +=-,212223m x x -=,……………7分11(1,)NA x y =-,22(,1)EB x y =-,由EB AN ⊥,得0NA EB ⋅=,又211212212(1)(1)()(1)x x y y x x x x m x m -+-=-+++-12122(1)()(1)x x m x x m m =+-++-2444(1)(1)33m m m m m --=-+-2343m m +-=……………10分 所以2340m m +-=,解得43m =-或1m =(舍去),43m =-满足0∆>, 所以所求直线为43y x =-……………12分。

2012-2013学年高二上册理科数学期末试卷(附答案)

2012-2013学年高二上册理科数学期末试卷(附答案)

2012-2013学年高二上册理科数学期末试卷(附答案)珠海市2012~2013学年度第一学期期末学生学业质量监测高二理科数学试题(A卷)与参考答案时量:120分钟分值:150分.内容:圆,数学选修2-1和数学选修2-2.一、选择题(本大题共12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的)1.(逻辑)“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(逻辑)已知命题:,则()A.B.C.D.3.(圆锥曲线)若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于()A.B.C.D.24.(圆锥曲线)抛物线的焦点坐标为()A.B.C.D.5.(导数)下列求导运算正确的是()A.B.C.D.6.(导数)函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极大值点()7.(导数)设函数,则()A.为的极大值点B.为的极小值点C.为的极大值点D.为的极小值点8.(复数)复数是纯虚数,则实数的值为A.3B.0C.2D.3或29.(空间向量)已知空间坐标系中,,,是线段的中点,则点的坐标为A.B.C.D.10.(空间向量)如图,平行六面体中中,各条棱长均为1,共顶点的三条棱两两所成的角为,则对角线的长为A.1B.C.D.211.(推理)三角形的面积为为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为()A.B.C.(分别为四面体的四个面的面积,r为四面体内切球的半径)D.12.(导数)已知函数,则的最小值为()A.B.C.D.二、填空题(本大题共8小题,每小题5分,共40分,请将正确答案填空在答题卡上)13.(空间向量)已知空间向量,,则_________.14.(圆锥曲线)已知方程表示双曲线,则m的取值范围是__________________.15.(导数)计算.1016.(圆)以点(2,-1)为圆心,以3为半径的圆的标准方程是_____________________.17.(复数)设i是虚数单位,计算:=_________-1.18.(圆锥曲线)设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为________.19.(空间向量)正方体中,点为的中点,为的中点,则与所成角的余弦值为2/520.(导数)函数的单调递增区间是________.三、解答题(本大题共5小题,每题10分,共50分.请将详细解答过程写在答题卡上)21.(逻辑估级3)设:P:指数函数在x∈R内单调递减;Q:曲线与x 轴交于不同的两点。

2012-2013学年度第一学期期末考试试卷 高二 数学 文科(含参考答案)

2012-2013学年度第一学期期末考试试卷   高二   数学 文科(含参考答案)

