6.平摆线与渐开线的参数方程

合集下载

人教版高中数学选修4-4课件:第二讲四渐开线与摆线

人教版高中数学选修4-4课件:第二讲四渐开线与摆线

解:由摆线的参数方程易知半径为 2 的圆的参数方程
x=2(φ-sin φ),
为:
(φ 为参数).
y=2(1-cos φ)
林老师网络编辑整理
24
归纳升华 1.圆的摆线的实质是一个圆沿着一条定直线无滑动 地滚动时圆周上一个定点的轨迹. 2.根据圆的摆线的定义和建立参数方程的过程,可 知其中的字母 r 是指定圆的半径,参数 φ 是指圆上定点相 对于某一定点运动所张开的角度大小.
于渐开线和坐标轴的交点要看坐标系的选取.
答案:(1)× (2)√ (3)√ (4)×
林老师网络编辑整理
10
2.当 φ=2π 时,圆的渐开线
x=6(cos y=6(sin
φ+φsin φ-φcos
φ), φ) (φ
为参数)上的点是(
)
A.(6,0)
B.(6,6π)
C.(6,-12π) D.(-π,12π)
林老师网络编辑整理
22
由于 r 表示圆的半径,故 r>0,所以 r=2k1π(k∈N*),
故所求摆线的参数方程为
x=2k1π(φ-sin y=2k1π(1-cos
φ), (φ
φ)
为参数,其中
k∈N*).
林老师网络编辑整理
23
[迁移探究] (变换条件)把典例 2 中的条件“摆线过 一定点(1,0)”改为“半径为 2”,请写出该摆线的参数 方程.
A.2π,2 B.2π,4
C.4π,2 D.4π,4
解析:因为半径 r=2,所以拱宽为 2πr=4π,拱高为
2r=4.
答案:D
林老师网络编辑整理
12
4.写出半径为 2 的圆的渐开线参数方程:_________.

高中数学《参数方程-平摆线和渐开线》课件

高中数学《参数方程-平摆线和渐开线》课件

5.求摆线
= 2(-sin),
(0≤t<2π)与直线 y=2 的交点的直角坐标.
= 2(1-cos)
π
2
3
2
解:当 y=2 时,2=2(1-cos t),∴cos t=0.∵0≤t<2π,∴t= 或 π,
∴x1=2
2
π
π
;2.
∴交点的直角坐标为(π-2,2),(3π+2,2).
首 页

J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI

自主思考 2 圆的渐开线和摆线的参数方程不宜化为普
通方程吗?
提示:用参数方程描述运动规律时,常常比用普通方程更为直接、简便.
有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困
UITANG LIANXI
探究三
探究一 求平摆线的参数方程
求平摆线的参数方程,只需由题意求出圆的半径 r 即可.
【典型例题 1】 平面直角坐标系中,若圆的摆线过点(1,0),求这条摆线
的参数方程.
= (-sin),
思路分析:根据圆的摆线的参数方程的表达式
(φ 为参
= (1-cos)
数),可知只需求出其中的 r,也就是说,摆线的参数方程由圆的半径唯一确定,
因此只需把点(1,0)代入参数方程求出 r 值再代入参数方程的表达式.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
探究三
解:令 r(1-cos φ)=0,可得 cos φ=1.所以 φ=2kπ(k∈Z),代入可得

第2讲-渐开线和摆线 共27页

第2讲-渐开线和摆线 共27页

即得 cos φ=1,所以 φ=2kπ(k∈Z).

代入 x=r(φ-sin φ),得 x=r(2kπ-sin 2kπ).又因为 x=2, 当


自 主 导 学
所以 r(2kπ-sin 2kπ)=2,即得 r=k1π(k∈Z).
双 基 达 标
又由实际可知 r>0,所以 r=k1π(k∈N+).易知,当 k=1
当 堂 双


导 学
解参数方程的过程,可知其中的字母 r
达 标
是指基圆的半径,而参数 φ 是指绳子外
端运动时绳子与基圆的切点 B 转过的角

堂 互
度,如图,其中的∠AOB 即是角 φ.显然



探 究
点 M 由参数 φ 惟一确定.在我们解决有关问题时可以适当利
作 业
用其几何意义,把点的坐标转化为与三角函数有关的问题,使
φ, φ
(φ 为参数),
堂 双 基 达

分别把 φ=π3和 φ=π2代入,

课 堂 互
可得
A、B
两点的坐标分别为
3+ A( 6
3π,3
36-π),

动 探 究
B(π2,1).
时 作 业
菜单
新课标 ·数学 选修4-4
那么,根据两点之间的距离公式可得 A、B 两点的距离为


前 自 主 导
|AB|=
3+ 6
课 时 作 业
线)的生成过程;了解摆线在实际应用中的
实例.
菜单
新课标 ·数学 选修4-4
1.渐开线及其参数方程


前 自
(1)把线绕在圆周上,假设线的粗细可以忽略,拉着线头

四、渐开线与摆线

四、渐开线与摆线
记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.
大圆圆弧 AM 的长为 l1=θ×1=θ,小圆圆弧 AM1 的长为 l2=2θ×12=θ,即 l1=l2,
∴小圆的两段圆弧 AM 与 AM1 的长相等,故点 M1 与点 M′重合,
即动点 M 在线段 MO 上运动,同理可知,此时点 N 在线段 OB 上运动. 点 A 在其他象限类似可得,M、N 的轨迹为相互垂直的线段. 观察各选项,只有选项 A 符合.故选 A.
P42
课堂练习
1.如图,有一标准的渐开线齿 轮,齿轮的齿廓线的基圆直 径是225mm,求齿廓线AB 所在的渐开线的参数方程.
的一周.点M,N在大圆内所绘出的图形大致是( A )
几何画板
分析:根据小圆与大圆半径1:2的关系,知小圆的周长为大圆的一半, 则小圆要转二圈,才刚好滚过大圆的内壁一周.若小圆转半圈, 则刚好是大圆的四分之一;小圆转一圈,刚好是大圆的二分之一.
一圈半
y
M
两圈 M
MN

