椭圆的图像与性质
椭圆的定义与性质
椭圆的定义与性质椭圆是在平面上的一个几何图形,它的形状类似于一个椭圆形的椭圆。
椭圆由两个焦点和一条连接这两个焦点的线段组成。
椭圆的定义可以通过以下方式来描述:给定两个不重合的点F1和F2,以及一个正常数a,椭圆是平面上到这两个点F1和F2的距离之和等于2a的所有点P的集合。
椭圆有许多有趣的性质。
首先,椭圆是一个闭合图形,它的形状在两个焦点F1和F2之间变化。
其次,椭圆的中点O是焦点F1和F2之间的中点,并且椭圆的长轴是连接这两个焦点的线段。
长轴的长度为2a,其中a为椭圆的半长径。
椭圆的短轴是与长轴垂直且通过中点O的线段,其长度为2b,其中b为椭圆的半短径。
椭圆的长轴和短轴之间的关系可以通过以下公式表示:长轴的长度的平方等于短轴的长度的平方加上焦距的长度的平方。
椭圆的形状也可以由离心率来描述。
离心率是一个衡量椭圆形状的参数,表示焦点之间的距离与半长径之间的比值。
离心率小于1的椭圆形状更加圆形,而离心率等于1的椭圆是一个特殊的圆,离心率大于1的椭圆形状更加扁平。
除了这些基本的定义和性质之外,椭圆还有许多其他的性质。
例如,椭圆上的任意一点到焦点F1和F2的距离之和等于2a,这被称为椭圆的焦点性质。
椭圆还具有对称性,即关于长轴和短轴都有对称性。
椭圆还可以通过旋转的方式来得到新的椭圆,这被称为椭圆的旋转性质。
总结起来,椭圆是平面上的一个几何图形,由两个焦点和一条连接这两个焦点的线段组成。
椭圆具有闭合性、中点、长轴和短轴、离心率等基本性质。
此外,椭圆还有焦点性质、对称性和旋转性质等其他有趣的性质。
通过研究椭圆的定义和性质,我们可以更深入地理解和应用椭圆在数学和物理等领域中的重要性。
数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结
数学知识点:椭圆的性质(顶点、范围、对称性、离心率)_知识点总结
椭圆的焦距与长轴长之比叫做椭圆的离心率。
椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。
2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。
3、焦点:F1(-c,0),F2(c,0)。
4、焦距:。
5、离心率:;
离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆;
6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。
利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:
(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。
(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,高考物理,从而求离心率或离心率的取值范围.。
椭圆的简单几何性质(最全)
42 52
41
25 9
尝试遇到困难怎么办? 作出直线 l 及椭圆,
几何画板显示图形
观察图形,数形结合思考.
36
直线与椭圆的位置关系 :
直线和椭圆方程分别为
y
: Ax By C
y
0
,x a
2 2
y2 b2
1
y
F1 o
F2 x F1 o
F2 x F1 o
F2 x
Ax By C 0
则由 x2 y2
x2 y2 1
4 16
x2 y2 综上所述,椭圆的标准方程是 1
或
x2 y2 1
41
4 16
15:01:32
26
练习2:
已知椭圆 x2 y2 1 的离心率 e 1
k 8 9
2
x 解:当椭圆的焦点在 轴上时,
k ,求 的值
a2 k 8 b2 9
y 由
e
1 2
,得:
k
4
当椭圆的焦点在 轴上时,
3、若椭圆的 的两个焦点把长轴分成三等分,则其离心率
为
1。
3
4、若某个椭圆的长轴、短轴、焦距依次成等差数列,
3
则其离心率e=______5____
回顾
[1]椭圆标准方程
x2 a2
y2 b2
1(a b 0)
所表示的椭圆的存在范围是什么?
[2]上述方程表示的椭圆有几几个顶点?顶点是谁与谁的交点?
3)c=0(即两个焦点重合)e =0,则 b= a,
椭圆方程变为x2+ y2=a2(圆)
即离心率是反映椭圆扁平程度的一个量。
结论:离心率e越大,椭圆越扁; 离心率e越小,椭圆越圆
3.1.2椭圆的几何性质(直线与椭圆的位置关系)课件(人教版)
讲
课
人
:
邢
启
强
15
高中数学
课堂小结
方程
选择性必修第一册
y2
x2
2 1
2
a
b
x2
y2
1
a 2 b2
RJ·A
图形
(, )
(, )
(−, )
o
对称性
顶点
离心率
讲
课
人
:
邢
启
强
(−, )
(, )
(, )
(, −)
范围
a x a,b y b
c
e (0 e 1)
a
16
后研究圆锥曲线的统一性等性质带来
方便。
讲
课
人
:
邢
启
强
4
题型:直线与椭圆的位置关系
2 2
例:已知直线l:y=2x+m,椭圆:4 + 2 = 1,试问当m取何
值时,直线l与椭圆C:
(1)有两个公共点;
(2)有且只有一个公共点;
(3)没有公共点。
解题提示:联立方程
式判断根的个数
讲
课
人
:
邢
启
强
消元得一元二次方程
得出结论
利用根的判别
5
题型:直线与椭圆的位置关系
= 2 +
解:直线l的方程与椭圆C的方程联立,得方程组ቐ 2
2
+
4
2
讲
课
人
:
邢
启
强
=1
,
椭圆与双曲线的基本性质
椭圆与双曲线的基本性质椭圆和双曲线是二维平面上的两种常见曲线类型,它们在数学和其他领域中具有广泛的应用。
本文将介绍椭圆和双曲线的基本性质,并探讨它们在几何学和物理学中的重要作用。
一、椭圆的性质椭圆由平面上到两个给定点的距离之和等于常数的点构成。
这两个给定点称为焦点,它们之间的距离称为焦距。
椭圆的性质如下:1. 中心与焦点:椭圆的中心即为焦点的平分线上的点,记为O。
椭圆的两个焦点分别为F1和F2。
2. 长轴与短轴:直线F1OF2称为椭圆的主轴,长度为2a;主轴的中点称为椭圆的中心。
主轴上的两个点分别称为顶点,距离中心的距离为a。
垂直于主轴并过中心的直线称为次轴,长度为2b。
3. 半焦距:半焦距为c,满足c² = a² - b²。
4. 离心率:椭圆的离心率定义为e = c/a。
离心率描述了椭圆形状的独特特征,范围在0到1之间。
5. 焦点到任意点的距离和:对于椭圆上的任意一点P(x, y),有FP1 + FP2 = 2a,其中FP1和FP2表示点P到两个焦点的距离。
二、双曲线的性质双曲线由平面上到两个给定点的距离之差等于常数的点构成。
这两个给定点称为焦点,它们之间的距离称为焦距。
双曲线的性质如下:1. 中心与焦点:双曲线的中心即为焦点的平分线上的点,记为O。
双曲线的两个焦点分别为F1和F2。
2. 长轴与短轴:直线F1OF2称为双曲线的主轴,长度为2a;主轴的中点称为双曲线的中心。
主轴上的两个点分别称为顶点,距离中心的距离为a。
垂直于主轴并过中心的直线称为次轴,长度为2b。
3. 半焦距:半焦距为c,满足c² = a² + b²。
4. 离心率:双曲线的离心率定义为e = c/a。
离心率也描述了双曲线形状的特征,但范围大于1。
5. 焦点到任意点的距离差:对于双曲线上的任意一点P(x, y),有|FP1 - FP2| = 2a,其中FP1和FP2表示点P到两个焦点的距离。
椭圆的相关知识点
椭圆的相关知识点第一篇:椭圆的基本概念和性质1.椭圆的定义椭圆是平面上到两个定点(焦点)距离之和等于定长(长轴)的点的轨迹,长轴的中点为圆心,短轴为长轴的一半。
2.椭圆的方程椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中 a 和 b 分别为长半轴和短半轴的长度。
椭圆的一般方程为$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$,式中 A、B、C、D、E、F 均为常数。
3.椭圆的对称性椭圆有四个轴线:长轴和短轴,以及两个对称轴线(分别为横向和纵向)。
椭圆具有关于两个轴线的对称性,关于圆心对称。
4.椭圆的几何性质椭圆的周长公式为 $l=4aE(e)$,面积公式为 $S=\piab$。
其中,$e=\sqrt{1-\frac{b^2}{a^2}}$ 为椭圆的离心率,$E(e)$ 为第一类的椭圆积分(椭圆弧长度)。
椭圆的内切圆为其一条边界切线上的圆,其直径长度为短轴的长度,而斜切和垂直切的切线则分别过长轴的端点和中点。
椭圆的离心率决定了其形状的扁瘤程度,离心率越小则椭圆越接近于圆形,越大则越接近于扁平的形状。
5.椭圆的应用椭圆在数学、物理、工程、生物学和地球科学等领域中有广泛的应用。
例如,它们可以用于描述球形天体的轨道、电子轨道、反射镜的形状、ATM 窗口的形状、荷载分布、地球的椭球形等等。
第二篇:椭圆的参数方程、焦点坐标和切线方程1.椭圆的参数方程对于椭圆的标准方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,我们可以将其表示为参数方程:$$\begin{cases}x=a\cos\theta\\y=b\sin\theta\end{cases}$$其中,$\theta$ 为参数,表示$\overrightarrow{OP}$ 与 $x$ 轴正半轴的夹角。
2.椭圆的焦点坐标椭圆有两个焦点,它们分别位于长轴上,与圆心的距离为 $c=\sqrt{a^2-b^2}$ ,其中 $a$ 和 $b$ 分别为长轴和短轴的长度。
圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
椭圆图像和性质
x y ± = 0 a b
X
A1
o
B1
A2
F’2
F2
x 2 + y 2 = a 2 + b 2 上.
