2017年湖北省咸宁市崇阳县桃溪中学九年级上学期期中数学试卷和解析
2017年湖北省咸宁市中考数学试卷解析版
2017年湖北省咸宁市中考数学试卷 满分:120分 版本:人教版 第I 卷(选择题,共24分)一、选择题(每小题3分,共8小题,合计24分)1.(2017湖北咸宁,1,3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )景区 潜山公园 陆水湖 隐水洞 三湖连江 气温-1℃0℃-2℃2℃A. 潜山公园B. 陆水湖C. 隐水洞D.三湖连江 答案:C解析:∵-2<-1<0<2,∴气温最低的景区是隐水洞.故选C.2.(2017湖北咸宁,2,3分)在绿洲鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为( ) A. 121×104 B. 12.1×105 C. 1.21×105 D.1.21×106 答案:D解析:1210000=1.21×106. 3.(2017湖北咸宁,3,3分)下列算式中,结果等于5a 的是( )A .32a a +B .32a a ⋅C .a a ÷5D .32)(a答案:B解析:∵32a a +中的23a a 、不是同类项,无法合并,∴A 错误; ∵23235=a a aa +⋅=,∴B 正确; ∵55145a a a a a -÷==≠,∴A 错误;∵232365()=a aa a ⨯=≠,∴D 错误.故选B.4.(2017湖北咸宁,4,3分) 如图是某个几何体的三视图,该几何体是( )A .三棱柱B .三棱锥 C.圆柱 D .圆锥答案:A解析:∵三棱柱的三视图符合所给的三视图的形状,∴A 正确; ∵三棱锥的三视图是三角形,与所给三视图不一致,∴B 错误; ∵圆柱的俯视图是圆,与所给三视图不一致,∴C 错误;∵圆锥主视图、左视图都是三角形、俯视图是圆形,与所给三视图不一致,∴D 错误. 故选A.5.(2017湖北咸宁,5,3分)由于受79H N 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则( )A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --=答案:D解析:∵1月份鸡的价格为24元/千克,2月份鸡的价格比1月份下降a%, ∴2月份鸡的价格为24(1%)a -. 又∵3月份比2月份下降b%,∴3月份鸡的价格%)1%)(1(24b a m --=.故选D.6.(2017湖北咸宁,6,3分)已知a 、b 、c 为常数,点P(a ,c)在第二象限,则关于x 的方程02=++c bx ax 根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 答案:B解析:∵点P(a ,c)在第二象限, ∴a <0,c >0, ∴ac <0, ∴-4ac >0. 又∵20b ≥, ∴△=24b ac ->0,∴关于x 的方程02=++c bx ax 有两个不相等的实数根.故选B.7.(2017湖北咸宁,7,3分)如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB 、OD ,若∠BOD=∠BCD ,则»BD的长为( )A .π B.π23C. π2 D .π3 答案:C 解析:∵∠BAD=12∠BOD=12∠BCD ,∠BAD+∠BCD=180°, ∴∠BOD=120°.又∵⊙O 的半径为3,∴»BD的长为1203=2180ππ⋅.故选C. 8.(2017湖北咸宁,8,3分)在平面直接坐标系xOy 中,将一块含义45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此点C 的对应点C '的坐标为( )A .)0,23(B .)0,2( C. )0,25( D .)0,3(答案:C解析:如图,过点B 作BD ⊥x 轴于点D ,则∠AOC=∠CDB=∠ACB=90°,AC=CB.∵∠ACO+∠BCD=90°,∠ACO+∠CAO=90°, ∴∠CAO=∠BCD.在△AOC 与△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB(AAS). ∴OC=BD ,OA=CD.又∵点C 的坐标为(1,0),点A 的坐标为(0,2), ∴BD=OC=1,CD=OA=2, ∴OD=OC+CD=1+2=3, ∴点B 的坐标为(3,1).设双曲线的解析式为k y x =,则13k =, ∴k=3,∴双曲线的解析式为3y x=. ∵将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动, ∴平移后点A 的对应点A ′的纵坐标为2, ∴由32x =可以求得其横坐标为32. ∵平移后点C 的对应点C ′的横坐标比点A ′的横坐标大1, ∴点C ′的横坐标为32+1=52, ∴点C ′的坐标为)0,25(.故选C .二、填空题(每小题3分,共8小题,合计24分)9.(2017湖北咸宁,9,3分) 8的立方根是 . 答案:2解析:∵32=8,∴8的立方根是2.10.(2017湖北咸宁,10,3分)化简:211÷x x x x-+= . 答案:x-1解析:211÷x x x x -+=(1)(1)1x x xx x +-⋅+=x-1. 11.(2017湖北咸宁,11,3分)分解因式:=+-2422a a . 答案:22(1)a -解析:=+-2422a a 22(21)a a -+=22(1)a -.12.(2017湖北咸宁,12,3分) 如图,直线y=mx+n 与抛物线c bx ax y ++=2交于A(-1,p),B(4,q)两点,则关于x 的不等式c bx ax n mx ++>+2的解集是 .答案:x <-1或x >4解析:由函数图象可知:在点A 的左侧和点B 的右侧,一次函数的函数值都大于二次函数的函数值,∵A(-1,p),B(4,q),∴关于x 的不等式c bx ax n mx ++>+2的解集是x <-1或x >4.13.(2017湖北咸宁,13,3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步)1.1 1.2 1.3 1.4 1.5 天数375123在每天所走的步数这组数据中,众数和中位数分别是 . 答案:1.4;1.35解析:∵1.4出现的次数最多(12次), ∴众数为1.4.∵数据的总个数为30,∴中位数是第15个数和第16个数的平均数,即1.3 1.41.352+=. 14.(2017湖北咸宁,14,3分)如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,若BE=3,则折痕AE 的长为 .答案:6解析:由题意得:OE=BE=3,OE ⊥AC ,OA=OC=12AC ,设AE=x ,则CE=AE=x , ∴BC=x+3,2222239OC CE OE x x ---∴AC=2OC=229x -∵△COE ∽△CBA , ∴=CO CECB CA, 即229329x x x -+-,化简,得23180x x --=, 解得16x =,23x =-(舍去).∴AE=6.15.(2017湖北咸宁,15,3分)如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,AF ∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转ο60,当n=2017时,顶点A 的坐标为 .