弹性力学题库.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论
1、所谓“完全弹性体”是指(B)。
A、材料应力应变关系满足虎克定律
B、材料的应力应变关系与加载时间、历史无关
C、本构关系为非线性弹性关系
D、应力应变关系满足线性弹性关系
2、关于弹性力学的正确认识是(A)。
A、计算力学在工程结构设计中的作用日益重要
B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设
C、任何弹性变形材料都是弹性力学的研究对象
D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析
3、下列对象不属于弹性力学研究对象的是(D)。
A、杆件
B、板壳
C、块体
D、质点
4、弹性力学研究物体在外力作用下,处于弹性阶段的应力、应变和位移。
5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。与材料力学相比弹性力学的特点有哪些?
答:1)研究对象更为普遍;
2)研究方法更为严密;
3)计算结果更为精确;
4)应用范围更为广泛。
6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×)
改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。
7、弹性力学对杆件分析(C)。
A、无法分析
B、得出近似的结果
C、得出精确的结果
D、需采用一些关于变形的近似假定
8、图示弹性构件的应力和位移分析要用什么分析方法?(C)
A 、材料力学
B 、结构力学
C 、弹性力学
D 、塑性力学
解答:该构件为变截面杆,并且具有空洞和键槽。
9、弹性力学与材料力学的主要不同之处在于( B )。
A 、任务
B 、研究对象
C 、研究方法
D 、基本假设
10、重力、惯性力、电磁力都是体力。(√)
11、下列外力不属于体力的是(D )
A 、重力
B 、磁力
C 、惯性力
D 、静水压力
12、体力作用于物体内部的各个质点上,所以它属于内力。(×)
解答:外力。它是质量力。
13、在弹性力学和材料力学里关于应力的正负规定是一样的。( × )
解答:两者正应力的规定相同,剪应力的正负号规定不同。
14、图示单元体右侧面上的剪应力应该表示为(D )
A 、xy τ
B 、yx τ
C 、zy τ
D 、yz τ 1
τ2
τ3τ4τO x
y
z
15、按弹性力学规定,下图所示单元体上的剪应力( C )。
A 、均为正
B 、41,ττ为正,32,ττ为负
C 、均为负
D 、31,ττ为正,42,ττ为负
16、按材料力学规定,上图所示单元体上的剪应力(
D )。
A 、均为正
B 、41,ττ为正,32,ττ为负
C 、均为负
D 、31,ττ为正,42,ττ为负
17、试分析A 点的应力状态。
答:双向受压状态
18、上右图示单元体剪应变γ应该表示为( B )
A 、xy γ
B 、yz γ
C 、zx γ
D 、yx γ
19、将两块不同材料的金属板焊在一起,便成为一块(D )。
A、连续均匀的板
B、不连续也不均匀的板
C、不连续但均匀的板
D、连续但不均匀的板
20、下列材料中,(D )属于各向同性材料。
A、竹材
B、纤维增强复合材料
C、玻璃钢
D、沥青
21、下列那种材料可视为各向同性材料(C )。
A、木材
B、竹材
C、混凝土
D、夹层板
22、物体的均匀性假定,是指物体内各点的弹性常数相同。
23、物体是各向同性的,是指物体内某点沿各个不同方向的弹性常数相同。
24、格林(1838)应用能量守恒定律,指出各向异性体只有21 个独立的弹性常数。
25、如图所示受轴向拉伸的变截面杆,若采用材料力学的方法计算其应力,所得结果是否总
?
能满足杆段平衡和微元体平衡
27、解答弹性力学问题,必须从静力学、几何学和物理学三方面来考虑。
28、对棱边平行于坐标轴的正平行六面体单元,外法线与坐标轴正方向一致的面称为正
面,与坐标轴 相反 的面称为负面,负面上的应力以沿坐标轴 负 方向为正。
29、弹性力学基本方程包括 平衡微分 方程、 几何 方程和 物理 方程,分别反映了物体 体力分量 和 应力分量 , 形变分量 和 位移分量 , 应力分量 和 形变分量 之间的关系。
30、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。但是 并不直接 作强度和刚度分析。
31、弹性力学可分为数学弹性力学和实用弹性力学两个部分。前者只用精确的数学推演而不引用任何关于应变状态或应力分布的 假定 ;在实用弹性力学里,和材料力学类同,也引用一些关于应变或应力分布的假设,以便简化繁复的数学推演,得出具有相当实用价值 近似解 。
32、弹性力学的研究对象是 完全弹性体 。
33、所谓“应力状态”是指( B )。
A. 斜截面应力矢量与横截面应力矢量不同
B. 一点不同截面的应力随着截面方位变化而改变
C. 3个主应力作用平面相互垂直
D. 不同截面的应力不同,因此应力矢量是不可确定的
34、切应力互等定理根据条件( B )成立。
A. 纯剪切
B. 任意应力状态
C. 三向应力状态
D. 平面应力状态
35、在直角坐标系中,已知物体内某点的应力分量为:
⎪⎪⎪⎭
⎫ ⎝⎛-=01001-0010
10-001ij σMPa ;试:画出该点的应力单元体。 解:该点的应力单元体如下图(强调指出方向);