程控增益射频放大器设计
程控可变增益射频宽带放大器
程控可变增益放大器参赛队员:摘要本系统由宽带放大器OPA847、压控放大器VCA810和电流型运放OPA695组成。
系统前级通过OPA847实现10倍固定增益放大,中间级由压控放大器VCA810实现0.05~5V/V增益变化,后级由OPA695和继电器实现5~25V/V增益变化,末级由电阻网络进行10倍衰减,达到0dB~60dB 增益范围可调。
系统采用屏蔽盒进行电磁屏蔽,提高稳定性和抗干扰能力。
经测试,系统达到了题目所设定的所有指标。
关键词:放大器,VCA810,OPA847 ,OPA695AbstractThe system is designed with a broadband amplifier OPA847, Voltage controlled amplifier VCA810 and current-feedback operational amplifier OPA695.In the first stage, the system can achieve 10 times fixed-gain by OPA847.Then, in the intermediate stage, it uses VCA810 to achieve 0.05 ~ 5V / V gain range. In the latter part, the system achieves 5 ~ 25V / V gain variation by OPA695 and relays. In the last stage, the system achieves 10 times attenuation by the resistor network, so that the overall gain can be adjusted in the range of 0~60dB. In order to improve the stability and anti-jamming capability, the system uses the shield case to carry electromagnetic shielding. According to the test, all the indicators of the topic have reached .Keywords:RF broadband amplifier,VCA810,OPA847,OPA695目录1、方案论证1.1、≥60dB增益设计1.2、放大增益可调设计1.3、系统框图2、理论分析与计算2.1、宽带放大器设计2.2、频带内增益起伏控制2.3、射频放大器稳定性分析2.4、增益调整2.5、放大器带宽设计3、电路与程序设计3.1、前期固定增益电路设计3.2、VCA电路设计3.3、后级电路设计4、系统测试4.1、测试仪器4.2、测试方案及测试条件4.3、测试结果及分析5、参考文献输入VCA810输出输出一、方案论证1.≥60dB增益设计方案一:采用三极管实现。
AD603程控增益调整放大器
AD603程控增益调整放大器AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。
因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。
在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。
在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。
AD603正是这样一种具有程控增益调整功能的芯片。
它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。
管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。
该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。
AD603的特点、内部结构和工作原理(1)AD603的特点AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。
可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。
(2)ad603引脚排列是、功能及极限参数AD603的引脚排列如图1所示,表1所列为其引脚功能。
引脚1 增益控制输入“高”电压端(正电压控制)引脚2 增益控制输入“低”电压端(负电压控制)引脚3 运放输入引脚4 运放公共端引脚5 反馈端引脚6 负电源输入引脚7 运放输出引脚8 正电源输入●电源电压Vs:±7.5V;●输入信号幅度VINP:+2V;●增益控制端电压GNEG和GPOS:±Vs;●功耗:400mW;●工作温度范围;AD603A:-40℃~85℃;AD603S:-55℃~+125℃;●存储温度:-65℃~150℃(3)AD603内部结构及原理AD603内部结构图如图2所示。
基于单片机的程控放大器设计
基于单片机的程控放大器设计引言:程控放大器是一种能够通过控制电子元件的放大倍数的放大器。
它可以根据输入信号的大小来自动调整放大倍数,以便在不同场景下提供最佳音频输出。
本文将介绍基于单片机的程控放大器的设计原理和实现方法。
一、设计原理基于单片机的程控放大器的设计原理基于负反馈原理。
在放大器电路中,通过将一部分输出信号反馈到输入端,可以有效地控制放大倍数。
