实际问题与二次函数(第三课时)
人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题
1 令 x=0 得 y=− 45 ×(0 − 15)2 + 45=40,
∴ 点 B 的坐标为 (0,40).
∴ 这名运动员起跳时的竖直高度为 40 米.
能力提升 悬索桥两端主塔塔顶之间的主悬钢索,其形状 可近似地看作抛物线,水平桥面与主悬钢索之间用垂直 钢索连接. 已知两端主塔之间的水平距离为 900 m,两主 塔塔顶距桥面的高度为 81.5 m,主悬钢索最低点离桥面 的高度为 0.5 m.
当 y = 0 时,可求得点 C 的坐标为 (2.5,0);
同理,可求得点 D 的坐标为 (-2.5,0). y 根据对称性,如果不计其它因素,
●B (1,2.25)
A●(0,1.25)
那么水池的半径至少要 2.5 m,才
能使喷出的水流不致落到池外.
●
D
O
●
C
x
例3 如图,一名运动员在距离篮球框中心 4 m (水平距 离) 远处跳起投篮,篮球准确落入篮框,已知篮球运行 的路线为抛物线,当篮球运行的水平距离为 2.5 m 时, 篮球达到最大高度,且最大高度为 3.5 m.如果篮框中 心距离地面 3.05 m,那么篮球在该运动员出手时的高度 是多少?
OABC 的长是 12 m,宽是 4 m,按照图中所示的平面
直角坐标系,抛物线可以用 y= − 1 x2 + 2x + c 表示. (1)请写出该抛物线的函数解析式;6
解:根据题意,得 C (0,4). 将其代入
抛物线 y=− 1 x2 + 2x + c 中,得 c=4,
∴
6
抛物线解析式为
y=−
1
x2
例2 某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出
实际问题与二次函数_第三课时-课件
图1
图2
【思路点拨】根据线段的长度写出相关点的坐标,再设出函数的解析 式,把点的坐标代入解析式求出解析式,可以算出EF的宽度。
探究三:利用二次函数解决实际问题的训练
例5.如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同。 正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小 孔顶点N距水面4.5米(NC=4.5米)。当水位上涨刚好淹没小孔时,借助图2 中的直角坐标系,求此时大孔的水面宽度EF。
探究三:利用二次函数解决实际问题的训练
练习:有一抛物线形拱桥,其最大高度为16米,跨度为40米, 把它的示意图放在如图所示的坐标系中,则抛物线的函数关系 式为__y_____21_5__x_2 __85__x__ 。
解:因为抛物线过点(0,0)和(40,0),
∴ y=ax(x- 40)①
又∵ 函数过点(20,16)代入①得20a(20-40)=16,
探究一:利用二次函数解决抛物线形拱桥问题
重点知识★
活动2 自学互研,生成能力。
完成下列填空:
1.以拱桥的顶点为原点,以经过该点的铅垂线为y轴建立平面直 角坐标系时,可设这条抛物线的关系式为_____y____a_x_2。
2.一座拱桥为抛物线形,其函数解析式为___y____a_x_2_,
当水位线在AB位置时,水面宽4 m,这时水面离桥顶的高度为
设点B(10,n),点D(5,n+3),
n=10²•a=100a,n+3=5²a=25a,
即
n 100a n 3 25a
y 1 x2 25
n 4
解得
a
1 25
(2)∵ 货轮经过拱桥时的横坐标为x=3, ∴ 当x=3时,y 1 9 25 9 ( 4) 3.6 25
实际问题与二次函数第三课时教案
26.3实际问题与二次函数教案教学设计思路本节安排了一个探究性问题,以和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。
教科书从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。
通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。
一、教学目标:1.知识与技能能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题。
2.过程与方法经历探索“抛物线形拱桥水面宽度问题”的过程,获得利用数学方法解决实际问题的经验。
3.情感态度与价值观体会二次函数解决实际问题时应如何建立适当的坐标系从而使解题简便。
二、教学重点难点:1.重点通过对实际问题的分析,使学生理解二次函数是在实际生活中解决问题的一种重要模型。
2.难点利用二次函数解决实际问题时应如何建立适当的坐标系从而使解题简便。
三、教学过程:(一)创设情境导入新课小明家门前有一座抛物线形拱桥(如图所示).当水面在L时,拱顶离水面2 m,水面宽4m。
水面下降1 m时,水面宽度增加多少?(二)探究:①想一想:二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.从而求出水面下降1 m时,水面宽度增加多少。
怎么建立坐标系呢?②建立模型:建立坐标系后需要求出抛物线解析式,可设这条抛物线表示的二次函数为y=ax2(a≠0)由题意知抛物线经过点A(2,-2),可得-2=a·2,a=-1/2。
即抛物线的表达式.③解决问题:当水面下降1 m时,水面的纵坐标为y=-3,代人y=-x2,计算可得此时水面宽度,两者相减既得问题答案。
教师关注:(1)学生能否用函数的观点来认识问题;(2)学生能否建立函数模型;(3)学生能否找到两个变量之间的关系;(4)学生能否从拱桥问题中体会到函数模型对解决实际问题的价值.解法探讨:以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.归纳总结:(1)用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系。
最新人教版九年级全一册数学培优课件第27课时 实际问题与二次函数(3)——实物抛物线
解得a=
∴水柱所在抛物线的函数关系式为y=
(x-3)2+5(0<x<8).