问:有相同渐近线的双曲线方 程一定是共轭双曲线吗
一、选择题:
A
B
C
D
一、选择题:
A
B
C
D
一、选择题:
A
B
C
D
一、选择题:
A
B
C
D
一、选择题:
A
B
C
D
二、填空题
二、填空题
二、填空题:
二、填空题:
18 |x|≥3
2 ,0
顶 点 焦点
离心率 渐进线
(± 4
e=
)
(±3,0)
(± 6,0)
3 2 2
(± 3
10 ,0
)
(0,±2 2 )
e= 2
(0,±
e =
74
)
74 5
e = 10
2 y=± x 4
y=±3x
x = ±y
x = ±
7 y 5
例2:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原 双曲线的共轭双曲线,求证: (1)双曲线和它的共轭双曲线有共同的渐近线; (2)双曲线和它的共轭双曲线的四个焦点在同一个园上. Y 证明:(1)设已知双曲线的方程是:
渐近线方程: x = ±
4 3 y, 即 y = ± x 3 4
练习题1:填表
标 准 方 x 2 8 y 2 = 32 程
2a
9x y = 81 x y = 4
2 2
2 2
x2 y2 = 1 49 25
椭圆的定义及性质
椭圆的一个顶点,则椭圆的方程为
.
解析:设椭圆的方程为
x2 a2
y2 b2
c
a
3 5
=1(a>b>0),则已知 b 4,
a2 b2
c2,
a 5, 解得 b 4,
c 3,
所以椭圆方程为 x2 y2 =1. 25 16
小结:椭圆的标准方程及其简单几何性质
x2
y2
a 2 b2 1(a b 0)
y2 x2 a2 b2 1(a b 0)
图形
对称性 顶点
范围
焦点 焦距
离心率
曲线关于x轴、 y轴、原点对称 长轴顶点(±a,0) 短轴顶点(0,±b)
a x a, b y b
(-c,0)和(c,0)
曲线关于x轴、 y轴、原点对称 长轴顶点(0,±a) 短轴顶点(±b,0)
椭圆关于x轴、y轴、原点对称.
yy B2
AA11
AA2 2
O O
x
在
x2 a2
y2 b2
BB11
1中令y=0, 可得x= a
从而:A1(-a,0),A2(a,0)
同理:B1(0, -b),B2(0, b)
y
B2
A1
A2
O
x
B1
线段A1A2叫椭圆的长轴: 长为2a 线段B1B2叫椭圆的短轴: 长为2b
2.当2a=2c时,轨迹是一条线段, 是以 F1、F2为端点的线段. 3.当2a<2c时,无轨迹,图形不存在. 4.当c=0时,轨迹为圆.
二.椭圆的标准方程
(1)焦点在x轴
x2 a2
椭圆及其性质知识点及题型归纳总结
椭圆及其性质知识点及题型归纳总结知识点精讲一、椭圆的定义平面内与两个定点12,F F 的距离之和等于常数2a (122||a F F >)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记作2c ,定义用集合语言表示为:{}1212|||||2(2||20)P PF PF a a F F c +=>=>注明:当22a c =时,点的轨迹是线段;当22a c <时,点的轨迹不存在. 二、椭圆的方程、图形与性质椭圆的方程、图形与性质所示.(如下表10-1) 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 统一方程221(m 0,n 0,)mx ny m n +=>>≠参数方程 cos ,[0,2]sin x a y b θθθπθ=⎧∈⎨=⎩为参数() cos ,[0,2]sin x a y b θθθπθ=⎧∈⎨=⎩为参数()第一定义 到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴长2a = 短轴长2b = 长轴长2a = 短轴长2b =对称性关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距222122()F F c c a b ==-离心率22222221(01)c c a b b e e a a a a-====-<<准线方程2a x c=±(不考)点和椭圆 的关系 2200002211(,)1x y x y a b >⎧⎧⎪⎪+=⇔⎨⎨⎪⎪<⎩⎩外点在椭圆上内2200002211(,)1y x x y a b >⎧⎧⎪⎪+=⇔⎨⎨⎪⎪<⎩⎩外点在椭圆上内切线方程0000221((,)x x y yx y a b+=为切点) 0000221((,)y y x xx y a b+=为切点) 对于过椭圆上一点00(,)x y 的切线方程,只需将椭圆方程中2x 换为0x x ,2y 换为0y y 便得切点弦所在 的直线方程0000221((,)x x y yx y a b +=点在椭圆外) 0000221((,)y y x xx y a b+=点在椭圆外) 焦点三角形面积①2max 12122cos 1,,(b F BF B r r θθ=-=∠为短轴的端点)②121201022||,1tan ()22||,sin PF F c y x S r r b F PF c x y θθθ∆⎧⎪===∠⎨=⎪⎩焦点在轴上焦点在轴上③212212min =max =P r r b P r r a ⎧⎪⎨⎪⎩当点在长轴端点时,()当点在短轴端点时,()焦点三角形中一般要用到的关系是12121222212211212121||||)||||222si 2||||||2||n ||cos PF F MF MF a a S PF PF F PF F F PF PF PF PF F PF c ∆+=>=∠=⎧⎪⎪⎨⎪+-∠⎪⎩()题型归纳及思路提示题型1 椭圆的定义与标准方程 思路提示(1)定义法:根据椭圆定义,确定22,a b 的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件列出,,a b c 的方程组,解出22,a b ,从而求得标准方程.注意:①如果椭圆的焦点位置不能确定,可设方程为221(0,0,)Ax By A B A B +=>>≠.②与椭圆221x y m n+=共焦点的椭圆可设为221(,,)x y k m k n m n m k n k +=>->-≠++. ③与椭圆22221(0)x y a b a b +=>>有相同离心率的椭圆,可设为22122x y k a b+=(10k >,焦点在x 轴上)或22222x y k a b+=(20k >,焦点在y 轴上). 一.椭圆的定义与标准方程的求解例10.1 动点P 到两定点12(4,0),(4,0)F F -的距离之和为10,则动点P 的轨迹方程是( )A.221169x y += B. 221259x y += C. 2212516x y += D. 22110036x y +=解析 依题意,动点P 的轨迹是椭圆,且焦点在x 轴上,设方程为22221(0)x y a b a b +=>>,由4,210,5c a a ===,得3b ==,则椭圆方程为221259x y +=,故选B. 变式1 求焦点的坐标分别为12(4,0),(4,0)F F -,且过点16(,3)5P 的椭圆的方程.变式2 已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为3和3,过点P 作长轴的垂线恰好过椭圆的一个焦点,求此椭圆的方程.例10.2 在△ABC ,已知(2,0),(2,0)A B -,动点C 使得△ABC 的周长为10,则动点C 的轨迹方程为_________.解析 由题意||||10||1046||CA CB AB AB +=-=-=>,故动点C 的轨迹是以,A B 为焦点,长轴长为6的椭圆(除去左右顶点),即3,2a c ==,则2225b a c =-=,则轨迹方程为221(0)95x y y +=≠ 变式1 已知动圆P 过定点(3,0)A -,且与圆22:(3)64B x y -+=相切,求动圆圆心P 的轨迹方程.变式2 已知一动圆与圆221:(3)1O x y ++=外切,与圆222:(3)81O x y -+=内切,试求动圆圆心的轨迹方程.变式3 已知圆221:(2)16O x y ++=,圆圆222:(2)4O x y -+=,动圆P 与圆1O 内切,与圆2O 外切,求动圆圆心P 的轨迹方程.例10.3 已知椭圆的长轴长是8,离心率是34,则此椭圆的标准方程是( ) A.221169x y += B. 221167x y +=或221716x y += C.2211625x y += D. 2211625x y +=或2212516x y += 解析 因为椭圆的长轴长是8,即28a =,所以4a =,离心率为34,则3,34c c a ==,所以2227b a c =-=,所以椭圆的标准方程是221167x y +=或221716x y +=.故选 变式1 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线l 交C 于,A B 两点,且△2ABF 的周长为16,那么C 的方程为__________.变式2 已知椭圆的中心在原点,焦点在x轴上,离心率为5,且过(5,4)P -,则椭圆的方程为_________. 变式3经过3(2A B 两点的椭圆的标准方程是________________. 二.椭圆方程的充要条件例10.3 若方程22153x y k k +=--表示椭圆,则k 的取值范围是__________. 解析 由题意可知503053k k k k ->⎧⎪->⎨⎪-≠-⎩,解得34k <<或45k <<故k 的取值范围为(3,4)(4,5)⋃ 评注 易错点:忽略53k k -≠-.221x y m n+=表示椭圆的充要条件为:0,0,m n m n >>≠; 221x y m n+=表示双曲线方程的充要条件为:0mn <: 221x y m n+=表示圆方程的充要条件为:0m n =>: 变式1 如果222x ky +=表示焦点在y 轴上的椭圆,则k 的取值范围是___________. 变式2 “0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件变式3 若方程22(5)(2)8m x m y -+-=表示焦点在x 轴上的椭圆,则实数m 的取值范围是____________.题型2 离心率的值及取值范围 思路提示求离心率的本质就是探究,a c 之间的数量关系,知道,,a b c 中任意两者间的等式关系或不等关系便可求解出e 的值或其范围.具体方法为方程法、不等式法和定义法.例10.4 已知椭圆22221(0)x y a b a b+=>>(1)若长轴长,短轴长,焦距成等差数列,则该椭圆的离心率为__________. (2)若长轴长,短轴长,焦距成等比数列,则该椭圆的离心率为__________. 解析 (1)由题设可知2b a c =+,且222a b c =+,故2222()2a cb ac +=-=, 即4a ca c +-=,即35a c =, 所以35c e a ==.(2)由题设可知2b ac =,且222a b c =+,故22a c ac -=, 即220c ac a +-=,所以ce a=可得,210e e +-=,解得e =或e =所以e =. 变式1 椭圆22221(0)x y a b a b +=>>的左右顶点分别是,A B ,左右焦点分别是12,F F .若1121||,||,||AF F F BF 成等差数列,则此椭圆的离心率为____________.变式2 已知椭圆22221(0)x y a b a b+=>>的左顶点为A ,左焦点为F ,上顶点为B ,若090BAO BFO ∠+∠=,则该椭圆的离心率是___________.例10.6 过椭圆22221(0)x y a b a b +=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若012=60F PF ∠,则椭圆的离心率为( )A.B. C. 12D. 13解析 解法一:(定义法)令1||=1PF ,则在12Rt PF F 中,由012=60F PF ∠,可知212||=2,|PF F F 122||||3a PF PF =+=,2c =,所以22c e a ==.