2012-2013学年度第一学期期末考试试卷 高二 数学 文科(含参考答案)一、选择题(本大题共12小题,每小题5分,共60分) 1.计算机执行下面的程序段后,输出的结果是( ) A. 1,3 B. 4,1 C. 0,0 D. 6,0 2.抛物线2y ax =的焦点坐标为( ) A. 1(,0)4aB. (,0)4a C. 1(0,)4aD. (0,)4a3.设双曲线的焦点在x 轴上,两条渐近线为12y x=±,则该双曲线的离心率等于( )A. 5B.C.2D.544.在学校举行的一次歌咏比赛中,已知七位评委为某班的节目评定分数的茎叶图如右,图中左边为十位数,右边为个位数,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( ) A. 84,4.84 B. 84,1.6 C. 85,1.6 D. 85,45.曲线34y x x =-在点(1,3)--处的切线方程是( )A. 72y x =+B. 74y x =+C. 2y x =-D. 4y x =-6.在11111(2),110(5),45(8),40这四个各种进制数中,最小的数是( )A. 11111(2)B. 110(5)C. 45(8)D. 407.为了了解某校学生的体重情况,抽取了一个样本,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生人数为( ) A. 46 B. 48 C. 50 D. 608.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A. 至少有一个黑球与都是黑球B. 至少有一个黑球与都是红球C. 至少有一个黑球与至少有一个红球D. 恰有一个黑球与恰有两个黑球9.若一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,则动圆圆心的轨迹为( )A. 椭圆B. 双曲线一支C.抛物线D. 圆10.函数2()2ln f x x x =-的单调减区间是( )A. (0,1]B. [1,)+∞C. (,1]-∞-及(0,1]D. [1,0)-及(0,1]11.若椭圆221(1)xy m m+=>与双曲线221(0)xy n n-=>有相同的焦点12,F F ,P 是两曲线的一个交点,则12F P F ∆的面积是( )A. 4B. 3C. 1D. 2 12.下列命题中的假命题是( )A.“2b ac =” 是“,,a b c 成等比数列”的充要条件B. 命题“200,10x R x ∃∈+<”的否定是“2,10x R x ∀∈+≥”C. “若a b >,则22ac bc >”的否命题D. 若命题“p ⌝”和“p q ∨”均为真,则命题q 为真二、填空题(本大题共4个小题,每小题5分,共20分)13.公共汽车站每5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,则乘客候车不超过3分钟的概率是3514.周长为20cm 的矩形,绕一边旋转成一个圆柱,则圆柱体积的 最大值为100027π15.读下面程序,该程序所表示的函数是101x y x -+⎧⎪=⎨⎪+,0,0,0x x x <=>16.对于曲线22:141xyC kk +=--,给出下面四个命题:①曲线C 不可能表示椭圆;②当14k <<时,曲线C 表示椭圆;③若曲线C 表示双曲线,则1k <或4k >;④若曲线C 表示焦点在x 轴上的椭圆,则512k <<其中所有正确命题的序号为③④三。

重庆市三所重点校及部分中学2012-2013学年高二上学期期末联考数学理试题含答案

重庆市三所重点校及部分中学2012-2013学年高二上学期期末联考数学理试题含答案

.
15.如图,在长方形 ABCD 中 , AB 3 , BC 1, E 为线段 DC 上一动点,现将 AED 沿 AE 折起,使
点 D 在面 ABC 上的射影 K 在直线 AE 上,当 E 从 D 运动到 C 时,则 K 所形成轨迹的长度

.
15 题
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程、演算步骤或推理过程,并答
长为 2 2 . (Ⅰ)求点 A 的坐标;
(Ⅱ)求圆 C 的标准方程.
19.(本大题满分 13 分)
已知命题 p :" x [1,2], x2 a 0",命题 q :" x0 R, x02 2ax0 2 a 0"若命题 “p 且 q ”为假命 题, “p 或 q ”是真命题,求实数 a 的取值范围 .

G
法二:(向量法)
解:(Ⅰ)以 C 为原点, CD 所在的直线为
立空间直角坐标系,
x 轴, CB 所在的直线为
y 轴, CE 所在的直线为
角 ..............................................10


E M F
C
B
P
D
A
FA 平面 ABCD 且 PG AD 易证 DG GF
设 AG x ,则 PG x, FG 1 x 2
FPG 60
FG tan FPG
PG
1 x2 x
3 解得 x 2 2
P 应为 AC 的中点 ................... ..12
(Ⅱ)证明: F2M
F2Q ;
(Ⅲ) 若 2,3 ,求 PQ 得取值范围 .

重庆市高二数学上学期期末测试试题 文(扫描版)新人教A版

重庆市高二数学上学期期末测试试题 文(扫描版)新人教A版

重庆市2012-2013学年高二数学上学期期末测试试题文(扫描版)新人教A版重庆市2012年秋高二(上)期末测试卷数学(文史类)参考答案一、选择题:本大题共10小题,每小题5分,共50分。

1~5 BBADC 6~10 DACCA二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡相应位置上。