返回目录
(2)当y=1.8时,有
(x-3)2+5=1.8.
解得x1=-1(不符题意,舍去),x2=7.
∴为了不被淋湿,身高1.8 m的王师傅站立时必须在离水池中心7
m以内.
返回目录
C组
8. 如图1-22-27-10,一座隧道的截面由抛物线和长方形组成
,以OA所在直线为x轴,以OB所在直线为y轴建立平面直角坐标
系.
(1)求抛物线所对应的函数解析式;
(2)由于隧道较长,在抛物线型拱壁
上需要安装两排灯,使它们到地面的高
度相同.如果灯离地面的高度是8 m,求
两排灯的水平距离.
返回目录
解:(1)根据题意,得顶点D的坐标为(6,10),点B的坐标
为(0,4).
设函数解析式为y=a(x-6)2+10.
把点B(0,4)代入,得36a+10=4.
解得a=
∴所求的函数解析式为y=
(x-6)2+10.
返回目录
(2)把y=8代入y=
(x-6)2+10,得
(x-6)2+10=8.
解得x1=6+2
x2=6-2
∴所求的距离为x1-x2=4
答:两排灯的水平距离是4
(m).
坐标是
(1)求这个二次函数的解析式;
(2(1)设二次函数的解析式是y=a(x-4)2+
将(0,2)代入,得
a·(0-4)2+
=2.
解得a=
∴二次函数的解析式是y=
返回目录
(2)令y=0,得
九年级数学下册 26.3 实际问题与二次函数(第3课时)说课稿 新人教版
26.3 实际问题与二次函数尊敬的各位评委、各位老师:大家好!今天,我说课的题目是《实际问题与二次函数》,内容选自人教版九年级数学(下册)第二十六章第三节第3课时。
下面我从数学背景、教学目标、教法学法、教学过程、板书设计、教学评价六个方面来阐述本节课。
一、数学背景(一)教材分析二次函数的应用是在学习了二次函数的概念、图象和性质之后,检验学生应用所学知识解决实际问题能力的一个综合考查。
它既是初中学习一次函数、反比例函数及其应用后的延伸,又为高中乃至以后学习更多的函数打下坚实的理论和思想方法基础,因此,它是初中阶段数与代数的核心。
(二)学情分析学生在前面两节课已经接触到运用二次函数的知识解决函数的最值问题,对二次函数已经有了初步的应用意识。
而且本节课的问题均来自日常生活所见,学生会感到很有兴趣,愿意去探究。
但部分学生对函数的学习还是有一些畏难情绪,如何建立适当的直角坐标系对学生而言比较困难。
(三)教学重点、难点重点:探究建立平面直角坐标系,待定系数法求二次函数解析式,解决实际问题的方法。
难点:如何建立适当的平面直角坐标系。
二、教学目标·知识技能:通过对“抛物线形拱桥”的探究,让学生掌握如何建立适当的直角坐标系,待定系数法求出二次函数的解析式,解决实际问题。
·数学思考:通过对生活中实际问题的探究,体会数学建模的思想,并渗透转化及数形结合的数学思想方法。
·解决问题:通过生活中实际问题的探究,体会数学知识在实际生活中的广泛应用性,进一步认识如何利用二次函数的有关知识解决实际问题。
·情感态度:通过二次函数的有关知识灵活运用于实际生活,让学生亲自体会到学习数学知识的价值,从而提高学生学习数学的兴趣。
三、教法学法·教法:本节课利用多媒体教学平台,从学生感兴趣的实际问题开始,将实际问题“数学化”,建立函数模型。
以问题情境为主线,活动探究为载体,合作交流为形式,培养学生动脑、动手、合作、交流,为学生的终身学习奠定基础。
景县十中九年级数学上册第二十二章二次函数22.3实际问题与二次函数第3课时拱桥问题和运动中的抛物线教
第3课时 拱桥问题和运动中的抛物线1.掌握二次函数模型的建立,会把实际问题转化为二次函数问题. 2.利用二次函数解决拱桥及运动中的有关问题. 3.能运用二次函数的图象与性质进行决策.一、情境导入某大学的校门是一抛物线形的水泥建筑物(如图所示),大门的宽度为8米,两侧距地面4米高处各挂有一个挂校名横匾用的铁环,两铁环的水平距离为6米,请你确定校门的高度是多少?二、合作探究探究点一:建立二次函数模型 【类型一】运动轨迹问题某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x =1时函数y 的值与最大摸高3.1米的大小.解:(1)由条件可得到球出手点、最高点和篮圈的坐标分别为A (0,209),B (4,4),C (7,3),其中B 是抛物线的顶点.设二次函数关系式为y =a (x -h )2+k ,将点A 、B 的坐标代入,可得y =-19(x -4)2+4.将点C 的坐标代入解析式,得左边=右边,即点C 在抛物线上,所以此球一定能投中.(2)将x =1代入解析式,得y ,所以盖帽能获得成功.