故选B. 解法二 因为2(,)b P c a -±,再由012=60F PF ∠,所以021=30PF F ∠,得21||=2||PF PF ,13|2,PF a =22232,23b a a b a ==,故2223b a =所以3e ==.故选B .解法三 同解法二,因为2(,)b P c a -±,在12Rt PF F 中,得0121||=tan60||F F PF =即2222c ac b b a==故有2222)ac a c ==-2220ac +=220e +-=所以e =e =故选B . 评注 求离心率的过程就是探求基本量,,a b c 的齐次式间的等量关系,常见的离心率公式应熟悉:①c e a =;②e =(椭圆)③e =,另外,在求解离心率过程中要有以下意识:①利用定义的意识(定义中有2a ,且122F F c =)②获得了,,a b c 中的任意的两个参数间的数量关系都可以求解离心率e .变式1 已知正方形ABCD ,以,A B 为焦点,且过,C D 两点的椭圆的离心率为______.变式2 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,且122F F c =,点A 在椭圆上,且1AF 垂直于x 轴,212AF AF c ⋅=,则椭圆的离心率e 等于( )A.B.C.D. 2变式3 已知椭圆22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,焦距122F F c =,若直线)y x c =+与椭圆的一个交点M 满足12212MF F MF F ∠=∠,则椭圆的离心率e 等于_________.变式4 设1F ,2F 是椭圆22221(0)x y a b a b+=>>的两焦点,以2F 为圆心,且过椭圆中心的圆与椭圆的一个交点为M ,若直线1F M 与圆2F 相切,则椭圆的离心率为( )A.1 B. 2- C.2 D. 2例10.7椭圆2222:1(0)x y G a b a b+=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,椭圆上存在点M 使120FM F M ⋅=,则椭圆的离心率e 的取值范围为_________. 解析 解法一:由知识点精讲中结论知,当P 为椭圆的短轴端点时,12F PF ∠取得最大值,而由题意可知,若在椭圆上存在点M 使得120FM F M ⋅=,即01290F MF ∠=,只需要焦点三角形的顶角最大值090≥即可,故只需保证当点M 落在椭圆短轴端点处情形时01290F MF ∠=的即可,所以12sin sin 4522F MF c a ∠=≥=1e <,故所求的椭圆离心率的取值范围是,12⎫⎪⎪⎣⎭解法二:由椭圆的定义知12||||2MF MF a +=,在12F MF 中,01290F MF ∠=,由勾股定理得,22221212||||||4F M F M F F c +==,将上式化简得2212||||2()F M F M a c ⋅=-,根据韦达定理,可知2212||||2()F M F M a c ⋅=-是方程22222()0x ax a c -+-=的两个根,则22248()0a a c ∆=--≥21()2c a ≥,即2e ≥,又因为1e <,故所求的椭圆离心率的取值范围是2⎫⎪⎪⎣⎭变式1 已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的两焦点,满足120FM F M ⋅=的点M 总在椭圆内部,则椭圆的离心( )A. (0,1)B. 10,2⎛⎤⎥⎝⎦ C. ⎛⎝⎭ D. ⎫⎪⎪⎣⎭例10.8 椭圆22221(0)x y a b a b+=>>的两个焦点1F ,2F ,若P 为其上一点,且12||2||PF PF =,2F ,则此椭圆离心率的取值范围为____________分析 根据椭圆的定义12||||2PF PF a +=求解..解析 解法一,由12||||2PF PF a +=,12||2||PF PF =得14||3a PF =,22||3a PF =,又12||||2PF PF c -≤,即223a c ≥, 得113e ≤<,故离心率的取值范围为1,13⎡⎫⎪⎢⎣⎭. 评注 若椭圆上存在点P ,使得12||||(0,1)PF PF λλλ=>≠,则1||,11e λλ-⎡⎤∈⎢⎥+⎣⎦变式1椭圆22221(0)x y a b a b+=>>的两个焦点1F ,2F ,椭圆上存在P 使得12||3||PF PF =椭圆方程可以是( )A.2213635x y += B. 2211615x y += C. 2212524x y += D. 22143x y += 变式2 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1(,0)F c -,2(,0)F c ,若椭圆上存在一点P 使1221sin sin PF F cPF F a∠=∠,则椭圆的离心率e 的取值范围为_________.题型3 焦点三角形 思路提示焦点三角形的问题常用定义与解三角形的知识来解决,对于涉及椭圆上点到椭圆两焦点将距离问题常用定义,即12||||2PF PF a +=.例10.9已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点, P 为椭圆C 上一点,且12PF PF ⊥,若12PF F ∆的面积为9,则b =_________.解析 焦点三角形12PF F 中,12PF PF ⊥,故12121||||2PF F S PF PF ∆=, 又2221212||||||PF PF F F +=,12||||2PF PF a +=则()221212212F F PF PF PF PF =⋅-+,2212424c PF PF a =⋅-,所以2212b PF PF =⋅,则9221==∆b S F PF ,故3=b . 评注 若21F PF ∆为一般三角形,则=∆21F PF S θsin 2121PF PF ⋅(用θ表示21PF F ∠). 由余弦定理得221212221cos 2F F PF PF PF PF =⋅-+θ,又aPF PF 221=+,cF F 221=,所以()()2212214cos 12c PF PF PF PF =+⋅⋅-+θ,所以()2214cos 12b PF PF =+⋅⋅θ,θcos 12221+=⋅b PF PF , 所以=∆21F PF S 2tan 2cos 22cos2sin2cos 1sin sin 21222221θθθθθθθb b b PF PF ==+=⋅.本题︒=∠9021PF F ,则9221==∆b S F PF ,易得3=b ,故熟记椭圆焦点三角形21F PF 的面积公式=∆21F PF S 2tan2θb ,对于求解选、填空题有着很大的优势.变式1 已知21,F F 是椭圆191622=+y x 的两个焦点,P 为该椭圆上一点,且135cos 21=∠PF F ,求21PF F ∆的面积.变式2 已知21,F F 是椭圆14:22=+y x E 的左、右焦点,P 为椭圆E 上一点,且︒=∠6021PF F ,则点P 到x 轴的距离为____________.例10.10 已知椭圆13422=+y x 的左、右焦点分别为21,F F ,P 是椭圆上的一动点. (1)求的21PF PF ⋅取值范围; (2)求的21PF PF ⋅取值范围;解析:(1)()()22111212a a PF PF a PF PF PF +--=-⋅=⋅,又[]c a c a PF +-∈,1故 当c a c a PF +-=或1时,()222max21b a c PF PF =+-=⋅. 当a PF =1时,()2max21a PF PF =⋅. 所以 []2221,ab PF PF ∈⋅ 即[]4,321∈⋅PF PF .(2)解法一:()()2212212221212F F PF PF PF PF PF PF -=--+=⋅()2222242242b aa c a +--=--+=即)2222122b aaPF PF +--=⋅ 又[]c a c a PF +-∈,1 故 当a PF =1时,()22max212a b PF PF-=⋅.当c a c a PF +-=或1时,()2222max 212b b a c PF PF=+-=⋅. 所以 []22221,2b a b PF PF -∈⋅ 即 []3,221∈⋅PF PF . 解法二:设[]a a x y x P ,),,(000-∈,则 ()()2222020000021,,c OP c y x y x c y x c PF PF -=-+=--⋅---=⋅.又 []2222022202222020202,a b b x a c x a b b x y x OP ∈+=-+=+=. 故[]2222221,2b a b c OP PF PF -∈-=⋅评注:(1)若本题的第(1)问只求21PF PF ⋅的最大值,则使用椭圆的定义求取更为简洁;由椭圆定义知a PF PF 221=+,又因为212122PF PF PF PF a ⋅≥+=,故有221a PF PF ≤⋅,故21PF PF ⋅的最大值为4. (2)通过本题的求解,可得到椭圆)0(12222>>=+b a by a x 有以下重要结论: ①[]c a c a PF +-∈,1 ②[]2221,a b PF PF ∈⋅; ③[]2222221,2b a b c OP PF PF -∈-=⋅; ④1212cos 2221221-≥-⋅=∠ab PF PF b PF F (当且仅当a PF PF ==21,即P 为椭圆的短轴端点时,21cos PF F ∠取得最小值,且此时点P 对两个焦点的张角21PF F ∠最大).以上结论在求解椭圆的焦点三角形问题时有重要的应用,值得同学们熟记.变式1 椭圆)0(1:2222>>=+b a by a x M 的左、右焦点分别为21,F F ,P 为椭圆上任一点,且21PF PF ⋅的最大值的取值范围是[]223,cc ,其中22b a c -=,则椭圆M 的离心率e 的取值范围( ) A. ⎥⎦⎤⎢⎣⎡21,41 B. ⎥⎦⎤⎢⎣⎡22,21C. ⎪⎪⎭⎫ ⎝⎛1,22D. ⎪⎭⎫ ⎝⎛1,21变式2 设P 是椭圆14922=+y x 上一动点,21,F F 分别是左、右两个焦点,则21cos PF F ∠的最小值是( )A. 21B. 91C. 91-D. 95-变式3 设椭圆)0(12222>>=+b a by a x 的焦点为21F F 和,P 是椭圆上任一点,若21PF F ∠的最大值为32π,则此椭圆的离心率为____________ 有效训练题1. 已知点)0,3(M ,椭圆1422=+y x 与直线())0(3≠+=k x k y 交于B A ,,则ABM ∆的周长( ) A. 4 B. 8 C. 12 D. 162.已知P 为椭圆1162522=+y x 上的一点,N M ,分别为圆()1322=++y x 和圆()4322=+-y x 上的点,则PN PM +的最小值为( ) A. 21 B. 91 C. 91- D. 95-3. 椭圆16410022=+y x 的焦点为21,F F ,椭圆上的点P 满足︒=∠6021PF F ,则21PF F ∆的面积是( ) A. 3364 B. 3391 C. 3316 D. 3644. 如图10-4所示,椭圆中心在原点,F 是左焦点,直线AC 与BF 交于D ,且︒=∠90BDC ,则椭圆的离心率为( ) A. 213- B. 215- C. 215- D. 235. 若椭圆1522=+my x 的离心率510=e ,则m 的值为( ) A. 3 B. 315515或 C. 15 D. 3253或 6. 若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,则FP OP ⋅的最大值为( )A.2B.3C. 6D. 87. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,若线段BF 的延长线交C 于点D ,且FD BF 2=,则C 的离心率为__________.8. 椭圆)0(12222>>=+b a by a x 的左,右顶点分别是B A ,,左、右焦点分别是21,F F ,若B F F F AF 1211,,成等比数列,则此椭圆的离心率为____________.9.椭圆125922=+y x 上的一点P 到两焦点的距离的乘积为m ,则m 当取最大值时,点P 的坐标是___________.10. 已知椭圆)0(12222>>=+b a b y a x 的离心率为21,经过点)23,1(P , (1)求椭圆C 的方程;(2)设F 是椭圆C 的左焦点,判断以PF 为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.11. 已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为B A ,,从此椭圆上一点M ,(在x 轴上方)向x 轴作垂线,恰好通过椭圆的左焦点1F ,OM AB //.(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,21,F F 分别是左、右焦点,求21QF F ∠的取值范围.12. 已知椭圆C 的中心在原点,一个焦点)0,2(-F ,且长轴长与短轴长的比是3:2,(1)求椭圆C 的方程;(2)设点)0,(m M 在椭圆C 的长轴上,点P 最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.。
