有关长方体和正方体的奥数题
小学奥数:长方体与正方体(二).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形示例体积公式相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法例题精讲长方体与正方体(二)③先补后去法④实际操作法⑤画图建模法【例 1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。
【答案】6【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
4月1日五年级奥数题
图27—4五年级(长方体和正方体) 1、一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是 立方厘米.2(1)有一个正方体,如果高增加4cm ,就成为一个长方体,这个长方体的表面积正好比原正方体的表面积增加80平方cm ,求原正方体的体积。
(2)一个长方体的高如果增加2cm ,就成为一个正方体,这时表面积就比原来增加了48平方cm 。
原来长方体的体积是( )?3.一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是( ) 4、一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.(结果以分数形式出现)5、在棱长为3cm 的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm 的正方形(见右图)。
求挖洞后木块的体积( )。
6.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是( )立方厘米?7.一个长方体的棱长总和是48cm ,己知长是宽的1.5倍,宽是高的2倍,求它的体积( )。
8.一个正方体木块的表面积是96平方cm ,把它锯成体积相等的8个正方体小木块,每个小木块的表面积是 ( )9..从一棱长10厘米正方体木块上挖去一长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是( )10..把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?11.把19个棱长为3厘米的正方体重叠起来,如下右图图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
12..在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?13.在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。
小学奥数教程:长方体与正方体(一)全国通用(含答案)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?左面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?例题精讲长方体与正方体(一)【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),12⨯12⨯4=1(平方厘米),1 4⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体 【难度】4星 【题型】解答【关键词】迎春杯【解析】 截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求.剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体【难度】3星【题型】解答【解析】锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次,6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为2cm.56cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2563168(cm)⨯=.【答案】168【例12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】 10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
长方体正方体奥数题练习题
长方体正方体奥数题练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?4、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。
做一节水管,至少要用铁皮多少平方分米?5.把一根长米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。
长方体和立方体奥数题
长方体和立方体班级:姓名:得分:一、填空。
1、长方体有( 6 )个面,( 12 )条棱,( 8 )个顶点,相对的棱长度(),相对的面()。
2、一个长方体的长5厘米,宽3厘米,高2厘米,它的最大的一个面是()面,面积是()。
这个长方体的表面积是(),体积是()。
3、一个正方体的棱长总和是48厘米,它的表面积是( 96 ),体积是( 64 )。
4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。
5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。
6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。
7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。
8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。
9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。
则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。
原来长方体的体积是()立方厘米。
二、判断。
1、正方体是特殊的长方体。
()2、一个长方体可能有8条棱的长度都相等。
()3、棱长是6分米的正方体,它的表面积和体积相等。
()4、正方体的棱长缩小一半后,体积比原来少一半。
()5、一个正方体的棱长扩大a倍,那么它的体积扩大a2倍。
()6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米.三、基础题。
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
- 2 -3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?4、 有一个长方体形状的零件。
五年级奥数《长方体与正方体的表面积》练习题
第七讲:长方形与正方形的表面积(必做与选做)1.一个正方体木箱,棱长4分米。
做一个这样的木箱至少要用木板()平方分米。
A. 64B. 16C. 96D. 192解析:要求做一个这样的木箱至少要木板多少平方分米,就是求它的表面积。
正方体的表面积=棱长×棱长×6,所以木箱的表面积=4×4×6=96(平方分米)。
选C。
2.一个长方体纸盒(有盖),长12厘米,宽9厘米,高8厘米,它的表面积是()平方厘米。
A. 552B. 58C. 348D. 864解析:长方体的表面积=长×宽×2+宽×高×2+长×高×2,所以长方体纸盒的表面积=12×9×2+12×8×2+9×8×2=552(平方厘米)。
选A。
3.一个长16厘米、宽12厘米、高8厘米的长方体纸盒(有盖),它的表面积是()平方厘米。
A. 1536B. 832C. 144D. 416解析:长方体的表面积=长×宽×2+宽×高×2+长×高×2,所以长方体纸盒的表面积=16×12×2+12×8×2+16×8×2=832(平方厘米)。
选B。
4.做3个不带盖的正方体铁盒,棱长12厘米,至少要用铁皮()平方厘米。
A. 216B. 2592C. 2160D. 288解析:做一个无盖的立方体铁盒,要用的铁皮的面积就是立方体减去一个面的面积,所以做3个不带盖的正方体铁盒,至少需要铁皮12×12×5×3=2160(平方厘米)。
选C。
5.一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃()平方米。
B. 0.59C. 0.03D. 0.49解析:做一只无盖的长方形鱼缸,要用的玻璃的面积就是长方体除去上面后其他面的面积和,所以一只无盖的长方形鱼缸,至少需要玻璃0.4×0.25+0.25×0.3×2+0.4×0.3×2=0.49(平方米)。
长方体正方体奥数题
For personal use only in studyand research; not forcommercial use25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
长方体及正方体表面积奥数题
长方体和正方体的表面积奥数题
一、将两个都是 7 厘米,宽都是 5 厘米,高都是 3 厘米的长方体拼成一个大长方体。
那么大长
方体表面积最大是多少平方厘米?