答案:(2,23)解析:如图所示,连接OA ,设AF 与y 轴交于点M ,则△AOB 为等边三角形. ∵正六边形ABCDEF 的边长为4,∴OA=AB=OB=4,∠OAM=60°. ∴点B 的坐标为(-4,0).∵AF ∥x 轴, ∴∠AMO=90°,∴AM=OA·sin ∠OAM=OA·sin60°=4×12=2, OM=OA·cos ∠OAM=OA·cos60°=4×32=23 ∴点A 的坐标为(-2,3∵正六边形是轴对称图形,∴点C 的坐标为(-2,23-,点D 的坐标为(2,3-,点F 的坐标为(2,23,∴点E 的坐标为(4,0).∵将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转ο60, ∴每旋转6次,点A 都回到初始位置. 当n=2017时,∵2017÷6=336……1, ∴顶点A 旋转到点F 的位置, ∴顶点A 的坐标为(2,23).16.(2017湖北咸宁,16,3分)如图,在Rt △ACB 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则32=OA ; ②C 、O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 . 答案:①②解析:∵Rt △ACB 中,BC=2,∠BAC=30°, ∴AB=2BC=4,22224223AC AB BC =-=-=∵C 、O 两点关于AB 对称,∴23OA AC ==,∴①正确;∵当OC 过点D 时,C 、O 两点间的距离最大,最大值为4,∴②正确;∵AB 平分CO 时,OA 不一定与AC 相等,∴AB ⊥CO 不一定成立,∴③错误; ∵斜边AB 的中点D 运动路径是以点O 为圆心,2为半径的圆周长的14,∴点D 运动路径的长为122=42πππ⨯⨯≠,∴④错误. 三、解答题(共8小题,合计72分)17.(2017湖北咸宁,17,8分)⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 思路分析:(1)首先利用绝对值的求法、二次根式的化简公式、0指数的意义将每一部分进行化简,然后再进行合并,即可得到结果;(2)先去分母转化为整式方程,再解整式方程,最后通过检验确定原分式方程的解.解:(1)0201748|3|+--3431 …… 3分=33+1- …… 4分(2)两边同时乘以2x(x-3),得x-3-4x ,…… 5分 解得x=-1, …… 6分 检验:当x=-1时, 2x(x-3)=2×(-1)×(-1-3)=8≠0, …… 7分 ∴原分式方程的解为x=-1. …… 8分 18.(2017湖北咸宁,18,7分)如图,点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,BE=FC.⑴求证:△ABC ≌△DFE ;⑵连接AF 、BD ,求证:四边形ABDF 是平行四边形.思路分析:(1)首先利用线段的和差关系与等式的性质证明BC=FE ,然后使用“SSS ”证明三角形全等;(2)借助(1)中的三角形全等证明AB 与DF 平行且相等,进而得到四边形ABDF 是平行四边形.证明:(1)∵BE=FC ,∴BC=FE. ……2分 在△ABC 与△DFE 中,AB DF AC DE BC FE =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DFE(SSS). ……4分 (2)连接AF 、BD ,∵△ABC ≌△DFE ,∴∠ABC=∠DFE , ……5分 ∴AB ∥DF. ……6分 又∵AB=DF ,∴四边形ABDF 是平行四边形. ……7分19.(2017湖北咸宁,19,8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率.思路分析:(1)由统计图知动画的人数为60,对应的百分比为30%,∴总人数为:60÷30%=200.∴喜欢体育的人数为:200-30-60-70=40,∴“体育”对应扇形的圆心角是:360°×40200=72°.(2)∵样本中喜爱“娱乐”的百分比为:70100%=35% 200,∴估计该校2000名学生中喜爱“娱乐”的人数为:2000×35%=700.(3)画树状图如下:利用树状图可以求出所抽取的2人来自不同班级的概率.解:(1)补充图如下:……1分72. ……2分 (2)700. ……4分 (3)画树状图如下:……6分从树状图可以看出,共有12种等可能结果,其中,抽取的2人来自不同班级的有8种, ∴所抽取的2人来自不同班级的概率为82=123. ……8分 20.(2017湖北咸宁,20,8分)小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.xΛ-1 0 1 2 3ΛyΛb 1 0 1 2Λ其中,b= ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .思路分析:(1)由于|1|-=x y 对x 没有任何限制, ∴自变量x 的取值范围是任意实数(或全体实数). (2)当x=-1时,y=|-1-1|=|-2|=2, ∴b=2.(3)描点画图如下:(4)答案不唯一,可以从函数图象经过的象限、增减性、对称性、最值等角度进行分析. 解:(1)任意实数(或全体实数). ……1分 (2)2. ……2分 (3)描点,画函数图象如下图所示:(说明:描点1分,画图象2分,图象画成线段扣1分) ……5分(4)参考答案:①函数的最小值为0;②函数图象的对称轴为直线x=1;③当x>1时,y随x的增大而增大;④当x<1时,y随x的减小而减小;……8分21.(2017湖北咸宁,21,9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.⑴求证:DF是⊙O的切线;⑵若AE=4,cosA=25,求DF的长.思路分析:(1)由于点D 是圆上一点,所以要证明DF是⊙O的切线,只要连接OD,证明OD⊥DF即可;(2)由于已知AE=4,cosA=25,所以只要过点O作OG⊥AC,垂足为G,就可以使用垂径定理求出AG=12AE=2,再使用三角函数定义求出OA=5,然后使用勾股定理求得OG,最后利用正方形ODFG的性质求出DF. 解:(1)连接OD.∵OB=OD,∴∠ODB=∠B.又∵AB=AC,∴∠C=∠B.∴∠ODB=∠C,∴OD∥AC. ……2分∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF 是⊙O 的切线. ……4分 (2)过点O 作OG ⊥AC ,垂足为G .∴AG=12AE=2. ……5分 ∵cosA=AGOA ,∴=5cos AGOA A=,∴2221OG OA AG =-=.……7分 ∵∠ODF=∠DFG=∠OGF=90°, ∴四边形OGFD 是矩形,∴DF=OG=21. ……9分22.(2017湖北咸宁,22,10分)某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是 件,日销售利润是 元; ⑵求y 与x 之间的函数关系式,并写出x 的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元? 思路分析:(1)∵线段DE 表示的函数关系中,时间每增加1天,日销售量减少5件, ∴第24天的日销售量是340-5×(24-22)=330(件). ∵该产品的成本价位6元/件,售价为8元/件, ∴日销售利润是330×(8-6)=660(元).