核心考点之:椭圆的概念图像及性质
高考数学圆锥曲线核心内容之一:椭圆 (学生版)整理归纳总结 富宁县第一中学 堡哥 椭圆知识点梳理---夯实基础 厚积而薄发1.椭圆的定义(概念)(1)第一定义:平面上,到两定点F 1,F 2的距离之和的绝对值为正常数2a (小于两定点间距离2c )的动点轨迹叫作椭圆.(a):2a >|F 1F 2|,动点的轨迹是椭圆; (b):2a =|F 1F 2|,动点的轨迹是线段F 1F 2; (c):2a <|F 1F 2|动点不存在,因此轨迹不存在;(2)第二定义:平面上,到定点F 的距离与到定直线l 的距离之比等于常数e (0<e <1)的动点轨迹叫作椭圆.2. 椭圆的标准方程及简单的几何性质|x |≤a ,|y |≤b|y |≤a ,|x |≤b椭圆常考典型题目再现---举一反三 融会贯通例1:求适合下列条件的椭圆的标准方程. (1)焦点在y 轴上,且经过两个点(0,2)和(1,0);(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝ ⎛⎭⎪⎫-32,52;(3)经过点P ⎝ ⎛⎭⎪⎫13,13,Q ⎝ ⎛⎭⎪⎫0,-12.例2:求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)c ∶a =5∶13,且椭圆上一点到两焦点的距离的和为26.例3:已知椭圆M 与椭圆N :x 216+y 212=1有相同的焦点,且椭圆M 过点⎝⎛⎭⎪⎫-1,255. (1)求椭圆M 的标准方程;(2)设椭圆M 的左、右焦点分别为F 1,F 2,点P 在椭圆M 上,且△PF 1F 2的面积为1,求点P 的坐标.变式训练1:已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为_________.变式训练2:已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.变式训练3:已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( ) A .圆 B .椭圆 C .线段 D .直线 变式训练4:已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( )A.x 24+y 23=1B.x 24+y 2=1C.y 24+x 23=1D.y 24+x 2=1变式训练5:平面内,F 1,F 2是两个定点,“动点M 满足|MF 1→|+|MF 2→|为常数”是“M 的轨迹是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 变式训练6:已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),点(0,-3)在椭圆上,则椭圆的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 变式训练7:椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A .5 B .6 C .7 D .8变式训练8:若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)变式训练9:“1<m <3”是“方程x 2m -1+y 23-m=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 变式训练10:方程(x -4)2+y 2+(x +4)2+y 2=10化简的结果是( )A.x 25+y 23=1B.x 23+y 25=1C.x 225+y 29=1D.x 29+y 225=1变式训练11:已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m 的值为( )A .9B .4C .3D .2变式训练12:若△ABC 的三边长a ,b ,c 成等差数列,且b =6,求顶点B 的轨迹方程.变式训练13:一动圆与已知圆O 1:(x +3)2+y 2=1外切,与圆O 2:(x -3)2+y 2=81内切,试求动圆圆心的轨迹方程.变式训练14:求适合下列条件的椭圆的标准方程.(1)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离之和为26;(2)求焦点在坐标轴上,且经过两点(2,-2)和⎝⎛⎭⎪⎫-1,142的椭圆的标准方程.变式训练15:利用椭圆定义求轨迹方程例2 如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其内切,求动圆圆心P 的轨迹方程.变式训练16:如图所示,在圆C :(x +1)2+y 2=25内有一点A (1,0).Q 为圆C 上任意一点,线段AQ 的垂直平分线与C ,Q 的连线交于点M ,当点Q 在圆C 上运动时,求点M 的轨迹方程.变式训练17:如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于x 轴下方的端点,过A 作斜率为1的直线l 交椭圆于点B ,若点P 的坐标为(0,1),且满足BP ∥x 轴,AB →·AP →=9,求椭圆C 的方程.考点:2 椭圆的焦点三角形问题P 为椭圆x 212+y 23=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.例2:设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,求△F 1PF 2的面积.变式训练1:P 是椭圆x 216+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,若|PF 1|·|PF 2|=12,则∠F 1PF 2的大小为( ) A .60° B .30° C .120° D .150° 变式训练2:椭圆x 212+y 23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标为( )A .±34B .±22C .±32D .±34变式训练3:已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________.变式训练4:已知F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为________.考点:3 椭圆的离心率问题解题秘籍:(1)e =c a =e ∈(0,1),e 越大,椭圆越扁,e 越小,椭圆越圆(2)求椭圆离心率的值或取值范围的两种方法(a)直接法:若已知a ,c 可直接利用e =ca 求解.若已知a ,b 或b ,c 可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca 求解.(b)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或取值范围. 题型二 求椭圆的离心率的值及取值范围例1:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 的距离为66|F 1F 2|,求椭圆C 的离心率.例2:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )例3:如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B . (1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程.变式训练1:已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C ,D 的椭圆的离心率为________.变式训练2:已知椭圆的短半轴长为1,离心率0<e ≤32,则长轴长的取值范围为________.变式训练3:椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点为F 1,F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为________.变式训练4:设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.变式训练5:已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,椭圆上总存在点P 使得PF 1⊥PF 2,则椭圆的离心率的取值范围为________.变式训练6:若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34 D.64变式训练7:(2018·全国Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( ) A.13 B.12 C.22 D.223变式训练8:如图,已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1 B .2- 3 C.22 D.32变式训练7:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点M ⎝ ⎛⎭⎪⎫43,13,求椭圆C 的离心率.考点:4 椭圆与直线位置关系问题解题秘籍:知识点一:点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 20a 2+y 20b 2=1;(2)点P 在椭圆内部⇔x 20a 2+y 20b 2<1; (3)点P 在椭圆外部⇔x 20a 2+y 20b 2>1.知识点二:直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系的判断方法:联立⎩⎨⎧y =kx +m ,x 2a 2+y 2b 2=1.消去y 得到一个关于x 的一元二次方程.知识点三:直线与椭圆的位置关系、对应一元二次方程的Δ的取值的关系如表所示.知识点四:求弦长的两种方法(1)求出直线与椭圆的两交点坐标,用两点间距离公式求弦长.(2)联立直线与椭圆的方程,消元得到关于一个未知数的一元二次方程,利用弦长公式:|P 1P 2|=1+k 2·x 1+x 22-4x 1x 2⎝⎛⎭⎪⎫或|P1P 2|=1+1k 2y 1+y 22-4y 1y 2,其中x 1,x 2(y 1,y 2)是上述一元二次方程的两根,由根与系数的关系求出两根之和与两根之积后代入公式可求得弦长.