解决正方体侧面展开图的有效方法
万能解题法——正方体的展开和折叠
正方体的展开和折叠——万能解题法
基本类型:
正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐。
一条线上不过四,田“7”和凹要放弃。
相对面:“I”型图不相连;“Z”型图在两端。
同行或同列隔一个的;“Z”字型两端(“Z”字型两端是指紧挨着中间竖线的两个面)。
解题思路:
1.通过相对面排除,相对面不相邻。
2.三面排除或确定。
在正方体8个顶点,每个顶点均连着三个面。
正方体只能看到图形的三个面。
比较这三个面在立体图形与平面图形中的位置来确定或排除。
在平面图形中,通过旋转、移动,让不相邻的面变成立体图形中相邻的面。
(1)旋转,即侧面“滚动”。
如果两个面的两个边构成90°的夹角,其中一个面旋转90度,让这两条边重合。
他们本身就是一条边,被剪开了,当然还能合上。
在滚动的过程抓住一个公共点,每次滚动只能滚动90度,并且在滚动的时候,滚动的面上面的图案也要跟着滚动变化。
(2)移动,即一字型平移。
当四个面排成一列或一行,其中一端的面直接移到另一端,只要保证相邻的面不变即可。
正方体的11种展开图及判断方法教案-参考模板
正方体的11种展开图及判断方法教案今天这节课我分成了两大块,前一部分:学习正方体的展开图;后一部分:动手操作、验证。
因为我在课前已经布置了学生预习,“找几个正方体纸盒,把它剪开,看看可以有哪些不同的展开图?”我在检查预习作业时,我就发现有的同学已经能找出10种不同的展开图。
但有也一些学生根本就没有完成预习作业。
为了,使不同的学生在本课上都能得到不同的发展,所以我把这节课分成了上面两大板块,第一板块:我直接就将11种不同的情况的展开图出示给学生,因为好学生在课前已经完成过“剪”的操作活动,如果课上再安排去剪,对于他们来说本课对他们来说没有什么收获。
而那些没有认真去做预习的同学,往往是那些成绩暂差生,如果上课再慢慢地安照教材给他们去动手再剪,一节课下来可能无法完成“11种”不同展开图的教学任务。
我直接告诉他们这些不同的展开图,至少可以应付后面的练习,有的学生虽然没有动手剪,但是在课堂上他们可以去想象,我想这样同样也可以培养学生的空间观念。
到了六年级,我个人认为有的操作是可有可无的。
我想操作的目的也是为了不操作,最后终归要回到抽象中,比如今天的“展开图教学”,一般的教学顺序应该是找一个正方体实物剪开,观察、认识展开图;然后把几种展开图动手折叠判断看看哪些展开图能做成正方体。
最后,运用获得的一些展开图的知识去判断、练习。
我在备课时,就产生了这样的疑问:1、通过剪的操作能不能找全部11种不同的展开图吗?2、通过什么活动能让学生发现11种不同的展开图?第一个问题:我想通过剪的操作不可能得全11种展开图,难道要学生去准备11个正方体纸盒吗?况且课堂时间也不允许,因为这部分知识只有1课时。
所以,我认为正方体的11种展开图用自主探索的方法可能不太可能,所以,我就运用讲授法,直接将这个结果告诉学生。
但是我在教学这个知识点的时候并不是生硬的直接出示,我是这样教学第一部分知识的:第一板块:师:如果给你一张硬纸板,你能做成一个正方体纸盒吗?怎么做?教学长方体展开图:(这时,我先教学长方体的展开图,拿出事先准备好的长方体的展开图,重点是让学生能判断,“谁和谁是对面?”。
正方体展开图教学设计及反思
正方体展开图教学设计及反思教学内容:正方体展开图形教学目标:1、通过观察、操作等活动认识正方体的展开图,能在展开图中找到正方体相对的面,能判断一些平面图形折叠后能否围成正方体。
2、初步感受平面图形与立体图形的相互转换,发展空间想象能力。
3、进一步感受图形学习的乐趣,增强合作意识。
教学重、难点:引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。
教学对策:课前学具、教具,课件的准备工作要充分,课中要引导学生操作、观察、想象。
教学准备:教师准备长方体和正方体教具(可展开)及PPT课件教学过程:一、猜猜想象,导入新课1、谈话:我们前面学习了正方体的特征。
谁借助模型给大家再介绍一下?(指名学生说说,全班交流)除了同学们介绍的这些,正方体还有什么特征呢?2、猜猜想想。
投影出示三幅正方体的展开图,提问:看图想一想,这些图形是怎么得来的,你怎么知道的。