(2)∵OD 是正比例函数,且过点(17,340), DE 是一次函数,且过点(22,340)(24,330),∴利用待定系数法可以求出y与x之间的函数关系式,结合函数图象的交点坐标可以写出x 的取值范围.(3)利用“日销售利润不低于640元”,结合两个函数解析式可以求出x的取值范围,再确定天数和日销售最大利润.解:(1)330. ……1分660. ……2分(2)设线段OD所表示的y与x之间的函数解析式为:y=kx.∵y=kx的图象过点(17,340),∴17k=340,解得k=20.∴线段OD所表示的y与x之间的函数解析式为:y=20x. ……3分由题意得,线段DE所表示的y与x之间的函数解析式为:y=340-5(x-22)=-5x+450. ……4分∵D是线段OD与线段DE的交点,解方程组205450y xy x=⎧⎨=-+⎩得18360xy=⎧⎨=⎩,∴D的坐标为(18,360). ……5分∴20(018)5450(1830)x xyx x⎧=⎨-+⎩≤≤<≤. ……6分(3)当0≤x≤18时,由题意得(8-6)×20x≥640,解得x≥16;当18≤x≤30时,由题意得(8-6)×(-5x+450)≥640,解得x≤26.∴16≤x≤26. ……7分∵26-16+1=11,∴日销售利润不低于640元的天数共有11天. ……8分∵D的坐标为(18,360),∴日销售最大销售量为360件,∴日销售最大利润是(8-6)×360=720(元). ……10分23.(2017湖北咸宁,23,10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.图1 图2 图3理解:⑴如图1,已知A 、B 是⊙O 上两点,请在圆上找出满足条件的点C ,使△ABC 为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD ,试判断△AEF 是否为“智慧三角形”,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线y=3上的一点,若在⊙O 上存在一点P ,使得△OPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.思路分析:(1)利用直角三角形的性质可以知道:直角三角形斜边上的中线等于斜边的一半,所以只要在圆中画出以点A 、B 为顶点的直角三角形即可,利用圆周角定理的推论可知:直径所对的圆周角是90°,所以只要画出过点A 、B 的直径即可找到顶点C ;(2)根据“智慧三角形”的概念,要判断△AEF 是否为“智慧三角形”,只要判断判断△AEF 是否为直角三角形即可.先利用正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=14CD ,可以证明△ECF ∽△ABE ,再利用相似三角形的性质证明∠AEF=90°,最后利用“智慧三角形”的概念,判断△AEF 是“智慧三角形”;(3)如图所示,当点Q 坐标为(0,3)时,△OPQ 面积取得最小值,此时点1P 与点2P 关于y 轴对称,1OP ⊥1QP ,1OP =1,OQ=3,∴2222113122PQ OQ OP =-=-=.作1P A ⊥x 轴于点A ,则△1P AO ∽△1OPQ , ∴1111==P A PO AO OP OQ PQ ,即11=1322P A , ∴11=3P A ,2=3AO ,∴1221()33P -,. ∵点1P 与点2P 关于y 轴对称, ∴2221()33P ,.解:(1)如图所示:(说明:画对一个给1分,无画图痕迹不给分) ……2分 (2)△AEF 是“智慧三角形”,理由如下: ……3分 ∵四边形ABCD 是正方形, ∴∠B=∠C=90°,AB=BC=CD.∴BE=EC=12BC=12AB ,CF=14AB. ∴1==2CF EC BE AB . 又∵∠B=∠C=90°, ∴△ECF ∽△ABE ,∴∠CEF=∠BAE. ……4分 ∵∠BAE+∠AEB=90°, ∴∠CEF+∠AEB=90°, ∴∠AEF=90°,∴△AEF 是直角三角形. ……5分 ∵Rt △AEF 斜边AF 上的中线等于AF 的一半,∴△AEF 是“智慧三角形”. ……6分 (3)1221()3P ,,2221()3P , ……8分 24.(2017湖北咸宁,24,12分)如图,抛物线c bx x y ++=221与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB=OC=6.⑴求抛物线的解析式及点D 的坐标;⑵连接BD ,F 为抛物线上一动点,当∠FAB=∠EDB 时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ=12MN 时,求菱形对角线MN 的长. 思路分析:(1)利用OB=OC=6得到点B(6,0),C(0,-6),将其代入抛物线的解析可以求出b 、c 的值,进而得到抛物线的解析式,最后通过配方得到顶点坐标; (2)由于F 为抛物线上一动点,∠FAB=∠EDB ,可以分两种情况求解:一是点F 在x 轴上方;二是点F 在x 轴下方.每一种情况都可以作FG ⊥x 轴于点G ,构造Rt △AFG 与Rt △DBE 相似,利用对应边成比例或三角函数的定义求点F 的坐标.(3)首先根据MN 与x 轴的位置关系画出符合要求的两种图形:一是MN 在x 轴上方;二是MN 在x 轴下方. 设菱形对角线的交点T 到x 轴的距离为n ,利用PQ=12MN ,得到MT=2n ,进而得到点M 的坐标为(2+2n ,n),再由点M 在抛物线上,得21(22)2(22)62n n n =+-+-,求出n 的值,最后可以求得MN=2MT=4n 的两个值. 解:(1)∵OB=OC=6, ∴B(6,0),C(0,-6).∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩, 解得26b c =-⎧⎨=-⎩,∴抛物线的解析式为21262y x x =--. ……2分∵21262y x x =--=21(2)82x --, ∴点D 的坐标为(2,-8). ……4分(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --.∵∠FAB=∠EDB ,∴tan ∠FAG=tan ∠BDE ,即21261222x x x --=+,解得17x =,22x =-(舍去). 当x=7时,y=92, ∴点F 的坐标为(7,92). ……6分 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-).综上所述,点F 的坐标为(7,92)或(5,72-). ……8分(3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0).如图,当MN 在x 轴上方时,设T 为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n).∵点M 在抛物线上, ∴21(22)2(22)62n n n =+-+-, 即2280n n --=. 解得11654n +=,21654n =(舍去). ∴65+1. ……10分当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n).∵点M 在抛物线上, ∴21(22)2(22)62n n n -=+-+-, 即22+80n n -=. 解得1165n -+=,2165n --=(舍去). ∴651.综上所述,菱形对角线MN 65+1651-. ……12分。