2
N
N
半圈
一圈
x
2:1时 一个点的 内摆线 4:1时一个点的内摆线(星形线) P44
【解析】 如图,建立直角坐标系,由题意可知,小圆 O1 总与大圆 O 相内切, 且小圆 O1 总经过大圆的圆心 O.
设某时刻两圆相切于点 A,此时动点 M 所处位置为点 M′,
则大圆圆弧 AM 与小圆圆弧 AM 相等.
以切点 A 在劣弧 MB 上运动为例,记直线 OM 与此时小圆 O1 的交点为 M1,
e1 e2 ,即: BM // e2 .
讲授新课
2. 摆线
思考:
如果在自行车的轮子上喷一个白色 印记,那么当自行车在笔直的道路上行 驶时,白色印记会画出什么样的曲线?

高中数学 第二章 参数方程 2.4 平摆线和渐开线名师课件 北师大版选修4-4

高中数学 第二章 参数方程 2.4 平摆线和渐开线名师课件 北师大版选修4-4

则基圆的面积为 .
解析:由题意知基圆的半径为3,所以S=πr2=9π. 答案:9π
12345
5 已知圆 C 的参数方程是
������ ������
= =
1 + 6cos������, -2 + 6sin������
(������为参数),
直线������对应的普通方程是������ − ������ − 6 2 = 0.
B.
������ ������
= =
-4cos������, -4sin������
(������为参数)
C.
������ ������
= =
4(������-sin������), 4(1-cos������)
(������为参数)
D.
������ ������
= =
4(1-sin������), 4(������-cos������)
(������为参数)
答案:C
12345
3面积为81π的圆的平摆线的参数方程为
.
解析:因为 S=81π,所以 r=9.
所以圆的平摆线的参数方程为
������ ������
= =
99((���1���--csoins������������)),(������为参数).
答案:
������ ������
解:由题意知,y=1-cos t=1,所以 cos t=0,
∵当0t≤1=t<π2 2时π,,∴x=t1π2=−π2
, ������2 sin
=π2 =32ππ2. − 1, ������
=
1 − cos
π 2
=
1.
∴������

平摆线和渐开线

平摆线和渐开线
自主预习 讲练互动 课堂达标

从上述分析可以看到,在圆周沿定直线无滑动滚动的过
程中,圆周上定点M的位置可以有圆心角φ惟一确定,因
此以φ为参数是非常自然的. 摆线的参数方程也不能化为普通方程.
自主预习
讲练互动
课堂达标
【例1】 已知一个圆的摆线过一定点(1,0),请写出该摆线的
参数方程.
解 根据圆的摆线的参数方程的表达式 (φ 为参数)可知,只需求
x=r(φ-sin φ), y=r(1-cos φ)
出其中的 r,也就是说,摆线的参数方程由圆 的半径唯一来确定,因此只需把点(1,0)代入 参数方程求出 r 值再代入参数方程的表达式.
自主预习
讲练互动
课堂达标
令 r(1-cos φ)=0 可得 cos φ=1, 所以 φ=2kπ (k∈Z)代入可得 x=r(2kπ-sin 2kπ)=1. 1 所以 r= .又根据实际情况可知 r 是圆的半径,故 r>0. 2kπ 所以,应有 k>0 且 k∈Z,即 k∈N+. 1 x=2kπ(φ-sin φ), 所以,所求摆线的参数方程是 y= 1 (1-cos φ) 2kπ (φ 为参数) (其中 k∈N+).

π xM=r· θ-r· cos(φ+θ)-2=r[θ-sin(φ+θ)],
π yM=r+r· sinφ+θ-2=r[1-cos(φ+θ)].
自主预习
讲练互动
课堂达标
题型二
圆的渐开线
渐开线要从其生成过程理解其简单性质, 体会渐开线上 动点所满足的几何条件, 建立渐开线参数方程的关键是 将“切线 BM 的长就是AB的长”用坐标表示出来. 渐开线的参数方程不能化为普通方程.
自主预习

高中数学 第2章 参数方程 2.4 平摆线和渐开线课件 北师大版选修44

高中数学 第2章 参数方程 2.4 平摆线和渐开线课件 北师大版选修44

φ 取π2时对应的曲线上的点的坐标是________.
【导学号:12990031】
【解析】 所给的圆的渐开线的参数方程可化为
x=21kπα-sinα, y=21kπ1-cosα
(α 为参数,k∈N+).
根据圆的摆线的参数方程
x=rα-sin α, y=r1-cos α
(α 为参数),可知只需求出其中的半径 r.圆摆线的参数方
程即可写出,也就是说圆的摆线的参数方程是由圆的半径唯一确定的.
【答案】 A
圆的渐开线参数方程及其应用 已知圆的直径为 2,其渐开线的标准参数方程对应的曲线上两点 A,
B 对应的参数分别是π2和32π,求 A,B 两点间的距离.
【精彩点拨】 根据渐开线的参数方程,分别求出 A,B 两点的坐标,再由 A,B 两点间的距离公式求出.
【自主解答】 由题意,知 r=1,则圆的渐开线参数方程为
【答案】 (1)√ (2)√
教材整理 2 渐开线的参数方程 1.把线绕在圆周上,假设线的粗细可以忽略,拉着线头 离开圆周,保持线与 圆相切, 线头的轨迹就叫作圆的渐开线,相应的定圆 叫作渐开线的 基圆.
2.设基圆的半径为 r,圆的渐开线的参数方程是
x=rcos φ+φsin φ, y=rsin φ-φcos φ
x=cos φ+φsin φ, y=sin φ-φcos φ
(φ 为参数).
当 φ=π2时,xy= =csions2ππ2-+π2π2csoinsπ2π2==π21, ,
所以 Aπ2,1.
当 φ=32π时,xy= =csions3322ππ-+3322ππ··csoins3322ππ==--312π,, 所以 B 点坐标为-32π,-1. 所以|AB|= π2+32π2+1+12 =2 π2+1.