【类型二】拱桥、涵洞问题如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.解析:如图,建立直角坐标系,设这条抛物线为y =ax 2,把点(2,-2)代入,得-2=a ×22,a =-12,∴y =-12x 2,当y =-3时,-12x 2=-3,x =± 6.故答案为2 6.方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题.如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)若要搭建一个矩形“支撑架”AD -DC -CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?解析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M (12,0)和抛物线顶点P (6,6);已知顶点坐标,可设二次函数关系式为y =a (x -6)2+6,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长AD +DC +CB 二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题.解:(1)根据题意,分别求出M (12,0),最大高度为6米,点P 的纵坐标为6,底部宽度为12米,所以点P 的横坐标为6,即P (6,6).(2)设此函数关系式为y =a (x -6)2+6.因为函数y =a (x -6)2+6经过点(0,3),所以3=a (0-6)2+6,即a =-112.所以此函数关系式为y =-112(x -6)2+6=-112x 2+x +3.(3)设A(m,0),则B(12-m,0),C(12-m,-112m2+m+3),D(m,-112m2+m+3).即“支撑架”总长AD+DC+CB=(-112m2+m+3)+(12-2m)+(-112m2+m+3)=-16m2+18.因为此二次函数的图象开口向下.所以当m=0时,AD+DC+CB有最大值为18.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决生活中的实际问题.[圆]说课稿一、教材分析1.教材的地位和作用圆是在学习了直线图形的有关性质的根底上来研究的一种特殊的曲线图形.它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识的综合性较强.本节课的内容是对已学过的旋转及轴对称等知识的稳固,也为本章即将要探究的圆的性质、圆与其它图形的位置关系、数量关系等知识打下坚实的根底。
人教版初中数学22.3 实际问题与二次函数(第3课时) 课件
① 能够将实际距离准确 的转化为点的坐标;
② 选择运算简便的方法
课后作业
作业 内容
22.3 实际问题与二次函数/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 如图,小李推铅球,如果铅球运行时离地面
的高度y(米)关于水平距离x(米)的函数解析式
为y
1 8
x2
1 2
x
32,那么铅球运动过程中y
最高点离地面的距离为 2 米.
O
x
课堂检测
22.3 实际问题与二次函数/
3. 某公园草坪的防护栏是由100段形状相同的抛物线形组成
的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢
的支柱,防护栏的最高点距底部0.5m(如图),则这条防护
栏需要不锈钢00m
C.160m
D.200m
课堂检测
22.3 实际问题与二次函数/
能力提升题
某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一 面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物 线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式.
81.5=a•4502+0.5.
y
解得
a
81 4502
1. 2500
故所求表达式为 y
1
x2 0.5(450 x 450).
2500
-450
O
450 x
课堂检测
22.3 实际问题与二次函数/
(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.
y 1 3502 0.5 49.5(m).