知识点五:点差法:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1(a >b >0)上的两个不 同的点M (x 0,y 0)是线段AB 的中点,则k AB =-b 2x 0a 2y 0.知识点六:若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.知识点七:若000(,)P x y 在椭圆22221x y a b+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 题型一:弦长问题例1:已知动点P 与平面上两定点A (-2,0),B (2,0)连线的斜率的积为定值-12. (1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与曲线C 交于M ,N 两点,当|MN |=423时,求直线l 的方程.例2:已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,经过点F 1的一条直线与椭圆交于A ,B 两点. (1)求△ABF 2的周长;(2)若直线AB 的倾斜角为π4,求弦长|AB |.变式训练1:过椭圆x 25+y 24=1的右焦点F 作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.变式训练2:已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若椭圆的离心率为22,焦距为2,则线段AB 的长是( ) A.223 B .2 C. 2 D.423变式训练3:求过点(3,0)且斜率为45的直线被椭圆x 225+y 216=1所截得的线段的长度.变式训练4:已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点F ,交椭圆于A ,B 两点,求弦AB 的长.题型二 中点弦问题例1:已知椭圆x 216+y 24=1的弦AB 的中点M 的坐标为(2,1),求直线AB 的方程.例2:直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A.⎝ ⎛⎭⎪⎫23,53B.⎝ ⎛⎭⎪⎫43,73C.⎝ ⎛⎭⎪⎫-23,13D.⎝ ⎛⎭⎪⎫-132,-172变式训练1:已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线的方程是( ) A .x +2y -3=0 B .2x +y -3=0 C .x -2y +3=0 D .2x -y +3=0变式训练2:椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( ) A.22 B.233 C.922 D.2327变式训练3:已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.变式训练4:椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是线段AB 的中点,O 为坐标原点,若|AB |=22,直线OC 的斜率为22,求椭圆的方程.题型三 与椭圆有关的最值或范围问题 例1:已知椭圆C :4x 2+y 2=1.(1)P (m ,n )是椭圆C 上一点,求m 2+n 2的取值范围;(2)设直线y =x +m 与椭圆C 相交于A (x 1,y 1),B (x 2,y 2)两点,求△AOB 面积的最大值及△AOB 面积最大时的直线方程.例2:已知点A ,B 分别是椭圆x 236+y 220=1长轴的左、右端点,点P 在椭圆上,直线AP 的斜率为33,设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.变式训练1:已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________.变式训练2:若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 变式训练3:已知动点P (x ,y )在椭圆x 225+y 216=1上,若点A 的坐标为(3,0),|AM →|=1,且PM →·AM→=0,则|PM →|的最小值是________. 变式训练4:已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点是M (-4,1),则椭圆的离心率是________.变式训练5:设斜率为22的直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)交于不同的两点,且这两个交点在x 轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为( ) A.33 B.12 C.22 D.13变式训练6:经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B两点.设O 为坐标原点,则OA →·OB →等于( ) A .-3 B .-13 C .-13或-3 D .±13 变式训练7:已知F 是椭圆x 225+y 29=1的一个焦点,AB 为过椭圆中心的一条弦,则△ABF 面积的最大值为( ) A .6 B .15 C .20 D .12 变式训练8:已知F 1为椭圆C :x 22+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A ,B 两点,那么|F 1A |+|F 1B |的值为( ) A.423 B.833 C.823 D.1623 变式训练9:已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( ) A .5 B .7 C .13 D .15 变式训练10:若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B .-63 C .±63 D .±33变式训练11:(2019·华安一中等五校联考)已知O 为坐标原点,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,e =63,椭圆C 上的点到焦点F 2的最短距离为6-2. (1)求椭圆C 的标准方程;(2)设T 为直线x =-3上任意一点,过F 1的直线交椭圆C 于点P ,Q ,且TF 1→·PQ →=0,求|TF 1||PQ |的最小值.变式训练12:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0),过点A (-a,0),B (0,b )的直线倾斜角为π6,原点到该直线的距离为32. (1)求椭圆的方程;(2)斜率大于零的直线过D (-1,0)与椭圆分别交于点E ,F ,若ED →=2DF →,求直线EF 的方程;(3)对于D (-1,0),是否存在实数k ,使得直线y =kx +2分别交椭圆于点P ,Q ,且|DP |=|DQ |,若存在,求出k 的值,若不存在,请说明理由. 题型四 定点问题例1:设椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =22,且过点⎝⎛⎭⎪⎫-1,-62.(1)求椭圆E 的方程;(2)设椭圆E 的左顶点是A ,若直线l :x -my -t =0与椭圆E 相交于不同的两点M ,N (M ,N 与A 均不重合),若以MN 为直径的圆过点A ,试判定直线l 是否过定点,若过定点,求出该定点的坐标.变式训练1:(2019·福建泉港一中月考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为2,左、右焦点分别为F 2,F 2,以原点O 为圆心,以椭圆C 的短半轴长为半径的圆与直线3x -4y +5=0相切. (1)求椭圆C 的方程;(2)设不过原点的直线l :y =kx +m 与椭圆C 交于A ,B 两点.若直线AF 2与BF 2的斜率分别为k 1,k 2,且k 1+k 2=0,求证:直线l 过定点,并求出该定点的坐标.变式训练1:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎪⎫1,22,且两焦点与短轴的一个端点构成等腰直角三角形. (1)求椭圆的方程;(2)过椭圆右顶点A 的两条斜率乘积为-12的直线分别交椭圆于M ,N 两点,试问:直线MN 是否过定点?若过定点,求出此定点;若不过,请说明理由.题型五 定值问题例1 已知椭圆C :x 2a 2+y 2b 2=1过A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.变式训练1:已知椭圆C :x 28+y 24=1,设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.变式训练2:已知点P ⎝ ⎛⎭⎪⎫1,32在椭圆C 1:x 2a 2+y23=1(a >0)上.设M ,N 是椭圆C 1上的两个动点,且横坐标均不为1,若直线MN 的斜率为12,设直线PM 与PN 的斜率分别为k 1,k 2.证明:k 1+k 2为定值.变式训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴端点到焦点的距离为2. (1)求椭圆C 的方程;(2)设A ,B 为椭圆C 上任意两点,O 为坐标原点,且OA ⊥OB .求证:原点O 到直线AB 的距离为定值,并求出该定值.题型六 存在性问题例1:已知椭圆E :x 2a 2+y 2b 2=1的右焦点为F (c,0)且a >b >c >0,设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF→|+|CF →|=4. (1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4P A →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由.变式训练1:已知椭圆C :x 2b 2+y 2a 2=1(a >b >0)的离心率为32,椭圆C 的短轴的一个端点P 到焦点的距离为2. (1)求椭圆C 的方程;(2)已知直线l :y =kx +3与椭圆C 交于A ,B 两点,是否存在实数k ,使得以线段AB 为直径的圆恰好经过坐标原点O ?若存在,求出k 的值;若不存在,请说明理由.变式训练2:已知点A ,B 是椭圆L :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,点C 是椭圆的上顶点,若该椭圆的焦距为23,直线AC ,BC 的斜率之积为-14. (1)求椭圆L 的方程;(2)是否存在过点M (1,0)的直线l 与椭圆L 交于两点P ,Q ,使得以PQ 为直径的圆经过点C ?若存在,求出直线l 的方程;若不存在,请说明理由.。
椭圆的定义与性质