二、有一个长方体,长是 12 厘米,宽是 9 厘米,高是 6 厘米,把它截成棱长是干个
小正方体表面积之和比本来长方体的表面积增添了多少平方厘米?
3 厘米的若
三、正方体木块的表面积是
96 平方分米,把它沿虚线截成体积相等的8 个正方体木块,这时表面积增添多少平方米?
四、在一个棱长是
6 分米的正方体上放一个棱长为 3 分米的小正方体,求这个立方体的表
面积?
五、一个正方体形状的木块,棱长为锯成 4 条,每条又随意按尺寸锯成
1 米,沿着水平方向将它锯成
3 块,共获得大大小小的长方体
3 片,每片又按随意尺寸
36 块,问这 36 块长方体
表面积的和是多少平方米?。
小学六年级奥数第5课长方体和正方体试题附答案-精品
小学六年级上册数学奥数知识点讲解第5课《长方体和正方体》试题附答案例1有一个长方体,它的底面是一个正方形,它的表面积是19评方厘米, 如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为24评方厘米,求原来长方体的体积.例2如下图,一个边长为3涯米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为遮米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长.例3有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍.例4有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米, 把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?例5下图是正方体的展开图之一,当用它组成立方体时,图中的哪一边与带★记号的边相接触呢?例6下图是正方体的11种展开图和2种伪装图(即它们不是正方体的展开图),请你指出伪装图是哪两个?(1)(5)(9)(13)例7如下面的各图中均有若干个六面体,每小题图中的几个六面体上A、B、C、D、E、F六个字母的排列顺序完全相同(即每个小题中六面体上刻字母的方式是完全一样的)试判断各小题的图中A、B、C三个字母的对面依次是哪几个字母?0000⑷⑸(6)例8有一块正方体的蛋糕.用刀子将它一刀切成两半,为了使切口成正六边形,应该怎样切呢?答案例1有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为遮米,高为遮米,则它被截成两个长方体后,两个截面的面积和为2/平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+2a2=240,可知,a:=25,故a=5(厘米).又因为2aZ+4ah=190,5曰190-2X25 「〜解得,h=———=7(厘米).4x3所以,原来长方体的体积为:V=a:h=25X7=175(立方厘米).例2如下图,一个边长为3涯米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为遮米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长.解;原来正方体的表面积为:6X3aX3a=6X9a:(平方厘米).六个边长为a的小正方形的面积为:6XaXa=6水(平方厘米);挖成的每个长方体空洞的侧面积为:3aXaX4=12/(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:X a X4=4a2(平方厘米).a根据题意:6X9a2-6a2+3(12a2-4a2)=2592,化简得:54a2-6a2+24a2=2592,解得a;=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍.解:把每一块积木锯三次,锯成g块小立方体(如下图).这样,每锯一次便得到两个大截面,使表面积增加4倍,锯三次使截面增加3X;=1 (倍),因此全部小积木的表面总面积就比原积木表面总面积增加了一倍.例4有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米, 把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?解:水池中水面升高部分水的体积就是投入水中的碎石体积.沉入中、小水池中的碎石的体积分别是:3X3X0.04=0.36立方米,2X2X0.11=0.44立方米.它们的和是:0.36+0.44=0.8立方米.把它们都沉入大池里,大池水面升高部分水的体积也应当是0£立方米,而大池的底面面积是4X4=16平方米,所以,大水池的水面升高:np0.8-16=瑞米=5厘米.例5下图是正方体的展开图之一,当用它组成立方体时,图中的哪一边与带★记号的边相接触呢?X _____★☆Y. ----------GA“HB解:对于这个问题,考虑将各面拼凑成正方体是一种方法,但如只考虑边的连接会更简洁:首先☆和G连接,其次H和I连接,且X、Y、Z三点重合为正方体的一个顶点,因此与★连接的是K边.例6下图是正方体的11种展开图和2种伪装图(即它们不是正方体的展开图),请你指出伪装图是哪两个?解:无论哪一个图中都有六个小正方形,都好像有道理,但当我们把相邻两边逐一拼合后,不能变成正方体的是(10)和(12),这两个图形,都是有五面在拼合时不成问题,但是最后一面总是挤在外面而成不了正方体.例7如下面的各图中均有若干个六面体,每小题图中的几个六面体上A、B、C、D、E、F六个字母的排列顺序完全相同(即每个小题中六面体上刻字母的方式是完全一样的)试判断各小题的图中A、B、C三个字母的对面依次是哪几个字母?0000(1) (2) ⑶⑷(5) (6)解:(1)由图中可知,A 与B 、C 、E 、F 都相邻,故A 的对面是D.E 、F 的 位置可按右手关系得出,伸出右手,伸直大拇指按(1)中右图所示,让四指 方向从A 转动而指向F,此时大拇指正好指向E (向上).