11.5212.3213.2 14. 15.4三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分13分)解:(Ⅰ)圆22:(2)(1)5C x y a -++=-∵圆C 与x 轴相切,∴51a -=即4a =.……………5分 (Ⅱ)圆22:(2)(1)1C x y -++=,∵过点(3,2)当切线斜率k 存在时,设切线方程:32y kx k =-+……………8分 ∴1=1=,解得43k =,4:23l y x =- 当切线斜率不存在时,显然3x =是圆C 的切线, ∴切线的方程为423y x =-或3x =.……………13分 17.(本小题满分13分)解:(Ⅰ))13()(2+++='a x x e x f x,由题意,得00=')(f ,即01=+a ,1-=a ;……………6分(Ⅱ))1()(2-+=x x e x f x,)3()(+='x x e x f x,∵30)(-<⇔>'x x f 或0>x ,030)(<<-⇔<'x x f ,∴函数)(x f 的单调增区间为)3,(--∞,),(+∞0,单调减区间为)0,3(-.……………13分18.(本小题满分13分)解:2:80p a a -<⇔-<<,:1q a >因为“p 且q ”为假,“p 或q ”为真,所以p 、q 一真一假……………5分若p 真q 假则(a ∈-……………8分若p 假q 真则)a ∈+∞……………11分所以a 的范围为()-+∞U ……………13分19.(本小题满分12分)解:(Ⅰ)证:连接DB ,由长方体知1DD ⊥面ABCD所以1DD DB ⊥,又ABCD 为正方形,所以AC BD ⊥, 所以AC ⊥面1DD B ,所以1BD AC ⊥……………6分(Ⅱ)设点1C 到面1AB C 的距离为h .由1111C AB C A B C C V V --=得1111133AB C B C C S h S AB ∆∆⋅=⋅, 所以1111B CC AB CS AB h S ∆∆⋅===……12分 20.(本小题满分12分)解:(Ⅰ)由题得c a =22231a b+=,又222a b c =+,解得228,4a b ==∴椭圆方程为:22184x y +=……4分(Ⅱ)记(1,0)为点Q ∵以(1,0)Q 为圆心的圆C 与12,PF PF 相切,∴PQ是12PF F ∆的角平分线,由角平分线定理,112231PF F Q PF F Q ==∵122PF PF a +==,∴1PF =,2PF =……………7分设00(,)P x y,由焦半径公式100PF aex x =+=+=解得02x =∴P ,直线1PF 方程为:2)y x =+40y -+= ∴圆C 半径即为点Q 到直线1PF 的距离1r ==∴圆C 方程22:(1)1x y -+=……………12分21.(本小题满分12分) 解:(Ⅰ)1()f x a x '=-,21()a g x x -'= ∵12//l l ,∴01a x -201a x -=,其中00x >, ∴200(1)0ax x a ---=,解得01x =和010a x a-=-<(舍去)……………4分(Ⅱ)令()()()h x f x g x =-,()()f x g x ≥在[1,)+∞恒成立等价于()0h x ≥在[1,)+∞恒成立.()h x '=1a x -221[(1)](1)a ax a x x x -+---=令()0h x '=,解得1x =或1aa -……………7分A DCBA 1 D 1C 1B 1当11a a -≤即12a ≥时,()0h x '≥在[1,)+∞恒成立,()h x 上在[1,)+∞单调递增,()h x 的最小值为(1)0h =,∴()0h x ≥在[1,)+∞恒成立,满足题意; (9)分当11a a ->即102a <<时,∵1(1,)a x a -∈时,()0h x '<,∴()h x 上在1(1,)aa-单调递减,又(1)0h =,()0h x ≥在[1,)+∞不可能恒成立.……………11分 综上,1[,)2a ∈+∞……………12分。