3、揭示课题:这就是这节课我们要研究的内容,认识正方体的展开图(板书课题)二、自主探究,学习新知1、研究正方体展开图。
谈话:刚才大部分同学都认为这些图形是把正方体展开得来的,到底是不是呢?我们一起来验证一下好吗?请大家拿出自己准备的正方体,你能够沿着这个正方体的棱把这个正方体纸盒剪开,得到这个图形吗?要求:剪的时候要沿着棱剪,并且各个面要互相联在一起。
(1)各小组交流如何把正方体的表面展开形成如图形状。
(2)学生尝试动手操作,有困难的可寻求老师帮助。
(3)和组内同伴交流一下自己的剪法。
(4)全班交流:请学生边剪边说:第一步,剪开3条棱,展开上底面;第二步,展开正方体的侧面,剪开4条棱;第三步,翻折下底面。
(5)把剪好的平面图形重新折叠起来,再慢慢展开,在展开的过程中体会其剪的过程和方法,并在展开图上标出正方体的六个面,观察这六个面的位置,你发现了什么?(学生汇报:相对的两个面中间隔着一个面。
)(6)你还能沿着其他棱把正方体展开吗?请你用自己的小正方体试试。
正方体表面展开图的口诀
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.(2004海口市实验区)下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
有关正方体表面展开图的解题规律
有关正方体表面展开图的解题规律新课标数学课本中新添了正方体展开图,中考题也多次出现,这种题有利于培养学生的空间观念,也有利于培养学生的实践、探索、交流能力.本文对几种常见类型的解题规律,作初步的探讨.一、判断给定的平面图形是否属正方体表面展开图1.如以最长的正方形链横排为准,展开图一般是三行,个别是两行,•不能是一行或四行,最长的一行(或列)在中间,可为2、3、4个,超过4•个或长行不在中间的不是正方体表面展开图.如都不是.2.在每一行(或列)的两旁,每旁只能有1个正方形与其相连,超过1个就不是.如都不是.中间的长行可折作正方体侧面,它两旁(或一旁)的正方形,与中间一行相连的折作底面,不相连的再下折作侧面.具体说可有以下4类11种图形,如作旋转或翻折后,方向会不同,但相对位置不变,这些不重复计算.1.“一·四·一”,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二·三·一”(或一·三·二)型,中间3个作侧面,上(或下)边2•个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种.3.“二·二·二”型,成阶梯状.4.“三·三”型,两行只能有1个正方形相连.二、找正方体相邻或相对的面1.从展开图找.(1)正方体中相邻的面,在展开图中有公共边或公共顶点.如,•或在正方形长链中相隔两个正方形.如中A与D.(2)在正方体中相对的面,在展开图中同行(或列)中,中间隔一个正方形.如ABCD中,A与C,B与D,或和中间一行(或列)•均相连的两正方形亦相对.例1 右图中哪两个字所在的正方形,在正方体中是相对的面.解“祝”与“似”,“你”和“程”,“前”和“锦”相对.例2在A、B、C内分别填上适当的数.使得它们折成正方体后,对面上的数互为倒数,则填入正方形A、B、C•的三数依次是:(A)12,13,1 (B)13,12,1 (C)1,12,13(D)12,1,13分析A与2,B与3中间都隔一个正方形,C与1分处正方形链两边且与其相连,选(A).例3 在A、B、C内分别填上适当的数,使它们折成正方体后,对面上的数互为相反数.分析A与0,B与2,C和-1都分处正方形链两侧且与其相连,∴A─0,B─-2,C ─1.例4 代出折成正方体后相对的面.解A和C,D和F,B和E是相对的面.2.从立体图找.例5 正方体有三种不同放置方式,问下底面各是几?分析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,•下底面依次是2、5、1.例6由下图找出三组相对的面.分析和2相连的是1、3、5、6,相对的是4,和3相连的是2、4、5、6,相对的是1,和6相连的是1、2、3、4,相对的是5.三、由带标志的正方体图去判断是否属于它的展开图例7 如下图,正方体三个侧面分别画有不同图案,它的展开图可以是().