2016春人教版数学九下292《三视图》练习题3
人教版九年级下册数学第二十九章第2节《三视图》训练题 (33)(含答案解析)
九年级下册数学第二十九章第2节《三视图》训练题 (33)一、单选题1.如图,是按照比例尺为1︰10绘制的一个几何体的三视图(单位:cm),则该几何体的侧面积是( )A.4900cm2B.7000cm2C.8400cm2D.10500cm22.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.下图分别是某校体育运动会的颁奖台和它的主视图,则其左视图是().A.B.C.D.4.如图是一个几何体的三视图,则这个几何体的表面积为()A.50πB.100πC.150πD.175π5.如图,是由完全相同的5个小立方体组成的4个立体图形,主视图和左视图完全相同的()A.B.C.D.6.如图所示的几何体的主视图是()A.B.C.D.7.由若干块形状相同的小正方块搭成的立体模型的主视图与左视图如图,则搭成这个立体模型所使用的小正方块的最少块数是()A.3 B.4 C.5 D.68.如图所示的几何体的左视图是()A.B.C.D.9.如图是一个空心圆柱体,它的主视图是( )A .B .C .D .10.下列给出的几何体中,主视图和俯视图都是圆的是( )A .球B .正方体C .圆锥D .圆柱11.一透明的敞口正方体容器ABCD A B C D ''''-装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(CBE α∠=,如图1所示).如图1,液面刚好过棱CD ,并与棱BB '交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.则此时BQ 的长为( )A .5dmB .4dmC .1dmD .3dm12.如图所示,几何体是由一些大小相同的小正方体组成,其三视图中面积最小的是( )A .主视图B .左视图C .俯视图D .都一样13.如图是由三个正方体组成的几何体,它的主视图是( )A.B.C.D.14.一个几何体的主视图、左视图、俯视图都是圆形,这个几何体可能是()A.圆柱B.圆锥C.球D.半球15.下列几何体中,主视图不是矩形的几何体是()A.B.C.D.16.如下图是一个几何体的三视图,则这个几何体是()A.B.C.D.17.如图,是由四个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.18.如图所示的几何体,它的左视图是()A.B.C.D.19.图中所示的几何体的左视图为()A.B.C.D.20.用一些完全一样的小正方体搭成一个几何体,它的主视图、俯视图与左视图都是如图所示的图形,则小正方体的个数可能是()A.9 B.8 C.5 D.421.如图所示为某一物体的主视图,下面是这个物体的是()A.B.C.D.22.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.23.在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.B.C.D.24.如图是一根空心方管,它的俯视图是()A.B.C.D.25.如图是手提水果篮抽象的几何体,它的三视图中既是轴对称图形又是中心对称图形的是()A.B.C.D.26.如图所示的物体组合,它的左视图是()A.B.C.D.27.如图,由4个大小相同的正方体组成的几何体的主视图是()A.B.C.D.二、解答题28.一作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.三、填空题29.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是_____.30.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的形状是________,面积cm.等于_________2【答案与解析】1.C【解析】根据三视图可知,该几何体是三棱柱,高为7,两个底面三边长分别为3、4、5,三棱柱的侧面积是三个长方形,用底面周长⨯高即可得出答案.由三视图可知,该几何体是三棱柱,侧面积为:2(345)784cm ++⨯=,∵是按照比例尺为1︰10绘制的一个几何体的三视图,∴原几何体的侧面积2841008400cm =⨯=,故选:C .本题考查了三视图还原几何体,棱柱侧面积的计算等知识,能通过三视图还原成三棱柱以及清楚每边长是解决本题的关键.2.A【解析】根据主视图就是从正面看到的图形即可解答.解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形, 故答案为A .本题考查了简单组合体的三视图,掌握主视图、俯视图、左视图的概念是解答本题的关键. 3.D【解析】根据左视图是从左边看到的图形解答即可.解:颁奖台从左边看是一个矩形被分为3部分,上面分线是实线,下面的分线是虚线. 故选:D本题考查了由几何体判断三视图,从左边看到的图形是左视图,注意能看到的线用实线画,看不到的线用虚线画.4.C【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,判断出几何体的形状,再根据三视图的数据,求出几何体的表面积即可.解:根据三视图可得这个几何体是圆柱,底面积=π×52=25π,侧面积为=10π•10=100π,则这个几何体的表面积=25π×2+100π=150π;故选:C.此题考查了由三视图判断几何体,用到的知识点是三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键.5.C【解析】根据几何体的主视图和左视图即可求解.解:A、主视图有3列,从左往右正方形的个数是2,1,1;左视图有2列,从左往右正方形的个数是1,2;不符合题意;B、主视图有2列,从左往右正方形的个数是2,1;左视图有3列,从左往右正方形的个数是1,2,1;不符合题意;C、主视图有2列,从左往右正方形的个数是2,1;左视图有2列,从左往右正方形的个数是2,1;符合题意;D、主视图有2列,从左往右正方形的个数是2,1;左视图有2列,从左往右正方形的个数是1,2;不符合题意.故选:C.考查简单几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.6.A【解析】找到从前面看所得到的图形即可.解:从前面看可得到左边下方有1个正方形,右边有2个正方形,故选A.本题考查了三视图的知识,主视图是指从前面看所得到的图形.7.A【解析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底层最少有2个小正方体,上面这层只有一个小正方体.根据这个思路可判断出该几何体有多少个小立方块.解:左视图与主视图相同,可判断出底层最少有2个小正方体,而第二层则只有1个小正方体.摆放方法是田字格的左上格有两个,右下格有一个小正方体,则这个几何体的小立方块最少为3个.故选:A.本题的难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.8.D【解析】根据左视图是从左边看得到的图形,可得答案.从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.本题考查了几何体的三视图,从左边看得到的是左视图.9.C【解析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:C.本题考查了三视图的知识,主视图是从物体的正面看得到的视图;注意看得到的棱画实线,看不到的棱画虚线.10.A【解析】主视图是从正面看,俯视图是从上往下看,分别进行判断即可.A.球的主视图和俯视图都是圆,故选项A正确;B.正方体主视图和俯视图都是正方形,故选项B错误;C.圆锥的主视图是三角形,俯视图是圆,故选项C错误;D.圆柱的主视图是长方形,俯视图是圆,故选项D错误;故选:A.本题考查了几何体的三视图,解题关键是明确主视图、俯视图、左视图分别是从物体的正面、上面、左面看所得到的图形.【解析】根据水面与水平面平行可以得到CQ与BE平行,利用勾股定理即可求得BQ的长;解:根据题意,得CQ与BE的位置关系是:CQ∥BE,CQ=5,BC=AB=4,在Rt△BCQ中,(dm).本题考查了四边形的体积计算以及三视图的认识,正确理解棱柱的体积的计算是关键.12.A【解析】根据几何体的三视图进行判断即可.解:如图,该几何体主视图是由4个小正方形组成,左视图是由5个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是主视图,故选:A.本题考查了三视图,正确识别几何体的三视图是解题关键.13.A【解析】根据主视图的定义,观察图形即可得出结论.解:主视图是从正面看得到图形,由几何体以及正面方向可知,主视图为:故选A.此题考查的是几何体主视图的判断,掌握主视图的定义是解决此题的关键.14.C【解析】在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.由此可判断出正确选项.因为几何体的主视图、左视图、俯视图是圆形,所以该几何体可能是球.故答案为:C.本题主要考查物体的三视图,能根据三视图确定几何体的形状是解题的关键.【解析】根据各几何体从正面看到的图形判断即可.解:A、圆柱的主视图是矩形,故此选项不合题意;B、圆锥的主视图是等腰三角形,故此选项符合题意;C、长方体的主视图是矩形,故此选项不合题意;D、三棱柱的主视图是矩形,故此选项不合题意;故选:B.本题考查了简单几何体的三视图,掌握三视图的知识点是解题关键.16.D【解析】根据三视图的定义逐项分析即可.A.主视图是一个矩形,左视图是一个矩形,俯视图是一个画有圆心的圆,故不符合题意;B.主视图是两个矩形,左视图是一个矩形,俯视图是一个矩形,故不符合题意;C.主视图是两个三角形,左视图是一个三角形,俯视图是一个三角形,且内部有一个点,故不符合题意;D.主视图是两个矩形,左视图是一个矩形,俯视图是一个三角形,故符合题意;故选D.本题考查由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.17.A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看易得第一层有2个正方形,第二层左上有1个正方形.故选:A.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.18.D【解析】根据左视图的定义“平面内,从左往右观察所得到的视图”即可得.依据“长对正、高平齐、宽相等”画如图所示的几何体的三视图如下:故选:D.本题考查了左视图的定义,掌握左视图的定义是解题关键.三视图的另两个概念是:主视图和俯视图.19.B【解析】找到从左面看所得到的图形即可.解:如图,几何体的左视图是:.故选:B.本题考查了几何体的三视图,掌握定义是关键.主视图、左视图、俯视图分别是从物体正面、左面和上面看,所得到的图形.20.B【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.结合主视图、俯视图可知,上层有4个,下层一定有4个,∴组成这个几何体的小正方体的个数可能是8个,故选:B.本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.21.D【解析】从该组合体的主视图看从左至右共有三列,从左到右第一列有两个正方体,第二列有三个正方体,第三列有一个,据此找到答案即可.解:从该组合体的主视图看从左至右共有三列,从左到右第一列有两个正方体,第二列有三个正方体,第三列有一个,可得只有选项D符合题意.故选:D.此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.B【解析】根据左视图的定义,逐一作出分析即可.解:A、C、D的左视图都是长方形,而B的主视图是等腰三角形,故选B.本题考查了三视图的知识,做视图是从物体的左面看得到的视图.23.B【解析】根据主视图、左视图的定义,可得答案.A、左视图与主视图都是正方形,故A不符合题意;B、主视图是两个矩形,两个矩形的邻边是虚线,左视图是一个矩形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选:B.