重庆一中2012-2013学年高二上学期期末考试数学理Word版含答案

重庆一中2012-2013学年高二上学期期末考试数学理Word版含答案

秘密★启用前2013年重庆一中高2014级高二上期期末考试数学试题卷(理科)2013.1一.选择题(本大题共10个小题,每题5分,共50分)1.如果命题"”为假命题,则()A.均为真命题B.均为假命题C.至少有一个为真命题D.中至多有一个为真命题2.设双曲线的焦距为,一条渐近线方程为,则此双曲线的方程为()A. B. C. D.3.若、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是()A.若,则B.若,则C.若,则D.若,则4. 下列命题中,真命题是()A. B.C.的充要条件是=-1D.且是的充分条件5.已知两条直线和互相平行,则等于()A.1或-3B.-1或3C.1或3D.-1或36.函数处的切线与坐标轴所围成的三角形的面积为()A. B. C. D.7.已知圆:,点及点,从点观察点,要使视线不被圆挡住,则实数的取值范围是()A. B.C. D.8. 如图,已知F1、F2为椭圆的焦点,等边三角形AF1F2两边的中点M,N在椭圆上,则椭圆的离心率为()A. B. C. D.9.已知为R上的可导函数,且均有,则有()A.B.C.D.10.已知函数在区间内任取两个实数,且,不等式恒成立,则实数的取值范围为()A. B. C . D.二.填空题(本大题共5个小题,每题5分,共25分)11. =12.已知,则13.已知点P是抛物线上的动点,点P在y轴上的射影是M,点A 的坐标是(4,a),则当时,的最小值(结果用a表示)14.我们常用以下方法求形如的函数的导数:先两边同取自然对数得:,再两边同时求导得到:,于是得到:,运用此方法求得函数的单调递增区间是.15.点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确命题的序号是________三.解答题(共6道题,共75分)16. (13分)已知函数.(1)若,试求函数的极值;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围.17.(13分)如图,在长方体中,,点在棱AB上移动.(1)证明:;(2)若,求二面角的大小。

2012-2013学年重庆市渝东名校联盟高二第一次联考数学理无答案

2012-2013学年重庆市渝东名校联盟高二第一次联考数学理无答案

名校联盟 2012——2013学年度第一学期第一次联合考试高2014级 数 学 (理工类)命题人:重庆市开县中学 唐 勇数学(理工类)共2页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个备选项中,只有一项是符合题目要求的。

1.已知错误!未找到引用源。

表示两条不同的直线,α表示平面,则下列命题正确的是 ( )A.若//,,m n n α⊂则//m αB. 若//,,m n αα⊂则//m nC. 若,,m n n α⊥⊂则m α⊥D. 若,,m n αα⊥⊂则m n ⊥2.与直线y =-2x +3垂直的直线方程是 ( )A .y =-2x +4B .y =12x +4C .y =-2x -83D .y =— 12x -833.高为2,底面半径为1的圆锥的表面积为 ( )A . 1)πB .1)π+C .1)π+D .2π4. 已知圆22:40C x y x +-=,l 是过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能5. 如图,在正四面体P —ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论不成立的是( )A .BC ∥平面PDFB .DF ⊥平面P AEC .平面PDF ⊥平面P AED .平面PDE ⊥平面ABC6. 某几何体的三视图如图所示,则它的体积为 ( )A .12πB .45πC .57πD .81π7. 如图,在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成的角的余弦值是( ) A.3010 B.12 C.3015 D.15108. 已知点P 是圆(x -3)2+y 2=1上的动点,则点P 到直线y=x+1的距离的最小值是( )A . 3B .22 C. 22-1 D. 22+19.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.32π3B.8π3 C .82π D.82π310. 如图,棱长为1的正方体容器ABCD -A 1B 1C 1D 1 , 在A 1B 、A 1B 1、B 1C 1的中点E 、F 、G 处各开有一个小孔. 若此容器可以任意放置, 则装水最多的容积是(小孔面积对容积的影响忽略不计)( )A.87 B.1211 C . 4847 D .5655二、填空题;本大题共5小题,每小题5分,共25分。