分析基本方法是先看上下,后定左右,图A图B都是□和+两个面相对,不合题意,图C“□”和“○”之上,从立体图看“+”在右,符合要求.图D•“□”和“+”之上,“○”在右,而立体图“○”应在左,不合要求,故选(C).例8 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是().分析首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是□和×,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4).十一种展开图找对面的规律首先拿到一个展开图时,先看清楚它的结构。
巧记口诀确定正方体表面展开图
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合; 跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1) (2) (3) (4)(5) (6)以上六种展开图可归结为四方连线,即 ,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开解析:本题可用“识图巧排‘7’、‘田’、‘凹’”来解决。
A 、D 都有“凹”形结构,B 有“田”形结构,故应选C例2.(2004扬州)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如右图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示.) 解析:本题可用“跃马失蹄四分开”来解决。
图中具备了三二相连的结构,故本题有四种答案,即小方块的位置有图中 所示的四种情况之一。
试一试:1.(2004浙江金华)下列图形中,不是立方体表面展开图的是( )2.(2004镇江)如图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和圆,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图可以是( )3.(2004海南)如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次是().(A)0,-2,1(B)0,1,-2(C)1,0,-2(D)-2,0,1(2005济南中考题)在正方体的表面上画有如图(1)中所示的粗线,图(2)是其展开图的示意图,但只在A面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是(如果没有把握,还可以动手试一试)。
判别正方体表面展开图的方法——“平移法”
自等比数列,手是:
口1结论成立.
.
‰ + = (拍+ )( ,
妻警
n = ( + )( n_ 一面2,
器 b k+2 ’
由nl imo。 口n存在-.I知,0<lI 去l<l,所以
。 o
一 2<t<2且t≠0, 口n=一 三 ·
(1T)由g(x)= /-1( )及 an = 9(6n+1)得
口一口 . l
.
L口.
(A)
(B)
1 口=]=][]
(C)
(D)
图 8
你一定掌握此法了,请快快动手试试看. 1.(2007年常州市 中考题)下面各个 图形是 由6个大小相同的正方形组成的,其中能沿正方
审
M U, 形的边折叠成一个正方体的是 …………··( )
(A) (B)
E日日
M U, 中间无正方形 阻挡而得到“141”型 (即原图形是 属于第三类“222”型).故应选 (C).
(A) (B)
(C)
(D)
分析:如图6,(A)、(B)中两个阴影正方形中 的一个是不能通过沿水平或竖直方 向平移一格 且 中间无 正方形阻挡而得到 “141”型.(C)中阴 影正方形也不能通过沿水平或竖直方 向平移一 格且中间无正方形阻挡而得到“141”型.(D)是 符合“141”型.故应选 (D). ’
此种类型是最好理解 的,中间四个正方形将 围成正方体的侧面,上下各一个正方形为上、下 底.这样此种类型有6种情况.
第二 类 “132”型 ,如 图 2.
血 I I I
图 2
如图 3,如果把 “132”型 中的一个 (用阴影部 分表示)向上平移 l格可以得到“141”型.