2500
y
当x=450﹣50=400(m)时,得
实际问题与二次函数—教学设计及点评(获奖版)
22.3 实际问题与二次函数(第3课时)一、内容与内容解析1. 内容构建二次函数模型,利用二次函数的图象与性质解决抛物线形问题.2. 内容解析二次函数是描述现实世界变量关系的重要数学模型,运用二次函数可以解决许多实际问题,例如生活中的抛物线形问题.本节课是在学生学习二次函数的图象和性质的基础上,借助二次函数图象和性质研究抛物线形的实际问题.通过探究抛物线形拱桥问题,引导学生分析问题和解决问题,在解决问题的过程中将数学模型思想逐步细化,体会运用函数观点解决实际问题的作用,体会建立函数模型的过程和方法.基于以上分析,确定本节课的重点是:从实际问题中抽象出抛物线并通过建立平面直角坐标系解决实际问题.二、目标和目标解析1. 目标(1)能够从抛物线形问题中建立二次函数模型.(2)能够利用二次函数模型解决抛物线形问题,体会二次函数在解决实际问题中的作用.2. 目标解析达成目标(1)的标志是:学生会借助平面直角坐标系得到二次函数模型,并体会适当建系可以优化解题.达成目标(2)的标志是:学生通过经历探索抛物线形问题,进一步体验如何从实际问题中抽象出二次函数模型,结合二次函数已有知识综合运用来解决解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础,但运用二次函数的知识解决实际问题要求学生能选取适当的平面直角坐标系的二次函数模型分析问题和解决问题,对于学生来说,完成这一过程难度较大.基于以上分析,本节课的难点:将实际问题转化成二次函数问题.四、教学过程设计1. 创设情境引出问题情境:展示蕴含抛物线的建筑南宁大桥、南宁永和大桥、凌铁大桥、柳州官塘大桥等,引出课题.设计意图:结合生活背景,让学生体会抛物线与实际生活的联系,激发学生的学习兴趣.2. 复习旧知,做好铺垫设计意图:学生体会解析式与图象的对应关系,感受抛物线与坐标系相对位置不一样,它们所对应的解析式也不一样,体会抛物线(形)与函数解析式(数)的对应关系,为解决探究3中的问题做好铺垫.3. 从形入手,探究问题探究3:如图是抛物线形拱桥,当拱顶离水面2 m,水面宽 4 m. 水面下降 1 m,水面宽度增加多少?问题1:同学们通过审题,你发现了哪些重要信息?教师结合希沃白板,将重要信息涉及的图形,从原图中分离出来.问题2:求水面宽度增加多少,需要进行计算,这些计算与抛物线形密切相关,我们应该如何处理?设计意图:引导学生通过建立直角坐标系,构建数学模型(二次函数模型),并体会直角坐标系是数形结合的重要数学工具.活动:小组合作:运用所学知识,解决这道实际问题.(要求每组有2种不同的建立直角坐标系方法)师生活动:小组汇报,教师点评(结合课本进行点评,注意书写过程中建系是否有文字说明,建系文字说明是否严谨,待定系数法书写是否规范,结论书写是否规范)设计意图:展示学生学生的解题思路,并对学生书写中的易错点进行点评分析.4. 适当建系,优化解题问题3:以上5种不同的建系方法,你觉得哪种简单?为什么?师生活动:学生回答,老师总结.①5种建系方法不同,但结果是相同的,建立不同坐标系,所得到的解析式复杂程度也不一样,由此可见,建立适当的坐标系,可以使抛物线的解析式简单,从而减少运算量;②建立直角坐标系的基本原则:关注图形的对称性,以对称轴为坐标轴;关注特殊点,以特殊点为坐标原点.设计意图:引导学生总结归纳,对解决问题的基本策略进行反思,让学生积累和总结经验,培养学生概括和归纳的能力,养成良好的数学思维习惯.5. 总结提升,提炼方法问题4:你能总结解决抛物线形问题的一般方法和解决步骤吗?抛物线形问题二次函数模型线段长实际问题的解设计意图:使学生对解决此类问题有一个系统化的步骤,强化数学与实际生活的紧密联系,加深“数形结合思想”和“数学建模思想”在解决问题中的重要作用.6. 巩固训练,拓展思维某公园草坪的防护栏是由100段形状相同的抛物线形组成,为了牢固起见,每段护栏中需要间距4dm 加设一根不锈钢的支柱,防护栏的最高点距底部5dm(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A、50mB、100mC、160mD、200m设计意图:巩固本节课所学内容,再次体会通过建立二次函数模型解决实际问题的重要性,加深对二次函数的认识,体会数学与实践的联系.7. 小结(1)这节课学习了用什么知识解决哪类问题?(2)解决问题的一般步骤是什么?应注意哪些问题?转译数学方法回译实际问题数学问题数学模型数学模型的解实际问题的解设计意图:通过小结,归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯.8. 作业布置某桥梁建筑公司需在两山之间的峡谷上架设一座公路桥,桥下是一条宽100m的河流,河面距所要架设的公路桥的高度是50m,根据各方面的条件分析,专家认为抛物线是最好的选择,按照专家的建议,设计一座横跨峡谷的公路桥.设计意图:考察学生对本节课所学内容的理解和掌握程度,体会二次函数模型的应用价值.建立直角坐标系线段与坐标相互转化待定系数法抽象人教版《实际问题与二次函数(第3课时)》课例点评南宁市天桃实验学校吴立志本节课教学有六个环节:创设情境,引出问题环节结合生活背景,让学生体会抛物线与实际生活的联系;复习旧知,做好铺垫环节学生体会解析式与图象的对应关系;从形入手,探究问题环节引导学生通过建立直角坐标系,构建数学模型(二次函数模型);适当建系,优化解题环节引导学生总结归纳,让学生积累和总结经验;总结提升,提炼方法环节使学生对解决此类问题有一个系统化的步骤;巩固训练,拓展思维环节巩固本节课所学内容,加深对二次函数的认识,体会数学与实践的联系;教学过程设计合理,课堂结构完整,教学思路清晰,过程循序渐进,为“抛物线形”的产生提供自然合理的背景,激发学生深入思考,获得解决问题的方案。