重庆市万州区高二物理上学期期末考试试题新人教版

重庆市万州区高二物理上学期期末考试试题新人教版

2013~2014学年度(上)期末质量监测高二年级物理(理科)(本试卷共有三个大题,考试时间90分钟,满分110分)一、选择题。

本大题共12小题;每小题4分,共48分。

在每小题给出的四个选项中,只有一项是正确的。

1.如图所示,带负电的粒子以速度v从粒子源P处射出,若图中匀强磁场范P 围足够大(方向垂直纸面向里),则带电粒子的轨迹是A.a B.bC.c D.d2.置入某磁场中的线圈位置、形状不变,穿过线圈的磁场磁感应强度随时间变化的关系如图所示,则该线圈中的感应电动势A.均匀增加 B.均匀减小C.保持不变 D.为零3.如图所示,A、B两点在点电荷产生的电场的一条电场线上,若一带负电的粒子从B点运动到A点时,加速度增大而速度减小,则可判定A.点电荷一定带正电且在A点的左侧B.点电荷一定带正电且在A点的右侧C.点电荷一定带负电且在A点的左侧D.点电荷一定带负电且在A点的右侧4.如图所示,在O点置一点电荷Q,以O为圆心作一圆。

现将一试探电荷q从A分别移到圆上的B、C、D三点,则电场力做功A.移到B的过程做功最多B.移到C的过程做功最多C.移到D的过程做功最多D.三个过程一样多5.电子束焊接机中的电子枪如图所示,K为阴极,A为阳极,A上有一小孔,阴极发射的电子在阴极和阳极间的电场作用下聚集成一细束,以极高的速率穿过阳极板上的小孔,射到被焊接的金属上,使两块金属熔化而焊接在一起。

设电子从阴极发射时的初速为零。

已知电子电量为1.6×10-19C,若电子到达被焊接的金属时具有的动能为3.0×104eV,则两极间的电压U为A.2.5×104V B.2.0×104V C.3.0×104V D.3.5×104V6.带电量相等的两粒子分别垂直进入同一匀强磁场中做匀速圆周运动,如果它们的圆周运动半径恰好相等,这说明它们在刚进入磁场时A.速率相等B.质量和速率的乘积相等C.质量相等D.动能相等7.如图所示一根质量为m的金属棒MN,两端用细软导线连接后悬挂于a、b 两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流I,方向从M流向N,此时悬线上有拉力。

重庆市万州区高级高二上数学综合训练题[最新版]

重庆市万州区高级高二上数学综合训练题[最新版]