正方体表面展开图的口诀 (1)
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:下面的平面图形中,是正方体的平面展开图的是( )解析:本题可用“识图巧排 ‘7’、‘田’、‘凹’”来解决。
苏科版数学七年级上册_巧记口诀确定正方体表面展开图
巧记口诀确定正方体表面展开图6个相连的正方形组成的平面图形,经折叠能否围城正方体问题,是近年来中考常考题型。
同学们在学习这一知识时常感到无从下手,现将确定正方体展开图的方法以口诀的方式总结出来,供大家参考:正方体盒巧展开,六个面儿七刀裁。
十四条边布周围,十一类图记分明:四方成线两相卫,六种图形巧组合;跃马失蹄四分开;两两错开一阶梯。
对面相隔不相连,识图巧排“7”、“凹”、“田”。
现将口诀的内涵解释如下:将一个正方体盒的表面沿某些棱剪开,展开成平面图形,需剪7刀,故平面展开图中周围有14条边长共有十一种展开图:一、四方成线两相卫,六种图形巧组合(1)(2)(3)(4)(5)(6)以上六种展开图可归结为四方连线,即,另外两个小方块在四个方块的上下两侧,共六种情况。
二、跃马失蹄四分开(1)(2)(3)(4)以上四种情况可归结为五个小方块组成“三二相连”的基本图形(如图),另外一个小方块的位置有四种情况,即图中四个小方块中的任意一个,这一图形有点像失蹄的马,故称为“跃马失蹄”。
三、两两错开一阶梯这一种图形是两个小方块一组,两两错开,像阶梯一样,故称“两两错开一阶梯”。
四、对面相隔不相连这是确定展开图的又一种方法,也是确定展开图中的对面的一种方法。
如果出现三个相连,则1号面与3号面是对面,中间隔了一个2号面,并且是对面的一定不相连。
五、识图巧排“7”、“凹”、“田”(1) (2) (3)这里介绍的是一种排除法。
如果图中出现象图(1)中的“7”形结构的图形不可能是正方体展开图的,因为图中1号面与3号面是对面,3号面又与5号面是对面,出现矛盾。
如果图中出现象图(2)中的“田”形结构的图形不可能是正方体展开图的,因为同一顶点处不可能出现四个面的。
如果图中出现象图(3)中的“凹”形结构的图形不可能是正方体展开图的,因为如果把该图形折叠起来将有两个面重合。
现举例说明:例1.下面的平面图形中,是正方体的平面展开图的是()解析:本题可用“识图巧排‘7’、‘田’、‘凹’”来解决。
正方体展开图口诀
正方体展开图口诀
正方体展有规律,十一种类看仔细;
中间四个成一行,两边各一无规矩;
二三紧连错一个,三一相连一随意;
两两相连各错一,三个两排一对齐。
一条线上不过四,田七和凹要放弃;
相间Z端是对面,间二拐角面相邻。
1.中间四个成一行,两边各一无规矩
"141"型,中间一行4个作侧面。
上下两个各作为上下底面,共有6种基本图形。
2.二三紧连错一个,三一相连一随意
“231”型,中间3个作侧面,共3种基本图形
3.两两相连各错一
"222"型,两行只能有1个正方形相连
4.三个两排一对齐
5.一条线上不过四
指在正方形展开图中,一条直线上的小正方形不会超过四个。
如以下的图形都不是正方体的展开图。
6.田七和凹要放弃
指在正方体展开图中,不会有“田”字型、“凹”字型的形状。
如以下的图形都不是正方体的展开图。
7.相间Z端是对面
相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,“z”字端处的小正方形是正方体的对面。
如下面的展开图中,“1”对“5”,“2”对“4”,“3”对“6”。
8.间而拐角两面相邻
中间隔着两个小正方形或拐角型的三个面是正方形的邻面。
拐角型如下图所示。
正方体展开图经典测试题及解题技巧
正方体展开图经典测试题及解题技巧1、下列图形中可能是正方体展开图的是()A.B.C.D.解题思路:判断正方体的侧面展开图正确与否,可以从三个角度进行破解。