高考数学平摆线和渐开线

高考数学平摆线和渐开线
§4 平摆线和渐开线
自主预习
讲练互动
课堂达标
1.平摆线定义
一个圆在平面上沿着一条直线无滑动地滚动时,我们把 圆周上一定点的运动轨迹叫作_平__摆__线__ (或旋轮线). 当圆滚动半周时,过定点M的半径转过的角度是π,点M 到达最高点(_π_r_,__2_r_) ,再滚动半周,点M到达(_2_π_r_,__0_) , 这时圆周和x轴又相切于点M,得到平摆线的一拱.圆滚 动一周时,平摆线出现一个周期. 平摆线上点的纵坐标最大值是_2_r_,最小值是_0_,即平 摆线的拱高为_2_r _.
=(4(cos θ+θsin θ),4(sin θ-θcos θ)).
又O→M=(x,y),因此有xy==44((csions
θ+θsin θ-θcos
θ), θ)
这就是所求圆的渐开线的参数方程.
自主预习
讲练互动
课堂达标
【反思感悟】 关键根据渐开线的生成过程,归结到向量知 识和三角的有关知识建立等式关系. 用向量方法建立运动轨迹曲线的参数方程的过程和步骤: (1)建立合适的坐标系,设轨迹曲线上的动点为 M(x,y). (2)取定运动中产生的某一角度为参数. (3)用三角、几何知识写出相关向量的坐标表达式. (4)用向量运算得到O→M的坐标表达式,由此得到轨迹曲线的 参数方程.
课堂达标
题型一 平摆线 在分析平摆线上动点满足的几何条件时,关键是正确理解 “一个圆沿一条定直线无滑动地滚动”的意思.如图所示,假 设圆周上定点 M 的起始位置是圆与定直线的切点 O,圆保持 与定直线相切向右滚动,点 M 就绕圆心 B 作圆周运动.如果 点 M 绕圆心 B 转过 φ 弧度后,圆与直线相切于 A,那么线段
自主预习
讲练互动
课堂达标

参数方程渐开线与摆线选

参数方程渐开线与摆线选

2023参数方程渐开线与摆线选讲pptCATALOGUE目录•参数方程与极坐标系•渐开线及其特性•摆线及其特性•渐开线与摆线的比较•渐开线与摆线的应用场景•总结与展望01参数方程与极坐标系参数方程的概念及意义参数方程的引入通过具体实例,说明参数方程在几何、物理等领域的广泛应用。

参数方程的基本概念定义参数方程并说明其组成要素,包括自变量、参数和曲线。

参数方程的意义阐述参数方程在描述和分析实际问题中的优势和作用。

010203极坐标系及其与直角坐标系的转化极坐标系的定义介绍极坐标系的概念、极轴、极径和极角等基本概念。

极坐标系与直角坐标系的转化推导极坐标系与直角坐标系之间的转化公式,包括极坐标系到直角坐标系的转化和直角坐标系到极坐标系的转化。

极坐标系的应用举例说明极坐标系在解析几何、物理学等领域的实际应用。

03极坐标方程与参数方程的转化推导极坐标方程与参数方程之间的转化公式,包括极坐标方程到参数方程的转化和参数方程到极坐标方程的转化。

极坐标方程与参数方程的转化01极坐标方程的表示阐述如何用极坐标方程表示曲线,包括极坐标方程的意义和构成要素。

02参数方程的表示说明如何用参数方程表示曲线,包括参数方程的意义和构成要素。

02渐开线及其特性在平面上,一条动直线(发生线)沿着一个固定的圆(基圆)运动,该直线所形成的轨迹即为平面渐开线。

平面渐开线的定义平面渐开线在基圆上的直经无穷大,而在离基圆无穷远的直线上的直径为零,它反映了渐开线在基圆内和基圆外的不同特征。

平面渐开线的几何意义渐开线的定义及几何意义平面渐开线的参数方程用参数方程表示平面渐开线需要使用三个参数,即角度、半径和弧长。

使用参数方程绘制平面渐开线可以使用数学软件或计算器等工具,通过输入参数方程的参数值,绘制出平面渐开线的图形。

渐开线的参数方程及绘制平面渐开线的特性平面渐开线具有展角和离基圆距离两个特性。

展角表示渐开线在基圆外的弧长与该点到基圆中心的距离之比,离基圆距离表示该点到基圆圆心的距离。

平摆线和渐开线

平摆线和渐开线

x OD OA DA OA MC r r sin ,
y DM AC AB CB r r cos .
3、摆线的参数方程
M O y

B
A
M O D

B C A E x
x r ( sin ), 摆线的参数方程为: (为参数) y r (1 cos ).