注:尊敬的各位读者,本文是笔者教育资料系列文章的一篇,由于时间关系,如有相关问题,望各位雅正。

希望本文能对有需要的朋友有所帮助。

如果您需要其它类型的教育资料,可以关注笔者知识店铺。

由于部分内容来源网络,如有部分内容侵权请联系笔者。

重庆市万州区高2007级高二上数学综合训练题(全卷共三个大题,共22个小题,满分150分,时间120分钟)一、选择题(本大题共10个小题,每小题5分,共50分)在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母代号填在题后括号内. 1.不等式113x <+<的解集为( )A .(0,2)B .()()2,02,4- C .(-4,0) D . ()()4,20,2--2. 不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞3.若,a b 满足21a b +=,则直线30ax y b ++=必过定点( )A . 11,62⎛⎫-⎪⎝⎭ B . 11,26⎛⎫- ⎪⎝⎭ C . 11,26⎛⎫ ⎪⎝⎭ D . 11,62⎛⎫- ⎪⎝⎭4.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x5.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( ) A .28 B .22C .14D .126.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]7.双曲线的两条准线将实轴三等分,则它的离心率为( )A .23B .3C .34D .38.设0x y >>,则()1x x y y+-的最小值是( )A . 1B . 2C . 3D . 49.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是( )A .25 B .27 C .3 D .410.已知椭圆12222=+bx a y ( a > b > 0) 的离心率为1e ,准线为1l 、2l ;双曲线132222=-b y a x 离心率为2e ,准线为3l 、4l ;;若1l 、2l 、3l 、4l 正好围成一个正方形,则21e e 等于( )A .33 B .36 C .22 D . 2 二、填空题(本大题共6小题,每小题4分,共24分)请把正确答案直接填写在题中的横线上.11. 不等式 0444322>--+xx x x 的解集是____________________________. 12. 圆01)4()3(22=+=-+-y x y x 关于直线对称的圆的方程是___________________.13.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是__________________.14.经过两条直线280x y +-=和210x y -+=的交点,且与向量(4,3)a =垂直的直线方程为_____________________________ .15.F 1,F 2是双曲线145422=-y x 的两个焦点,P 是双曲线上的点,已知|PF 1|,|PF 2|,|F 1F 2|依次成等差数列,且公差大于0,则∠F 1PF 2= .16.设有五个条件:①平面γ与平面α 、β所成的锐角相等; ②直线a ∥b ,a ⊥平面α ,b ⊥平面β;③a 、b 是异面直线,,a b a b αββα⊂⊂且∥,∥;④平面α内距离为d 的两条平行线在平面β内的射影仍为两条距离为d 的平行线;⑤平面α内有不共线的三点到平面β的距离相等.其中能推出平面α∥β的条件有_____________.(填写所有正确条件的代号) 三、解答题(本大题共6小题,共76分)解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)已知:a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1. 求证:|ac +bd |≤1.18.(本小题满分13分)求经过点A (2,-1),和直线1x y +=相切,且圆心在直线2y x =-上的圆的方程.19.(本小题满分12分)已知二面角α-CD -β的大小为60°,EA ⊥平面α,垂足为A ,EB ⊥平面β,垂足为B ,EA =3,EB =4. (1)求证:CD ⊥AB ; (2)求E 到CD 的距离.20.(本小题满分12分)某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大.最大种植面积是多少?21.(本小题满分12分)已知:抛物线x y 42=的一条焦点弦被焦点分成长为m 、n 的两部分. 求证:11m n+为定值.22.(本小题满分14分)已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且 21cos PF F ∠的最小值为91-.(I )求动点P 的轨迹方程;(II )若已知)3,0(D ,M 、N 在动点P 的轨迹上且λ=,求实数λ的取值范围.(期末综合训练题)参考答案一、选择题(每小题5分,共50分) 1~5 DA B B A 6~10 C B C C A 二、填空题(每小题4分,共24分) 11.),1()1,0()4,(+∞⋃⋃--∞;12. 1)3()4(22=+++y x ;13.2;14. 43180x y +-=;15. 120°;16. ②③. 三、解答题(6个小题,共76分) 17. (本小题满分13分)证明:∵a 2+c 2≥2ac ,b 2+d 2≥2bd ,∴a 2+b 2+c 2+d 2≥2(ac +bd),∴ac +bd ≤211+=1. ……………………5分又∵a 2+c 2≥-2ac ,b 2+d 2≥-2bd , ∴a 2+b 2+c 2+d 2≥-2(ac +bd),∴ac +bd ≥-211+=-1. ……………………10分∴|ac +bd|≤1. ………………13分 18. (本小题满分13分)解:因为圆心在直线2y x =-上,因此可设圆心坐标为(,2)a a -,由题意:=……………………3分2221(2)(12)(1)12a a a a ∴-+-=+⇒= ……………………8分所以圆心坐标为(1,2)- ……………………10分 从而所求圆的方程为:22(1)(2)2x y -++=即是:222430x y x y +-++= ……………………13分19. (本小题满分12分)(1)证明: CD EA CD EA ⊥∴⊂⊥αα, ……………………………………………… 2分同理CD ⊥EBE EA EB = ,∴CD ⊥面AEB ,.AB CD AEB AB ⊥⇒⊂面…………… 4分(2)解:设CD 与面AEB 交于O ,连OA ,OB.CD AOB OECD ,OB CD ,OA CD AEB CD 的平面角是二面角面βα--∠∴⊥⊥⊥∴⊥∠AOB =60° ………………………………………6分 OE 是E 到CD 的距离.∠EAO +∠EBO =180°, A 、O 、B 、E 四点共圆,∠AEB =120°……………… 8分 △AEB 中,120cos 2222⋅⋅-+=BE AE BE AE AB3721432169=⎪⎭⎫⎝⎛-⨯⨯⨯-+=AB =37. ……………………………………………………10分.OE ,OE sin AB 311123237120=⨯=∴= ……… 12分20. (本小题满分12分)解:设矩形温室的左侧边长为am ,后侧边长为bm ,则800ab =……………1分 蔬菜的种植面积).2(2808824)2)(4(b a a b ab b a S +-=+--=--=……………………6分所以 ).(648248082m ab S =-≤ ……………………8分当).(648,)(20),(40,22m S m b m a b a ====最大值时即 ………………11分 答:当矩形温室的左侧边长为40m ,后侧边长为20m 时,蔬菜的种植面积最大,最大种植面积为648m 2. ……………………12分 21. (本小题满分12分)解:由题可知,焦点坐标为(1,0)当焦点弦AB 与对称轴垂直时,m n ==22, ∴+=111m n………………………4分当焦点弦AB 与对称轴不垂直时,设其方程为()y k x =-1 将其代入抛物线y x 24=有()k x k x k 2222240-++= …………………………6分 令()()A x y B x y 1122,,, 则()()m n x x k+=+++=+1221144 ()()()m n x x x x x x ···=++=+++121212111=+442k ………………10分 ∴+=m n mn ,即111m n+=综上可知11m n+为定值. ………………12分22. (本小题满分14分)解:(I)由题意52=c ,设a PF PF 2||||21=+(5>a ),由余弦定理, 得1||||102||||2||||||cos 21221221222121-⋅-=⋅-+=∠PF PF a PF PF F F PF PF PF F .……………………2分又||1PF ·22212)2||||(||a PF PF PF =+≤, 当且仅当||||21PF PF =时,||1PF ·||2PF 取最大值,……………………4分 此时21cos PF F ∠取最小值110222--a a ,令91110222-=--a a ,解得92=a ,5=c ,∴42=b ,故所求P 的轨迹方程为14922=+y x .…………6分(II )设),(t s N ,),(y x M ,则由DN DM λ=,可得)3,()3,(-=-t s y x λ,故)3(3,-+==t y s x λλ,……………………8分∵M 、N 在动点P 的轨迹上,故14922=+t s 且14)33(9)(22=-++λλλt s , 消去s 可得222214)33(λλλλ-=--+t t ,解得λλ6513-=t ,……………………12分 又2t ≤ ,∴13526λλ-≤,解得155λ≤≤,故实数λ的取值范围是1,55⎡⎤⎢⎥⎣⎦.……14分注:尊敬的各位读者,本文是笔者教育资料系列文章的一篇,由于时间关系,如有相关问题,望各位雅正。