本题考查了简单几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.24.B【解析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.如图所示:俯视图应该是故选:B.本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.25.B【解析】根据从上边看得到的图形是俯视图,再依据轴对称图形与中心对称图形的定义可得答案.解:因为该几何体的俯视图是B,主视图是C,左视图是D,所以既是轴对称图形,又是中心对称图形的是B,故选B.本题考查的是简单几何体的三视图,轴对称图形及中心对称图形,掌握以上知识点是解题的关键.26.D【解析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D.本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.27.C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.从正面看易得有2列小正方形,左边第一列有1个正方形且在下面,第二列有2个小正方形,故选项C正确.故选:C.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.28.答案见解析【解析】根据主视图,左视图,俯视图定义,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图.本题考查了三视图的作图,三视图是主视图、俯视图、左视图的统称,从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图,从物体的左面向右面投射所得的视图称左视图.29.185π cm2【解析】由三视图得圆锥的地面直径为10cm,圆锥的高为12cm,在轴截面中根据勾股定理求出圆锥母线长,进而求出圆锥侧面积;根据三视图确定圆锥底面直径为10cm,高为12cm,求出圆柱侧面积;相加即可求出几何体侧面积.解:由三视图可知,圆锥的底面直径为10cm,高为12cm,圆柱地面直径为10cm,高为12cm.则OA=5cm,在Rt△POA中,13PA cm=,圆的周长为10πcm,∴几何体的侧面积为110131012=65120=1852πππππ⨯⨯+⨯+cm2.故答案为:185π cm2本题考查了三视图,圆锥的侧面积,圆柱的侧面积等知识点,解题的关键是根据三视图确定圆锥,圆锥的相关数据,牢记圆锥,圆锥的侧面积公式.30.矩形 6【解析】根据主视图和左视图可推断出长方体的俯视图是长为3cm,宽为2cm的矩形,从而可得出答案.根据主视图和左视图可推出长方体的俯视图如下:∴它的俯视图是一个长为3cm,宽为2cm的矩形,∴S=2×3=6cm2,故答案为:矩形;6cm2.本题考查了由三视图判断几何体的知识,解决本题的关键是根据所给视图得到俯视图的矩形的边长.。
人教版数学九年级下册第29章29.1--29.3同步练习题(含答案)
人教版数学九年级下册第29章29.1--29.3同步练习题(含答案)29.1《投影》一、选择题1.关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A.1 个B.2个C.3个D.4个2.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定3.如下图所示的四幅图中,灯光与影子的位置最合理的是( )4.如图,一个斜插吸管的盒装饮料的正投影是图中的( )5.如图所示,晚上小亮在路灯下散步,在小亮由A处走向B处的过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后再变长D.先变长后再变短6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )(A)①②③④. (B)④①③②. (C)④②③①. (D)④③②①.7.下列各种现象属于中心投影现象的是( )A.上午10点时,走在路上的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子8.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长10.下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.11.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属于同一种投影的有( )A.L、KB.答案为:C;C.KD.L、K、C12.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米二、填空题13.有下列投影:①阳光下遮阳伞的影子;②探照灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是________.(填序号)14.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.15.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为____________m.16.如图所示是两棵小树在同一时刻的影子,可以断定这是________投影,而不是_______投影.17.如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径.在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10米(如示意图,AB=10米);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是米.18.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是 cm.三、解答题19.如图,已知AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.如图,晚上,小亮在广场上乘凉。
人教版九年级下册数学第二十九章第2节《三视图》训练题 (3)(含答案解析)
九年级下册数学第二十九章第2节《三视图》训练题 (3)一、单选题1.如图所示的几何体的左视图是()A.A B.B C.C D.D2.如图所示,从上面看该几何体的形状图为()A.B.C.D.3.如图试一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.球D.三棱锥4.如图是一个立体图形从左面和上面看到的形状图,这个立体图形是由相同的小正方体构成,这些相同的小正方体的个数最少是()5.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm6.下列立体图形中,左视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球7.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .8.如图是一个立方体的三视图,这个立方体由一些相同大小的小正方体组成,这些相同的小正方体的个数是( )A .4B .5C .6D .79.如图所示的几何体的左视图为( )A.B.C.D.10.如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是()A.B.C.D.11.由若干个相同的小正方体搭建而成的几何体的三视图如图所示,则这个几何体共有小正方体()A.4个B.5个C.6个D.7个12.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同二、解答题13.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.14.下图的几何题是由8个相同的立方块搭成的,请画出它从正面、左面、上面看到的形状图.15.下图是由几个棱长为1的小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图;并计算出该几何体的表面积16.如图,这是一个小正方体所搭建的几何体的俯视图,正方形中的数字表示在该位置小正方体的个数,请你画出从正面看和从侧面看的图形.17.如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.18.下面图是几个小方块所搭几何体俯视图,小正方形中的数字表示在该位置的小立方块的个数.请画出这个几何体的主视图、左视图.19.由12个完全相同的棱长为1cm的小正方体搭成的几何体,如图所示.(1)请画出这个几何体的三视图.(2)请计算它的表面积.20.画出如图所示的几何体的主视图、左视图、俯视图:从正面看主视图_____左视图_____俯视图______21.如图是某几何体从正面、左面、上面看到的形状图.(1)这个几何体的名称是.(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,则这个几何体中所有棱长的和是多少?它的表面积是多少?22.用棱长为2cm的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,,第n层(n为正整数)(1)搭建第④个几何体的小立方体的个数为.(2)分别求出第②、③个几何体的所有露出部分(不含底面)的面积.1cm需要油漆0.2克,(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂2求喷涂第20个几何体,共需要多少克油漆?23.图中几何体由7个边长为1cm的正方体搭成,分别画如图几何体的主视图、左视图、俯视图.并算出此几何体的表面积24.用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示该位置小立方块的个数,请解答下列问题:(1)a=________,b=_________,c=_________.(2)这个几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(3)当d=e=1,f=2时,画出这个几何体的左视图.25.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.26.如图是由9个相同的棱长为2cm小立方体组成的一个几何体(1)请利用下方网格画出这个几何体的从正面看到主视图、从左面看到的左视图和从上面看到的俯视图(一个网格为小立方体的一个面).(2)计算这个堆积几何体的表面积(含底面).三、填空题27.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.28.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个29.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最多是________个,最少是________个.主视图俯视图30.如图,一个几何体是由若干个棱长为3的小正方体搭成的,小正方形中的数字表示在该位置小立方体的个数,则这个几何体的表面积是______.【答案与解析】1.D【解析】利用左视图的定义,从左向右看,看到的图形是一个长方形,由于右侧有一横线没看见,用虚线突出出来即可.从左向右看,看到的图形是一个长方形,右侧有横线看不见,为此用虚线显现出横线,左视图为D.故选:D.本题考查三视图的知识,左视图是从物体的左面看到的视图,掌握定义,会用定义选图是关键.2.C【解析】俯视图是从物体上面所看到的图形,可根据物体的特点作答;解:这是一个中间部分掏空的长方体,根据俯视图是从物体上面所看到的图形,故选:C本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,根据物体的特征回答是解题的关键.3.B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.C【解析】先根据俯视图和左视图确定底层和第二层正方体的最少个数,最后求和即可.解:根据俯视图可得:底层正方体最少5个正方体,根据左视图可得:第二层最少有1个正方体;则构成这个立体图形的小正方体的个数最少为5+1=6个.