B
A
同样地,我们先分析圆在滚动过程中,圆周上的这个动点满足的几何条件。
的长,即OA r。 线段OA的长等于MA
我们把点M的轨迹叫做平摆线,简称摆线,又叫旋轮线。
2、摆线的参数方程
M O

B
A
根据点M满足的几何条件,我们取定直线为X轴,定点M滚动时落在定 直线上的一个位置为原点,建立直角坐标系。 设圆的半径为r。
设开始时绳子外端(笔尖)位于点A,
当外端展开到点M时,因为绳子对圆心角的一段弧AB, 展开后成为切线,所以切线BM的长就是AB的长, 这是动点(笔尖)满足的几何条件。
B
பைடு நூலகம்
M
我们把笔尖画出的曲线叫做圆的渐开线, 相应的定圆叫做渐开线的基圆。

O
A
5 渐开线的参数方程:
设圆的半径为r,则动点M的初始位置的坐标为(r,0), 则动点M的坐标为(x,y), 是以OA为始边、OB为终 边的正角令 为参数,此时AB的弧长为r .
§4 平摆线和渐开线
汉滨高级中学
1、摆线的定义
思考:
如果在自行车的轮子上喷一个白色印记,那么自行车在笔直 的道路上行使时,白色印记会画出什么样的曲线? 摆线在它与定直线
的两个相邻交点之间 上述问题抽象成数学问题就是:当一个圆沿着一条定直线无滑动地滚动时,圆周 的部分叫做一个拱。

《2.4.1 摆线的参数方程》教学案3

《2.4.1 摆线的参数方程》教学案3

《2.4.1 摆线的参数方程》教学案3教学目标1.了解平摆线和渐开线的生成过程,并能推导出它们的参数方程. 2.了解平摆线和渐开线在实际中的作用.教学过程知识梳理 一、平摆线 1.平摆线(旋轮线)一个圆在平面上沿着一条直线无滑动地滚动时,我们把圆周上一定点的运动轨迹叫作______(或旋轮线),如图.2.平摆线(旋轮线)的参数方程半径为r 的圆的平摆线的参数方程为⎩⎪⎨⎪⎧x = ,y = (-∞<α<+∞).3.平摆线的性质当圆滚动半周时,过定点M 的半径转过的角度是π,点M 到达最高点____,再滚动半周,点M 到达______,这时圆周和x 轴又相切于点M ,得到平摆线的一拱.圆滚动一周时,平摆线出现一个周期.平摆线上点的纵坐标最大值是____,最小值是____,即平摆线的拱高为____.【做一做1】已知一个圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =3sin θ(θ为参数).那么圆的平摆线方程中与参数φ=π2对应的点A 与点B ⎝⎛⎭⎫32π,2之间的距离为( ). A .π2-1 B . 2 C .10 D .32π-11.圆的平摆线的参数方程中的参数的几何意义剖析:根据圆的平摆线的定义和建立参数方程的过程,可以知道其中的字母r 是指圆的半径,参数α是过圆周上点M 的半径与过圆与x 轴切点的半径的夹角.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.答案: 一、1.平摆线2.r (α-sin α) r (1-cos α) 3.(πr,2r ) (2πr,0) 2r 0 2r【做一做1】C 根据圆的参数方程可知,圆的半径为3,那么它的平摆线的参数方程为⎩⎪⎨⎪⎧x =3 φ-sin φ ,y =3 1-cos φ (φ为参数),把φ=π2代入参数方程中可得⎩⎪⎨⎪⎧x =3⎝⎛⎭⎫π2-1,y =3即A ⎝⎛⎭⎫3⎝⎛⎭⎫π2-1,3.∴|AB |=⎣⎡⎦⎤3⎝⎛⎭⎫π2-1-32π2+ 3-2 2=10.二、1.相切 渐开线 基圆2.r (cos φ+φsin φ) r (sin φ-φcos φ)【做一做2-1】⎩⎪⎨⎪⎧x =4 cos φ+φsin φ ,y =4 sin φ-φcos φ (φ为参数) r =4,∴⎩⎪⎨⎪⎧x =4 cos φ+φsin φ ,y =4 sin φ-φcos φ (φ为参数). 【做一做2-2】5π2-4π+82 当φ=π2时,⎩⎪⎨⎪⎧x =cos π2+π2sin π2=π2,y =sin π2-π2cos π2=1,∴A ⎝⎛⎭⎫π2,1.当φ=π时,⎩⎪⎨⎪⎧x =cos π+πsin π=-1,y =sin π-πcos π=π,∴B (-1,π).∴|AB |=⎝⎛⎭⎫π2+12+ 1-π 2=54π2-π+2=5π2-4π+82.题型一 求平摆线的参数方程【例1】已知一个圆的平摆线过一定点(2,0),请写出该圆的半径最大时该平摆线的参数方程.分析:根据圆的平摆线的参数方程⎩⎪⎨⎪⎧x =r φ-sin φ ,y =r 1-cos φ (φ为参数),只需把点(2,0)代入参数方程求出r 的表达式,根据表达式求出r 的最大值,再确定对应的平摆线的参数方程即可.反思:要熟知平摆线的参数方程及每个字母的含义. 题型二 求渐开线的参数方程【例2】求半径为10的基圆的渐开线的参数方程. 分析:代入参数方程公式即可.反思:求渐开线的参数方程,只需知道半径即可. 题型三 平摆线、渐开线的参数方程的应用【例3】求平摆线⎩⎪⎨⎪⎧x =t -sin t ,y =1-cos t (0≤t <2π)与直线y =1的交点的直角坐标.分析:利用参数方程求出t 的三角函数值,从而求出点的坐标. 反思:解此类题,应明确相应参数的意义. 答案:【例1】解:令y =0,可得r (1-cos φ)=0,由于r >0, 即得cos φ=1,所以φ=2k π(k ∈Z ). 代入x =r (φ-sin φ),得x =r (2k π-sin 2k π). 又因为x =2,所以r (2k π-sin 2k π)=2, 即得r =1k π(k ∈N +).易知,当k =1时,r 取最大值为1π.代入即可得圆的平摆线的参数方程为⎩⎪⎨⎪⎧x =1πφ-sin φ ,y =1π 1-cos φ(φ为参数).【例2】解:∵r =10,∴参数方程为⎩⎪⎨⎪⎧x =10 cos φ+φsin φ ,y =10 sin φ-φcos φ (φ为参数).【例3】解:由题意知,y =1-cos t =1,∴cos t =0, ∴sin t =1.∴t =2k π+π2(k ∈Z ), 又∵0≤t <2π,∴t =π2.∴x =π2-1.∴交点的直角坐标为⎝⎛⎭⎫π2-1,1.1半径为2的圆的渐开线方程是( ). A .=2cos sin =2sin cos x y ϕϕϕϕϕϕ+⎧⎨-⎩(),()(φ为参数)B .=2cos ,=2sin x y ϕϕ⎧⎨⎩(φ为参数)C .=2sin ,=2cos x y ϕϕϕϕ⎧⎨-⎩(φ为参数)D .()()2sin cos ,2cos sin x y ϕϕϕϕϕϕ=-⎧⎪⎨=+⎪⎩(φ为参数)2半径为4的圆的平摆线参数方程为( ).A .⎩⎪⎨⎪⎧x =4cos φ,y =4sin φ(φ为参数)B .⎩⎪⎨⎪⎧x =-4cos φ,y =-4sin φ(φ为参数)C .⎩⎪⎨⎪⎧x =4 φ-sin φ ,y =4 1-cos φ (φ为参数)D .⎩⎪⎨⎪⎧x =4 1-sin φ ,y =4 φ-cos φ(φ为参数)3面积为36π的圆的平摆线参数方程为__________. 4已知圆C 的参数方程是=16cos ,=26sin x y αα+⎧⎨-+⎩(α为参数),直线l 对应的普通方程是x -y-62=0.(1)如果把圆心平移到原点O ,请判断平移后圆和直线的位置关系?(2)写出平移后圆的平摆线方程. (3)求平摆线和x 轴的交点. 答案: 1.A2.C 把r =4代入平摆线参数方程即可.3.⎩⎪⎨⎪⎧x =6 φ-sin φ ,y =6 1-cos φ (φ为参数) S =36π,∴r =6. ∴平摆线参数方程为⎩⎪⎨⎪⎧x =6 φ-sin φ ,y =6 1-cos φ (φ为参数).4.解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆相切.(2)由于圆的半径是6,所以平摆线的参数方程是⎩⎪⎨⎪⎧x =6 φ-sin φ ,y =6 1-cos φ (φ为参数).(3)令y =0,得6-6cos φ=0⇒cos φ=1,所以φ=2k π(k ∈Z ).则x =12k π(k ∈Z ),即圆的平摆线和x 轴的交点为(12k π,0)(k ∈Z ).。