如果,判断为F 在C 对 面,由(1)中左图所示,让四指的方向从A 向F,此时大拇指指向B,与Q ) 中右图矛唐,故F 在B 的对面,E 在C 的对面.(2)~(6)按A 、B 、C 顺序给出对面的字母:(2)E 、D 、F ;(3)F 、E 、D ;(4)D 、F 、E ;(5)E 、D 、F ;(6)F 、E 、D.41T 「吃有匚热正方体的蛋糕・用刀子将它一刀切成两半,为了使切口成正六 边形,应该怎样切呢?一般地,按照平常习惯的切法切下去,得瞥?普甚鸥S2F 专 方布或者像、(3)那卷的长方就疝果斜切下去时才包球忆曹,比 露(4)那粹,以打直切的摩匿*将不相邻的某一边的中点作另一 方,沿它的连接线来切,切口变成菱形.习题五 今 \lym H 5 XT zk 中等图相 上都如度 ,医 切以 来所 线, 连线 的直 它的 着点 沿中. ,的形 点边边 中和六 的边正 边接是 邻连故 相是, 接都六 连边是 ,各数 步的边口, 进切等 rm XT 果因也 如,角 示夹 所边 (1)(2) (3) ⑷ ⑸一.填空题:1.一块矩形纸板,长8厘米,宽6厘米,把它折成底面为正方形的长方体的侧面,则这个长方体的底面面积为______ 平方厘米.2.有一个棱长为6厘米的正方体木块,如果把它锯成棱长是2厘米的正方体若干块,表面积增加了_____ 平方厘米.3.把一根2米长的方木锯成两段,表面积增加288平方厘米,原来这根方木的体积是_____ 立方厘米.4.把棱长为涯米的两个正方体拼成一个长方体,长方体的表面积是原来两个正方体表面褥口冷•.5.把棱长1厘米的正方体2100个,堆成一个实心的长方体,它的高是10厘米,长和宽都大于高,这个长方体的长与宽的和是______ 厘米.二、选择题:1.一个正方体的体积是343立方厘米,它的全面积是一平方厘米.(A)42(B)196(C)294(D)3922.把棱长为3分米的正方体锯成两个长方体,这两个长方体表面积的和是平方分米.(A)54(B)72(C)108(D)以上都不对3.如下图,一个木制的正方体的棱长为2分米,每个面的正中有一个正方形的孔通到对边,边长为1分米,孔的各棱平行于正方体相对的棱,那么这个镂空几何体的总表面积的平方分米数是—.(A)24(B)30(c)36(D)424.如下页图立方体的每个角都被切下去(图中仅画了两个),问所得到的几何体有一条棱?(A)24(B)30(C)36(D)425.立方体各面上的数字是连续的整数(如图).如果每对对面上的两个数的和相等,那么,这三对数的和是_.(A)75 (B)76 (C)78 Q)811.一个木盒从外面量长10厘米,宽8厘米,高5厘米,木板厚1厘米.问①做这个木盒最少需要1厘米厚的木板多少平方厘米?②这个木盒的容积是多少立方厘米?2.将一个长9厘米,宽8厘米,高3厘米的长方体木块锯成若干个小正方体(锯痕宽度忽略不计),然后再拼成一个大正方体,求这个大正方体的表面积.3.一个边长为6厘米的正方体铁盒装满了水,将水倒入一个长9厘米,宽8 厘米的长方形水槽内,若铁皮厚度不计,求水深.4.把19个边长为2厘米的正方体重登起来,作成如下图那样的组合形体,求这个组合形体的表面积.广—能为含面曜野4平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一I大正方体(不计损耗).求这个大正方体的体积和表面积.体,;可黑母耍'露篇需舞部下图中是三个不同方位的这一个正方六年级奥数上册:第五讲长方体和正方体习题解答习题五解答一.填空题:9i.4或a平方厘米,应注意到有两种折法.2.432平方厘米.3.28800立方厘米.42・6,—N鬻仁患吩解属因数,因为棱长为1厘米,所以符合条件(大于10厘米)的长和见只能足15厘米和14厘米,故长与宽的和是29厘米.1.①256平方厘米;②144立方厘米.2.216平方厘米.3.3厘米.4.(4X9+4X10+4X8)X2=216平方厘米.5.216立方厘米,216平方厘米.6.AM面是E,B对面是F,C对面是D.附:奥数技巧分享分享四个奥数小技巧。
暑假5升6奥数专题:长方体和正方体综合(试题)-小学数学五年级下册人教版_39877036
暑假5升6奥数专题:长方体和正方体综合(试题)-小学数学五年级下册人教版一、选择题1.把3个相同的小长方体拼成了1个15cm高的大长方体,表面积减少了248cm,那么原来1个小长方体的体积是()3cm。
A.180B.120C.602.一个长方体表面积是130平方厘米,底面积是20平方厘米,底面周长是18厘米那么这个长方体的体积是()立方厘米。
A.100B.110C.180D.3603.莆田木雕是传统艺术。
如图,一块长方体木料沿高截去2厘米,变成一个正方体,表面积减少48平方厘米,原来长方体的体积是()。
5.如图,在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退。
开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能是下列数中的()。
A.5B.4C.3D.16.用棱长1cm的小正方体拼成如右图的大正方体,并把它的表面涂上颜色。
在这个拼成的大正方体中,没有涂色的小正方体有多少块?()A.1块B.2块C.3块D.4块二、填空题7.一根长方体木料,长2m,宽0.5m,厚2dm,把它锯成4段,表面积最少增加( )dm2。
8.一个底面是正方形的长方体,如果高增加1厘米,它的表面积就增加8平方厘米,如果这个长方体的高是15厘米,原来这个长方体的体积是( )立方厘米。
9.用一根铁丝围一个长12cm、宽10cm、高5cm的长方体框架,至少需要铁丝( )cm,这个长方体的体积是( )cm3。
如果将这根铁丝改围成一个正方体框架,这个正方体框架的表面积是( )cm2。