单片机作为控制核心,通过对输入信号进行采样和处理,然后控制反馈电路中的放大倍数,以达到自动调节的目的。
二、设计步骤1. 硬件设计:a. 选择合适的单片机:根据需求选择具备足够计算能力和IO口数量的单片机。
b. 连接放大器电路:将单片机的IO口与放大器电路进行连接,以实现对反馈电路的控制。
c. 添加输入和输出接口:将音频输入和输出接口与放大器电路相连接,以实现信号的输入和输出功能。
2. 软件设计:a. 初始化设置:在单片机上进行初始化设置,包括IO口的配置、时钟的设置等。
b. 采样输入信号:使用单片机的ADC模块对输入信号进行采样,获取输入信号的大小。
c. 处理输入信号:对采样到的输入信号进行处理,如滤波、放大等操作。
d. 计算放大倍数:根据处理后的输入信号大小,计算出对应的放大倍数。
e. 控制反馈电路:通过单片机的IO口控制反馈电路中的放大倍数,实现自动调节功能。
f. 输出信号:将经过放大后的信号输出到音频输出接口,以供外部设备使用。
三、实现方法1. 硬件实现:a. 选择合适的单片机:根据需求选择性能稳定、易于编程的单片机。
b. 连接放大器电路:根据放大器电路的设计原理,将单片机的IO 口与反馈电路进行连接。
c. 添加输入和输出接口:根据需求添加音频输入和输出接口,以实现信号的输入和输出功能。
2. 软件实现:a. 编写初始化代码:根据单片机的型号和规格,编写初始化代码,进行IO口和时钟的配置。
b. 编写采样代码:使用单片机的ADC模块进行输入信号的采样,获取输入信号的大小。
程控增益低噪声宽带直流放大器的设计
程控增益低噪声宽带直流放大器的设计孙科学;卜新华;唐珂【摘要】介绍了程控增益低噪声宽带直流放大器的设计原理及流程.采用低噪声增益可程控集成运算放大器AD603和高频三极管2N2219和2N2905等器件设计了程控增益低噪声宽带直流放大器,实现了输入电压有效值小于10 mV,输出信号有效值最大可达10 V,通频带为0~8 MHz,增益可在0~50 dB之间5 dB的步进进行控制,最高增益达到53 dB,且宽带内增益起伏远小于1 dB的两级宽带直流低噪声放大器的设计.%The design philosophy and flow of low noise programmable gain wide-band DC amplifier are presented. The fabricated low noise amplifier was cascaded with low noise integrated programmable gain op-amp AD603 and high-frequency transistor 2N2219 and 2N2905 and other devices. The input voltage is less than 10 mV, the output signal is 10 V, pass band is 0~8 MHz, the maximum gain is 53 dB, and the gain in 0~50 dB, 5 dB step can be controlled by the microcontroller. In addition, fluctuation in gain and bandwidth is less than ldB of the two level wide-band low-noise DC amplifier.【期刊名称】《现代电子技术》【年(卷),期】2012(035)003【总页数】3页(P188-190)【关键词】低噪声;程控增益;功率放大;宽带直流放大器【作者】孙科学;卜新华;唐珂【作者单位】南京邮电大学电子科学与工程学院,江苏南京210046;石家庄邮电职业技术学院电信工程系,河北石家庄050021;南京邮电大学电子科学与工程学院,江苏南京210046【正文语种】中文【中图分类】TN722-340 引言低噪声宽带直流放大器位于接收机前端,放大微弱信号是其主要作用,对于降低噪声干扰,提高整个接收机的性能起着至关重要的作用。
增益可控射频放大器设计方案
增益可控射频放大器设计方案
要设计一个增益可控的射频放大器,可以采用以下方案:
1.选择合适的放大器架构:常见的射频放大器架构有共集、共基和共射极。
其中,共基架构通常具有较高的输入和输出阻抗匹配,适用于宽频段的应用;共射架构具有较高的增益和较低的噪声,适用于功率放大器设计。
2.选择合适的放大器器件:根据设计要求选择合适的射频晶体管或场效应管。
通常情况下,选择具有较高的增益、较低的噪声系数和适当的功率容量的器件。
3.匹配网络设计:使用合适的匹配网络来实现输入输出的阻抗匹配。
匹配网络可以提高电路的功率传输效率,减小反射损耗,并实现最优的功率增益。
4.增益控制电路设计:可以采用可变电容、电阻、电感等元件来实现增益的可调控。
通过调整这些元件的参数来控制放大器的增益。
5.稳定性分析和设计:进行稳定性分析,确保放大器在工作范围内保持稳定。
可以采取稳定性增强措施,如添加稳定性网络或者改进反馈电路。
6.射频线路设计:布局射频线路时,要尽量避免回授、干扰和串扰。
采用合适的屏蔽和分离技术,以减小射频线路的损耗和干扰。
7.仿真和测试:使用射频模拟软件进行电路仿真,验证设计的性能,并进行测试调整和优化。
以上是一般的增益可控射频放大器设计方案,具体的设计流程和细节还需要根据具体的应用环境和要求来调整。
程控增益放大器的几种通用设计方法
程控增益放大器的几种通用设计方法程控增益放大器(AGC)是一种能够自动调节增益的放大器,它能够在输入信号强弱不一的情况下保持输出信号的稳定性。