人教版九年级数学上册 22-3实际问题与二次函数课时3 教学课件PPT初三公开课
22.3第3课时RJ利用函数解决实际问题的一般步骤::选取适当的点建立直角坐标系.:设自变量和因变量.:找函数关系.:列出函数关系式.:根据题意进行解答.:根据题目要求进行作答.1. 掌握二次函数模型的建立,会把实际问题转化为二次函数问题.2.利用二次函数解决拱桥及运动中的有关问题.3. 能运用二次函数的图象与性质进行决策.1m 面下降1m, 水面的宽度么计算呢?水 怎探究图中是抛物线形拱桥,当拱顶离水面2 m时,水水面宽度增加多少?面宽4 m.水面下降1 m,知识点1图中是抛物线形拱桥,当拱顶离水面2 m时,水面宽 4 m.水面下降1 m,水面宽度增加多少?分析:我们知道,二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便, 以拋物线的顶点为原点, 以抛物线的对称轴为y轴建立直角坐标系(如图) .设这条抛物线表示的二次函数为y=ax2.由抛物线经过点(2 ,-2) ,可得-2=a×22,a=- . 这条抛物线表示的二次函数为y=- x2.当水面下降1 m 时,水面的纵坐标为-3. 当y = -3时,- x2= -3 ,解得 x1= 6 ,x2= - 6 , 所以当水面下降1 m 时,水面宽度为2 6 m. 水面下降1 m ,水面宽度增加 (2 6-4) m.除了这种建坐标系的方式外,还有其他建 坐标系的方式吗?P (0,2)A (2,0)OxP ( 2,2) B (4,0)My A (4,0)P (2,2)M x xA (2,2)O M O x ①③②O y y注意: 同一个问题中,建立平面直角坐标系的方法有多种, 建立适当的平面直角坐标系能简化函数解析式.通常应使已知 点在坐标轴上.解决桥拱形状为抛物线形的实际问题时,一般分为以下四个步 骤:(1)建立适当的平面直角坐标系;(2)根据条件,把已知的线段长转化为点的坐标;(3)恰当选用二次函数的解析式形式,用待定系数法求出抛物 线的解析式;(4)利用抛物线解析式求出与问题相关的点的坐标,进而得到 实际问题的解.一条单车道的抛物线形隧道如图所示.隧道中公路的宽 度 AB=8 m ,隧道的最高点 C到公路的距离为 6 m. ( 1)建立适当的平面直角坐标系,求抛物线的解析式;解: ( 1) 答案不唯一.如以 AB所在直线为 x轴, 以 AB的中点为原点建立平面直角坐标系xOy,如图所示,则 A( -4,0) ,B(4,0) ,C(0,6).设这条抛物线的解析式为y=a(x-4)(x+4).一条单车道的抛物线形隧道如图所示.隧道中公路的宽 度 AB=8 m ,隧道的最高点 C到公路的距离为 6 m. ( 1)建立适当的平面直角坐标系,求抛物线的解析式;将 C(0,6)的坐标代入,得 - 16a=6,所以抛物线的解析式为y= − x2+ 6(−4 ≤ x ≤ 4).一条单车道的抛物线形隧道如图所示.隧道中公路的宽 度 AB =8 m ,隧道的最高点 C 到公路的距离为 6 m.(2)现有一辆货车的高度是 4.4 m ,货车的宽度是 2 m.为 了保证安全,车顶距离隧道顶部至少 0.5 m ,通过计算 说明这辆货车能否安全通过这条隧道.解:(2) 由(1)知抛物线的解析式为 4.4m 当 x = 1时,y = . 因为4.4+0.5=4.9< ,所以这辆货车能安全通过这条隧道.845845y = − 8 x 2 + 6(−4 ≤ x ≤ 4). 2m 3甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一 部分,如图所示,甲在 O 点正上方 1 m 的 P 处发出一球,羽毛 球飞行的高度y (m) 与水平距离 x (m) 之间满足函数解析式y =a (x -4)2+h ,已知点 O 与球网的水平距离为 5 m ,球网的高度 为 1.55 m.( 1)当a =- 时, ①求 h 的值;解:( 1) ① 当a= − 时,y = − (x -4)2+h ,0,11.55m 将点P (0 ,1)的坐标代入, 得− × 16+h =1 ,解得h = . 5m甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一 部分,如图所示,甲在 O点正上方 1 m 的 P处发出一球,羽毛 球飞行的高度y(m) 与水平距离 x(m) 之间满足函数解析式 y=a(x-4)2+h ,已知点 O 与球网的水平距离为 5 m ,球网的高度为 1.55 m.( 1)当a=- 时,②通过计算判断此球能否过网;② 把x=5代入y= − (x-4)2+ ,得y= − ×(5-4)2+ = 1.625,∵1.625>1.55 , ∴此球能过网.0,1 1.55m5m甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部 分,如图所示,甲在 O 点正上方 1 m 的 P 处发出一球,羽毛球 飞行的高度y (m) 与水平距离 x (m) 之间满足函数解析式y =a (x - 4)2+h ,已知点 O 与球网的水平距离为 5 m ,球网的高度为1.55 m. (2)若甲发球过网后,羽毛球飞行到与点 O 的水平距离为 7 m , 离地面的高度为 m 的 Q 处时,乙扣球成功,求 a 的值.