渐开线与摆线 课件

渐开线与摆线    课件

[解析] 当圆滚过 α 角时,圆心为点 B,圆与 x 轴的切点为 A,定点 M 的 位置如图所示,∠ABM=α. 由于圆在滚动时不滑动,因此线段 OA 的长和圆弧 AM 的长相等,它们的长 都等于 2α,从而 B 点坐标为(2α,2), 向量O→B=(2α,2), 向量M→B=(2sin α,2cos α), B→M=(-2sin α,-2cos α),
[解析] 以定圆圆心 O 为原点,O、F、P 共线时所在直线
为 x 轴,建立如图所示的直角坐标系,设 P 点的坐标为(x,
y),取∠AOB=φ 为参数,
∵|BF|=l =rφ, AB

O→P =
→ OF

→ FP

O→B +
B→F +
→ FP

(rcos
φ , பைடு நூலகம்sin
φ) +
rφcosφ-π2, rφsinφ-π2+ (acos φ,asin φ) =((r+a)cos φ+rφsin φ,(r+a)sin φ-rφcos φ) =(x,y).
所以所求摆线的参数方程是
x=2k1πφ-sin φ, y=2k1π1-cos φ
(φ为参数,k∈N*).
[错因与防范] (1)若在求出cos φ=1后,直接得出φ=0,会导致答案不全面.
(2)不要误把点(1,0)中的1或0当成φ的值.
(3)根据圆的摆线的参数方程
x=rφ-sin y=r1-cos
π2+π2·sin π2-π2·cos
π2=π2, π2=1,
∴Aπ2,1.
当 φ=32π时,xy==scions
32π+32π·sin 32π-32π·cos
32π=-32π, 32π=-1,

6.平摆线与渐开线的参数方程

6.平摆线与渐开线的参数方程

B

O
M A
2、渐开线的参数方程
y
以基圆圆心O为原点,直线OA为x轴,建立平面
直角坐标系。
M
设基圆的半径为r,绳子外端M的坐标为(x,y)。
显然,点M由角 唯一确定。
B
取为参数,则点B的坐标为(rcos,rsin),从而
uuuur
uuuur

BM (x r cos, y r sin ),| BM | r.
bmxryrbm????r??????????1cossin??e?ob?由于向量是与同方向的单位向量?????2sincos???????ebm??因而向量是与向量同方向的单位向量
四 渐开线与摆线
1、渐开线 2、摆线
1、渐开线
1、渐开线的定义
探究:P41
把一条没有弹性的细绳绕在一个圆盘上,在绳的 外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切 而逐渐展开,那么铅笔会画出一条曲线。
r
uuur
O
A
x
由于向量e1 (cos,sin )是与OB同方向的单位向量,
r
uuuur
因而向量e2 (sin, cos )是与向量BM同方向的单位向量。
uuuur
r
所以 | uuuur
BM
|
(r )e2 ,即
| BM | (x r cos, y r sin) r(sin, cos)
上一个定点的轨迹是什么?
M
B
OA
同样地,我们先分析圆在滚动过程中,圆周上的这个动点满足的几何条件。
线段OA的长等于M»A的长,即OA r。
我们把点M的轨迹叫做平摆线,简称摆线,又叫旋轮线。
3、摆线的参数方程