10.将一个表面涂色的大正方体每条棱长都平均分成4份,在沿线将它切开,一面涂色的小正方体有( )个,没有涂色的小正方体有( )个。
11.一个长方体,如果长减少3cm,刚好变成了一个正方体,表面积比原来减少了120cm2,原来这个长方体的体积是( ),表面积是( )。
五年级下册数学长方体与正方体奥数练习题
五年级下册数学长方体与正方体奥数练习题第一篇:五年级下册数学长方体与正方体奥数练习题长方体和正方体(一)一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。
二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习2:1.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?体积为4^3-1^3=64-1=63立方厘米表面积不变,大小为6×4²=96平方厘米【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?练习3:1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题4】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?练习4:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?依题意长*宽+长*高=88 即长*(宽+高)=88 而长宽高都是质数,长*(宽+高)=11*(5+3)可知长宽高分别为11,5,3 长方体的体积是11*5*3=165立方厘米。
(完整)三年级长方体和正方体的表面积奥数题训练
(完整)三年级长方体和正方体的表面积奥数题训练三年级长方体和正方体的表面积奥数题训练- 题目一:长方体的长、宽和高分别为6厘米、4厘米和3厘米,求其表面积。
解答:长方体的表面积可以通过公式2*(长*宽 + 长*高 + 宽*高)来求得。
带入具体数值,表面积=2*(6*4 + 6*3 + 4*3) = 2*(24 + 18 + 12) = 2*(54) = 108平方厘米。
- 题目二:正方体的边长为5厘米,求其表面积。
解答:正方体的表面积可以通过公式6*边长^2来求得。
带入具体数值,表面积=6*5^2 = 6*25 = 150平方厘米。
- 题目三:长方体的表面积为96平方厘米,其中长为8厘米,宽和高之积为12平方厘米,求宽和高的值。
解答:假设宽为x,高为y,则由题意得 x*y = 12。
长方体的表面积可以用公式2*(长*宽+ 长*高+ 宽*高)来表示。
带入具体数值,96 = 2*(8*x + 8*y + x*y) = 2*(8*x + 8*y + 12) = 16x + 16y + 24。
化简得 16x + 16y = 96 - 24 = 72。
又由 x*y = 12 得 x = 12/y,代入上式,16*(12/y) + 16y = 72,化简得 192 + 16y^2 - 72y = 0,移项得 16y^2 - 72y + 192 = 0,化简得 y^2 - 4.5y + 12 = 0。
利用求根公式,得y ≈ 2.61 或y ≈ 1.84。
根据题意,宽和高的值应为正数,所以取y ≈ 2.61。
代入x = 12/y ≈ 4.59。
因此,宽和高的值约为4.59和2.61。
以上是关于三年级长方体和正方体的表面积奥数题训练的解答。
来源:数学奥数题。
小学奥数:长方体与正方体(一).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba H GF ED CB A①在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.)②长方体的表面积和体积的计算公式是:长方体的表面积:2()S ab bc ca =++长方体;长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面上面【考点】长方体与正方体 【难度】1星 【题型】解答【解析】 如右图所示,可以分前、后、左、右、上、下六个方向看这个立体图形.前、后看各有1个面,左面看有1个面,右面看有2个面,上面看有2个面,下面看有1例题精讲长方体与正方体(一)个面.所以共有1112218+++++=(个)面.前后方向的棱有6条,左右方向的棱有6条,上下方向的棱也有6条,所以共有棱66618++=(条).【答案】8个面,18条棱【巩固】右图中共有多少个面?多少条棱?【考点】长方体与正方体【难度】1星【题型】解答【解析】9个面,21条棱.【答案】9个面,21条棱【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10⨯10⨯6=600.【答案】600【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50⨯50⨯6=15000(平方厘米).【答案】15000【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【解析】原来正方体的表面积为5⨯5⨯6=150.现在立体图形的表面积减少了前后两个面中的部分面,它们的面积为(3⨯2)⨯2=12,所以减少的面积就是12.【答案】12【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【解析】原来正方体的表面积为 5 ×5×6=150,现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,12÷150=0.08=8%.即表面积减少了百分之八.【答案】百分之八【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【解析】原正方体的表面积是4⨯4⨯6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4⨯6=120平方厘米.