湖北省咸宁市2017年中考数学真题试题含解析
湖北省咸宁市2017年中考数学真题试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下表是我市四个景区今年2月份某天6时气温,其中气温最低的景区是( ) 景区 潜山公园陆水湖隐水洞三湖连江气温C 1- C 0 C 2- C 2A .潜山公园B .陆水湖C .隐水洞D .三湖连江 【答案】C.试题分析:观察表格可得﹣2<﹣1<0<2,即可得隐水洞的气温最低,故选C . 考点:有理数的大小比较.2. 在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学计数法表示为()A .410121⨯B .5101.12⨯C .51021.1⨯D .61021.1⨯ 【答案】D .试题分析:用科学记数法表示较大的数时,一般形式为a ×10n,其中1≤|a|<10,n 为整数, 所以1210000=×106.故选D . 考点:科学记数法.3.下列算式中,结果等于5a 的是()A .32a a +B .32a a ⋅C .a a ÷5D . 32)(a【答案】B .考点:整式的运算.4. 如图是某个几何体的三视图,该几何体是( )A .三棱柱B .三棱锥 C.圆柱 D .圆锥 【答案】A .试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A . 考点:由三视图判定几何体.5. 由于受97N H 禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降%a ,3月份比2月份下降%b ,已知1月份鸡的价格为24元/千克,设3月份鸡的价格为m 元/千克,则()A .%)%1(24b a m --=B .%%)1(24b a m -= C. %%24b a m --= D .%)1%)(1(24b a m --= 【答案】D .考点:列代数式.6. 已知c b a ,,为常数,点),(c a P 在第二象限,则关于x 的方程02=++c bx ax 根的情况是()A .有两个相等的实数根B .有两个不相等的实数根 C.没有实数根 D .无法判断 【答案】B .试题分析:已知点P (a ,c )在第二象限,可得a <0,c >0,所以ac <0,即可判定△=b 2﹣4ac >0,所以方程有两个不相等的实数根.故选B . 考点:根的判别式;点的坐标.7. 如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OD OB ,,若BCD BOD ∠=∠,则⋂BD 的长为()A.π B.π23C. π2 D.π3【答案】C.考点:弧长的计算;圆内接四边形的性质.8. 在平面直接坐标系xOy中,将一块含义45角的直角三角板如图放置,直角顶点C的坐标为)0,1(,顶点A的坐标为)2,0(,顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此点C的对应点C'的坐标为()A.)0,23( B.)0,2( C. )0,25( D.)0,3(【答案】C.试题分析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,故选C.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移.第Ⅱ卷(共96分)二、填空题(每题8分,满分24分,将答案填在答题纸上)9. 8的立方根是.【答案】2.试题分析:利用立方根的定义可得8的立方根为2.考点:立方根.10. 化简:xx x x 112++- . 【答案】x+1.试题分析:原式=2211(1)1x x x x x x x x x x-++++===+. 考点:分式的乘除法.11. 分解因式:=+-2422a a . 【答案】2(a ﹣1)2.试题分析:先提取2,再利用完全平方公式分解即可,即原式=2(a 2﹣2a+1)=2(a ﹣1)2. 考点:提公因式法与公式法的综合运用.12. 如图,直线n mx y +=与抛物线c bx ax y ++=2交于),4(),,1(q B p A -两点,则关于x 的不等式c bx ax n mx ++>+2的解集是 .【答案】x <﹣1或x >4.考点:二次函数与不等式(组).13. 小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表: 步数(万步) 1.1 2.1 3.1 4.1 5.1 天数 3 75123在每天所走的步数这组数据中,众数和中位数分别是 . 【答案】;.试题分析:把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数是(+)÷2=,,在这组数据中出现次数最多的是,得到这组数据的众数是.考点:众数;中位数.14. 如图,点O 的矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合,若3=BE ,则折痕AE 的长为 .【答案】6.试题分析:由题意得:AB=AO=CO ,即AC=2AB ,且OE 垂直平分AC ,则AE=6考点:矩形的性质;翻折变换(折叠问题).15. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .【答案】(2,3试题分析:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连接OF ,过点F 作FH ⊥x 轴,垂足为H ;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F (2,23 ),即旋转2017后点A 的坐标是(2,23).考点:坐标与图形变化﹣旋转;规律型:点的坐标.16. 如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论:①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥; ④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .【答案】①②③.∵∠AOB=∠ACB=90°,∴OE=CE=12AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;综上所述,本题正确的有:①②③;考点:三角形综合题.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. ⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 【答案】(1)1﹣33;(2)x=﹣1.试题分析:(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论. 试题解析:(1)原式=3﹣43+1=1﹣33;(2)方程两边通乘以2x (x ﹣3)得,x ﹣3=4x , 解得:x=﹣1,检验:当x=﹣1时,2x (x ﹣3)≠0, ∴原方程的根是x=﹣1. 考点:实数的运算;解分式方程.18. 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形. 【答案】详见解析.