解: (2) 由题意得,16a + ℎ = 1,9a + ℎ = 125 ,∴a = − 1 a = − 1ℎ = 215 ,5 ,5.1.如图,某河面上有一座抛物线形拱桥,桥下水面在正 常水位 AB时,宽为 20 m ,若水位上升 3 m ,水面就会 达到警戒线 CD,这时水面宽度为 10 m.( 1) 建立适当的平面直角坐标系并求出抛物线的解析式;解: (答案不唯一) ( 1) 建立如图所示的平面直角坐标 系,设所求抛物线的解析式为y =ax 2 ,点D 的坐标为 D (5 ,b ) ,则B ( 10 ,b -3),把D ,B 的坐标分别代入,得{ 10 ,3 ,解得 ,,∴抛物线的解析式为y = - x 2 .251ba如图,某河面上有一座抛物线形拱桥,桥下水面在正 常水位 AB时,宽为 20 m ,若水位上升 3 m ,水面就会 达到警戒线 CD,这时水面宽度为 10 m.(2) 若洪水到来时,水位以每小时 0.2 m 的速度上升, 从警戒线开始,再持续多少小时就能到达拱桥的拱顶?解:(2) ∵b= - 1,∴拱桥顶O到CD的距离为1 m.∵ =5 , ∴再持续5小时到达拱桥的拱顶.2. 飞机着陆后滑行的距离y(单位:m)关于滑行时t(单 位:s)的函数解析式是y=60t- 1.5t2.在飞机着陆滑行中, 最后 4 s滑行的距离是24m.解:当y取得最大值时,飞机停下来,则y=60t- 1.5t2=- 1.5(t-20)2+600,当t=20时,y取得最大值,即飞机着陆后滑行20 s时, 滑行距离为600米.因此 t的取值范围是0≤t≤20,当t=16时,y=576,所以最后 4 s滑行的距离是600-576=24(m).实际问题 数学模型 归化回转能够将实际距离准确 的转化为点的坐标;选择简便的运算方法.(实物中的抛物线形问题) (二次函数的图象和性质)运动中的抛物线形 问题建立恰当的直角坐标系转化的 关键拱桥问题A.第8秒B.第10秒C.第12秒D.第15秒解: ∵x 取6和14时y 的值相等,∴抛物线y =ax 2+bx 的对称轴为直线x = = 10,即炮弹达到最大高度的时刻是第10 秒.1.发射一枚炮弹,经过 x 秒后炮弹的高度为y 米,x ,y 满足y =ax 2+bx ,其中 a ,b 是常数,且 a ≠0.若此炮弹在 第 6 秒与第 14 秒时的高度相等,则炮弹达到最大高度 的时刻是( B)2.一位篮球运动员在距离篮圈中心水平距离 4 m处起 跳投篮,球沿一条抛物线运动,当球运动的水平距离为 2.5 m 时,达到最大高度 3.5 m ,然后准确落入篮框内,已知篮圈中心距离地面高度为 3.05 m ,在如图所 示的平面直角坐标系中,下列说法正确的是 ( A) A.此抛物线的解析式是y=- x2+3.5B.篮圈中心的坐标是 (4 ,3.05)C.此抛物线的顶点坐标是 (3.5 ,0)D.篮球出手时离地面的高度是 2 m解:选项A中, ∵抛物线的顶点坐标为(0 ,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心( 1.5 ,3.05)在抛物线上,将它的坐标代入得 3.05=a× 1.52+3.5 , ∴a=-0.2 , ∴y=-0.2x2+3.5 ,故 本选项正确;选项B中,由图示知,篮圈中心的坐标是(1.5 ,3.05),故本选项错误;选项C中,由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;选项D中,设这次跳投时,球出手处离地面h m ,∵由选项A可知y=-0.2x2+3.5 , ∴当x=-2.5时,h= -0.2×(-2.5)2+3.5=2.25.∴这次跳投时,球出手处离地面2.25 m.故本选项错误.!。
实际问题与二次函数.3实际问题与二次函数(第3课时)教学设计
人教版义务教育课程标准教科书九年级数学下册22.3实际问题与二次函数(第3课时)教学设计22.3 实际问题与二次函数(第3课时)教学目标知识技能通过对抛物线型拱桥的探究,让学生掌握如何建立适当的直角坐标系,待定系数法求二次函数解析式,解决实际问题。
数学思考通过对生活中实际问题的探究,体会建立数学建模的思想,并渗透转化及数形结合的数学思想方法。
解决问题通过对生活实际问题的探究,体会数学知识在生活实际的广泛应用性,进一步认识如何利用二次函数的有关知识解决实际问题。
情感态度通过二次函数的有关知识灵活用于实际,让学生亲自体会到学习数学知识的价值,从而提高学生学习数学的兴趣。
教学重点探究建立直角坐标系,待定系数法求出二次函数解析式,解决实际问题的方法。
教学难点如何建立适当的平面直角坐标系。
教学过程设计问题与情境师生行为设计意图一、创设情境引出问题(本环节大约需要1分钟)同学们,你们知道世界上最早的石拱桥是哪一座吗?(学生回答:赵州桥)其实,最早的石拱桥是位于我们漯河的小商桥!因为,在1982年的9月,桥梁专家茅以升曾派考察组进行了实地考察,认定小商桥的建造时间比赵州桥还要早!更令我们漯河人自豪的是,2003年3月29日,国家邮政局发行的《中国古桥—拱桥》邮票中,第2枚就是我们漯河的小商桥!结构独特的小商桥在桥拱的造型上就用到了我们的数学知识——美丽的抛物线,今天,我们就来学习抛物线在拱桥中的有关应用。
首先,请看由小商桥呈现的问题情境1。
(漯河小商桥图片)教师用满腔的热爱家乡之情去感染每一位学生,并引导学生观察桥拱的形状。
学生聆听并欣赏图片:教师关注:学生是否对教师提出的知识产生深厚的兴趣,注意力是否迅速集中,最后是否注意到了桥拱的形状。
通过学生的认知冲突,激发了学生的好奇心和学习的兴趣,同时为探究二次函数的实际应用提供了背景材料。