在许多无线通信系统和音频设备中,AGC都扮演着重要的角色。
本文将介绍几种常见的程控增益放大器的通用设计方法,帮助读者更好地了解和应用AGC技术。
一、基于反馈的AGC设计方法反馈是一种常见的控制方法,通过对输出信号进行采样并与输入信号进行比较,然后根据比较结果对增益进行调节。
基于反馈的AGC设计方法一般包括以下几个关键步骤:1. 采样输出信号。
通过使用信号检测器或功率检测器来对输出信号进行采样,获取其能量或功率的信息。
2. 与输入信号进行比较。
将采样得到的输出信号能量或功率与输入信号进行比较,得到它们之间的差异。
3. 根据比较结果调节增益。
根据比较结果来控制放大器的增益,使输出信号的能量或功率保持在一个稳定的水平。
基于反馈的AGC设计方法的优点是稳定性高、响应速度快,适用于大多数AGC应用场景。
这种方法也存在一些缺点,比如对反馈路径的稳定要求高、容易产生回音等问题。
与基于反馈的AGC设计方法相对应的是基于前馈的AGC设计方法。
前馈AGC的核心思想是在信号放大前通过控制环路对输入信号进行预处理,从而实现对放大器增益的控制。
基于前馈的AGC设计方法一般包括以下几个关键步骤:1. 使用可变增益放大器。
在输入信号经过放大之前,通过可变增益放大器对信号进行预处理,调节增益来实现对输入信号的控制。
2. 设置控制环路。
设计控制环路,通过对控制信号进行调制来控制可变增益放大器的增益,从而实现对输出信号的稳定控制。
3. 调节控制参数。
通过调节控制环路的一些参数,比如控制信号的幅度、频率等来控制放大器的增益。
随着数字技术的发展,越来越多的AGC设计方法开始采用数字控制的方式。
基于数字控制的AGC设计方法一般包括以下几个关键步骤:1. 数字信号处理。
将输入信号进行数字化处理,并通过一些算法对信号的能量或功率进行测量和分析。
一种增益可控高频宽带放大器的设计
• 128•随着人工智能及物联网技术的不断发展,高频宽带放大器在传输增益和功率放大等技术方面有着越来越高的要求。
本文针对宽带放大器传输增益的稳定性问题,设计了一种增益可控的高频放大模块,能够实现增益高精度可控的技术要求。
利用HMC470为主运算放大器,级联AD8009作为推挽输出后极,通过对主电路嵌入低功耗微处理器MSP430G2553单片机的方式,实现放大器的数控增益。
利用AD 软件仿真测试表明,该设计增益精确可控,稳定性较强,抗干扰能力较好,能够使用在高品质音响、民用雷达通信等场合。
1.引言随着电子、通信技术的飞速发展,增益可控制的宽带放大器发挥着越来越重要的作用(张玉钱,一种高增益宽带视频放大器设计:南京:南京理工大学,2015)。
在雷达通信、信号传输、电子测距等应用电路中,不仅要求高频放大器达到宽带的状态,还要求具有较精确的放大增益。
增益可控的宽带放大器件的发展,与集成运放在各行业的发展息息相关(杨洪文,可调节的宽带放大器在测试中的优势:国外电子测量技术,2017)。
目前,国内外对于可控的高增益宽带放大器的研究处于快速发展阶段。
何晓丰等(何晓丰,马成炎,叶甜春,王良坤,莫太山,数字控制增益可配置的射频宽带放大器:浙江大学学报(工学版),2012)提出了一种带单端转差分功能的大动态范围的数字控制增益可配置的射频宽带放大器,用于双频段电视射频接收机的前端,提供了更高的线性度。
高瑜宏等(高瑜宏,朱平,一种高增益带宽积CMOS跨导运算放大器:微电子学,2017)设计了一种高增益可控的运算放大器,提出的多级前馈补偿结构改善了DC增益和增益带宽积,通过相位补偿的方式对放大增益进行控制。
本文使用单片机数字控制的方式,设计了一种增益可控的高频放大模块,不仅能够实现较高的直流增益,还具备增益高精度可控的技术要求。
2.放大器系统组成本设计主要由可控增益电路、单片机最小系统、电源模块组成,系统结构如图1所示。
程控放大器
本科毕业论文(设计)题Fra bibliotek目程控增益放大器的设计
(中、英文)
The Design of programmable gain amplifier
作 者 姓 名 专 业 名 称 学 科 门 类 指 导 老 师 提交论文日期 成绩等级评定
高亚丽 电子信息科学与技术 理 学 余建权 二〇一六年五月
Key words:
control ;
gain programmable; Operational amplifier; feedback network; auto
II
目 录
摘 要.......................................................................................................................................................... I ABSTRACT.............................................................................................................................................II 目 录.......................................................................................................................................................III 1 引言.......................................