试题分析:(1)由SSS 证明△ABC ≌△DFE 即可;(2)连接AF 、BD ,由全等三角形的性质得出∠ABC=∠DFE ,∵AB=DF,∴四边形ABDF是平行四边形.考点:全等三角形的判定与性质;平行四边形的判定.19. 咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率【答案】(1)72;(2)700;(3)23.补全条形图如下:“体育”对应扇形的圆心角是360°×40200=72°;考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.20. 小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1|-=x y 的自变量x 的取值范围是 ; ⑵列表,找出y 与x 的几组对应值.x1- 0 1 2 3yb1 01 2其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .【答案】(1)任意实数;(2)2;(3)详见解析;(4)函数的最小值为0(答案不唯一).(3)如图所示;(4)由函数图象可知,函数的最小值为0. 故答案为:函数的最小值为0(答案不唯一). 考点:一次函数的性质;一次函数的图象.21. 如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线; ⑵若52cos ,4==A AE ,求DF 的长 【答案】(1)详见解析;(2)21.∵OB=OD , ∴∠ODB=∠B ,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=21.考点:圆的综合题.22. 某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】(1)330,660;(2)y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;(3)720元.试题分析:(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.试题解析:根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得205450y xy x=⎧⎨=-+⎩,解得18360xy=⎧⎨=⎩,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=20(018)5450(1830) y x xy x x=≤≤⎧⎨=-+≤⎩.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;考点:一次函数的应用. 23.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使ABC ∆为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由; 运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.【答案】(1)详见解析;(2)详见解析;(3)P的坐标(﹣223,13),(223,13).试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF 为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:故点P 的坐标(﹣223,13),(223,13).考点:圆的综合题. 24.如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .⑴求抛物线的解析式及点D 的坐标;⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长.【答案】(1)y=12x2﹣2x﹣6,D(2,﹣8);(2)F点的坐标为(7,92)或(5,﹣72);(3)菱形对角线MN的长为65+1或65﹣1.试题分析:(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线解析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)可求得P点坐标,设T 为菱形对角线的交点,设出PT的长为n,从而可表示出M点的坐标,代入抛物线解析式可得到n的方程,可求得n的值,从而可求得MN的长.试题解析:(2)如图1,过F作FG⊥x轴于点G,设F(x,12x2﹣2x﹣6),则FG=|12x2﹣2x﹣6|,在y=12x2﹣2x﹣6中,令y=0可得12x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,综上可知F点的坐标为(7,92)或(5,﹣72);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=12 MN,考点:二次函数综合题.。
2017年咸宁市中考数学试卷(有答案)
2017年咸宁市中考数学试卷(有答案)D15. 如图,边长为4的正六边形ABCDEF 的中心与坐标原点O 重合,x AF //轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60,当2017=n 时,顶点A 的坐标为 .16. 如图,在ACB Rt ∆中,30,2=∠=BAC BC ,斜边AB 的两个端点分别在相互垂直的射线ON OM ,上滑动,下列结论: ①若O C 、两点关于AB 对称,则32=OA ; ②O C 、两点距离的最大值为4; ③若AB 平分CO ,则CO AB ⊥;④斜边AB 的中点D 运动路径的长为2π. 其中正确的是 .三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17. ⑴计算:0201748|3|+--;⑵解方程:3121-=x x . 18. 如图,点F C E B ,,,在一条直线上,FC BE DE AC DF AB ===,,.⑴求证:DFE ABC ∆≅∆;⑵连接BD AF ,,求证:四边形ABDF 是平行四边形.19. 咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率20. 小慧根据学习函数的经验,对函数|1y的图象与性|-=x质进行了研究,下面是小慧的研究过程,请补充完成:⑴函数|1y的自变量x的取值范围是;|-=x⑵列表,找出y 与x 的几组对应值.x1-123yb112其中,=b ;⑶在平面直角坐标系xOy 中,描出以上表中各队对应值为坐标的点,并画出该函数的图象; ⑷写出该函数的一条性质: .21. 如图,在ABC ∆中,AC AB =,以AB 为直径的⊙O 与边AC BC ,分别交于E D ,两点,过点D 作AC DF ⊥,垂足为点F .⑴求证:DF 是⊙O 的切线;⑵若52cos ,4==A AE ,求DF 的长22. 某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图1,已知B A ,是⊙O 上两点,请在圆上找出满足条件的点C ,使ABC ∆为“智慧三角形”(画出点C 的位置,保留作图痕迹);⑵如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CD CF 41=,试判断AEF ∆是否为“智慧三角形”,并说明理由;运用:⑶如图3,在平面直角坐标系xOy 中,⊙O 的半径为1,点Q 是直线3=y 上的一点,若在⊙O 上存在一点P ,使得OPQ ∆为“智慧三角形”,当其面积取得最小值时,直接写出此时点P 的坐标.24.如图,抛物线c bx x y ++=221与x 轴交于B A 、两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知6==OC OB .⑴求抛物线的解析式及点D 的坐标; ⑵连接F BD ,为抛物线上一动点,当EDB FAB ∠=∠时,求点F 的坐标;⑶平行于x 轴的直线交抛物线于N M ,两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且MN PQ 21=时,求菱形对角线MN 的长.。
