具有低阶项的散度型椭圆方程的解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
502Vol.50,No.2 20073ACTA MATHEMATICA SINICA,Chinese Series Mar.,2007 :0583-1431(2007)02-0299-12:A
Morrey
454003
E-mail:wangys1962@;heyxiang63@
−(a ij u x
i )x
j
+b i u x
i
−(d j u)x
j
+cu=
(f j)x
j
,a.e.x∈ΩMorrey,a ij∈VMO∩L∞(Ω),
Morrey.
;Morrey;
MR(2000)35R05,46E35,42B20
O175.24
The Local Regularity of Solutions in Morrey Space to the Elliptic Equation
in Divergence Form with Lower Order Terms
Yue Shan WANG Yue Xiang HE
Department of Basic Science,Jiaozuo University,Jiaozuo454003,P.R.China
E-mail:wangys1962@;heyxiang63@
Abstract The aim of this note is to study the local regularity of solutions in Morrey
spaces to the elliptic equation in divergence form−(a ij u x
i )x
j
+b i u x
i
−(d j u)x
j
+cu=
(f j)x
j ,a.e.x∈Ω.Where a ij∈VMO∩L∞(Ω),and the lower order terms belong to
suitable Morrey spaces.
Keywords elliptic equation;Morrey space;regularity
MR(2000)Subject Classification35R05,46E35,42B20
Chinese Library Classification O175.24
1
,.,Ω⊂R n L,L u[1]L uΩP,Ω ⊂⊂Ω,u D m uΩ P?
Ω⊂R n(n≥3)
−(a ij u x
i )x
j
+b i u x
i
−(d j u)x
j
+cu=(f j)x
j
, a.e.x∈Ω.(1.1)
:2004-09-20;:2006-03-01
:(10426029)(2004189)
30050
a ij Sarason VMO([2]),
b i,c,d i Morrey
.,H:
a ij∈VMO∩L∞(Ω),a ij(x)=a ji(x),∀i,j=1,...,n;
∃Λ>0:Λ−1|ξ|2≤a ij(x)ξiξj≤Λ|ξ|2.
(1.2)
F:
b i,d i∈Lα(p),α(p)μn(Ω)(∀i=1,...,n),c∈Lα(p)2,α(p)μ2n(Ω),(1.3)
α(p)μ
n
1991Chiarenza,Frasca Longo BMO ,L p VMO
[3],,VMO
Morrey[4].
[5,6].(1.1)0,[7,8]Morrey
.H F(1.1)Morrey
L p,λ(Ω),(1.1)Morrey L p,λ(Ω) .
1.1u∈W1,p(Ω)(1.1),
Ω((a i,j u x
i
+f j+d j u)φx
j
+b i u x
i
φ+cuφ)dx=0,∀φ∈C∞0(Ω).(1.4)
1.1H F,f=(f1,f2,...,f n)∈[L p,λ(Ω)]n,u∈W1,p(Ω) (1.1),Du∈L p,λ
loc
(Ω),C=C(n,λ,p,Λ,M,dist(Ω ,∂Ω )),
Du L p,λ(Ω )≤C
u L p,λ(Ω )+ f L p,λ(Ω )+ Du L2(Ω )
,∀Ω ⊂⊂Ω ⊂⊂Ω.(1.5)
,p≥2,
Du L p,λ(Ω )≤C
u L p,λ(Ω )+ f L p,λ(Ω )
.(1.6)
2
2.1R n f∈BMO(R n),sup B1|B|
B
|f(x)−f B|dx=
f ∗<∞.B R n,f B=1|B|
B
f(x)dx.f∈BMO(R n),η(r)=
supρ≤r1
|Bρ|
Bρ
|f(x)−f B
ρ
|dx.lim r→0+η(r)=0,f∈VMO(R n).
2.1B∩ΩBρ∩ΩB Bρ,BMO(Ω)
VMO(Ω).
2.21
f p L p,λ(Ω)=sup
x∈Ω,ρ>0
1
ρλ
Bρ(x)∩Ω
|f(y)|p dy<∞.