基于51单片机的程控增益放大器设计报告
基于51单片机的程控增益放大器设计报告一、研究内容及系统功能运算放大电路在各种仪器仪表中能够完成小信号放大电路,本设计旨在利用单片机实现与数字电位器进行I2C通信,控制数字电位器输出,且能显示输出增益变化。
增益可控放大器可由基本运算放大器、数字电位器和控制逻辑组成。
本次设计要求实现以下功能:1、利用单片机、数字电位器、运算放大器设计一个增益可控及能够显示增益变化的电路。
增益变化范围1~50,步进为1。
2、提交设计硬件电路图及软件编程代码;二、程控增益放大器硬件电路设计为了能更好的了解程控增益放大器的原理,本章首先给出设计方案并介绍了程控增益放大器的基本原理,然后对其各模块进行了分析。
本设计程控增益放大器硬件电路的设计主要包含四个模块:电源模块、电路控制模块、增益放大模块以及液晶显示模块,其设计结构图如图2-1所示:图2-1 程控增益放大器设计结构图2.1 电源模块本设计电源模块包含四个部分:电源变压器、整流电路、滤波电路和稳压电路,电源模块原理框图及直流稳压电源波形变换图参见图2-2:图2-2 电源模块原理框图2.2.2 电源模块硬件电路设计本设计中,电源模块主要需要生+12V 、-12V 以及+5V 为控制模块、液晶显示模块以及增益放大模块供电。
电源模块硬件电路设计图参见图2-3及图2-4。
T A C 220VLM-317U1~~图2-3 电源电路U3+5V图2-4 电源电路本设计选取变压器规格为:功率50W ,220V 转双路15V 输出,整流电路采用4个整流二极管1N4007来构成单相桥式整流电路转换成直流电,经整流电路后,选取两只4700uF/50V 的电解电容作为滤波电容,滤波电路利用电容的充放电作用,会使得电压趋于平滑。
为保证电路获得稳定性好的直流电源,在整流、滤波电路后稳压电路部分选用LM317和LM337稳压芯片构成稳压电路,从而生成+12V和-12V为增益放大器模块的运放芯片供电保证其正常工作。
程控放大器的设计与实现
程控放大器的设计与实现一、设计方案1.系统架构:程控放大器的系统架构主要包括输入电路、放大电路、控制电路和输出电路。
输入电路用于接收外部信号,放大电路用于对信号进行放大,控制电路用于接收微处理器的控制信号,根据控制信号来调整放大电路的增益,输出电路用于输出放大后的信号。
2.放大电路设计:放大电路是程控放大器的核心部分,其主要包括输入级、中间级和输出级。
输入级用于接收输入信号并对信号进行放大,中间级用于进一步放大信号,输出级用于将放大后的信号输出到外部设备。
设计时需要考虑放大电路的增益、带宽和失真等参数,并选择合适的放大器芯片。
3.控制电路设计:控制电路负责接收微处理器发出的控制信号,并根据控制信号来调节放大电路的增益。
一种常用的设计方法是使用数字电位器或可调电阻来控制放大电路的增益,通过微处理器来控制数字电位器或可调电阻的阻值,从而实现对放大电路增益的调节。
4.输入/输出接口设计:程控放大器需要与外部设备进行信号的输入和输出,因此需要设计合适的输入/输出接口。
输入接口通常包括音频输入接口、数字输入接口和模拟输入接口等;输出接口通常包括音频输出接口、数字输出接口和模拟输出接口等。
设计时需要考虑接口的电平、阻抗匹配和信号质量等因素。
二、实现流程1.进行系统需求分析,明确程控放大器的功能和性能需求,例如输入信号范围、输出功率、失真度等。
2.根据系统需求,设计放大电路的框图,并选择合适的放大器芯片来实现放大电路。
根据放大电路的框图,进行电路的拓扑设计和元器件的选型。
3.设计控制电路的框图,选择合适的数字电位器或可调电阻来实现对放大电路增益的调节。
根据控制电路的框图,进行电路的拓扑设计和元器件的选型。
4.设计输入/输出接口电路的框图,并选择合适的接口电路来实现与外部设备的连接。
根据输入/输出接口电路的框图,进行电路的拓扑设计和元器件的选型。
5.进行电路的原理图设计,包括放大电路、控制电路和输入/输出接口电路的原理图。
射频宽带放大器的设计方案
射频宽带放大器设计报告摘要:本系统以AD公司生产的高速可控增益运放AD8330为核心,结合固定增益放大、可变增益放大、末级差分电路等主要部分,能实现放大倍数0~50dB 增益可调。
前级放大采用一片AD8330实现可变增益放大,固定增益放大采用OPA847芯片实现10倍的固定增益放大,再经末级1片电流反馈型运放THS3001扩流,构建末级差分驱动负载。
关键词:宽带放大器高速运放 OPA847 AD8330一、方案论证与选择1、方案选择与比较1.1 固定增益放大器比较方案一:采用OPA820运放芯片作为固定增益放大,该芯片是一种高速运算放大器,在6 Hz~ 20 MHz 的通频带中可实现放大增益为43 dB, 具有带内波动小, 输出噪声低的特点。
但是缺点是通频带不够宽。
方案二:采用OPA695电压反馈型高速运算放大器,在1400MHz频率下能实现两倍放大,符合本题要求,但在高频下,该运放易产生自激。
方案三:采用OPA847, 电压反馈型高速运算放大器,最大频带宽度达3.9GHz,完全满足本题频带要求,输入电压噪声低,带内波动小,自激现象少。
综上所述,本设计采用方案三。
1.1.2 可变增益放大器比较方案一:采用可编程程控放大器AD603。
该运放增益在-11~+30dB范围内可调,通过改变管脚间的连接电阻值可调节增益范围,易于控制。
但该运放增益可调带宽为90MHz,不满足题目要求。
方案二:采用高增益精度的压控VGA芯片AD8330。
该芯片可控增益带宽可达150MHz,增益可调范围0~70dB,符合本题指标要求.因此,该电路采用方案二。
1.1.3 电压增益可调方案比较方案一:基于单片机做步进微调。
由单片机MSP430G2553及12位DA转换芯片TLV5616对AD8330进行程控,实现增益在可取范围内可调。
但是,此设计只能步进调节,不能连续可调,此方案不可取。
方案二:基于精密电位器做连续可调。
用一个精密电位器对+5V分压后输入AD8330 5脚VDBS,从而对电压增益实现连续可调。
程控增益放大器的几种通用设计方法6篇