2017年湖北省咸宁市中考数学试卷
2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105 C.1.21×105 D.1.21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB .C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A .(,0)B.(2,0)C .(,0) D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷=.11.(3分)分解因式:2a2﹣4a+2=.12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:1.1 1.2 1.3 1.4 1.5步数(万步)天数375123在每天所走的步数这组数据中,众数和中位数分别是.14.(3分)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为.15.(3分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A的坐标为.16.(3分)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).三、解答题(本大题共8小题,满分72分)17.(8分)(1)计算:|﹣|﹣+20170;(2)解方程:=.18.(7分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.19.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.20.(8分)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.21.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.22.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?23.(10分)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.24.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P 在x轴上,且PQ=MN时,求菱形对角线MN的长.2017年湖北省咸宁市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•咸宁)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江【分析】将几个有理数比较后即可确定正确的选项.【解答】解:∵﹣2<﹣1<0<2,∴隐水洞的气温最低,故选C.【点评】本题考查了有理数的大小比较的知识,解题的关键是能够了解正数大于0,负数小于0,两个负数比较绝对值大的反而小,难度不大.2.(3分)(2017•咸宁)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()A.121×104B.12.1×105 C.1.21×105 D.1.21×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1210000=1.21×106.故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•咸宁)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)3【分析】根据合并同类项对A进行判断;根据同底数幂的乘法对B进行判断;根据同底数幂的除法对C进行判断;根据幂的乘方对D进行判断.【解答】解:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.【点评】本题考查了同底数幂的除法:底数不变,指数相减.也考查了同底数幂的乘法和幂的乘方.4.(3分)(2017•咸宁)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】根据三棱柱的特点求解即可.【解答】解:主视图是三角形,俯视图是两个矩形,左视图是矩形,得几何体是三棱柱,故选:A.【点评】本题考查了三视图,利用三棱柱的特点得出几何体是解题关键.5.(3分)(2017•咸宁)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选D.【点评】本题主要考查了列代数式的知识,解题的关键是掌握每个月份的数量增长关系.6.(3分)(2017•咸宁)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【分析】先利用第二象限点的坐标特征得到ac<0,则判断△>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵点P(a,c)在第二象限,∴a<0,c>0,∴ac<0,∴△=b2﹣4ac>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•咸宁)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π【分析】由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长==2π;故选:C.【点评】本题考查了弧长公式、圆内接四边形的性质、圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.8.(3分)(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0) D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选(C)【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(每小题3分,共24分)9.(3分)(2017•咸宁)8的立方根是2.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.10.(3分)(2017•咸宁)化简:÷=x﹣1.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式==x﹣1故答案为:x﹣1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.11.