故答案为C.本题考查了根据三视图确定立体图形中正方体的个数,具有较好的空间想象能力是解答本题的关键.5.D【解析】先确定几何体的主视图,得到边长分别为3cm 、6cm ,再根据面积公式计算得出答案.如图,所得几何体的主视图是一个长方形,边长分别为3cm 、6cm ,∴所得几何体的主视图的面积是36 =218cm ,故选:D.此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键. 6.B【解析】根据三视图的意义可以得到解答.解:∵正方体的左视图与主视图均为以正方体棱长为边长的正方形,∴A 不符合题意; ∵倒放的圆柱体左视图为圆形,主视图为矩形,∴B 符合题意;∵圆锥的左视图与主视图均为以圆锥母线为腰、以底面直径为底的等腰三角形,∴C 不符合题意; ∵球的左视图与主视图均为以球半径为半径的圆,∴D 不符合题意;故选B .本题考查三视图的应用,熟练掌握三视图的意义和性质是解题关键 .7.C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为四边形,只有C 符合条件;故选:C .本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.8.D【解析】根据主视图和左视图小正方形的个数,在俯视图上标记每个位置上正方形的个数即可求解.根据题意,在俯视图上标注各个位置的个数为:所以一共有:1+2+2+1+1=7(个)故选D.本题考查了投影与视图,问题的关键是了解三种视图的关系与区别.9.C【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.从左边看是一个正方形,对面看不到的切割部分是虚线,故选:C.本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且存在的线是虚线.10.C【解析】根据左视图的定义:一般指由物体左边向右做正投影得到的视图,即可得出结论.解:根据左视图的定义,该几何体的左视图是:故选C.此题考查的是几何体左视图的判断,掌握左视图的定义是解题关键.11.B【解析】先由俯视图得出这个几何体的底层共有4个小正方体,再结合主视图和左视图可得第二层应该有1个小正方体,进而可得答案.解:由俯视图可得:这个几何体的底层共有4个小正方体,结合主视图和左视图可得:第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个.故选:B.本题考查了几何体的三视图,属于基础题型,掌握解答的方法是解题的关键.12.C【解析】根据从正面看到的是主视图,从上面看到的是俯视图,从左面看到的是左视图画出两个组合图形的三视图,再进行判断即可.解:图①的三视图为:图②的三视图为:故选:C.本题考查了简单组合体的三视图.解题的关键是学生对几何体三视图的空间想象能力.13.见解析【解析】主视图有3列,每列小正方形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,3.依此画出图形即可求解.解:如图所示:本题考查了画三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.14.见解析观察图形可知,从正面看到的图形是3列,从左往右正方形个数依次是3,1,2;从左面看到的图形是2列,从左往右正方形个数依次是3,1;从上面看到的图形是3列,从左往右正方形个数依次是2,2,1;据此即可画图.解:如图所示:本题考查了作图-三视图:确定主视图位置,画出主视图;再在主视图的正下方画出俯视图,注意与主视图“长对正”;然后在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.15.画图见解析;40【解析】先根据题意可得主视图有3列,每列小正方数形数目分别为3,3,2;左视图有2列,每列小正方形数目分别为3,2,然后画出立体图形计算表面积即可.解:主视图和左视图如图所示:此几何体为:∴其几何表面积为:()855222++⨯+⨯=⨯+1824=+364本题主要考查了几何体的三视图画法以及立体图形表面积的求法,正确画出三视图和立体图形是解答本题的关键.16.见详解【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.解:如图所示:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.17.见解析【解析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.由图可得几何体的三视图如下:主视图左视图俯视图本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.18.见解析【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为4,2,3,左视图有3列,每列小正方形数目分别为2,4,,3.据此可画出图形.如图,即为所求.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.19.(1)画图见解析;(2)242cm.【解析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,3,1.据此可画出图形;(2)利用几何体的形状进而求出其表面积;(1)S=⨯+++(2)2(677)2=⨯+2202()2=42cm答:它的表面积是42cm2.本题考查了三视图的画法以及表面积的求法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,物体的表面积是指露在外部的所有表面积之和.20.见解析【解析】主视图有4列,每列小正方形数目分别为1,3,1,1;左视图有3列,每列小正方形数目分别为3,1,1;俯视图有4列,每列小正方形数目分别为1,3,1,1,从而可得答案.解:主视图左视图俯视图考查了作图-三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,掌握以上知识是解题的关键.21.(1)直三棱柱;(2)51cm;2120cm【解析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出棱长和与表面积.(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的所有棱长之和为:(3+4+5)×2+9×3=51(cm);它的表面积为:2×(12×3×4)+(3+4+5)×9=120(cm2)答:所有棱长的和是51cm,它的表面积为120cm2.此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.22.(1)30;(2)第②个几何体露出部分(不含底面)面积为264cm,第③个几何体露出部分(不含底面)面积为2132cm;(3)992克.【解析】(1)归纳出前3个几何体的规律即可得;(2)分别画出两个几何体的三视图,再根据四个侧面和向上的面的小正方形的个数即可得;(3)先根据(1)的方法得出第20个几何体每一层小立方体的个数,再根据(2)的方法得出第20个几何体的所有露出部分(不含底面)的面积,然后乘以0.2即可得.(1)搭建第①个几何体的小立方体的个数为1, 搭建第②个几何体的小立方体的个数为21412+=+, 搭建第③个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第④个几何体的小立方体的个数为22212341491630+++=+++=, 故答案为:30;(2)第②个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ⨯=,则第②个几何体的所有露出部分(不含底面)面积为()232324464()cm ⨯+⨯+⨯=;第③个几何体的三视图如下:则第③个几何体的所有露出部分(不含底面)面积为()2626294132()cm ⨯+⨯+⨯=;(3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm ⎡⎤⨯++++⨯++++⨯=⎣⎦, 因此,共需要油漆的克数为49600.2992⨯=(克), 答:共需要992克油漆.本题考查了三视图、几何体的表面积、图形变化的规律型问题,依据题意,正确归纳类推出规律是解题关键.23.图见解析,228cm . 【解析】根据主视图、左视图、俯视图的定义画出图形即可;有顺序的计算前后面、左右面、上下面的表面积之和即可得.由主视图、左视图、俯视图的定义画出图形如下所示:由题意得:小正方体的每个面的面积为()2111cm⨯=, 则其表面积为()262142142128cm⨯⨯+⨯⨯+⨯⨯=.本题考查了三视图、几何体的表面积,熟练掌握三视图的概念是解题关键. 24.(1)3,1,1a b c ===;(2)9,11;(3)画图见解析. 【解析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,从而可得答案; (2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可得到答案;(3)左视图有3列,每列小正方形数目分别为3,1,2,从而可得左视图.解:(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3, 所以:3,1,1a b c ===. 故答案为:3,1,1;(2)由第一列小立方体的个数最少为2+1+1,最多为2+2+2, 所以这个几何体最少由4+2+3=9个小立方块搭成; 这个几何体最多由6+2+3=11个小立方块搭成; 故答案为:9,11.(3)由左视图有3列,每列小正方形数目分别为3,1,2, 如图所示:本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.25.(1)C;(2)不正确,理由见解析;(3)图③不是图②几何体的表面展开图,改后的图形见解析【解析】(1)根据“切去三个面”但又“新增三个面”,因此与原来的表面积相等;(2)根据多出来的棱的条数及长度得出答案;(3)根据展开图判断即可.解:(1)根据“切去三个小面”但又“新增三个相同的小面”,因此与原来的表面积相等,即a=b故答案为:a=b;(2)如图④红颜色的棱是多出来的,共6条,当且仅当每一条棱都等于原来正方体的棱长的一半,n比m正好多出大正方体的3条棱的长度,故小明的说法是不正确的;图④图⑤(3)图③不是图②几何体的表面展开图,改后的图形,如图⑤所示.本题考查几何体表面积的意义、棱长之和、几何体的表面展开图,考查学生的观察能力,关键是抓住几何图形变换后边长和棱长的变与不变的量.26.(1)见解析;(2)144cm2【解析】(1)主视图有3列,每列小正方形数目分别为2,3,1;左视图有3列,每列小正方形数目分别为3,1,2;俯视图有3列,每列小正方形数目分别为1,3,2;(2)分别求出各个方向的小正方形的个数,进一步即可求解.解:(1)如图所示:(2)6×6×(2×2)=144(cm 2).故这个堆积几何体的表面积(含底面)是144cm 2.本题考查了简单组合体的三视图及求小立方块堆砌图形的表面积.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓画成虚线,不要漏掉. 27.2236a cm 【解析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a acm ⨯+⨯+⨯=,故答案为:2236a cm .本题考查了求几何体的表面积,正确画出图形的三视图是解题关键. 28.5 【解析】利用三视图得到排数及列数,即可得到答案. 由三视图可知,此摆放体有两排, 第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键.29.17 11【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.++=(个)由主视图和俯视图可知:几何体的第一层最多有1337++=(个)第二层最多有1337++=(个)第三层最多有1113++=(个)故正方体的个数最多有77317++=(个),几何体的第一层最少有1337++=(个)第二层最少有1113第三层最少有1个,++=(个)故正方体的个数最少有73111故答案为:17;11.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.30.396【解析】首先确定该几何体的裸露的正方形的个数,然后确定面积即可.解:由该位置小立方体的个数可知,主视图为:有9个正方形左视图为:有6个正方形,俯视图为:有5个正方形,另外,该几何体有4个正方形的表面被遮挡,++⨯⨯+⨯=,∴这个几何体的表面积是(965)2949396故答案为:396.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也考查了空间想象能力.解题的关键是由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。