数学上学期期中试题-万州二中2013-2014学年高二上学学期期中考试数学试题及答案(文)

数学上学期期中试题-万州二中2013-2014学年高二上学学期期中考试数学试题及答案(文)

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x ﹣2y+7=0的斜率是( )A . 2B . ﹣2C .D .2.棱长都是1的三棱锥的表面积为( )A .B .C .D .3.垂直于同一平面的两条直线一定( ) A . 平行 B . 相交 C . 异面 D . 以上都有可能4.下列几何体各自的三视图中,有且仅有两个视图相同的是( )5.已知ab <0,bc <0,则直线ax+by=c 通过( ) A . 第一、二、三象限 B . 第一、二、四象限 C . 第一、三、四象限 D . 第二、三、四象限6.若直线l 1:y=k (x ﹣4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A . (0,4) B . (0,2) C . (﹣2,4) D . (4,﹣2)7.下面四个说法中,正确的个数为( )(1)如果两个平面有三个公共点,那么这两个平面重合 (2)两条直线可以确定一个平面(3)若M ∈α,M ∈β,α∩β=l ,则M ∈l(4)空间中,相交于同一点的三直线在同一平面内. A . 1 B . 2 C . 3 D . 4 8.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A 34k ≥ B 324k ≤≤ C 324k k ≥≤或 D 2k ≤9.正方体A 1B 1C 1D 1﹣ABCD 中,E 是A 1A 的中点、F 是C 1C 的中点,与直线A 1D 1,EF ,DC 都相交的空间直线有多少条?( ) A . 1条 B . 无数条 C . 3条 D . 2条10、如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为( )二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. 11.若直线l 过点(3,4),且(﹣2,1)是它的一个方向向量,则直线l 的方程为 _________ . 12.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为 .13.在斜二测画法下,四边形ABCD 是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是 .14.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB∥面MNP 的图形的序号是 (写出所有符合要求的图形序号).15.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DKAB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)求直线3x ﹣2y+24=0的斜率及它在x 、y 轴上的截距. 17.(13分)一直线过点P (﹣5,﹣4)且与两坐标轴围成的三角形面积是5,求此直线的方程。