(3分)(2017•咸宁)分解因式:2a2﹣4a+2=2(a﹣1)2.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•咸宁)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B (4,q)两点,则关于x的不等式mx+n>ax2+bx+c 的解集是x<﹣1或x>4.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:观察函数图象可知:当x<﹣1或x>4时,直线y=mx+n在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>4.故答案为:x<﹣1或x>4.【点评】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.13.(3分)(2017•咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:1.1 1.2 1.3 1.4 1.5步数(万步)天数375123在每天所走的步数这组数据中,众数和中位数分别是 1.4,1.35.【分析】把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数,在这组数据中出现次数最多的是1.4,得到这组数据的众数.【解答】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第4、5个两个数的平均数是(1.3+1.4)÷2=1.35,所以中位数是1.35,在这组数据中出现次数最多的是1.4,即众数是1.4.故答案为:1.4;1.35.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.14.(3分)(2017•咸宁)如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为6.【分析】由折叠的性质及矩形的性质得到OE垂直平分AC,得到AE=EC,根据AB为AC的一半确定出∠ACE=30°,进而得到OE等于EC的一半,求出EC的长,即为AE的长.【解答】解:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,则AE=6,故答案为:6【点评】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.15.(3分)(2017•咸宁)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF ∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°.当n=2017时,顶点A 的坐标为(2,2).【分析】将正六边形ABCDEF绕原点O顺时针旋转2017次时,点A所在的位置就是原F点所在的位置.【解答】解:2017×60°÷360°=336…1,即与正六边形ABCDEF绕原点O顺时针旋转1次时点A 的坐标是一样的.当点A按顺时针旋转60°时,与原F点重合.连接OF,过点F作FH⊥x轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF是等边三角形,∴OF=EF=4,∴F(2,2),即旋转2017后点A的坐标是(2,2),故答案是:(2,2).【点评】此题主要考查了正六边形的性质,坐标与图形的性质﹣旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.(3分)(2017•咸宁)如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是①②③(把你认为正确结论的序号都填上).【分析】①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB 是OC的垂直平分线,所以OA=AC;②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,同理取AB的中点E,则OE=CE,∵AB平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.【点评】本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.三、解答题(本大题共8小题,满分72分)17.(8分)(2017•咸宁)(1)计算:|﹣|﹣+20170;(2)解方程:=.【分析】(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.【解答】解:(1):|﹣|﹣+20170=﹣4+1=1﹣3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.【点评】本题考查了解分式方程,实数的运算,熟练掌握实数的运算法则是解题的关键.18.(7分)(2017•咸宁)如图,点B、E、C、F在一条直线上,AB=DF,AC=DF,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.【分析】(1)由SSS证明△ABC≌△DFE即可;(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.【解答】证明:(1)∵BE=FC,∴BC=EF,在△ABC和△DFE中,,∴△ABC≌△DFE(SSS);(2)解:连接AF、BD,如图所示:由(1)知△ABC≌△DFE,∴∠ABC=∠DFE,∴AB∥DF,∵AB=DF,∴四边形ABDF是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.19.(8分)(2017•咸宁)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图所示的两幅不完整统计图,请你根据图中信息解答下列问题:(1)补全条形统计图,“体育”对应扇形的圆心角是72度;(2)根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有700人;(3)在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或画树状图的方法求所抽取的2人来自不同班级的概率.【分析】(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×=72°,故答案为:72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),故答案为:700;(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:==.所以P(2名学生来自不同班)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017•咸宁)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是任意实数;(2)列表,找出y与x的几组对应值.x…﹣10123…y…b1012…其中,b=2;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:函数的最小值为0(答案不唯一).