人教版九年级数学下29.2三视图(一)同步练习附答案解析
29.2三视图同步练习(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下面四个几何体中,其主视图为圆形的是()A.B.C.D.2、一个几何体的三视图如图,则该几何体是()A.B.C.D.3、如图所示的机器零件的左视图是().A.B.C.D.4、某几何体,从三个方向看到物体的形状,如图所示,这个几何体是()A. 圆柱B. 三棱柱C. 长方体D. 圆锥5、如图是一种常用的圆顶螺杆,它的俯视图是().A.B.C.D.6、把一个正五棱柱如图摆放,当投射线由正前方射到后方时,则它的正投影是().A.B.C.D.7、如图,是由个棱长为个单位的正方体摆放而成的,将正方体向右平移个单位,向后平移个单位后,所得几何体的________视图不变,_____视图改变.A.主视图不变,左视图和俯视图改变B. 主视图和左视图不变,俯视图改变C. 左视图不变,主视图和俯视图改变D. 俯视图和左视图不变,主视图改变8、下图的几何体中,主视图和左视图相同的几何体有__________.A. 个B. 个C. 个D. 个9、如图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A. ③④②①B. ②④③①C. ③④①②D. ③①②④10、如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.11、如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.12、如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.D.13、如图所示的几何体的左视图是()A.B.C.D.14、若某几何体的三视图如图,则这个几何体是()A.B.C.D.15、如图,将Rt△ABC绕直角边AB旋转一周,所得的几何体的主视图是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是某几何体的三视图,则该几何体的体积是_______.17、如图是由一些相同的长方体积木块搭成的几何体从正、左、上面三种不同的角度看到的平面图形,则此几何体共由块长方体积木块搭成.18、已知一个几何体是由几个大小相同的小立方块搭成,如图是分别从正面、左面、上面看到的该几何体的形状图,则搭成这个几何体的小立方体的个数为()19、一个工件,外部是圆柱体,内部凹槽是正方体,如图所示,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为,则正方体的体积为______.20、如图,正方形边长为,以直线为轴,将正方形旋转一周,所得圆柱的主视图(正视图)的周长是.三、解答题(本大题共有3小题,每小题10分,共30分)21、某个几何体的三视图如图所示,根据图中有关数据,求这个几何体的各个侧面积之和.22、画出几何体的俯视图、左视图.23、用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.29.2三视图同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下面四个几何体中,其主视图为圆形的是()A.B.C.D.【答案】B【解析】解:根据从正面看到的是主视图可知正方体的主视图是正方形,不符合题意.球的主视图是圆形,符合题意.圆锥的主视图是三角形,不符合题意.圆柱的主视图是矩形,不符合题意.故正确答案为:.2、一个几何体的三视图如图,则该几何体是()A.B.C.D.【答案】D【解析】解:由三视图可知,该组合体的上部分为圆台,下部分为圆柱,故答案为:3、如图所示的机器零件的左视图是().A.B.C.D.【答案】D【解析】解:机器零件的左视图是一个矩形.中间有条横着的虚线. 故正确答案是4、某几何体,从三个方向看到物体的形状,如图所示,这个几何体是()A. 圆柱B. 三棱柱C. 长方体D. 圆锥【答案】C【解析】解:几何体的三视图都是长方形,这个几何体是长方体.5、如图是一种常用的圆顶螺杆,它的俯视图是().A.B.C.D.【答案】B【解析】解:俯视图是由上方看到的图形,看到的是两个圆组成的圆环. 故正确答案是6、把一个正五棱柱如图摆放,当投射线由正前方射到后方时,则它的正投影是().A.B.C.D.【答案】B【解析】解:当投射线由正前方射到后方时,不是正投影,此选项错误.当投射线由正前方射到后方时,这是正投影,此选项正确.当投射线由正前方射到后方时,不是正投影,此选项错误.当投射线由正前方射到后方时,不是正投影,此选项错误.7、如图,是由个棱长为个单位的正方体摆放而成的,将正方体向右平移个单位,向后平移个单位后,所得几何体的________视图不变,_____视图改变.A.主视图不变,左视图和俯视图改变B. 主视图和左视图不变,俯视图改变C. 左视图不变,主视图和俯视图改变D. 俯视图和左视图不变,主视图改变【答案】A【解析】解:因为平移前后左视图和俯视图改变了,而主视图没有改变,因此应该是主视图不变,俯视图和左视图改变.故正确答案为主视图不变,俯视图和左视图变了.8、下图的几何体中,主视图和左视图相同的几何体有__________.A. 个B. 个C. 个D. 个【答案】D【解析】解:①正方体主视图和左视图是相同的正方形,②圆柱的主视图和左视图是相同的矩形,③圆锥的主视图和左视图是相同的三角形,④球的主视图和左视图是相同的圆,因此四个几何体主视图与左视图都相同.故答案为个.9、如图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A. ③④②①B. ②④③①C. ③④①②D. ③①②④【答案】C【解析】解:从早晨到傍晚物体的指向是:西—西北—北—东北—东,影长由长变短,再变长.故正确的答案是③④①②.10、如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.【答案】B【解析】解:主视图,如图所示11、如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【答案】B【解析】解:俯视图是物体向下正投影得到的视图,上面往下看,能看到四个小正方形.12、如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.D.【答案】D【解析】解:由题意得底面直径为,母线长为,几何体的侧面积为.13、如图所示的几何体的左视图是()A.B.C.D.【答案】D【解析】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.14、若某几何体的三视图如图,则这个几何体是()A.B.C.D.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形和一个矩形.故正确的图形为15、如图,将Rt△ABC绕直角边AB旋转一周,所得的几何体的主视图是()A.B.C.D.【答案】D【解析】解:将绕直角边AB旋转一周可得圆锥,圆锥的主视图是等腰三角形.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是某几何体的三视图,则该几何体的体积是_______.【答案】【解析】解:由三视图知,这个几何体是圆锥.体积是:. 故正确答案是.17、如图是由一些相同的长方体积木块搭成的几何体从正、左、上面三种不同的角度看到的平面图形,则此几何体共由块长方体积木块搭成.【答案】4【解析】解:由从上面看的平面图可知最底层有块长方体,由从左面和从上面看的平面图可知,该几何体由两层,最上一层有块长方体,因此该几何体共由块长方体的积木块搭成.18、已知一个几何体是由几个大小相同的小立方块搭成,如图是分别从正面、左面、上面看到的该几何体的形状图,则搭成这个几何体的小立方体的个数为()【答案】【解析】解:从正面看,第一个正视图最底层含有个立方块。
人教版九年级下册数学第二十九章第2节《三视图》训练题 (36)(含答案解析)
A. B. C. D.
21.如图,该立体图形的左视图是(由5个相同的小正方体组成的立体图形,它的主视图是()
A. B. C. D.
23.某物体的展开图如图所示,它的左视图为()
A. B. C. D.
24.如图的几何体是由四个大小相同的正方体组成的,它的主视图是()
两个底面是两个全等的直角三角形,
故选D.
本题考查的是利用三视图判断几何体的形状,同时考查简单几何体的表面积的计算,掌握以上知识是解题的关键.
10.B
【解析】
利用主视图以及俯视图即可得出该几何体是三棱柱,进而得出答案.
解:根据三视图可得这个几何体的名称是三棱柱;
故选:B.
此题考查简单几何体的三视图,正确掌握各几何体的三视图的图形是解题的关键.
根据左视图的画法解答即可.
A.不是三视图,故本选项错误;
B.是左视图,故本选项正确;
C.是主视图,故本选项错误;
D.是俯视图,故本选项错误.
故选:B.
本题考查了由三视图判断几何体,解题的关键是根据左视图的画法判断.
27.(1)C;(2)4
【解析】
(1)本题根据展开图可直接得出答案.
(2)本题根据体积等于底面积乘高求解即可.
11.C
【解析】
根据俯视图的定义和空间想象,得出图形即可.
解:俯视图从左到右分别是2,1,1个正方形,并且第一行有三个正方形.
故选C.
此题考查了简单组合体的俯视图,关键是对几何体的三种视图的空间想象能力.
12.A
【解析】
根据从上边看得到的图形是俯视图,可得答案.
从上边看如图,
,
故选:A.
人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)
人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。
人教版九年级下册数学第二十九章第2节《三视图》训练题 (19)(含答案解析)
(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.
27.如图是由几个棱长为 的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.
28.如图,正三棱柱的底面周长为18,截去一个底面周长为6的正三棱柱,求所得几何体的俯视图的周长.
A. B. C. D.
13.一个几何体是由一些大小相同的小正方体摆成其主视图和左视图如图所示则组成这个几何体的小正方体最少有 个,最多有 个, ()
A.3B.4C.5D.6
14.如图所示物体的俯视图是()
正面
A. B. C. D.
15.下列四个几何体中,主视图与左视图不相同的几何体有()
A.1个B.2个C.3个D.0个
九年级下册数学第二十九章第2节《三视图》训练题 (19)
一、单选题
1.若某几何体的三视图如图所示,则这个几何体是()
A. B. C. D.
2.下列几何体中,俯视图与主视图完全相同的几何体是()
A.圆锥B.球C.圆柱D.长方体
3.如图,是由一些完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最多由()个小正方体搭成.
18.23
【解析】
由主视图和左视图可得:这个几何体有3层,3列,3行,最底层有1+2+3=6个正方体,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,求出最大值与最小值,再求和即可.
解:综合主视图和俯视图,
底面有3+2+1=6个,第二层最多有5个,最少有2个,第三层最多有3个,最少有1个,
故选:B.