一看阵型进行对号入座(包括141阵型6种、231阵型3种、222阵型1种、33阵型1种类),找到符合的阵型即可;也可以采用排除特殊的阵型。
如“田”、“凹”“七”字阵型和“一字长蛇阵”均不能构成正方体。
二看是否“隔河相望”,一般分三层,中间一层相当于一条河,第一层和第三层形成隔河相望的状态(11种类除过333阵型,只有两层;三看正方形的相对面。
正方形的相对面,如果正方形的相对面出现两个,不符合常规,即排除。
A项.属于222阵型,成阶梯状,属于11中类型中的其中一种,属于“隔河相望”,相对面在“Z”的两端,正确。
B项属于“一字长蛇阵”排除,且只有一层,不能构成“隔河相望”,且第三个面分别与第一个面和第五个面相对,第四个面分别与第二个面和第六个面相对,不符合逻辑,故排除。
C项,属于“田”字型,只有两层,不能构成“隔河相望”排除;D项属于“七”字型,且只有两层,不能构成“隔河相望”,第二层3号面分别与第一个面和第5个面相对,不符合逻辑,故排除。
所以正确答案为A。
2.下面图形中是正方体平面展开图的是()A. B. C. D.解题思路:观察正方体平面展开图要把握动态的思维,有时需要对图像进行翻转和旋转来观察,如C项,需要把图像旋转90度,可以发现它就是222阵型。
直接采用排除法,排除特殊的阵型,即可得到正确答案。
A项属于“田”字型;B 项把图像逆时针旋转90度,得到“凹”字型,D项是明显的“凹”字形,故选C3.如图是一个小正方形的展开图,把展开图折叠成小正方体后,有“您”字的一面相对面上的字是() A.学 B.习C.进 D.步解题思路:要找出正方体“您”字的一面相对面上的字,有两种方法;一是看您字和哪一个字构成“Z”结构;“您”和“进”在“Z”的两端;二是看您字与“进”没有交点和公共边。
新课改下初中数学正方体侧面展开图教学探析
新课改下初中数学正方体侧面展开图教学探析作者:石岩来源:《考试周刊》2013年第13期摘要:现代社会的迅速发展对教育也提出了新的要求,传统的教学难以满足社会对学生素质的需要。
为了适应这种改变,国家大力推行教学改革,改变传统应试教育的模式,新课标的推广使教师的教学模式发生了重大的改变。
在这种背景下,数学课程也进行了较大的变革。
本文就初中数学正方体侧面展开图的教学方法的创新进行探索,旨在为广大教育者提供借鉴和参考。
关键词:新课改初中数学教学正方体侧面展开图教学方法一、初中数学正方体侧面展开图教学的难点正方体侧面展开图是在近几年中考试卷中新增加的一种题型,它体现了新课改对学生素质教育的要求,不仅考查了学生对知识的掌握能力,同时还考查了学生的逻辑思维能力和观察、空间构造能力,一直是教学的难点。
教师在对学生进行讲解时如果不能找到合适的方法,就无法将知识准确地传达给学生,使得学生在学习中对教师教授的内容一知半解,认识比较模糊。
初中生的逻辑思维能力还比较有限,这给教师的教学增加了一定的难度。
二、对正方体侧面展开图教学方法的探索分析1.教师要注意教学技巧,引导学生总结学习经验。
正方体侧面展开图是一项新的学习内容。
由于教师在传统的教学中并没有将其作为学习重点来讲解和研究,因此,在知识的传授上有一定的欠缺,学生接触尚浅,在学习中难免会遇到困难。
这就要求教师在教学中,自觉总结教学经验,归纳这类题的解题方法和技巧。
这类题在中考时一般以选择题、填空题为主,所占的分值不多,但是解题难度大。
教师在教学中可以对以往的题目及其解题方法进行总结,探索做题规律,然后对学生进行指导,降低学生学习的难度。
一个正方体图形,在展开时可以有多种方式,这样得到的最终平面图也就不同。
常见的展开图一般有11种,如果对这些展开图分别进行学习,就会给学生的学习带来极大的不便,教师可以将它们的解题方法归纳为以下口诀:一三二有3种,(图片展开时,中间三连方,两侧各有一、二个,共三种),一四一有6种(中间四连方,两侧各一个,共六种),二二二与三三各1种(中间二连方,两侧各有两个,只有一种;两排各三个,只有一种)。