数学上学期期中试题-万州二中2013-2014学年高二上学学期期中考试数学试题及答案(理)

数学上学期期中试题-万州二中2013-2014学年高二上学学期期中考试数学试题及答案(理)

一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卷相应位置。

) 1 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为 ( )A .4、6、8B .4、6、7、8C .4、6、7D .4、5、7、82.若m ≠0,则过(1,-1)的直线ax+3my+2a=0的斜率为 ( )A.1B.-3C.31D.-313.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是 ( )A.12+22 B .1+22C .1+ 2D .2+ 24.直线l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角的取值范围是( )A .B .C .D .5.某四面体的三视图如右图所示,该四面体四个面的面积 中最大的是 ( ) A .8 B . 10C .6 2D .8 26.设b c ,是两条直线,βα,是两个平面,下列能推出b c ⊥的是 ( )A .βαβα⊥⊥,//,b cB .βαβα//,,⊥⊥b cC .βαβα//,,⊥⊂b cD .βαβα⊥⊂,//,b c7.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( )A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=17或(x -5)2+(y +7)2=15C .(x -5)2+(y +7)2=9D .(x -5)2+(y +7) 2=25或(x -5)2+(y +7)2=9 8.一个正方体的展开图如右图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中( )A. CD AB ⊥B. CD AB //C. AB 与CD 所成的角为 60D. AB 与CD 相交9.一束光线从点A(-1,1)出发经X 轴反射到圆C :1)3()2(22=-+-y x 上的最短路程是( )A. 4B. 5C. 123-D. 62 10、如右图,在棱长为4的正方体 ''''ABCD A B C D -中,E 、F 分别是AD, ''A D ,的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面''''A B C D 上运动,则线段MN 的中点P 的轨迹(曲面)与二面角A —''A D 一'B 所围成的几何体的体积为( )A .43π B . 23πC .3πD .6π二、填空题(本大题共5小题,每小题5分共25分,把答案填写在答题卷相应题号的横线上.)11.在空间直角坐标系下,点A(x 2+4,4-y ,1+2z )关于y 轴的对称点是B(-4x ,9,7-z ),则x ,y ,z 的值依次是 ;12.已知M={(x,y)|x 2+y 2=1,0<y ≤1},N={(x,y)|y=x+b,b ∈R},并且M ∩N ≠∅,那么b 的取值范围是 ;13.直线过点 (-3,-2)且在两坐标轴上的截距相等,则该直线方程为 ; 14.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =15.在平面直角坐标系中,设三角形ABC 的顶点坐标分别为(0,),(,0),(,0)A a B b C c ,点(0,)P p 在线段OA 上(异于端点),设,,,a b c p 均为非零实数,直线,BP CP 分别交,AC AB 于点E ,F ,一同学已正确算出OE 的方程:11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程:三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分13分)在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.17.(本小题满分13分)平面E F GH 分别平行空间四边形ABCD 中的CD 与AB 且交BD 、AD 、AC 、BC 于E 、F 、G 、H.CD=a ,AB=b ,CD⊥AB. (I )求证E F GH 为矩形;(II )点E 在什么位置,S E F GH 最大?18.(本小题满分13分).已知圆x 2+y 2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称,(1)求k 、b 的值;(2)若这时两圆的交点为A 、B ,求∠AOB 的度数.19 (本小题满分12分)如图,PA ⊥平面AC ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点.(1)求证:AF ∥平面PCE ;(2)若二面角P —CD —B 为45°,AD =2,CD =3,求点F 到平面PCE 的距离; (3)在(2)的条件下,求PC 与底面所成角的余弦值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档