人教版九年级下册数学考试试题:29.2 三视图 经典题和易错题(含解析)
一 物体的三种视图 经典题+易错题1.如图,一个碗摆放在桌面上,则它的俯视图是( )分析:从上面往下看物体所得到的图形叫俯视图. 答案:C2.下图中所示的几何体的主视图是( )分析:从正面看物体所得到的图形叫正视图,也叫主视图. 答案:D3.在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给了一位灾区儿童.这个铅笔盒的左视图是( )分析:从左面往右看物体所得到的图形叫左视图. 答案:B4.如图1所示的几何体的俯视图是( )分析:根据“H ”形图案中的数据示数,知该字母模型的俯视图是C 中图形,故答案应选C. 答案:C5.图2中几何体的主视图是( )错解一: A 错解二: B 错解三: D剖析:观察已知物体,它是由下面是一个长方体,上面是一个球体组合而成的,其中球的直径小于长方体的长和宽,从正面看观察该物体可以看到一个长方形,左上方有一个小圆.错解一和错解二没有观察清楚物体的位置,错解三混淆了主视图和俯视图的概念. 正解:C应对攻略:几何体的三视图需认真观察物体摆放的具体位置,根据物体的长短和大小作图.A .B .C .D . a a a 图1A .B .C .D . 正面图26.由4个相同的小立方块搭成的几何体如图所示,它的左视图是( )分析: 错解一:A 错解二:B 错解三:D剖析:本题要求的是几何体的左视图,错解一看成了正视图,错解二看成了俯视图,错解三对三视图的概念认识不清楚,以上错误的原因都是混淆了主视图、俯视图和左视图三者的概念. 正解:C应对攻略:三视图都是对于观察者而言的,位于物体不同方向的观察者,他们所画的三视图可能是不一样的.所以一定要分清主视图、俯视图和左视图的区别和联系.二 简单几何体的三视图经典题1.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )分析:两个长方体小木块的主视图都是长方形,但后面的小木块一部分被挡住,看不到,但客观存在,故用虚线. 答案:D2.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种是图中,其正确的是:A.①②B.①③C.②③D.②分析:本题重在考查对三视图的理解。
新人教版九年级数学下册 29.2 三视图同步测试(含答案)
三视图三视图[见B本P90]1.如图29-2-1几何体的主视图是( C )图29-2-12.下列四个立体图形中,主视图为圆的是( B )A B C D3.有一篮球如图29-2-2放置,其主视图为( B )图29-2-2A B C D4如图29-2-3,由三个小立方块搭成的俯视图是( A )图29-2-35.如图29-2-4所示的几何体的主视图是( C )29-2-46.从不同方向看一只茶壶,你认为是其俯视图的是( A )图29-2-57. 如图29-2-6是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变图29-2-68.如图四个水平放置的几何体中,三视图如图29-2-7所示的是( D )图29-2-79.如图29-2-8所示几何体的左视图是( C )图29-2-810.球和圆柱在水平面上紧靠在一起,组成如图29-2-9所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( C )图29-2-9A.两个相交的圆B.两个内切的圆C.两个外切的圆 D.两个外离的圆11.下列几何体中,俯视图相同的是( C )图29-2-10A.①② B.①③ C.②③ D.②④12.将棱长是1 cm的小正方体组成如图29-2-11所示的几何体,那么这个几何体的表面积是( A )图29-2-11A.36 cm2 B.33 cm2 C.30 cm2 D.27 cm213.我国古代数学家利用“牟合方盖”(如图29-2-12甲)找到了球体体积的计算方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图29-2-12乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( B )图29-2-1214.5个棱长为1的正方体组成如图29-2-13所示的几何体.(1)该几何体的体积是________(立方单位),表面积是________(平方单位);(2)画出该几何体的主视图和左视图.图29-2-13第14题答图解:(1)5 22 (2)如图所示.15.图29-2-14是一个蘑菇形小零件图,其上部是一个半球体,下部是圆柱体,作出它的三视图.图29-2-14解:蘑菇形零件的上部为半球体,下部为圆柱体,它的主视图与左视图相同,上部均为半圆,下部为矩形.俯视图为同心圆(不含圆心),内圆被遮为虚线,如图所示.16.作出下面立体图形的三视图.图29-2-15 解:如图所示.第2课时由三视图描述物体的形状[见B本P92]1.下面是一个几何体的三视图,则这个几何体的形状是( B )图29-2-16A.圆柱B.圆锥C.圆台 D.三棱柱2.某几何体的三种视图如图29-2-17所示,则该几何体是( C )图29-2-17A.三棱柱 B.长方体C.圆柱 D.圆锥3.某几何体的三视图如图29-2-18所示,则这个几何体是( A )图29-2-18A.三棱柱 B.圆柱C.正方体 D.三棱锥4.已知一个正棱柱的俯视图和左视图如图29-2-19所示,其主视图为( D )图29-2-195.长方体的主视图、俯视图如图29-2-20所示,则其左视图面积为( A )图29-2-20A.3 B.4C.12 D.166.一个长方体的左视图、俯视图及相关数据如图29-2-21所示,则其主视图的面积为( B )A.6 B.8 C.12 D.24图29-2-21图29-2-227.如图29-2-22是一个几何体的主视图和左视图,同学们在探究它的俯视图时,画出了如图29-2-23的几个图形,其中可能是该几何体俯视图的共有( C )图29-2-23A.3个 B.4个C.5个 D.6个8.图29-2-24是一个正六棱柱的主视图和左视图,则图中的a=( B )图29-2-24A.2 3 B. 3 C.2 D.1【解析】从主视图来看,正六棱柱的底面正六边形的直径为4,半径为2,而正六边形的边长等于半径,所以边长也为2,所以a=2sin60°= 3.9.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是( B ) A.3 B.4 C.5 D.6图29-2-2510.由n个相同的小正方体堆成的几何体,其视图如图29-2-26所示,则n的最大值是( A )A.18 B.19 C.20 D.21图29-2-2611. 某超市货架上摆放着某品牌红烧牛肉方便面,如图29-2-27是它们的三视图,则货架上的红烧牛肉方便面至少有( B )A.8 B.9 C.10 D.11图29-2-2712. 某几何体的三视图如图29-2-28所示,则组成该几何体共用了小方块( D )A. 12块B. 9块C. 7块D. 6块图29-2-2813.如图29-2-29是某几何体的三视图,则该几何体的体积是( C )图29-2-29A. 18 3B. 54 3C. 108 3D. 216 3【解析】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.14.一个几何体的三视图如图29-2-30所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是__abc__.图29-2-30【解析】几何体是长方体,长为a,宽为b,高为c,则V=abc.15.图29-2-31是某实物的三视图,描述该实物的形状.图29-2-31解:观察三视图,可把三视图分解为两组如下图.由第1组三视图可观察出物体下部为一个长方体;由第2组三视图可观察出物体左上部也为一个长方体.综合原三视图可得物体是由两个长方体结合成的一个整体(像沙发),如图所示.第1组第2组16.如图29-2-32,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中,共有1个小立方体,其中1个看得见,0个看不见;如图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……则(1)第⑥个图中,看得见的小立方体有________个;(2)猜想并写出第n个图形中看不见的小立方体的个数为多少?图29-2-32解:(1)n=1时,看不见的小立方体的个数为0个;n=2时,看不见的小立方体的个数为(2-1)×(2-1)×(2-1)=1(个);n=3时,看不见的小立方体的个数为(3-1)×(3-1)×(3-1)=8(个);……n=6时,看不见的小立方体的个数为(6-1)×(6-1)×(6-1)=125(个),故看得见的小立方体有63-125=216-125=91(个).(2)第n个图形中看不见的小立方体的个数为(n-1)3个.第3课时 由三视图到表面展开图 [见B 本P94]1.如图29-2-33是某几何体的三视图,其侧面积( C )图29-2-33A .6B .4πC .6πD .12π2.一个几何体的三视图如图29-2-34所示,那么这个几何体的侧面积是( B )图29-2-34A .4πB .6πC .8πD .12π【解析】 由三视图知该几何体是底面直径为2,高为3的圆柱体,所以该几何体的侧面积为2π×3=6π.3.图29-2-35是某几何体的三视图及相关数据,则该几何体的侧面积是( B )图29-2-35A.12ab πB.12ac π C .ab π D .ac π 【解析】 该几何体是圆锥,侧面展开图是扇形,S 扇形=12×a π×c =12ac π.4.如图29-2-36是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是__72__.图29-2-36图29-2-375.图29-2-37是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.【解析】 设小正方体的棱长为1,则主视图的面积为5,左视图的面积为3,俯视图的面积为5,所以左视图的面积最小.6.某几何体的三视图如图29-2-38所示,则该几何体的表面积为__270__cm 2__.图29-2-38【解析】 由三视图可知,几何体是一个直三棱柱,其表面积为S 表=(5+12+52+122)×7+2×12×12×5=270( cm 2).7.某冷饮厂要加工一批冰淇淋蛋筒,设计给出了封闭蛋筒的三视图如图29-2-39所示,请你按照三视图确定制作每个蛋筒所需的包装材料面积(π取3.14,精确到0.1 cm 2).图29-2-39【解析】 (1)由三视图知立体图形是圆锥;(2)再由圆锥画它的表面展开图计算表面积. 解:由三视图可知,蛋筒是圆锥形的,如下图所示.蛋筒的母线长为13 cm ,底面的半径为102=5(cm),运用勾股定理可得它的高h =132-52=12(cm).由展开图可知,制作一个冰淇淋蛋筒的材料面积为S 扇形+S 圆=12×2π×5×13+π×52=65π+25π=90π≈282.6(cm 2).8.图29-2-40是某几何体的展开图. (1)这个几何体的名称是____; (2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)图29-2-40【解析】观察展开图,中间是一个矩形,上、下方是相等的圆,易知此几何体为圆柱;圆柱的主视图和左视图是相同的长方形,俯视图为圆,其体积为底面积乘高,且圆柱底面直径为10,高为20.解:(1)圆柱;(2)三视图如图所示.(3)体积为πr2h≈3.14×25×20=1 570.9.某个长方体的主视图是边长为1 cm的正方形,沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形,那么这个长方体的俯视图是( D )【解析】截面是一个正方形,边长为 2 cm,故这个长方体的俯视图是边长分别为1 cm, 2 cm的长方形,选D.10.如图29-2-41是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( C )图29-2-41A .75(1+3)cm 2B .75⎝ ⎛⎭⎪⎫1+32cm 2 C .75(2+3)cm 2D .75⎝⎛⎭⎪⎫2+32cm 2 【解析】 包装盒的侧面展开图是一个长方形,长方形长为(5×6)cm ,宽为 5 cm ,面积为30×5=150 (cm 2),包装盒的一个底面是一个正六边形,面积为6×12×52×32=7523(cm 2),故包装盒的表面积为150+2×7523=150+753=75(2+3)(cm 2),选C.11.一个如图29-2-42所示的长方体的三视图如图29-2-43所示,若其俯视图为正方形,则这个长方体的表面积为( A )图29-2-42 图29-2-43 A .66 B .48C .482+36D .57【解析】 设长方体底面边长为x ,则2x 2=(32)2,∴x =3,∴该长方体表面积为3×4×4+32×2=48+18=66,故选A.12.图29-2-44是某工件的三视图,按图中尺寸求工件的表面积.图29-2-44【解析】 在实际的生产中,三视图和展开图往往结合在一起,常由三视图想象出几何体的形状,再画出其表面展开图,然后根据展开图求表面积.解:观察三视图可知,工件的上部为一个圆锥,下部紧连着一个共底面的圆柱(如图所示).上部圆锥侧面展开图是扇形(半圆),其面积为S 扇=12×(3)2+12×2π=2π(cm 2);下部圆柱侧面展开图是矩形,其面积为S 矩=1×2π=2π(cm 2);底部为圆面,面积为S 圆=π cm 2,所以,所求工件的表面积为S 表=S 扇+S 矩+S 圆=2π+2π+π=5π(cm 2).13.一个几何体的主视图和左视图如图29-2-45所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.图29-2-45解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm ,∴菱形的边长为52 cm ,棱柱的侧面积=4×52×8=80(cm 2).14.如图29-2-46所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为____; (2)在虚线框内画出其左视图,并标出各边的长.图29-2-46【解析】 (1)过上底的顶点向对边引垂线组成直角三角形求解即可;(2)易得左视图为长方形,宽等于(1)中算出的梯形的高,高等于主视图中长方形的高. 解:(1)4(2)如图所示:。