高中数学 第二章 参数方程 4 平摆线和渐开线学案 北师大版选修44

高中数学 第二章 参数方程 4 平摆线和渐开线学案 北师大版选修44

§4 平摆线和渐开线[对应学生用书P35][自主学习]1.平摆线 (1)平摆线的概念:一个圆在平面上沿着一条直线无滑动地滚动时,我们把圆周上一定点的运动轨迹叫作平摆线(或旋轮线).(2)摆线的参数方程:①定点M 在滚动过程中满足的几何条件:在平面直角坐标系中,设圆的半径为r ,圆在x 轴上滚动,开始时点M 在原点O (如图). 设圆转动的角度为α时,圆和x 轴的切点是S ,圆心是N ,M 的坐标为(x ,y ),取角度α为参数.连接NM ,NS ,过M 作x 轴的垂线MP ,垂足为点P ,过M 作NS 的垂线MQ ,垂足 为Q .因为∠MNQ =α,所以OS =SM =r α.这就是圆周上的定点M 在圆N 沿直线滚动过程中满足的几何条件.②摆线的参数方程:如图(1),由①分析可得:x =OP =OS -PS =SM -MQ =r α-r sin α=r (α-sin α),y =PM =SQ =SN -QN =r -r cos α=r (1-cos α).图(1)所以摆线的参数方程是⎩⎪⎨⎪⎧x =r α-sin α,y =r-cos α(-∞<α<+∞).2.渐开线(1)渐开线的相关概念:把一条没有弹性的细绳绕在一个固定圆盘的圆周上,将铅笔系在绳的外端,把绳拉紧逐渐地展开,要求绳的拉直部分和圆保持相切,此时,我们把笔尖画出的曲线叫作圆的渐开线,相应的定圆叫作渐开线的基圆.(2)渐开线的参数方程:①动点(笔尖)所满足的几何条件:如图(2),我们把圆盘抽象成一个圆,把铅笔尖抽象成一个动点M ,它的初始位置记作A ,绳子离开圆盘的位置记作B ,随着绳子逐渐展开,动点B 从点A 出发在圆周上运动,动点M 满足以下条件:(Ⅰ)MB 与圆相切于B ;(Ⅱ)MB 的长度与B 在圆周上走过的弧长相等,即MB =AB .图(2) 图(3)②渐开线的参数方程:如图(3),以基圆圆心O 为原点,直线OA 为x 轴,建立平面直角坐标系.设圆的半径为r ,则动点M 的初始位置A 的坐标为(r,0),设动点M 的坐标为(x ,y ),φ是以OA 为始边、OB 为终边的正角,令φ为参数,此时AB 的弧长为r φ.作ME ⊥Ox ,BC ⊥Ox ,垂足分别为E ,C ;作MD ⊥BC ,垂足为D ,则∠MBD =∠AOB =φ,由此可得圆的渐开线的参数方程是:⎩⎪⎨⎪⎧x =r os φ+φsin φ,y =r φ-φcos φ(其中φ是参数).[合作探究]1.在摆线的参数方程中α的取值范围是什么? 提示:α的取值范围为(-∞,+∞)2.在图(1)中点O ,E 间的部分所成拱的宽度和高度各是多少?提示:这一个拱的宽度等于滚动圆的周长2πr ,拱高等于圆的直径2r .其中r 为滚动圆的半径.[对应学生用书P35][例1]数方程以及对应的圆的渐开线的参数方程.[思路点拨] 本题考查圆的平摆线和渐开线参数方程的求解,解答此题,根据圆的平摆线的参数方程⎩⎪⎨⎪⎧x =r α-sin α,y =r -cos α(α为参数)和渐开线的参数方程⎩⎪⎨⎪⎧x =rφ+φsin φ,y =r φ-φcos φ(φ为参数),只需把点(2,0)代入参数方程求出r 的表达式,根据表达式求出r 的最大值,再确定对应的平摆线和渐开线的参数方程即可.[精解详析] 令y =0,可得r (1-cos α)=0,由于r >0,即得cos α=1,所以α=2k π (k ∈Z ).代入x =r (φ-sin φ),而φ=α得x =r (2k π-sin2k π).又因为x =2,所以r (2k π-sin2k π)=2,即得r =1k π(k ∈Z ). 又由实际可知r >0,所以r =1k π(k ∈N +)易知,当k =1时,r 取最大值为1π. 代入即可得圆的平摆线的参数方程为 ⎩⎪⎨⎪⎧x =1πα-sin α,y=1π-cos α(α为参数).圆的渐开线的参数方程为⎩⎪⎨⎪⎧x =1πφ+φsin φ,y=1πφ-φcos φ(φ为参数).根据已知条件求圆的平摆线及渐开线的参数方程,关键记住推导圆的平摆线、渐开线的参数方程的过程及得到的方程,确定出待定系数即可.1.基圆直径为10,求其渐开线的参数方程.解:取φ为参数,φ为基圆上点与原点的连线与x 轴正方向的夹角.∵直径为10,∴半径r =5. 代入圆的渐开线的参数方程得:⎩⎪⎨⎪⎧x =φ+φsin φ,y =φ-φcos φ(φ为参数).这就是所求的圆的渐开线的参数方程.[例2] ,记圆上动点为M ,它随圆的滚动而改变位置,写出圆滚动一周时M 点的轨迹方程,画出相应曲线,求此曲线上纵坐标y 的最大值,说明该曲线的对称轴.[思路点拨] 本题考查圆的平摆线参数方程的应用,解答此题需要根据⎩⎪⎨⎪⎧x =r α-sin α,y =r -cos α(α为参数),确定出r ,α的值,再求y 的最值及对称轴即可.[精解详析] 轨迹曲线的参数方程为⎩⎪⎨⎪⎧x =α-sin α,y =-cos α(0≤α≤2π),即α=π时,即x =8π时,y 有最大值16. 第一拱(0≤α≤2π)的对称轴为x =8π.1.根据渐开线的定义和求解参数方程的过程,可知其中的字母r 是指基圆的半径,而参数φ是指绳子外端运动时绳子上的定点P 相对于圆心的张角.如图,其中的∠AOB 即是角φ.显然点P 由参数φ唯一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐标转化为与三角函数有关的问题,使求解过程更加简单.2.根据圆的平摆线的定义和建立参数方程的过程,可知其中的字母r 是指定圆的半径,参数α是指圆上定点相对于某一定点运动所张开的角度大小.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.2.给出圆的渐开线的参数方程⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).根据参数方程可以看出该渐开线的基圆半径是______,当参数φ取π2时对应的曲线上的点的坐标是________.解析:所给的圆的渐开线的参数方程可化为⎩⎪⎨⎪⎧x =φ+φsin φ,y =φ-φcos φ,所以基圆半径r =4.然后把φ=π2代入方程,可得⎩⎪⎨⎪⎧x =4⎝ ⎛⎭⎪⎫cos π2+π2sin π2,y =4⎝ ⎛⎭⎪⎫sin π2-π2cos π2,即⎩⎪⎨⎪⎧x =2π,y =4.