程控增益放大器的几种通用设计方法6篇第1篇示例:程控增益放大器是一种可以根据控制信号来调节放大倍数的放大器,通常用于音频设备或通信设备中。
它在许多应用场景中都发挥着重要作用,比如在音频混音台中对不同信号进行调节、在通信系统中动态地调节信号的增益等。
要设计一个高性能的程控增益放大器,需要考虑多个方面的因素,包括放大器的稳定性、带宽、增益范围、失真和噪声等。
在此,我们将介绍几种通用的设计方法,以帮助工程师们更好地设计程控增益放大器。
一种常见的设计方法是使用可变增益放大器芯片。
这种芯片通常集成了控制电路和放大电路,可以方便地实现程控增益功能。
工程师们只需要按照芯片厂家提供的设计指南进行设计,通常只需要很少的外部元件即可完成设计。
这种设计方法具有成本低、易于实现的优点,适用于一些对性能要求不是很高的场合。
另一种设计方法是使用集成运算放大器和调节电阻网络。
通过调节电阻网络的阻值,可以实现对增益的控制。
这种方法的优点是可以灵活地调整增益范围,同时可以根据需要选择不同的运算放大器以实现更高的性能要求。
但是这种设计方法需要对电路的稳定性和噪声进行较为细致的分析和优化。
还有一种设计方法是使用数字控制的程控增益放大器。
这种设计方法将控制电路部分用数字信号处理的方式实现,可以实现更精确的控制和更复杂的功能。
通常需要搭配数字模拟转换器和微控制器等器件,同时需要编写控制算法。
这种设计方法的特点是可以实现更高的精度和更复杂的控制功能,但是相对复杂度也更高。
除了以上介绍的几种设计方法外,还有一些其他的设计方法,比如使用特殊的调节元件或者非线性元件实现程控增益放大器。
不同的设计方法适用于不同的场合,工程师们可以根据具体的需求和资源选择合适的设计方法。
在实际设计过程中,需要充分考虑电路的稳定性、带宽、失真和噪声等指标,通过合理选择元件、优化电路结构和控制算法等手段来实现设计要求。
还需要进行充分的仿真和测试,确保设计的程控增益放大器能够满足实际应用需求。
程控增益放大器工作原理
程控增益放大器工作原理程控增益放大器是一种利用程控技术实现增益可调的放大器。
在通信系统中,为了满足不同信号的传输要求,需要使用增益可调的放大器进行信号放大。
而程控增益放大器通过控制电路中的参数,实现对放大器增益的调节,从而满足不同信号的放大需求。
程控增益放大器的基本工作原理如下:当输入信号经过放大器时,通过控制电路中的程控元件,可以调节电路中的增益参数,从而实现对输出信号的放大程度的调节。
具体来说,程控增益放大器通常由一个可变增益放大器和一个控制电路组成。
可变增益放大器通常由可变增益元件和固定增益元件组成。
可变增益元件是放大器电路中的一个关键部分,它可以通过调节其传输特性来实现对信号的放大程度的调节。
常见的可变增益元件有可变电阻器、可变电容器、可变电感器等。
而固定增益元件则是为了保证放大器在不同增益状态下的性能稳定,通常采用固定值的电阻、电容、电感等元件。
控制电路是程控增益放大器中的另一个重要组成部分,它用于控制可变增益元件的传输特性。
控制电路可以根据外部信号的大小或者其他参数来调节可变增益元件的工作状态,从而实现对放大器增益的调节。
控制电路通常由电阻、电容、晶体管等元件组成,通过调节这些元件的参数,可以实现对放大器增益的精确控制。
程控增益放大器的工作过程可以简单描述为:当输入信号经过放大器时,控制电路根据外部信号的要求,调节可变增益元件的传输特性,从而实现对输出信号的放大程度的调节。
控制电路根据输入信号的大小、频率等参数,计算出对应的增益值,并将该值传输给可变增益元件,使其调整到相应的工作状态。
最终,放大器将调整后的信号进行放大,并输出到下一级电路或外部设备中。
需要注意的是,程控增益放大器的设计和实现需要考虑多个因素,如放大器的频率响应、增益范围、稳定性等。
在实际应用中,还需要根据具体的信号特性和系统要求进行调试和优化,以确保放大器在各种工作条件下都能够正常工作。
总结起来,程控增益放大器是一种利用程控技术实现增益可调的放大器,通过控制电路中的参数,实现对放大器增益的调节。
宽带射频功率放大器设计
宽带射频功率放大器设计射频(Radio Frequency,简称RF)功率放大器在现代通信系统中起着重要的作用。
它的主要功能是将低功率的射频信号放大到足够的功率级别,以便于传输和处理。
宽带射频功率放大器是一种可以在大范围的频率范围内提供高功率放大的设备。
本文将介绍宽带射频功率放大器的设计。
在设计宽带射频功率放大器之前,需要明确一些基本参数和要求。
首先,需要确定放大器的工作频率范围。
宽带放大器通常涵盖几个频率段,因此需要确保在所需的频率范围内具有足够的增益和线性性能。
其次,需要确定放大器的输出功率要求。
输出功率是放大器设计中的一个重要指标,它决定了放大器能够提供的最大信号功率。
最后,需要考虑放大器的线性性能和稳定性。
线性性能是指放大器输出信号与输入信号之间的线性关系,而稳定性是指放大器在工作过程中能够维持恒定的增益和相位特性。
在设计过程中,可以使用不同的拓扑结构和技术来实现宽带射频功率放大器。
其中一种常见的结构是宽带巴氏极双管功率放大器。
该结构使用共射和共基级联的方式来实现高增益和宽带特性。
另一种常用的结构是宽带巴氏极共基功率放大器,它具有简单的结构和高输入阻抗,适用于高频应用。
在选取合适的放大器结构后,还需要选取合适的放大器器件。
常用的射频功率放大器器件包括三极管、场效应晶体管和集成电路。
三极管具有高增益和线性特性,适用于较低频率的应用。
场效应晶体管具有较高的工作频率和功率特性,适用于较高频率的应用。
集成电路则具有更高的集成度和稳定性。
根据特定的应用需求,可以选择合适的器件。
除了放大器器件外,还需要选择合适的匹配网络来实现放大器的输入和输出匹配。
匹配网络能够提高放大器的功率传输效率和线性特性。
常用的匹配网络包括隔离电容、电感和变压器等。
通过合理选择匹配网络的参数,可以实现最佳的匹配效果。
最后,在完成放大器设计后,需要进行仿真和测试验证。
使用电磁仿真软件可以对放大器的工作性能进行模拟和优化。
实际测试可以验证设计的准确性和性能指标的达标情况。