新人教版九年级数学下册29.2三视图练习题及答案 (1)
29.2 三视图1.下面是一些立体图形的三视图(如图),•请在括号内填上立体图形的名称.2.如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是()A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如图所示,试举例说明物体的形状.7.已知一个几何体的三视图如图所示,则该几何体的体积为多少?8.已知几何体的主视图和俯视图如图所示.(1)画出该几何体的左视图;(2)该几何体是几面体?它有多少条棱?多少个顶点?(3)该几何体的表面有哪些你熟悉的平面图形?9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?10.一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.11.如图所示,下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.13.马小虎准备制作一个封闭的正方体盒子,他先用5•个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的每个图形上再接一个正方形,•使新拼接成的图形经过折叠能成为一个封闭的正方体盒子.(注:添加的正方形用阴影表示)14.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.参考答案:1.圆柱,正三棱锥 2.圆锥圆柱正方体三棱柱3.上正侧 4.B 5.略6.如粉笔,灯罩等 7.1208.(1)略(2)六面体,12条,8个(3)等腰梯形,•正方形9.长方体木板的正前方放置了一个圆柱体 10.略 11.不存在12.x=1或x=2,y=3 13.略 14.12个,7个。
2016春人教版数学九下292《三视图》练习题3
人教版九年级数学下册第二十九章《投影与视图——制作立体模型》同步检测3附答案一、精心选一选(每小题5分,共50分)1.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,它的主视图应该就是()2、某物体三视图如图,则该物体形状可能就是()(A)长方体、(B)圆锥体、(C)立方体、(D)圆柱体、3、下图就是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方形的个数就是( )(A)4个、 (B)5个、(C)6个、(D)7个、4、如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图就是( )5、如图就是一块带有圆形空洞与方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的就是()6、小明从正面观察下图所示的两个物体,瞧到的就是( )[7、有一实物如图,那么它的主视图就是( )8、如图就是正三菱柱,它的主视图正确的就是( )9、两个物体的主视图都就是圆,则这两个物体可能就是()(A)圆柱体、圆锥体、(B)圆柱体、正方体、(C)圆柱体、球、 (D)圆锥体、球、10、由若干个同样大小的正方体堆积成一个实物,不同侧面观察到如下投影图,则构成该实物的小正方体个数为( )(A)6、 (B)7、 (C)8、 (D)9二、用心想一想(每小题6分,共30分)11、我们常说的三种视图就是指、12、请写出三种视图都相同的两种几何体就是、13、棱长就是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积就是14、一个物体的俯视图就是圆,则该物体有可能就是(写两个即可)、15、一个几何体的三视图如下,那么这个几何体就是、三、解答题(每小题10分,共20分)16、图中四个图形就是多面体的展开图,您能说出这些多面体的名称不?17、画出如图所示中立体图形的三视图、参考答案1、B2、A3、D4、B5、A6、C7、B8、B9、D 10、B11、主视图俯视图左视图12、球、正方体13、36cm214、球圆柱体圆锥体等15、圆锥体16、略17、略。
人教版九年级数学下29.2三视图(三)同步练习附答案解析
29.2三视图同步练习(三)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图是由棱长为的正方体搭成的某几何体三视图,则图中棱长为的正方体的个数是( )A.B.C.D.2、如图,中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何A.B.C.D.3、如图表示一个由相同小立方块搭成的几何体的从上面看到的平面图形,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看的平面图形为A.B.C.D.4、如图是从由几个小立方块所搭几何体的上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,那么从这个几何体的正面看到的图形是()A.B.C.D.5、由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最少是()A.B.C.D.6、如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.7、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 个B. 个C. 个D. 个8、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是,,,则,,的大小关系是()A.B.C.D.9、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.10、某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱11、下列四个几何体:其中左视图与俯视图相同的几何体共有()A. 个B. 个C. 个12、如图所示的几何体的左视图是()A.B.C.D.13、学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A. 盒C. 盒D. 盒14、如图是某几何体的三视图及相关数据,则判断正确的是()A.B.C.D.15、如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的共有()A. 个B. 个C. 个D. 个二、填空题(本大题共有5小题,每小题5分,共25分)16、如果一个圆锥的主视图是等边三角形,俯视图是面积为的圆,那么它的左视图的高是.17、由个相同的小正方体堆成的几何体,其视图如图所示,则的最大值是 .18、如图是某几何体从正面、左面和上面看到的平面图形,根据图中数据,求得该几何体的体积为__________.19、如图,桌子上放着三个物体,则图(1)是从_________面看的,图(2)是从__________面看到的.20、如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.三、解答题(本大题共有3小题,每小题10分,共30分)21、图中是由几个小立方块搭成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的从正面看和从左面看的形状图.22、用小立方块搭成一个几何体,从正面看和从上面看所得的平面图形如图所示,搭建这样的几何体最多要几个小立方块?最少要几个小立方块?23、如图,水平放置的长方体的底面是边长为和的矩形,它的左视图的面积为,则长方体的体积是多少?29.2三视图同步练习(三) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图是由棱长为的正方体搭成的某几何体三视图,则图中棱长为的正方体的个数是( )A.B.C.D.【答案】D【解析】解:由俯视图易得最底层有个正方体,由主视图和左视图知第二层只有个正方体,那么共有个正方体组成.故正确答案为:.2、如图,中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为().A.B.C.D.【答案】D【解析】解:该几何体主视图是正方形,左视图是三角形,俯视图是一个圆形,故能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;该几何体主视图和左视图相同为三角形,通过正方形时不是无缝隙地,俯视图为圆形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;该几何体的主视图、左视图和俯视图均为正方形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞;该几何体主视图和左视图都是三角形,俯视图是四边形,故不能无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞.故答案应选:3、如图表示一个由相同小立方块搭成的几何体的从上面看到的平面图形,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看的平面图形为()A.B.C.D.【答案】B【解析】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有列,从左到右的列数分别是,,.4、如图是从由几个小立方块所搭几何体的上面看到的图形,小正方形中的数字表示在该位置的小立方块的个数,那么从这个几何体的正面看到的图形是()A.B.C.D.【答案】A【解析】解:根据所搭几何体的上面看到的图形可得,主视图有列,每列小正方数形数目分别为,,,画图如下:5、由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最少是()A.B.C.D.【答案】B【解析】解:综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,第三层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.6、如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.【答案】B【解析】解:该实物图的主视图为.7、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 个B. 个C. 个D. 个【答案】D【解析】解:由三视图可得,需要的小正方体的数目:.如图:搭成这个几何体的小正方体的个数是个.8、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是,,,则,,的大小关系是()A.B.C.D.