问题与情境师生行为设计意图二、解决问题做好铺垫(本环节大约需要5—6分钟)如图是小商桥的桥拱,把它的图形放在如图所示的直角坐标系中,抛物线的表达式为:y=21218x(1) 拱桥的最高点离水面多少米?(2) 拱桥的跨度是多少米?(3) 若在跨度中心点O 左右3米处各垂直竖立一根石柱支撑拱桥,则石柱有多高?教师展示问题情境,并读题。
人教版九年级数学上册22.3 实际问题与二次函数第三课时课件
6.(15 分)隧道的截面由抛物线和长方形构成,长方形的长为 8 m, 宽为 2 m,隧道最高点 P 位于 AB 的中央且距地面 6 m,建立如图所示 的坐标系.
(1)求抛物线的解析式;
(2)一辆货车高 4 m,宽为 2 m,能否从该隧道内通过,为什么?
(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什 么?
解:设大孔对应的抛物线所对应的函数关系式为y=ax2+6. 依题意,得B(10,0),∴a×102+6=0.解得a=-0.06.即y=- 0.06x2+6.当y=4.5时,-0.06x2+6=4.5.解得x=±5,∴DF= 5,EF=10.即水面宽度为10米
10.(14 分)杂技团进行杂技表演,演员从跷跷板右端 A 处弹跳到
看为抛物线.如图所示,正在甩绳的甲、乙两名同学拿绳的
手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿
绳子的手的水平距离1 m,2.5 m处.绳子在甩到最高处时刚
好通过他们的头顶.已知学生丙的身高是1.5 m,则学生 m
C.1.66 m
D.1.67 m
由题意可知,抛物线经过点 A(0,2),P(4,6),B(8,2).设抛物线的 方程为 y=ax2+bx+c,将 A,P,B 三点的坐标代入抛物线方程,解 得抛物线解析式为 y=-14x2+2x+2
(2)令 y=4,则有-14x2+2x+2=4.解得 x1=4+2 2,x2=4-2 2,∵ |x2-x1|=4 2>2,∴货车可以通过
D.12.1 m
2.(5分)某幢建筑物,从10 m高的窗口A用水管向外喷水,
喷出的水呈抛物线状(抛物线所在平面与地面垂直).如果抛物
线的最高点M离墙1 m,离地面 m(如图所示),则水流落地点
初中数学人教版九年级上册《2233实际问题与二次函数第三课时实物中的抛物线形问题问题》练习
22.3.3实际问题与二次函数第三课时一.选择题1.美丽的青岛市举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A.y=﹣x2+x+1 B.y=﹣x2+x﹣1C.y=﹣x2﹣x+1 D.y=﹣x2﹣x﹣12.如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得()A.比开始高0.8m B.比开始高0.4mC.比开始低0.8m D.比开始低0.4m3.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2 B.y=2x2 C.y=﹣x2 D.y=x24.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A.2.76米 B.6.76米 C.6米 D.7米二.填空题5.如图为一座拱桥的示意图,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4,则选取点A为坐标原点时的抛物线解析式是.6.如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C 点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2,则y的最大值为___________。
22.3 实际问题与二次函数(第3课时) 人教版数学九年级上册练习(含答案)
22.3实际问题与二次函数(第3课时)一、选择题(共4小题)1.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小腾同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0)和(3,0);②当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;③当x=1时,函数有最大值是4;④函数与直线y=m有4个公共点,则m的取值范围是0<m<4.A.1B.2C.3D.42.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为( )A.172s B.175s C.180s D.186s3.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为( )A.B.8C.D.7.54.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1二、填空题(共2小题)5.如图是足球守门员在O处开出一记手抛高球后足球在空中运动到落地的过程,它是一条经过A,M,C三点的抛物线.其中A点离地面1.4米,M点是足球运动过程中的最高点,离地面3.2米,离守门员的水平距离为6米,点C是球落地时的第一点.那么足球第一次落地点C距守门员的水平距离为 米.6.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA为12m,拱桥的最高点B到水面OA的距离为6m.则抛物线的解析式为 .