新课改下初中数学正方体侧面展开图教学探析
、
印
A B C D
学 增 加 了一 定 的难 度 。 二、 对 正 方 体 侧 面展 开 图 教 学 方 法 的 探 索 分 析 1 . 教 师 要 注 意教 学技 巧 , 引 导 学生 总 结 学 习 经 验 。
正 方 体 侧 面 展 开 图是 一 项 新 的 学 习 内容 。 由 于 教 师 在 传 统 的 教 学 中并 没有 将 其 作 为学 习 重 点 来 讲 解 和研 究 , 因此 , 在 知 识 的传 授 上 有 一 定 的 欠 缺 , 学 生接触 尚浅 , 在 学 习 中难 免 会 遇 到 困难 。这 就 要 求 教 师 在 教 学 中 , 自觉 总 结 教 学 经 验 , 归 纳 这类题的解题方法 和技巧 。 这 类 题 在 中考 时 一 般 以 选择 题 、 填 空题为主 . 所 占的 分 值 不 多 。 但 是 解 题 难 度 大 。教 师 在 教 学 中 可 以 对 以往 的题 目及 其 解 题 方 法 进 行 总 结 , 探 索做题规律 . 然 后 对学生进行指导 。 降 低 学 生 学 习 的 难 度 。一 个 正 方 体 图形 . 在 展 开 时 可 以有 多 种 方 式 , 这样得 到的最终平 面图也就不 同 。 常见 的 展 开 图 一 般 有 l 1 种。 如果对 这些展开 图分别进行学 习 , 就 会 给 学 生 的 学 习带 来 极 大 的 不 便 ,教 师 可 以将 它们 的 解 题 方 法 归 纳 为 以下 口诀 : 一三 二有3 种, ( 图片展开 时 . 中 间 三 连 方, 两侧各有一 、 二个 , 共三种 ) , 一 四一 有 6 种( 中间四连方 , 两 侧各一个 , 共六 种) , 二二 : 二 与三三各 1 种( 中 间二 连 方 , 两 侧 各 有两个 , 只有一种 ; 两排各 三个 。 只有 一 种 ) 。 通过这种方式 , 我 们 就 可 以 发 现 学 习 规 律 ,在 选 择 题 时 就 可 以 根 据 规 律 进 行 排 除, 缩短解题时 问 , 提 高 解 题 的 正 确 率 。教 师 的 这 种 方 法 的 总 结, 教授给学生 可以有效地提 高学生 的学习效率 , 培 养 学 生 的
正方体和长方体的侧面展开图研究教案
正方体的11种展开图及判断方法今天这节课我分成了两大块,前一部分:学习正方体的展开图;后一部分:动手操作、验证。
因为我在课前已经布置了学生预习,“找几个正方体纸盒,把它剪开,看看可以有哪些不同的展开图?”我在检查预习作业时,我就发现有的同学已经能找出10种不同的展开图。
但有也一些学生根本就没有完成预习作业。
为了,使不同的学生在本课上都能得到不同的发展,所以我把这节课分成了上面两大板块,第一板块:我直接就将11种不同的情况的展开图出示给学生,因为好学生在课前已经完成过“剪”的操作活动,如果课上再安排去剪,对于他们来说本课对他们来说没有什么收获。
而那些没有认真去做预习的同学,往往是那些成绩暂差生,如果上课再慢慢地安照教材给他们去动手再剪,一节课下来可能无法完成“11种”不同展开图的教学任务。
我直接告诉他们这些不同的展开图,至少可以应付后面的练习,有的学生虽然没有动手剪,但是在课堂上他们可以去想象,我想这样同样也可以培养学生的空间观念。
到了六年级,我个人认为有的操作是可有可无的。
我想操作的目的也是为了不操作,最后终归要回到抽象中,比如今天的“展开图教学”,一般的教学顺序应该是找一个正方体实物剪开,观察、认识展开图;然后把几种展开图动手折叠判断看看哪些展开图能做成正方体。
最后,运用获得的一些展开图的知识去判断、练习。