程控放大器设计
程控放大器的设计硬件课程设计任务书 (I)前言 (1)第1章程控放大器概述 (2)程控放大器的概述及应用领域 (2)AT89C52单片机概述 (2)单片机引脚图 (2)第2章电路设计及分析 (4)OP07放大器的概述 (4)DAC0832D\A转换器概述 (5)程控放大电路的设计 (7)第3章软件设计 (10)C51语言介绍 (10)程控放大器的C语言程序 (10)附录 (11)结论 (14)参考文献 (15)前言本文分析了程控放大器的大体原理和它用对模拟信号进行稳幅和稳零的方式。
并定量分析了程控信号的可调剂范围及精度。
.当改变量程时测量放大器的增益也相应地加以改变.这种转变一般是自动进行,即不需要人为的改变电路连接,而是通过软件操纵放大器增益的改变.如此能够实现仪器量程的自动切换.另外,通过改变增益的方式使系统功能增强,在核测量中,稳谱的方式之一确实是改变输入信号的放大倍数.这就需要用到数字操纵放大器,并针对该仪器要解决的具体问题要求放大器的放大倍数在必然范围内转变,而且放大倍数调剂要求精细.该文提供了这种数控放大的一种设计方案,它的放大倍数范围为~20,其倍数的调剂步长为倍。
第1章程控放大器概述程控放大器的概述及应用领域程控放大器是一种放大倍数由程序操纵的放大器,也称为可编程放大器。
在多通道或多参数的数据搜集系统中,多个通道或多个参数共用一个测量放大器。
就每一个通道的数据搜集而言,还可实现自动操纵增益或量程自动切换,因此程控增益放大器取得普遍应用。
在本次实习中别离对显示进程运用动态扫描,按键的去抖和放大进程的编程、反馈电阻来别离实现相应的功能。
本次实习中咱们所做的简单程控放大器,只是在十分基础的范围内制作和了解。
本文简单介绍了与之相关的AT89C52单片机、OP07放大器、DAC0832D\A 转换器的概况及应用。
AT89C52单片机概述AT89C52是美国Atmel公司生产的低电压、高性能CMOS 8位单片机,片内含8KB的可反复檫写的程序存储器和12B的随机存取数据存储器(RAM),器件采纳Atmel公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内配置通用8位中央处置器(CPU)和Flash存储单元,功能壮大的AT89C52单片机可灵活应用于各类操纵领域。
程控增益放大器原理
程控增益放大器原理
程控增益放大器是一种能够调节放大倍数的放大器,其原理是通过改变控制电压,来实现对放大倍数的调节。
在程控增益放大器中,控制电压的变化会引起放大器的工作点变化,从而改变放大器的增益。
程控增益放大器通常由两个关键部分组成:放大单元和反馈网络。
放大单元负责提供基本的放大功能,而反馈网络通过控制电压来调节放大倍数。
在程控增益放大器中,放大单元可以使用不同的电子元器件实现,如晶体管、运放等。
反馈网络通常由电阻、电容等元件构成,通过连接到放大单元的输出端来实现对放大倍数的调节。
当控制电压为0时,反馈网络不起作用,放大器的增益由放大单元确定。
而当控制电压发生变化时,反馈网络开始起作用,通过改变反馈路径上的电阻或电容等元件的特性,来改变放大器的工作点,从而实现对放大倍数的调节。
通过控制电压的变化,程控增益放大器可以实现连续的放大倍数调节,从而适应不同的输入信号强度和需求。
这种放大器在许多应用中都非常有用,如音频放大器、通信系统中的前置放大器等。
总结起来,程控增益放大器通过调节控制电压来改变放大倍数,可以实现对放大器的灵活调节,并且能够适应不同的信号强度和需求。
这种放大器在许多电子设备中有广泛的应用。
程控增益放大器工作原理(一)
程控增益放大器工作原理(一)程控增益放大器工作原理程控增益放大器(Programmable Gain Amplifier,PGA)是一种能够根据输入的控制信号来调节放大倍数的放大器。
它在诸多领域中得到广泛应用,如音频处理、仪器测量等。
本文将详细介绍程控增益放大器的工作原理。
1. 什么是程控增益放大器?程控增益放大器是一种具备可调节放大倍数的放大器。
它通常由可变增益放大器(Variable Gain Amplifier,VGA)和控制电路组成。
控制电路负责接收控制信号,并根据信号的数值来调节可变增益放大器的增益。
2. 可变增益放大器的实现原理可变增益放大器主要通过控制其反馈网络来实现增益的调节。
2.1 反馈网络的作用反馈网络在放大器中起到控制信号流动、调节增益的作用。
它可以将一部分输出信号通过反馈回来与输入信号相混合,从而实现增益调节。
2.2 反馈网络的类型可变增益放大器常用的反馈网络有以下几种类型:•串联反馈:将一部分输出信号与输入信号串联相加,并将相加结果作为反馈信号输入到放大器中。
•并联反馈:将一部分输出信号与输入信号并联相加,并将相加结果作为反馈信号输入到放大器中。
•混合反馈:同时采用串联反馈和并联反馈的方式。
3. 控制电路的工作原理控制电路在程控增益放大器中起到接收控制信号、并根据信号数值来调节增益的作用。
3.1 控制信号的输入方式控制信号可以通过多种方式输入到控制电路中,如电压信号输入、数字信号输入等。
通过合理设计接口电路,可以将不同形式的控制信号转换为电压信号,以便控制电路进行处理。
3.2 控制信号的处理方式控制信号经过控制电路的处理后,其数值将被转换为相应的增益调节值。
常见的处理方式包括数字-模拟转换、比较运算等。
4. 程控增益放大器的优势与应用程控增益放大器相比固定增益放大器具有以下优势:•灵活性高:可以根据需求灵活调节增益,适用于不同的应用场景。
•成本低:相比使用多个不同增益的放大器,使用单一的程控增益放大器可以降低成本。
程控放大器的设计与实现
程控放大器的设计与实现摘要本文介绍了一种可通过程序改变增益的放大器。
它与ADC相配合,可以自动适应大范围变化的模拟信号电平.系统以89S51单片机作微处理器,运用NE5532芯片组成运放电路,采用CD4052芯片担任增益切换开关,通过软件控制开关的闭合或断开来达到改变电路的增益.文章首先对系统方案进行论证,然后对硬件电路和软件设计进行了说明,最后重点阐述了系统的调试过程,并且对调试过程中遇到的问题以及解决方案进行了详细说明。