椭圆的定义与性质1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)\f(y2,a2)+\f(x2,b2)=1(a>b>0)图形性质范围-a≤x≤a -b≤y≤b-b≤x≤b-a≤y≤a 顶点A1(-a,0),A2(a,0) A1(0,-a),A2(0,a)B1(0,-b),B2(0,b)B1(-b,0),B2(b,0) 焦点F1(-c,0) F2(c,0) F1(0,-c) F2(0,c)准线l1:x=-错误!l2:x=错误!l1:y=-错误!l2:y=错误!轴长轴A1A2的长为2a 短轴B1B2的长为2b焦距F1F2=2c离心率e=错误!,且e∈(0,1)a,b,c的关系c2=a2-b2对称性对称轴:坐标轴对称中心:原点1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)动点P到两定点A(-2,0),B(2,0)的距离之和为4,则点P的轨迹是椭圆.( )(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).( )(3)椭圆的离心率e越大,椭圆就越圆.( )(4)已知点F 为平面内的一个定点,直线l 为平面内的一条定直线.设d为平面内一动点P到定直线l 的距离,若d =错误!|PF |,则点P 的轨迹为椭圆.( )[解析] (1)错误,|P A |+|PB |=|A B|=4,点P 的轨迹为线段AB ;(2)正确,根据椭圆的第一定义知PF 1+PF2=2a ,F 1F 2=2c ,故△PF 1F2的周长为2a +2c ;(3)错误,椭圆的离心率越大,椭圆越扁.(4)正确,根据椭圆的第二定义.[答案] (1)× (2)√ (3)× (4)√2.(教材习题改编)焦点在x 轴上的椭圆\f(x 2,5)+错误!=1的离心率为错误!,则m =________.[解析] 由题设知a 2=5,b2=m ,c 2=5-m,e2=错误!=错误!=(错误!)2=错误!,∴5-m=2,∴m=3.[答案] 33.椭圆的焦点坐标为(0,-6),(0,6),椭圆上一点P 到两焦点的距离之和为20,则椭圆的标准方程为_____.[解析] 椭圆的焦点在y轴上,且c =6,2a =20,∴a=10,b 2=a2-c 2=64,故椭圆方程为x 264+y 2100=1. [答案] 错误!+错误!=1 4.(2014·无锡质检)椭圆x24+\f(y 2,3)=1的左焦点为F ,直线x =m与椭圆相交于点A,B,当△F AB 的周长最大时,△F AB 的面积是________.[解析] 直线x=m 过右焦点(1,0)时,△F AB 的周长最大,由椭圆定义知,其周长为4a =8, 此时,|AB |=2×b 2a=错误!=3,∴S △F AB =错误!×2×3=3.[答案] 35.(2014·江西高考)过点M (1,1)作斜率为-错误!的直线与椭圆C :错误!+错误!=1(a >b>0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C的离心率等于________.[解析] 设A (x 1,y 1),B (x 2,y 2),则错误!∴错误!+错误!=0,∴y 1-y 2x1-x 2=-b2a2·\f(x 1+x 2,y1+y 2). ∵y 1-y 2x 1-x2=-\f (1,2),x 1+x 2=2,y1+y 2=2,∴-b 2a2=-错误!, ∴a 2=2b 2.又∵b 2=a 2-c2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴\f (c ,a )=错误!.[答案] 错误!考向1 椭圆的定义与标准方程【典例1】(1)(2014·全国大纲卷改编)已知椭圆C:错误!+错误!=1(a>b>0)的左、右焦点为F1、F2,离心率为\f(3,3),过F2的直线l交C于A、B两点.若△AF1B的周长为4\r(3),则C的方程为________.(2)(2014·苏州质检)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为________.[解析](1)由条件知△AF1B的周长=4a=4错误!,∴a=错误!.∵e=错误!=错误!,c2+b2=a2,∴c=1,b=错误!.∴椭圆C的方程为错误!+错误!=1.(2)∵椭圆的一条准线为x=-4,∴焦点在x轴上且错误!=4,又2c=4,∴c=2,∴a2=8,b2=4,∴该椭圆方程为错误!+错误!=1.[答案] (1)错误!+错误!=1 (2)错误!+错误!=1,【规律方法】(1)一般地,解决与到焦点的距离有关问题时,首先应考虑用定义来解决.(2)求椭圆的标准方程有两种方法①定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).【变式训练1】(1)(2013·广东高考改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于\f(1,2),则C的方程是________.(2)(2014·苏州质检)已知椭圆的方程是错误!+错误!=1(a>5),它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为________.[解析] (1)右焦点F(1,0),则椭圆的焦点在x轴上;c=1.又离心率为ca=\f(1,2),故a=2,b2=a2-c2=4-1=3,故椭圆的方程为x24+\f(y2,3)=1.(2)∵a>5,∴椭圆的焦点在x轴上,∵|F1F2|=8,∴c=4,∴a2=25+c2=41,则a=\r(41). 由椭圆定义,|AF1|+|AF2|=|BF2|+|BF1|=2a,∴△ABF2的周长为4a=441.[答案] (1)错误!+错误!=1(2)4错误!考向2椭圆的几何性质【典例2】(1)(2013·江苏高考)在平面直角坐标系xOy中,椭圆C的标准方程为x2a2+y2b2=1(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2,若d2=6d1,则椭圆C的离心率为________.(2)(2014·扬州质检)已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率为________.[解析](1)依题意,d2=错误!-c=错误!.又BF=错误!=a,所以d1=错误!.由已知可得错误!=\r(6)·\f(bc,a),所以\r(6)c2=ab,即6c4=a2(a2-c2),整理可得a2=3c2,所以离心率e=\f(c,a)=\f(3,3).(2)在三角形PF1F2中,由正弦定理得sin∠PF2F1=1,即∠PF2F1=错误!,设|PF2|=1,则|PF1|=2,|F2F1|=3,∴离心率e=错误!=错误!. [答案](1)错误!(2)错误!,【规律方法】1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:(1)求出a,c,代入公式e=错误!;(2)只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【变式训练2】(1)(2013·课标全国卷Ⅱ改编)设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为________.(2)(2014·徐州一中抽测)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.则椭圆离心率的范围为________.[解析](1)如图,在Rt△PF1F2中,∠PF1F2=30°,∴|PF1|=2|PF2|,且|PF2|=错误!|F1F2|,又|PF1|+|PF2|=2a,∴|PF2|=\f(2,3)a,于是|F1F2|=错误!a,因此离心率e=错误!=错误!=错误!.(2)法一:设椭圆方程为错误!+错误!=1(a>b>0),|PF1|=m,|PF2|=n,则m+n=2a.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mn cos 60°=(m+n)2-3mn=4a2-3mn≥4a2-3·错误!2=4a2-3a2=a2(当且仅当m=n时取等号).∴错误!≥错误!,即e≥错误!.又0<e<1,∴e的取值范围是错误!.法二:如图所示,设O是椭圆的中心,A 是椭圆短轴上的一个顶点,由于∠F 1PF2=60°,则只需满足60°≤∠F1AF 2即可,又△F 1AF 2是等腰三角形,且|AF1|=|AF 2|,所以0°<∠F 1F2A ≤60°,所以12≤cos ∠F 1F2A <1,又e=c os ∠F 1F2A ,所以e 的取值范围是错误!. [答案] (1)错误! (2)错误! 课堂达标练习 一、填空题1.在平面直角坐标系x Oy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为错误!.过F1的直线l 交C于A ,B 两点,且△AB F2的周长为16,那么椭圆C 的方程为________.[解析] 设椭圆方程为x 2a 2+\f (y2,b 2)=1(a >b >0),由e=错误!知错误!=错误!,故错误!=错误!.由于△AB F2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4.∴b 2=8. ∴椭圆C的方程为错误!+错误!=1.[答案] 错误!+错误!=12.(2013·四川高考改编)从椭圆错误!+错误!=1(a>b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A是椭圆与x 轴正半轴的交点,B是椭圆与y 轴正半轴的交点,且A B∥O P(O 是坐标原点),则该椭圆的离心率是________.[解析] 设P (-c,y0)代入椭圆方程求得y0,从而求得k OP ,由kOP =k A B及e=\f(c ,a)可得离心率e . 由题意设P(-c ,y 0),将P (-c ,y0)代入\f(x 2,a2)+错误!=1,得错误!+错误!=1,则y错误!=b 2错误!=b 2·错误!=错误!.∴y 0=错误!或y 0=-错误!(舍去),∴P 错误!,∴k OP =-错误!.∵A(a,0),B (0,b),∴k AB =b -00-a=-错误!. 又∵AB ∥OP ,∴kAB =k OP ,∴-错误!=-错误!,∴b=c.∴e =\f(c,a )=\f (c,b 2+c2)=错误!=错误!. [答案] 错误!3.(2014·辽宁高考)已知椭圆C :错误!+错误!=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.[解析] 椭圆错误!+错误!=1中,a =3. 如图,设MN 的中点为D ,则|DF 1|+|D F2|=2a =6.∵D ,F1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|D F1|, ∴|AN |+|BN |=2(|DF 1|+|D F2|)=12. [答案] 124.(2014·南京调研)如图,已知过椭圆错误!+错误!=1(a >b >0)的左顶点A (-a ,0)作直线l交y 轴于点P,交椭圆于点Q ,若△AO P是等腰三角形,且错误!=2错误!,则椭圆的离心率为________.[解析] ∵△AO P为等腰三角形,∴O A=O P,故A (-a,0),P(0,a ),又错误!=2错误!,∴Q 错误!,由Q在椭圆上得错误!+错误!=1,解得错误!=错误!. ∴e =错误!=错误!=错误!. [答案] 错误!5.(2014·南京质检)已知焦点在x轴上的椭圆的离心率为错误!,且它的长轴长等于圆C:x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.[解析] 由x 2+y 2-2x -15=0,知r =4=2a ⇒a =2. 又e =\f(c,a )=\f(1,2),c =1,则b2=a 2-c 2=3.因此椭圆的标准方程为\f (x 2,4)+错误!=1. [答案] 错误!+错误!=16.(2013·辽宁高考改编)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F,椭圆C 与过原点的直线相交于A,B 两点,连接AF ,B F.若|AB |=10,|B F|=8,cos ∠AB F=\f(4,5),则椭圆C的离心率为__________.[解析] 在△ABF 中,由余弦定理得 ,|AF |2=|AB |2+|BF |2-2|A B|·|BF |c os ∠ABF ,∴|AF|2=100+64-128=36,∴|AF |=6,从而|AB |2=|AF |2+|BF |2,则AF ⊥BF . ∴c =|OF |=12|AB |=5,利用椭圆的对称性,设F ′为右焦点,则|BF ′|=|AF |=6, ∴2a=|B F|+|BF ′|=14,a =7. 因此椭圆的离心率e =错误!=错误!. [答案] 错误! 7.已知F 1,F 2是椭圆C :x2a 2+\f(y 2,b 2)=1(a >b >0)的两个焦点,P 为椭圆C上的一点,且\o(PF 1,→)⊥错误!.若△PF 1F 2的面积为9,则b =________.