【答案】120【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【解析】大立方体的表面积是20⨯20⨯6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但里面又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.【答案】3【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2⨯2⨯2=8(平方厘米);左右方向、前后方向:2⨯2⨯4=16(平方厘米),1⨯1⨯4=4(平方厘米),1 2⨯12⨯4=1(平方厘米),14⨯14⨯4=14(平方厘米),这个立体图形的表面积为:816++4+1+14=1294(平方厘米).【答案】1 294【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报【解析】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【答案】按图1所示沿一条棱挖,为592平方厘米;按图2所示在某一面上挖,为632平方厘米;按图3所示在某面上斜着挖,为648平方厘米;按图4所示挖通两个对面,为672平方厘米.图1 图2 图3 图4【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体【难度】4星【题型】解答【关键词】迎春杯【解析】截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是: 15⨯15⨯6-7⨯7⨯2=1252.想想为什么不是15⨯15⨯6-7⨯7-8⨯8 ?【答案】1252【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【解析】 可以将这个图形看作一个八棱柱,表面积和为:87662616661787292⨯-⨯⨯+⨯+++++++=()()(平方厘米).也可以这样想:由于截去后原来的长方体的表面少了3个66⨯的正方形,而新图形凹进去的部分恰好是3个66⨯的正方形,所以新图形的表面积与原图形的表面积相等,为()8786762292⨯+⨯+⨯⨯=(平方厘米).【答案】292【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 本题的关键是确定三次切下的正方体的棱长.由于21:15:127:5:4=,为了方便起见.我们先考虑长、宽、高分别为7厘米、5厘米、4厘米的长方体.因为754>>,容易知道第一次切下的正方体棱长应该是4厘米(如图),第二次切时,切下棱长为3厘米的正方体符合要求.第三次切时,切下棱长为2厘米的正方体符合要求. 剩下的体积应是()33321151212961107⨯⨯-++=(平方厘米).【答案】1107【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 锯一次增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数⨯2=增加的面数.原正方体表面积:1⨯1⨯6=6(平方米),一共锯了(2-1)+(3-1)+(4-1)=6次, 6+1⨯1⨯2⨯6=18(平方米).【答案】18【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体【难度】3星【题型】解答【解析】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1⨯l=1(平方米),所以表面积增加了9⨯2⨯1=18(平方米).原来正方体的表面积为6⨯1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【答案】24【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【解析】每一刀增加两个切面,增加的表面积等于与切面平行的两个表面积,所以每个方向切两刀后,表面积增加到原来的3倍,即表面积的和为2⨯=.563168(cm)【答案】168【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【解析】10⨯10⨯6=600(平方厘米).【答案】600【例 13】 有n 个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n 为多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 由于堆成的长方体的底面就是原来正方体的底面,说明这个长方体是由这些正方体一字排开组成的,从这个长方体的顶部拿去一个正方体,减少的面积相当于侧面的四个正方形的面积,所以正方体每个面的面积是144436÷=(平方厘米).所堆成的长方体的表面积,包含底面的2个正方形和侧面的4n 个正方形,所以(3096362)14421n =-⨯÷=.【答案】21【例 14】 边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6⨯3⨯3+6⨯5⨯5+6⨯8⨯8-2⨯2⨯3⨯3-2⨯5⨯5=502.【答案】502【例 15】 如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体 【难度】3星 【题型】解答【解析】 当小积木互相重合的面最多时表面积最小.设想27块边长为1的正方形积木,当拼成一个333⨯⨯的正方体时,表面积最小,现在要去掉2块小积木,只有在两个角上各去掉一块小积木,或在同一个角去掉两块相邻的积木时,表面积不会增加,该几何体表面积为54.【答案】54【例 16】 由六个棱长为1的小正方体拼成如图所示立体,它的表面积是 .【考点】长方体与正方体 【难度】3星 【题型】填空【关键词】走美杯,4年级,决赛,第3题,8分【解析】 三视图法:表面积为:()454226++⨯=【答案】26【例 17】 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