三、解答题(共1小题)7.某园林专业户计划投资种植树木及花卉,根据市场调查与预测,图1是种植树木的利润y 与投资量x成正比例关系,图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1.l2,求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉,其中投入x(x>0)万元种植花卉,那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上,该园林专业户应怎样投资?参考答案一、选择题(共4小题)1.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是错误的;②根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此②是正确的;③由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故③错误.④由图象可知,函数与直线y=m有4个公共点,则m的取值范围是0<m<4,故④正确.故选:B.2.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+9x﹣700,∴该铅球飞行到最高点时,需要的时间为﹣=180(s),故选:C.3.解:建立如图所示的平面直角坐标系,由题意可知各点的坐标,A(﹣4,0),B(4,0),D(﹣3,4).设抛物线的解析式为:y=ax2+c(a≠0),把B(4,0),D(﹣3,4)代入,得:,解得:,∴该抛物线的解析式为:y=﹣x2+,则C(0,).∴这个门洞内部顶端离地面的距离为m,故选:A.4.解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.二、填空题(共2小题)5.解:设抛物线的解析式为y=a(x﹣6)2+3.2,将点A(0,1.4)代入,得:36a+3.2=1.4,解得:a=﹣0.05,则抛物线的解析式为y=﹣0.05(x﹣6)2+3.2;当y=0时,﹣0.05(x﹣6)2+3.2=0,解得:x1=﹣2(舍),x2=14,所以足球第一次落地点C距守门员14米.故答案为:14.6.解:∵水面宽度OA为12m,拱桥的最高点B到水面OA的距离为6m.∴B(6,6),A(12,0),设抛物线的解析式为y=a(x﹣6)2+6,∴y=a(12﹣6)2+6,∴0=a•62+6,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣6)2+6;故答案为:y=﹣(x﹣6)2+6.三、解答题(共1小题)7.解:(1)设l1:y=kx,∵函数y=kx的图象过(1,2),∴2=k⋅1,k=2,故l1中y与x的函数关系式是y=2x(x≥0),∵该抛物线的顶点是原点,∴设l2:y=ax2,由图2,函数y=ax2的图象过(2,2),∴2=a⋅22,解得:a=,故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉,则投入(10﹣x)万元种植树木,,∵a=>0,0<x≤10,∴当x=2时,w的最小值是18,他至少获得18万元的利润.(3)根据题意,当w=20时,,解得:x=0(不合题意舍),x=4,∴至少获得20万元利润,则x=4,∵在2≤x≤10的范图内w随x的增大而增大,∴w>20,只需要x>4,所以保证获利在20万元以上,该园林专业户应投资花卉种植超过4万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3 实际问题与二次函数(第3课时)
学习目标
1.掌握二次函数模型的建立过程,并能运用二次函数的知识解决实际问题.
2.通过建立平面直角坐标系解决实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验.
3.在用所学知识解决实际问题的同时,感受数学模型思想在实际问题中的应用价值.
学习过程
一、设计问题,创设情境
1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的解析式.
2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)三点.求二次函数的解析式.
二、信息交流,揭示规律
一座抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水面下降1 m,水面宽度增加多少?
三、运用规律,解决问题
如图,有一座抛物线形拱桥,在正常水位AB 时,水面宽20米,水位上升3米,就达到警戒线CD ,这时水面宽为10米.
(1)求抛物线形拱桥的解析式.
(2)若洪水到来时,水位以每小时0.2米的速度上升,从警戒线开始,再持续多少小时就能达到拱桥顶?
(3)在正常水位时,有一艘宽8米,高2.5米的小船能否安全通过这座桥?
四、巩固练习
某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水.连喷头在内,柱高为0.8m .水流在各个方向上沿形状相同的抛物线路径落下,如左图所示.
根据设计图纸已知:如右图中所示直角坐标系中,水流喷出的高度y (m)与水平距离x (m)之
间的函数关系式是y =-x 2+2x +45
. (1)喷出的水流距水平面的最大高度是多少?
(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?。