【答案】A【解析】解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,故.9、形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.【答案】D【解析】解:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,看不见的线画成虚线.由此得到它的主视图应为.10、某几何体的三视图如图所示,则此几何体是()A. 圆锥B. 圆柱C. 长方体D. 四棱柱【答案】B【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.11、下列四个几何体:其中左视图与俯视图相同的几何体共有()A. 个B. 个C. 个D. 个【答案】B【解析】解:正方体左视图、俯视图都是正方形,左视图与俯视图相同;球左视图、俯视图都是圆,左视图与俯视图相同;圆锥左视图、俯视图分别是三角形、有圆心的圆,左视图与俯视图不相同;圆柱左视图、俯视图分别是长方形、圆,左视图与俯视图不相同;即同一个几何体的左视图与俯视图相同的几何体共有个.12、如图所示的几何体的左视图是()A.B.C.D.【答案】D【解析】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.13、学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A. 盒B. 盒C. 盒D. 盒【答案】A【解析】解:易得第一层有碗,第二层最少有碗,第三层最少有碗,所以至少共有盒.14、如图是某几何体的三视图及相关数据,则判断正确的是()A.B.C.D.【答案】B【解析】解:该几何体的正视图和左视图都是等腰三角形,俯视图是圆,该几何体为圆锥,圆锥的底面半径为,高为,母线长为,圆锥的底面半径、母线及圆锥的高构成直角三角形,.15、如图①是一个几何体的主视图和左视图.某班同学在探究它的俯视图时,画出了如图②的几个图形,其中,可能是该几何体俯视图的共有()A. 个B. 个C. 个D. 个【答案】C【解析】由主视图和左视图看,、、、、都有可能。
人教版九年级数学下册测试题:29.2三视图
人教版九年级数学下册测试题:29.2三视图学校:___________姓名:___________班级:___________考号:___________一、填空题1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.2.如图所示,桌面上放着一个圆柱和一个正方体.请你说出下面的三幅图的三视图.____________,____________,_____________.3.某同学把如图所示的几何体的三种视图画出下图①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.4.请写出三种视图都相同的两种几何体是_______.5.如图放置的一个直角三角形ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图是下列四个图形中的___________(只填序号)6.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.二、单选题7.在下列几何体中,主视图是圆的是( )A.A B.B C.C D.D8.如图所示的水杯的俯视图是( )A.A B.B C.C D.D9.如图所示,空心圆柱体在指定方向上的视图正确的是( )A.A B.B C.C D.D10.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是( )A.B.C.D.11.小明从正面观察下图所示的两个物体,看到的是()A.A B.B C.C D.D12.“圆柱与球的组合体”如下图所示,则它的三视图是( )A.A B.B C.C D.D13.下图是直观图的三视图,它对应的直观图是下图中的( )A.A B.B C.C D.D14.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能15.一个几何体的三视图如图所示,则这个几何体是( )A.圆柱B.圆锥C.长方体D.正方体16.如图所示的物体中,一样的为( )A.(1)与(2) B.(1)与(3) C.(1)与(4) D.(2)与(3) 17.将如图所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )A.A B.B C.C D.D三、解答题18.画出下图所示的三视图.19.一个物体的正视图、俯视图如图所示,请你画出该物体的左视图并说出该物体形状的名称.20.如图所示,说出下列四个图形各是由哪些立体图形展开得到的?21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图所示.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.参考答案1.长高长宽高宽【解析】主视图:能反映物体的正面形状以及物体的高和长;俯视图:能反映物体的水平面形状以及物体的长和宽;左视图:能反映物体的左面形状以及物体的高和宽.2.俯视图主视图左视图【解析】第一幅图是从上面看到的图形,是俯视图;第二幅图是从正面看到的图形,是主视图;第三幅图是从左面看到的图形,是左视图.3.左视图【解析】根据几何体的位置,主视图和俯视图是正确的,左视图中间少一条线,所以左视图不正确.4.正方体球体【解析】正方体的三视图都是正方形,球的三视图都是圆.5.(2)【分析】结合已知图形,将图中的直角三角形ABC绕边AB旋转一周,所得到的几何体应该是两个底面重合的圆锥,且下面的圆锥的高小于上面圆锥的高;再根据各选项,选出其从正面看所得到的图形,问题即可得解.【详解】将图中的三角形ABC绕边AB旋转一周,所得的几何体是两个同底的圆锥,所以从正面看到的是两个同底的等腰三角形,且上面的三角形腰比较长.故②符合题意.故答案为②.【点睛】本题考查了旋转的知识,解题的关键是判断出旋转后得到的图形.6.13【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有13个正方体.故答案为13.7.D【解析】本题考查了视图的相关知识.当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图.物体的三视图特指主视图、俯视图、左视图.主视图:在正面内得到的由前向后观察物体的视图,叫做主视图.俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图.左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图.所以找到从正面看所得到的图形比较即可.A、主视图是三角形,错误;B、主视图是矩形,错误;C、主视图是等腰梯形,错误;D、主视图是圆,正确.故选D.8.D【解析】分析:本题考查的是立体图形的俯视图.解析:水杯的俯视图是.故选D.9.C【解析】圆柱的主视图是矩形,里面有两条用虚线表示的看不到的棱,故选C.点睛:本题考查了三视图的知识,主视图是从物体的正面看到的视图;注意看到的棱画实线,看不到的棱画虚线.10.A【解析】根据图中所示,镜面对称后,应该为第一个图象.11.C【解析】主视图是从正面看到的图形,圆柱从正面看是长方形,正方体从正面看是正方形,所以从左往右摆放一个圆柱体和一个正方体,它们的主视图是左边一个长方形,右边一个正方形.故选C.12.A【解析】“圆柱与球的组合体”的主视图、左视图和俯视图依次为长方形的上边有一个圆、长方形的上边有一个圆、圆环,只有选项A符合要求,故选A.13.C【解析】从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的高度相同.只有选项C符合要求,故选C.14.D【解析】球体、圆柱、圆锥的俯视图都是圆,所以一个物体的俯视图是圆,则该物体的形状都有可能,故选D.15.A【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.试题解析:解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.考点:由三视图判断几何体.16.B【解析】观察可得,(1)、(3)为物体稍作旋转的图形,是一样的,故选B.17.D【解析】圆柱的侧面展开图是长方形;圆锥的侧面展开图是扇形;棱柱的侧面展开图是长方形,阴影部分(大扇形挖去一个小扇形)围成的图形是圆台,故选D.18.答案见解析.【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;在画图时一定要将物体的边缘、棱、顶点都体现出来.由此依次画出即可.试题解析:图1的三视图:图2的三视图:图3的三视图:图4的三视图:图5的三视图:19.圆柱【解析】试题分析:由该物体的正视图、俯视图可得,该物体为圆柱,可得圆柱的左视图为长方形.试题解析:圆柱20.(1)正方体(2)圆柱(3)三棱柱(4)四棱锥【解析】(1)正方体(2)圆柱(3)三棱柱(4)四棱锥试题分析:(1)是正方体的展开图;(2)圆柱的展开图;(3)是三棱柱的展开图;(4)是四棱锥的展开图.试题解析:(1)正方体;(2)圆柱;(3)三棱柱;(4)四棱锥.点睛:本题考查了立体图形及其表面展开图的特点,解题时主要根据所给的图形,结合自己的空间想象能力解决.21.(1)答案见解析.【解析】(1)(2)∵俯视图有5个正方形,∴最底层有5个正方体,由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;由主视图可得第2层最多有4个正方体,第3层最多有2个正方体;∴该组合几何体最少有5+2+1=8个正方体,最多有5+4+2=11个正方体,∴n可能为8或9或10或11.(1)由俯视图可得该几何体有2行,则左视图应有2列,由主视图可得共有3层,那么其中一列必为3个正方形,另一列最少是1个,最多是3个;(2)由俯视图可得该组合几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得从左边数第二列第二层最少有1个正方体,最多有2个正方体,第3列第2层,最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成组合几何体的最少个数及最多个数即可得到n的可能的值.。
人教版九年级下《29.2三视图》课时练习含答案解析
新人教版数学九年级下册第二十九章第二节三视图课时练习一、单选题(共15题)1、下列立体图形中,俯视图是正方形的是()A B C D答案:B知识点:简单几何体的三视图解析:解答:A.圆柱的俯视图是圆,故此选项错误.B.正方体的俯视图是正方形,故此选项正确.C.三棱锥的俯视图是三角形,故此选项错误.D.圆锥的俯视图是圆,故此选项错误;故选:B.分析:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.如图,正三棱柱的主视图为()B C D答案:B知识点:简单几何体的三视图解析:解答: 正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.分析:根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.3.下列几何体中,主视图和左视图都为矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.主视图和左视图都为圆,所以A选项错误;B.主视图和左视图都为矩形的,所以B选项正确;C.主视图和左视图都为等腰三角形,所以C选项错误;D.主视图为矩形,左视图为圆,所以D选项错误.故选B.分析: 分别写出各几何体的主视图和左视图,然后进行判断.4.如图是一个圆台,它的主视图是()答案:B知识点: 简单几何体的三视图解析:解答: 解:从几何体的正面看可得等腰梯形,故选:B.分析: 主视图是从物体正面看,所得到的图形.5.下列几何体中,正视图是矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.球的正视图是圆,故此选项错误;B.圆柱的正视图是矩形,故此选项正确;C.圆锥的正视图是等腰三角形,故此选项错误;D.圆台的正视图是等腰梯形,故此选项错误;故选:B.分析: 主视图是从物体正面看,所得到的图形.6.如图,下列几何体的左视图不是矩形的是()答案:B知识点:简单几何体的三视图解析:解答: A.圆柱的左视图是矩形,不符合题意;B.圆锥的左视图是等腰三角形,符合题意;C.三棱柱的左视图是矩形,不符合题意;D.长方体的左视图是矩形,不符合题意.故选:B.分析: 根据左视图是从物体左面看所得到的图形,分别得出四个几何体的左视图,即可解答.7.