所以当参数φ取π2时,对应的曲线上的点的坐标是(2π,4).答案:4 (2π,4)[对应学生用书P36]一、选择题1.如图为圆的渐开线,已知基圆的半径为2,当∠AOB =π3时,圆的渐开线上的点M 到基圆上B 点的距离为( )A.π3 B.2π3C.4π3D .π解析:选B 由圆的渐开线的形成过程知 |BM |=AB =π3×2=2π3.2. 平摆线⎩⎪⎨⎪⎧x =α-sin α,y =-cos α(0≤α≤2π)与直线y =2的交点的直角坐标是( )A .(π-2,2)B .(3π+2,2)C .(π-2,2)或(3π+2,2)D .(π-3,5)解析:选C 由y =2得2=2(1-cos α),∴cos α=0. ∵0≤α≤2π,∴α=π2或3π2.∴x 1=2⎝ ⎛⎭⎪⎫π2-sin π2=π-2,x 2=2⎝⎛⎭⎪⎫3π2-sin 3π2=3π+2. ∴交点的直角坐标为(π-2,2)或(3π+2,2).3.已知平摆线的参数方程⎩⎪⎨⎪⎧x =α-sin α,y =-cos α(α为参数),则摆线上的点(4π,0)对应的参数φ的值是( )A .πB .2πC .4πD .3π解析:选B 因⎩⎪⎨⎪⎧α-sin α=4π, ①-cos α=0. ②由②得cos α=1.∴α=2k π(k ∈Z ). 代入①得2(2k π-sin 2k π)=4k π(k ∈Z ), 即2k π=2π(k ∈Z ), 所以取k =1,此时α=2π,因此点(4π,0)对应的参数值为α=2π.4.如图,四边形ABCD 是边长为1的正方形,曲线AEFGH …叫做“正方形的渐开线”,其中AE ,EF ,FG ,GH …的圆心依次按B ,C ,D ,A 循环,它们依次相连接,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π解析:选C 根据渐开线的定义可知,AE 是半径为1的14圆周长,长度为π2,继续旋转可得EF 是半径为2的14圆周长,长度为π;FG 是半径为3的14圆周长,长度为3π2;GH 是半径为4的14圆周长,长度为2π.所以曲线AEFGH 的长是5π.二、填空题5.已知圆的方程为x 2+y 2=4,点P 为其渐开线上一点,对应的参数φ=π2,则点P的坐标为________.解析:由题意,圆的半径r =2,其渐开线的参数方程为⎩⎪⎨⎪⎧x =φ+φsin φ,y =φ-φcos φ(φ为参数).当φ=π2时,x =π,y =2,故点P 的坐标为(π,2).答案:(π,2)6.已知圆的渐开线的参数方程是⎩⎪⎨⎪⎧x =cos φ+φsin φ,y =sin φ-φcos φ(φ为参数),则此渐开线对应的基圆的直径是________,当参数φ=π4时对应的曲线上的点的坐标为________.解析:圆的渐开线的参数方程由圆的半径唯一确定,从方程不难看出基圆的半径为1,故直径为2.求当φ=π4时对应的坐标只需把φ=π4代入曲线的参数方程,得x =22+2π8,y =22-2π8, 由此可得对应的坐标为⎝ ⎛⎭⎪⎫22+2π8,22-2π8.答案:2 ⎝⎛⎭⎪⎫22+2π8,22-2π87.渐开线⎩⎪⎨⎪⎧x =φ+φsin φ,y =φ-φcos φ(φ为参数)的基圆的圆心在原点,把基圆的横坐标伸长为原来的2倍(纵坐标不变)得到的曲线的焦点坐标为________.解析:根据圆的渐开线方程可知基圆的半径r =6,其方程为x 2+y 2=36,把基圆的横坐标伸长为原来的2倍(纵坐标不变),得到的曲线的方程为⎝ ⎛⎭⎪⎫12x 2+y 2=36,整理可得x 2144+y 236=1,这是一个焦点在x 轴上的椭圆.c =a 2-b 2=144-36=63,故焦点坐标为(63,0)和(-63,0).答案:(63,0)和(-63,0)8.我们知道关于直线y =x 对称的两个函数互为反函数,则圆的平摆线⎩⎪⎨⎪⎧x =rα-sin α,y =r -cos α(α为参数)关于直线y =x 对称的曲线的参数方程为________.解析:关于直线y =x 对称的函数互为反函数,而求反函数的过程主要体现了x 与y 的互换,所以要写出平摆线方程关于y =x 对称的曲线方程,只需把其中的x ,y 互换.答案:⎩⎪⎨⎪⎧x =r-cos αy =r α-sin α(α为参数)三、解答题9.已知一个圆的平摆线方程是⎩⎪⎨⎪⎧x =4φ-4sin φ,y =4-4cos φ(φ为参数),求该圆的面积和对应的圆的渐开线的参数方程.解:首先根据平摆线的参数方程可知圆的半径为4,所以面积是16π,该圆对应的渐开线参数方程是⎩⎪⎨⎪⎧x =4cos φ+4φsin φ,y =4sin φ-4φcos φ(φ为参数).10.已知圆C 的参数方程是⎩⎪⎨⎪⎧x =1+6cos α,y =2+6sin α(α为参数)和直线l 对应的普通方程是x -y -62=0.(1)如果把圆心平移到原点O ,平移后圆和直线有什么关系? (2)写出平移后圆的平摆线方程. (3)求平摆线和x 轴的交点. 解:(1)圆C 平移后圆心为O (0,0),它到直线x -y -62=0的距离为d =622=6,恰好等于圆的半径,所以直线和圆是相切的. (2)由于圆的半径是6,所以可得平摆线方程是⎩⎪⎨⎪⎧x =6φ-6sin φ,y =6-6cos φ(φ为参数).(3)令y =0,得6-6cos φ=0⇒cos φ=1, 所以φ=2k π(k ∈Z ).代入x =6φ-6sin φ,得x =12k π(k ∈Z ), 即圆的平摆线和x 轴的交点为(12k π,0)(k ∈Z ).11.有一个直径是2a 的轮子沿着直线轨道滚动,在轮辐上有一点M ,与轮子中心的距离是a ,求点M 与轮子中心连线的中点P 的轨迹方程.解:x M =a (φ-sin φ),y M =a (1-cos φ). 设轮子中心为C ,则x c =a φ,y c =a . 而P 是CM 中点,则⎩⎪⎨⎪⎧x P =12a φ-sin φ,yP=12a-cos φ(φ为参数).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当外端展开到点M时,因为绳子对圆心角的一段弧AºB,
展开后成为切线,所以切线BM的长就是AºB的长, 这是动点(笔尖)满足的几何条件。
我们把笔尖画出的曲线叫做圆的渐开线, 相应的定圆叫做渐开线的基圆。
B