小学奥数:长方体与正方体(二).专项练习及答案解析
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形示例体积公式相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法例题精讲长方体与正方体(二)③先补后去法④实际操作法⑤画图建模法【例 1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例 2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。
【答案】6【例 3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例 4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
小学五年级长方体正方体的奥数题
小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?4、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。
做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。
有关长方体和正方体的奥数题
有关长方体和正方体的奥数题高分别是3厘米、4厘米、5厘米,求这两个立体图形的表面积和体积。
1.一个零件的形状如图所示,求它的体积和表面积。
该零件的体积为 60 立方厘米,表面积为 94 平方厘米。
2.一个长方体长 5 厘米,宽 1 厘米,高 3 厘米,被切去一块后剩下的部分的表面积为 38 平方厘米,体积为 12 立方厘米。
3.把一根长 2 米的长方体木料锯成 1 米长的两段,表面积增加了 2 平方分米,原来的木料体积为 8 立方米。
4.一个长方体形状的零件中间挖去一个正方体的孔,该零件的体积为 150 立方厘米,表面积为 194 平方厘米。
5.一个零件的形状如图所示,求它的体积和表面积。
该零件的体积为 48 立方厘米,表面积为 94 平方厘米。
6.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了 50 平方厘米。
原正方体的表面积为 54 平方厘米。
7.把 11 块相同的长方体砖拼成一个大长方体,每块砖的体积为 288 立方厘米,大长方体的表面积为 2184 平方厘米。
8.一个长方体的体积是 385 立方厘米,且长、宽、高都是质数,该长方体的表面积为 194 平方厘米。
9.一个长方体前面和上面的面积之和是 209 平方厘米,且长、宽、高都是质数。
该长方体的体积为 77 立方厘米,表面积为 214 平方厘米。
10.一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别为 3 厘米、4 厘米、5 厘米,两个立体图形的表面积分别为 94 平方厘米和 94 平方厘米,体积分别为 60 立方厘米和 27 立方厘米。
小学五年级长方体正方体的奥数题
小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。
它的容积是多少升?4、楼房外壁用于流水的水管是长方体。
如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。
做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。
长方体正方体奥数题
25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体和正方体(一)
姓名:
1.一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
2.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?
3.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
4.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
5.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)评价:
6.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?
7.把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积
是288立方厘米,求大长方体的表面积。
8.一个长方体的体积是385立方厘米,且长、宽、高都是质数,求
这个长方体的表面积。
9.一个长方体,前面和上面的面积之和是209平方厘米,这个长方
体的长、宽、高以厘米为单位的数都是质数。
这个长方体的体积和
表面积各是多少?
10.一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、
__________________________________________________
高分别是6分米、4分米、5分米,求正方体体积。
__________________________________________________。