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变答案:D知识点:简单组合体的三视图解析:解答:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.分析: 分别得到将正方体①移走前后的三视图,依此即可作出判断8.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()答案:D知识点:简单组合体的三视图解析:解答: 从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.分析: 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.9.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()答案:C知识点:简单组合体的三视图解析:解答: 从上面看外边是一个矩形,里面是一个圆.故选:C.分析: 根据俯视图是从上面看得到的图形,可得答案.10.如图所示几何体的左视图为()答案:A知识点:简单组合体的三视图解析:解答: 从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形.故选:A.分析:根据从左边看得到的图形是左视图,可得答案.11.如图所示几何体的左视图是()答案:C知识点:简单组合体的三视图解析:解答: 从左面看可得矩形中间有一条横着的虚线.故选C.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同答案:B知识点:简单组合体的三视图解析:解答: A.主视图的宽不同,故A错误;B.俯视图是两个相等的圆,故B正确;C.主视图的宽不同,故C错误;D.俯视图是两个相等的圆,故D错误;故选:B.分析: 根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.13.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()答案:C知识点:简单组合体的三视图解析:解答:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示.故选:C.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.14.如图所示的物体的左视图为()答案: A知识点:简单组合体的三视图解析:解答:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.分析: 找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.15.一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体答案:A知识点:由三视图判断几何体解析:解答:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.二、填空题(共5题)1.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是______.(画图解答)答案:知识点:由三视图判断几何体解析:解答: 由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面分析:易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.2.任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是_______________.答案:正方体和球体知识点:简单几何体的三视图解析:解答: 正方体主视图、俯视图、左视图都是正方形;圆柱主视图和左视图是矩形,俯视图是圆;圆锥主视图和左视图是等腰三角形,俯视图是圆;球体主视图、俯视图、左视图都是圆;分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有_________答案:①②③知识点:简单几何体的三视图解析:解答: ①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.请将六棱柱的三视图名称填在相应的横线上.(1)__________(2)_____________(3)__________答案:(1)俯视图(2)主视图(3)左视图知识点:简单几何体的三视图解析:解答:(1)此形状是从几何体的上面看所得到的图形,是俯视图;(2)此形状是从几何体的正面看所得到的图形,是主视图;(3)此形状是从几何体的左面看所得到的图形,是左视图,故答案为:俯视图;主视图;左视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为_________答案:8π知识点:简单几何体的三视图111形,求此直三棱柱左视图的面积答案:知识点:简单几何体的三视图等边三角形的性质解析:解答: 此直三棱柱左视图是长为2,宽为AB边上的高的矩形,∵底面各边长均为2,∴△ABC是等边三角形,AB边上的高为∴此直三棱柱左视图的面积故答案为:分析: 根据左视图是从物体的左面看所得到的图形,判断出此直三棱柱的左视图是以侧棱长为长,以等边三角形的高为宽的矩形,再根据矩形的面积公式列式计算即可得解.2.长方体的主视图与俯视图如图所示,求这个长方体的体积答案:24知识点:简单几何体的三视图认识立体图形解析:解答:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24.故答案为:24.分析:由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.3.一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的底面边长4.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,求长方体的体积.答案:60知识点:简单几何体的三视图解析:解答:∵它的左视图的面积为12,∴高为12÷3=4,体积是4×5×3=60,故答案为:60.分析: 首先根据左视图的面积求出长方体的高,然后根据长方体的体积公式计算出长方体的体积即可。
人教版九年级下册 292三视图 同步练习题
初中数学人教版九年级下册29.2三视图同步练习一、选择题1.某几何体的三视图如图所示,这个几何体是()三棱柱A. 三棱锥B. C.圆柱 D.圆锥其中小正方形中的数字表示在该是由几个大小相同的小立方块所搭几何体的俯视图,2.如图,)位置的小立方块的个数,则这个几何体的主视图是(3.如图,该正方体的俯视图是())4.将一根圆柱形的空心钢管任意放置,它的主视图不可能是(下列关于这个几何体的说法正1的正方体搭成,如图,一个几何体由5个大小相同、棱长为5. )确的是(5 A.主视图的面积为3 B.左视图的面积为5 俯视图的面积为C.4三种视图的面积都是D.得到一个如图所示的零件,的小正方体,挖去一个棱长为26.从棱长为的正方体毛坯的一角,1 )则这个零件的表面积是(.A.20B.22C.24D.26过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,7. )它的俯视图为(则小正方8.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,)体的个数不可能是(A.5B.6C.7D.8小正方形中的数字表示在该位置上的立如图,是由几个小立方体所搭成的几何体的俯视图,9. )方体的个数,这个几何体的主视图是(若某几何体的三视图如图所示,则这个几何体是()10.二、填空题由三视图想象立体图时,要先分别根据主视图、俯视图和左视图想象立体图11.此外还要,然后再综合起来考虑整体图形 . 的最后结合三视图的特从线和线想象几何体看得见和看不见的部分的轮廓线,.点,将这些要素综合起来想象几何体的整体形状..12.在长方体、圆柱、圆锥、球中,三视图均一样的几何体是为轴,将正方形旋转一周,所得几何体的主,以直线AB的边长为13.如图,正方形ABCD3cm.视图的面积是. 中可得出物体的长 14.物体的三视图中,从中可以得出物体的高,从.15.一个几何体的三视图如图所示,则这个几何体的名称是桌上放着一个三棱锥和一个恻柱体,如图中的①②③三幅图分别是从哪个方向看的?按图16.填写顺序 .(填“正面”、“左面”或“上面”)17.如图是某几何体的三视图,则该几何体是放置的.18.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中 .y= , x= 的字母和数字表示该位置上小立方体的个数,求三、解答题如图是一个由多个相同的小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小19..正方体的个数,请根据俯视图画出该几何体的实物图及另外两个视图.20.画出下列几何体的三视图.根据几何体的三视图画出它的表面展开图21..22.如图,已知一个零件的主视图和俯视图,请描述这个零件的形状,并补画它的左视图.23.画出圆柱体的三视图这样的几何体只有一种24.用小立方块搭成一个几何体,使得它的主视图和俯视图如图所示. 吗?它最少需要多少个小立方块?最多需要多少个小立方体块?初中数学人教版九年级下册29.2三视图同步练习答案1~10.DCAAB,CBADC11.前面、上面和左面;实;虚.12.球.13.解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,几何体的主视图是长6cm,宽3cm的矩形,因此面积为:6×3=18(cm2),故答案为:18cm2.14.主视图或左视图;主视图或俯视图.15.三棱柱.16.左面、上面、正面.17.横着;空心圆柱.18.1或2;3.19.20.21.22.23.24.块.23块,第二列块,第三列13解:由主视图可知,它自下而上共有列,第一列块,从空中俯视的块数只3列,第一、二列各块,第三列1由俯视图可知,它自左而右共有3 要最低层有一块即可.其余为综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,因此,)块(如图),最多要块(如图一层,第三列一层,共101162。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学下册第二十九章《投影与视图——制作立体模型》
同步检测3附答案
一、精心选一选(每小题5分,共50分)
1.小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,它的主视图应该就是 ( )
2、某物体三视图如图,则该物体形状可能就是( )
(A)长方体、
(B)圆锥体、
(C)立方体、
(D)圆柱体、
3、下图就是由一些相同的小正方形构成的几何体的三视图,这些相同的小正方形的个数就是( )
(A)4个、 (B)5个、 (C)6个、(D)7个、
4、如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图就是
( )
5、如图就是一块带有圆形空洞与方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的就是
( )
6、小明从正面观察下图所示的两个物体,瞧到的就是
( )[
7、有一实物如图,那么它的主视图就是 ( )
8、如图就是正三菱柱,它的主视图正确的就是
( )
9、两个物体的主视图都就是圆,则这两个物体
可能就是( )
(A)圆柱体、圆锥体、 (B)圆柱体、正方体、
(C)圆柱体、球、 (D)圆锥体、球、
10、由若干个同样大小的正方体堆积成一个实
物,不同侧面观察到如下投影图,则构成该
实物的小正方体个数为 ( )
(A)6、 (B)7、 (C)8、 (D)9
二、用心想一想(每小题6分,共30分)
11、我们常说的三种视图就是指、
12、请写出三种视图都相同的两种几何体就是、
13、棱长就是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积就是
14、一个物体的俯视图就是圆,则该物体有可能就是(写两个即可)、
15、一个几何体的三视图如下,那么这个几何体就是、
三、解答题(每小题10分,共20分)
16、图中四个图形就是多面体的展开图,您能说出这些多面体的名称不?
17、画出如图所示中立体图形的三视图、
参考答案
1、B
2、A
3、D
4、B
5、A
6、C
7、B
8、B
9、D 10、B11、主视图俯视图左视图12、球、正方体13、36cm214、球圆柱体圆锥体等15、圆锥体16、略17、略。