该系统设计达到了预期要求,实现了最大放大60db的目的。
关键词程控放大器;运算器放大器;单片机;增益The Design and Realization of Program—Controll AmplifierAbstractThis article introduces a amplifier which changes the gain through the software。
It coordinates with ADC and adapts the simulated signal level with wide range change automatically。
The system uses the 89s51 SCM as the core。
The NE5532 chip composes the operational circuit and the CD4052 chip composes the gain switch. The gain of the circuit is changed by software which can control switch closed or disconnect.The article first demonstrates the system plan, then introduces the hardware and the software,finally explains the debugging process of the system with emphasis。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随着半导体工艺技术的快速发展,射频电路器件的设计已逐渐形成无线通信发展的一个新潮流,也成为射频全芯片集成电路方面一个新的研究热点。
低噪声放大器(Low Noise Amplifiers, LNA),就是用于便携式通信、蓝牙系统、卫星通信系统、相阵雷达系统等无线通信设备接收系统中的关键器件之一,其噪声、功率增益、信号带宽以及动态范围等性能直接影响着整个射频接收系统。
因此,进行LNA 设计技术的研究和积极探索对于射频集成电路设计和高性能、低成本的无线产品开发都具有很重要的意义。
根据目前射频通信电路的发展状态和趋势,本文主要进行了接收机的射频前端可增益低噪声放大器的研究和设计。
以此为导向,开展了LNA相关知识资料的搜集、分析和拓扑结构与版图的设计、优化以及芯片测试研究等工作。
并根据电路结构提出了参数优化方案,取得了比较满意的设计效果,最终设计出了性能指标较好的低噪声放大器。
关键词:射频通信电路,低噪声放大器,可变增益放大器。
ABSTRACTAs the semiconductor process develops rapidly, it gradually becomes a new trend in development of Radio frequency circuit component's design, and it becomes to be a new research region and hotspot in RF whole wafer IC design. LNAs are one of the key components in wireless communication equipments, such as portable communic ation, blue-tooth system, satellite communication system, phase array radar system etc. Its performances such as noise figure, power gain, signal bandwidth and SFDR will directly have an effect on the whole RF system. So it has important significance to do profound research and exp loiture of LNA for RFIC(Radio Frequency Integrated Circuit) design and low cost, high performace wireless products.According to present radio communication electric circuit's development condition and tendency, This article has mainly conducted receiver's low noise amplifier research and the design.low noise amplifiers noise performance, circuit topology design, circuit layout design, performance optimization and the test techniques of device are deeply researched and made a more systematic analysis and study in the paper, the parameter optimization methods also are demonstrated, which got the satisfying results. At last, a better performance, well worked LNA in all kind of technical specifics is designed.Key works : radio communication electric circuit, low noise amplifiers, variable gain amplifier第一章绪论....................................................... - 1 -1.1 通信系统的组成 ............................................ - 1 -1.2 移动通信的射频设计 ........................................ - 2 -1.3 射频设计在移动通信机设计中的重要地位 ...................... - 3 - 第二章低噪声放大器的基本理论..................................... - 4 -2.1 射频小信号放大器电路的主要技术指标 ........................ - 4 -2.1.1 增益................................................. - 4 -2.1.2 通频带............................................... - 5 -2.1.3 选择性............................................... - 5 -2.1.4 线性范围............................................. - 6 -2.1.5 隔离度和稳定性....................................... - 8 -2.1.6 噪声系数............................................. - 8 -2.2 低噪声放大器基本拓扑结构分析 ............................. - 10 -2.2.1 共发射级结构LNA .................................... - 10 -2.2.2共基极结构LNA ....................................... - 10 -2.2.3两级结构双极型LNA ................................... - 11 - 第三章增益射频放大器的硬件设计.................................. - 12 -3.1硬件连接图................................................ - 12 -3.2电路所需芯片简介.......................................... - 12 -3.2.1 8031芯片简介 ....................................... - 12 -3.2.2芯片AD625简介: .................................... - 15 -3.2.3 芯片AD7502简介..................................... - 20 - 第四章系统软件设计.............................................. - 24 -4.1软件完成主要功能.......................................... - 24 -4.2 程序框图 ................................................. - 24 -4.3 软件程序 ................................................. - 25 -4.4 实验与调试 ............................................... - 25 - 第五章射频放大器其它设计方案.................................... - 26 -5.1 自动增益控制技术 ......................................... - 26 -4.2可变增益放大器............................................ - 28 - 总结............................................................. - 30 - 参考文献......................................................... - 31 - 致谢............................................................. - 32 - 附录一:......................................................... - 33 - 附录二:......................................................... - 34 -第一章绪论近30年来无线移动通信是电子信息产业中发展最为迅速的一个分支。
现在利用无线手机进行双向通信是一件很平常的事,但这却是许多科学家和工程师历经百年努力奋斗的结果。
1864 年英国物理学家麦克斯韦(J. Cleck Maxwell)总结了前人在电磁学方面的工作,得出了电磁场方程,从理论上证明了电磁波的存在。
1887 年德国物理学家赫兹(Hertz)用实验证实了电磁波的存在,麦克斯韦的理论得到了证实。
从此,许多国家的科学家开始努力研究如何用电磁波传输信息,这就是无线电通信。
1901年英国科学家马可尼成功的实现了无线电信号横越大西洋,可以认为从那时起射频电子技术正式诞生。
1936 年,波导传输线被George Southworth 和W.L. Barron 发现。
他们通过实验证明了波导可以作为载带微波传输媒质,并能用于大功率的微波传送。
但是波导结构由于体积大、成本高,很快被1950 年后发展起来的平面传输线所取代。