我在备课时,就产生了这样的疑问:1、通过剪的操作能不能找全部11种不同的展开图吗?2、通过什么活动能让学生发现11种不同的展开图?第一个问题:我想通过剪的操作不可能得全11种展开图,难道要学生去准备11个正方体纸盒吗?况且课堂时间也不允许,因为这部分知识只有1课时。
所以,我认为正方体的11种展开图用自主探索的方法可能不太可能,所以,我就运用讲授法,直接将这个结果告诉学生。
但是我在教学这个知识点的时候并不是生硬的直接出示,我是这样教学第一部分知识的:第一板块:师:如果给你一张硬纸板,你能做成一个正方体纸盒吗?怎么做?教学长方体展开图:(这时,我先教学长方体的展开图,拿出事先准备好的长方体的展开图,重点是让学生能判断,“谁和谁是对面?”。
正方体的展开图教案
《正方体的展开图》教案一.教学目标1.知识与技能目标。
通过充分的实践、探索、交流,使学生能将一个正方体的表面沿某些棱剪开,展成一个平面图形;了解圆柱、圆锥的侧面展开图;棱根据展开图判断和制作简单的立体图形;经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验.2.过程与方法目标.学生在操作、交流合作、师生互动中获得知识,积累数学活动经验,提高数学能力。
3.情感与态度目标。
让学生充分经历操作实践、探索交流,获得成功的体验,使学生在意志力、自信心和理性思维等方面获得提升和发展。
二.教学重点通过实践得出所有的正方体展开图。
三.教学难点对正方体展开图的分类。
四.课前准备各小组课前用剪刀将正方体纸盒按任意方式沿棱剪开,并将组内得到的展开图画在下面的空白处,观察能得到哪些不同的展开图?四.教学过程(一)创设情境我们知道,每一门学科的诞生都来源于生活,而生活中的问题又是学科发展必不可少的源泉与动力,同理,数学来源于生活,而生活中处处有数学,那么,请看这样一道生活中的数学题。
情景:元旦快到了,小红同学想给班里每一位同学准备一份礼物,由于人数众多,为了节省开支,她打算自己折正方体盒子作为包装礼盒,现小红想到了两种剪裁方案,请同学们思考:问题1:两种方案都能折叠成正方体盒子吗?我们还能不能帮小红想到其他的剪裁方式?有什么规律?问题2:怎样剪裁最省纸张?(二)问题探究问题1、2的探究:对于生活中问题,如果我们能对其进行深层次的剖析,将生活问题数学化,那么,我们就可以用数学的思维去解决它,从而得到我们想要的答案。
请同学们拿出导学案,请各小组同学谈谈自己的看法。
【思维指导】:①解决问题1得出的结论是什么?(请两位同学上前展示以上两个模板是否可以折叠成正方体纸盒,从而引导学生体会正方体的展开与折叠式一个相互的过程,并了解到不是所有6个正方形组合而成的平面图形都能折叠成一个正方体,启发学生积极主动的去探究其他正方体的展开图.)②解决问题2还需要我们掌握哪些知识点?通过对展开图的分析,将各个展开图进行合理的排列组合,启发学生要结合生活实际,选用合适的组合方式,已达到最优效果.【自主探究过程】教师组织各个小组将课前探究出的正方体展开图不重复的贴在黑板上,讲师进行讲评。
正方体侧面展开图
正方体侧面展开图
正方体侧面展开图共有11种,按其类型分为四类,其中1—4—1的(即第一行1个,第二行4个,第三行1个)共有六种,其中旋转(或反折)重复后可看做一种。
2—3—1(即第一行2个,第二行3个,第三行1个),共有3种,2—2—2(即第一行2个,第二行2个,第三行2个)有一种,3—3(即第一行3个,第二行3个)有一种。
为了便于与原正方体对比,用红色来代表上下两个底面,用蓝色来代表左右两个面,用黄色来代表前后两个面。
用粗绿色线条来代表从左到右这一方向的棱,用粗综色(红褐)来代表,从前到后这一方向的棱,用粗灰色线条来代表,从上到下这一方向的棱。
当然,这只是其中一种折法,还有别的折法有待大家继续探讨。