O
M A
2、渐开线的参数方程
y
以基圆圆心O为原点,直线OA为x轴,建立平面
直角坐标系。
M
设基圆的半径为r,绳子外端M的坐标为(x,y)。
设点M的坐标为(x, y),取为参数,根据点M满足的几何条件,有
x OD OA DA OA MC r r sin,
y DM AC AB CB r r cos.
3、摆线的参数方程
M
B
OA y
B
M C
OD
A
Ex
摆线的参数方程为:xy
uuuur
r
所以 | uuuur
BM
|
(r )e2 ,即
| BM | (x r cos, y r sin) r(sin, cos)
解得
x

y

r(cos r (sin

sin ) cos )
ቤተ መጻሕፍቲ ባይዱ
(是参数)。
这就是圆的渐开线的参数方程。
2、渐开线的参数方程
2、摆线
3、摆线的定义
思考:P43
如果在自行车的轮子上喷一个白色印记,那么自行车在笔直 的道路上行使时,白色印记会画出什么样摆的线曲在线它?与定直线
的两个相邻交点之间 上述问题抽象成数学问题就是:当一个圆沿着一的条部定分直叫线做无一滑个动拱地滚。动时,圆周
上一个定点的轨迹是什么?
M
B
OA
同样地,我们先分析圆在滚动过程中,圆周上的这个动点满足的几何条件。
y

x y

r(cos r (sin

sin ) cos )
(是参数)。
M
B

O
A
x
渐开线的应用:
在机械工业中,广泛地使用齿轮传递动力。
由于渐开线齿行的齿轮磨损少,传动平稳,制造安装较为方便, 因此大多数齿轮采用这种齿形。
设计加工这种齿轮,需要借助圆的渐开线方程。
显然,点M由角 唯一确定。
B
取为参数,则点B的坐标为(rcos,rsin),从而
uuuur
uuuur

BM (x r cos, y r sin ),| BM | r.
r
uuur
O
A
x
由于向量e1 (cos,sin )是与OB同方向的单位向量,
r
uuuur
因而向量e2 (sin, cos )是与向量BM同方向的单位向量。
四 渐开线与摆线
1、渐开线 2、摆线
1、渐开线
1、渐开线的定义
探究:P41
把一条没有弹性的细绳绕在一个圆盘上,在绳的 外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切 而逐渐展开,那么铅笔会画出一条曲线。
这条曲线的形状怎样?能否求出它的轨迹方程?
动点(笔尖)满足什么几何条件?
设开始时绳子外端(笔尖)位于点A,

r( sin), r(1 cos).
(为参数)
思考在:摆P线44的参数方程中,参数 的取值范围是什么?
一个拱的宽度与高度各是什么?
线段OA的长等于M»A的长,即OA r。
我们把点M的轨迹叫做平摆线,简称摆线,又叫旋轮线。
3、摆线的参数方程
M
B
OA
根据点M满足的几何条件,我们取定直线为X轴,定点M滚动时落在定 直线上的一个位置为原点,建立直角坐标系。设圆的半径为r。
y
B
M C
所以,摆线的参数方程为:
从点 设OM开分D始别时做定AA点BM,在x轴原的点垂,线圆,滚垂动足xy了分别角rr((是后1C与E,xcs轴xDoi。ns相切)).于, (点为A,参圆心数在)点B。
相关文档
最新文档