[解析] 由定义,|PF 1|+|PF 2|=2a,且错误!⊥错误!, ∴|P F1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|+|P F2|)2-2|PF 1||PF 2|=4c 2,∴2|PF 1||PF 2|=4a 2-4c 2=4b 2,∴|PF 1||PF 2|=2b 2. ∴S△PF 1F 2=\f (1,2)|PF 1||PF 2|=12×2b 2=9,因此b =3. [答案] 38.(2013·大纲全国卷改编)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x轴的直线交C于A ,B 两点,且|AB |=3,则C 的方程为________.[解析] 依题意,设椭圆C:错误!+错误!=1(a >b>0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A错误!必在椭圆上, ∴错误!+错误!=1.① 又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4.故所求椭圆C 的方程为x24+\f (y 2,3)=1. [答案] \f(x 2,4)+错误!=1二、解答题9.(2014·镇江质检)已知椭圆C 1:错误!+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O为坐标原点,点A,B 分别在椭圆C1和C 2上,错误!=2错误!,求直线AB 的方程.[解] (1)设椭圆C 2的方程为错误!+错误!=1(a >2), 其离心率为错误!, 故错误!=错误!,解得a =4.故椭圆C2的方程为\f(y 2,16)+错误!=1.(2)法一:A ,B 两点的坐标分别记为(x A ,yA ),(x B,yB ),由错误!=2错误!及(1)知,O 、A、B 三点共线且点A 、B 不在y 轴上,因此可设直线A B的方程为y =kx . 将y=kx 代入错误!+y 2=1中,得(1+4k2)x2=4, 所以x错误!=错误!. 将y =kx 代入\f(y 2,16)+错误!=1中,得(4+k 2)x 2=16,所以x 错误!=错误!. 又由错误!=2错误!,得x 错误!=4x 错误!, 即错误!=错误!, 解得k =±1.故直线AB 的方程为y =x 或y =-x. 法二:A ,B两点的坐标分别记为(xA,y A ),(x B ,yB ),由错误!=2错误!及(1)知,O 、A、B三点共线且点A 、B 不在y 轴上,因此可设直线AB 的方程为y =kx . 将y =kx 代入\f(x2,4)+y 2=1中,得(1+4k 2)x 2=4,所以x2,A =41+4k2. 由错误!=2错误!,得x错误!=错误!,y 错误!=错误!.将x2B,y错误!代入错误!+错误!=1中,得错误!=1,即4+k2=1+4k2,解得k=±1.故直线AB的方程为y=x或y=-x.10.(2014·安徽高考)设F1,F2分别是椭圆E:\f(x2,a2)+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若cos∠AF2B=错误!,求椭圆E的离心率.[解](1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1.因为△ABF2的周长为16,所以由椭圆定义可得4a=16,|AF1|+|AF2|=2a=8.故|AF2|=2a-|AF1|=8-3=5.(2)设|F1B|=k,则k>0且|AF1|=3k,|AB|=4k.由椭圆定义可得|AF2|=2a-3k,|BF2|=2a-k.在△ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cos∠AF2B,即(4k)2=(2a-3k)2+(2a-k)2-\f(6,5)(2a-3k)·(2a-k),化简可得(a+k)(a-3k)=0.而a+k>0,故a=3k.于是有|AF2|=3k=|AF1|,|BF2|=5k.因此|BF2|2=|F2A|2+|AB|2,可得F1A⊥F2A,故△AF1F2为等腰直角三角形.从而c=\f(\r(2),2)a,所以椭圆E的离心率e=错误!=错误!.椭圆的定义与性质1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于(大于|F1F2|)的点的轨迹叫做椭圆,这两个叫做椭圆的焦点,两个的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数( <e<)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围≤x≤≤y≤≤x≤≤y≤顶点A1( ), A2( ) A1(), A2()B1( ),B2( ) B1(),B2()焦点F1() F2() F1()F2()准线l1:x=-a2c l2:x=\f(a2,c) l1:y=-错误!l2:y=错误!轴长轴A1A2的长为短轴B1B2的长为长轴A1A2的长为短轴B1B2的长为焦距F1F2=离心率e=\f(c,a),且e∈a,b,c的关系c2=对称性对称轴:对称中心:1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)动点P到两定点A(-2,0),B(2,0)的距离之和为4,则点P的轨迹是椭圆.()(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()(3)椭圆的离心率e越大,椭圆就越圆.()(4)已知点F为平面内的一个定点,直线l为平面内的一条定直线.设d为平面内一动点P到定直线l的距离,若d=错误!|PF|,则点P的轨迹为椭圆.()2.(教材习题改编)焦点在x轴上的椭圆错误!+错误!=1的离心率为错误!,则m=________.3.椭圆的焦点坐标为(0,-6),(0,6),椭圆上一点P到两焦点的距离之和为20,则椭圆的标准方程为_____. 4.(2014·无锡质检)椭圆错误!+错误!=1的左焦点为F,直线x=m与椭圆相交于点A,B,当△F AB的周长最大时,△F AB的面积是________.5.(2014·江西高考)过点M(1,1)作斜率为-12的直线与椭圆C:错误!+错误!=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.考向1 椭圆的定义与标准方程【典例1】(1)(2014·全国大纲卷改编)已知椭圆C:\f(x2,a2)+错误!=1(a>b>0)的左、右焦点为F1、F2,离心率为错误!,过F2的直线l交C于A、B两点.若△AF1B的周长为4错误!,则C的方程为________.(2)(2014·苏州质检)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为________.【规律方法】(1)一般地,解决与到焦点的距离有关问题时,首先应考虑用定义来解决.(2)求椭圆的标准方程有两种方法①定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).【变式训练1】(1)(2013·广东高考改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于\f(1,2),则C的方程是________.(2)(2014·苏州质检)已知椭圆的方程是错误!+错误!=1(a>5),它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为________.考向2椭圆的几何性质【典例2】(1)(2013·江苏高考)在平面直角坐标系xOy中,椭圆C的标准方程为错误!+错误!=1(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2,若d2=6d1,则椭圆C的离心率为________.(2)(2014·扬州质检)已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率为________.【规律方法】1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:(1)求出a,c,代入公式e=错误!;(2)只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【变式训练2】(1)(2013·课标全国卷Ⅱ改编)设椭圆C:x2a2+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为________.(2)(2014·徐州一中抽测)已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.则椭圆离心率的范围为________.课堂达标练习一、填空题1.在平面直角坐标系x Oy 中,椭圆C的中心为原点,焦点F1,F 2在x轴上,离心率为\f(\r(2),2).过F 1的直线l交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C的方程为________.2.(2013·四川高考改编)从椭圆错误!+错误!=1(a>b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O是坐标原点),则该椭圆的离心率是________.3.(2014·辽宁高考)已知椭圆C :x 29+错误!=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C上,则|AN |+|B N|=________.4.(2014·南京调研)如图,已知过椭圆错误!+错误!=1(a >b>0)的左顶点A (-a,0)作直线l交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且错误!=2错误!,则椭圆的离心率为________.5.(2014·南京质检)已知焦点在x 轴上的椭圆的离心率为\f(1,2),且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.6.(2013·辽宁高考改编)已知椭圆C:错误!+错误!=1(a >b>0)的左焦点为F,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =错误!,则椭圆C 的离心率为__________.7.已知F 1,F2是椭圆C :错误!+错误!=1(a >b >0)的两个焦点,P为椭圆C上的一点,且错误!⊥错误!.若△P F1F2的面积为9,则b =________.8.(2013·大纲全国卷改编)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x轴的直线交C 于A,B 两点,且|A B|=3,则C 的方程为________.二、解答题9.(2014·镇江质检)已知椭圆C 1:x 24+y 2=1,椭圆C2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B分别在椭圆C 1和C 2上,错误!=2错误!,求直线AB 的方程.10.(2014·安徽高考)设F1,F2分别是椭圆E:错误!+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若cos∠AF2B=错误!,求椭圆E的离心率.。
3.1.2椭圆的简单几何性质课件(人教版)
y2 x2 1(a b 0)
a2 b2
-b≤x≤b,-a≤y≤a
关于x轴、y轴成轴对称;关于原点成中心对称
(a,0)、(-a,0)、 (0,b)、(0,-b)
(b,0)、(-b,0)、 (0,a)、(0,-a)
(c,0)、(-c,0)
(0,c)、(0,-c)
长半轴长为a,短半轴长为b. a>b
cos B 7 18
则AC 2 AB 2 BC 2 2AB BC cos B 25 9
5 AC
3
2a 1 5 8 33
2c 1 e 2c 3 2a 8
随堂练习 8、与椭圆4x2+9y2=36有相同的焦距,且离心率0.8.
x2
y2
1或
y2
x2
1
125 45
扁
圆
随着学习的深入,可以体会到,虽然 b 也能刻画椭圆的扁平程度,但
c a
a
中a,c是确定圆锥曲线的基本量,不仅能有效刻画两个焦点离开中心的
程度,而且还蕴含着圆锥曲线几何特征的统一性
总结
标准方程 范围
对称性 顶点坐标 焦点坐标
半轴长 离心率
椭圆的几何性质
x2 a2
y2 b2
1(a
b
0)
-a≤x≤a,-b≤y≤b
25 16
x2 y2 (2) 1
25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3
-4
B1
y
4
3 2
B2
A1
1
A2
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
椭圆性质大全(92条-含证明)
椭圆的92条性质及证明1.122PF PF a +=2.标准方程22221x y a b += 3.111PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.11.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.14.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==.16.若椭圆22221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b +=+;(2)L =17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 222202222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=-⋅-. 19.过椭圆22221x y a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan 2F PF S b γ∆=,2(tan )2b P c γ± . 21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan tan 22a c a c αβ-=+. 22.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e ≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k-≤+. 26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+. 29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bxayα=-,当0y =时, 90α=.31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =.32.椭圆22221x y a b+=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||PA P A b ⋅=.36.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +. 37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a M N O P a b+=+. 39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±). 45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L的距离, 12,r r 分别是Aab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.50.设P 点是椭圆22221x y a b +=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a mb n a --∠=⇔=++. 52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b+=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =.55.已知椭圆22221x y a b+=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a-≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=-. 57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b-=. 60.过椭圆22221x y a b+=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a +≤+≤+.61.到椭圆22221x y a b +=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a cb -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a b x y e e±+=.63.到椭圆22221x y a b +=( a >b >0)的两准线和x 轴的交点的距离之比为a cb -(c 为半焦距)的动点的轨迹是姊妹圆22222()()a bx y e e±+=(e 为离心率).64.已知P 是椭圆22221x y a b +=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b +=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b-+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠. 69.(,)P m n 是椭圆2222()1x a y a b-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是 22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b+=≠.72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min2()(||||)a b a y b x PA PB a-+⋅=. 73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例. 81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e. 86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b +=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及by x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>. 91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:122abS S +=.92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ∆与ONR ∆的面积为12,S S ,已知122abS S +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.椭圆性质92条证明1.椭圆第一定义。
椭圆集体备课教案(单元)
椭圆集体备课教案(单元)第一章:椭圆的定义与性质1.1 椭圆的定义介绍椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。
通过图形和实例来解释椭圆的定义,引导学生理解椭圆的概念。
1.2 椭圆的性质介绍椭圆的基本性质,如对称性、焦点和准线的概念。
通过图形和实例来展示椭圆的性质,并引导学生进行观察和理解。
第二章:椭圆的标准方程2.1 椭圆的标准方程介绍椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。
引导学生理解椭圆标准方程的推导过程,并通过图形进行解释。
2.2 椭圆的标准方程的应用介绍如何通过椭圆的标准方程来求解椭圆的焦点、准线和其他相关几何量。
提供一些实际问题,让学生运用椭圆的标准方程进行解答。
第三章:椭圆的参数方程3.1 椭圆的参数方程介绍椭圆的参数方程:\(x = a \cos \theta\),\(y = b \sin \theta\),其中\(\theta\)是参数。
引导学生理解椭圆参数方程的意义,并通过图形进行解释。
3.2 椭圆的参数方程的应用介绍如何通过椭圆的参数方程来绘制椭圆的图形,并研究椭圆的性质。
提供一些实际问题,让学生运用椭圆的参数方程进行解答。
第四章:椭圆的图像与变换4.1 椭圆的图像介绍椭圆的图像特点,如对称性、曲线形状等。
通过图形和实例来展示椭圆的图像特点,并引导学生进行观察和理解。
4.2 椭圆的变换介绍如何对椭圆进行平移、旋转等变换,并研究变换对椭圆图像的影响。
提供一些实际问题,让学生运用椭圆的变换进行解答。
第五章:椭圆的应用5.1 椭圆在几何中的应用介绍椭圆在几何中的各种应用,如椭圆的面积计算、椭圆的弦长和距离问题等。
提供一些实际问题,让学生运用椭圆的几何性质进行解答。
5.2 椭圆在物理中的应用介绍椭圆在物理中的各种应用,如行星运动、卫星轨道等。
高中数学椭圆的图像与性质
5、渐近线方程:
x y 0 ab
6、离心率:
e=
c a
Y
B2
X
A2
B1
3
焦点在y轴上的双曲线图像
Y
y2 a2
x2 b2
1
F2
A2
B1
O
B2
X
A1
F1
4
焦点在y轴上的双曲线的几何性质
双曲线标准方程:
y2 a2
x2 b2
1
双曲线性质:
1、 范围: y≥a或y≤-a
2、对称性:关于x轴,y轴,原点对称。
3、顶点 B1(0,-a),B2(0,a)
A1
4、轴:实轴 B1B2 ; 虚轴 A1A2
5、渐近线方程: x y 0 ab
6、离心率: e=c/a
Y
F2 B2
o
B1
F2
A2 X
5
例题1:求双曲线 9x2 16 y2 144 的实半轴长,虚半轴长, 焦点坐标,离心率.渐近线方程。
解:把方程化为标准方程: y 2 x 2 1
问:有相同渐近线的双曲线方程一定是共轭双曲线吗? 9
6,0
e3 2 2
y 2x 4
9x2 y2 81 x2 y2 4
6
4
18
4
x2
y2
1
49 25
10
14
|x|≥3 (±3,0)
3 10 ,0
e 10
y=±3x
|y|≥2 (0,±2)
0,2 2
e 2
x y
|y|≥5 (0,±5)
0, 74
e 74 5
x7 y 57
例2:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原 双曲线的共轭双曲线,求证:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 y2 1
a2 b2
范 围 |x|a,|y|≤b
对称性
顶点
关于X,Y轴, 原点对称
(±a,0),(0,±b)
焦点
(±c,0)
对称轴 离心率 准线
A1A2 ; B1B2
e c a
x a2 c
2021/3/9
椭圆的图像与性质
Y
B2
A1
F1
o
A2
F2
X
x a2 c
B1
x a2
c
1
解:把方程化为标准方程: y 2
42
x2 32
1
可得:实半轴长a=4
虚半轴长b=3
半焦距c= 42 32 5 焦点坐标是(0,-5),(0,5)
离心率:
e c a
5 4
渐近线方程:
x 3 y, 即
4
y 4x 3
2021/3/9
6
练习题:填表
标 准 方 x 2 8 y 2 32
程
2a
2b 范围
顶点 焦点
离心率 渐进线
2021/3/9
4
|x|≥
4 2,0
6,0
e 3 2 2
y 2x 4
42 82
9 x 2 y 2 81 x 2 y 2 4
6
4
18
4
x2 y 2 1 49 25
10
14
|x|≥3
|y|≥2
(±3,0)
(0,±2)
31,00 0,2 2
e 10
e 2
y=±3x
xy
∵ c a2 b2 c a2 b2 ∴c=c' 所以四个焦点F1, F2, F3, F4在同一个圆 x2y2a2b2上 .
2021问/3/9:有相同渐近线的双曲线方程一定是共轭双曲线吗? 9
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
2021/3/9
10
焦点在x轴上的双曲线图像B2
F1
A1
2021/3/9
A2 F2 X B1
2
焦点在x轴上的双曲线的几何性质
双曲线标准方程: x 2 y 2 1 a2 b2
双曲线性质:
1、 范围: x≥a或x≤-a
2、对称性:关于x轴,y轴,原点对称。
3、顶点 A1(-a,0),A2(a,0)
8
证明:(1)设已知双曲线的方程是:
x2 a2
y2
b2
1
渐近线为: x y 0
ab
则它的共轭双曲线方程是: y 2 x 2 1
b2
a2
渐近线为:
yx ba
0 可化为:x y 0
ab
故双曲线和它的共轭双曲线有共同的渐近线
(2)设已知双曲线的焦点为F(c,0),F(-c,0) 它的共轭双曲线的焦点为F1’(0,c’), F2’(0,-c’),
|y|≥5 (0,±5)
0, 74
e 74 5
x7 y 57
例2:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫原 双曲线的共轭双曲线,求证:
(1)双曲线和它的共轭双曲线有共同的渐近线; (2)双曲线和它的共轭双曲线的四个焦点在同一个圆上.
Y
F1
B2
F’1 A1 o
B1
X
A2 F’2
F2
2021/3/9
A1
4、轴:实轴 A1A2 虚轴 B1B2
5、渐近线方程:
6、离心率: e= c
a
x y 0 ab
Y
B2
X
A2
B1
2021/3/9
3
焦点在y轴上的双曲线图像
Y
y2 x2 1
a2 b2
F2
A2
B1
2021/3/9
O
B2
A1
F1
X
4
焦点在y轴上的双曲线的几何性质
双曲线标准方程:
y2
x2
1
a2 b2
双曲线性质:
1、 范围: y≥a或y≤-a
2、对称性:关于x轴,y轴,原点对称。
3、顶点 B1(0,-a),B2(0,a)
A1
4、轴:实轴 B1B2 ; 虚轴 A1A2
5、渐近线方程: x y 0 ab
6、离心率: e=c/a
Y
F2 B2
o
B1
F2
A2 X
2021/3/9
5
例题1:求双曲线 9x2 16y2 144的实半轴长,虚半轴长, 焦点坐标,离心率.渐近线方程。