【分析】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.【解答】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点评】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.21.(9分)(2017•咸宁)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cosA=,求DF的长.【分析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG=AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.【解答】(1)证明:如图,连接OD,作OG⊥AC于点G,,∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∴DF是⊙O的切线.(2)解:AG=AE=2,∵cosA=,∴OA===5,∴OG==,∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD为矩形,∴DF=OG=.【点评】此题主要考查了切线的性质和应用,等腰三角形的性质和应用,以及解直角三角形的应用,要熟练掌握.22.(10分)(2017•咸宁)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【分析】(1)根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出第24天的日销售量,再根据日销售利润=单件利润×日销售量即可求出日销售利润;(2)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第22天销售了340件,结合时间每增加1天日销售量减少5件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于640元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.根据题意得:线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∴y与x之间的函数关系式为y=.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.【点评】本题考查了一次函数的应用、待定系数法一次函数解析式以及解一元一次不等式,解题的关键是:(1)根据数量关系,列式计算;(2)利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式;(3)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式.23.(10分)(2017•咸宁)定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.理解:(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;运用:(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.【解答】解:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ==2,PM=1×2÷3=,由勾股定理可求得OM==,故点P的坐标(﹣,),(,).【点评】本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键.24.(12分)(2017•咸宁)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P 在x轴上,且PQ=MN时,求菱形对角线MN的长.。
2017年湖北省咸宁市中考数学试卷及详细解析
根的情况是()
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.无法判断
7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若
第1页(共49页)
∠BOD=∠BCD,则的长为()
A.πB.C.2πD.3π
①若C、O两点关于AB对称,则OA=2
;
二、填空题(每小题3分,共24分)
9.(3分)8的立方根是.
10.(3分)化简:÷=.
11.(3分)分解因式:2a2﹣4a+2=.
12.3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)
两点,则关于x的不等式mx+n>ax2+bx+c的解集是.
13.3分)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30
1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为()
A.121×104B.12.1×105C.1.21×105D.1.21×106
3.(3分)下列算式中,结果等于a5的是()
A.a2+a3B.a2a3C.a5÷aD.(a2)3
4.(3分)如图是某个几何体的三视图,该几何体是()
2017年湖北省咸宁市中考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景
区是()
景区
气温
潜山公园
﹣1℃
陆水湖
0℃
隐水洞
新人教版九年级数学(上)期中试题(含答案)(1)
且在过 OA 的任一平面上,抛物线的形状如图( 1)和( 2)所示,建立直角坐标系,水流喷出的高
度 y(米)与水平距离 x(米)之间的关系式是 y=﹣ x2+2x+ ,请回答下列问题.
( 1)柱子 OA 的高度为多少米? ( 2)喷出的水流距水平面的最大高度是多少? ( 3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?
(x 1)2 9 ……………………………………………5 分 4
∴ 喷出的水流距水平面的最大高度是
9 米 . …………………6 分 4
(3)令 y
0 ,则
x2
5 2x
0
4
解之得: x1 3 , x2
1
(不合题意,舍去) …………………7 分
2
∴ 点 B 坐标为( 3, 0) ……………………………………………
B. a+b+c< 0
C.2a﹣ b=0
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
13.函数 y= 中,自变量 x 的取值范围是
.
D . b2﹣ 4ac=0
14.若 = ,则
=
.
15.如图,已知点 A 是反比例函数 y= 图象上的任意一点,经过点 A 作 AB⊥ y 轴于点 B,则 △ AOB
26.( 12 分)已知:如图,二次函数 y=x2+bx+c 的图象过点 A( 1, 0)和 C( 0,﹣ 3) ( 1)求这个二次函数的解析式; ( 2)如果这个二次函数的图象与 x 轴的另一个交点为 B,求线段 AB 的长. ( 3)在这条抛物线上是否存在一点 P,使△ ABP 的面积为 8?若存在, 求出点 P 的坐标; 若不存在, 请说明理由.
2017年最新人教版九年级上册期中数学试卷
九年级(上)期中数学试卷一、选择题:(共12小题,每题3分,共36分)1.假设c(c≠0)为关于x的一元二次方程x2+bx+c=0的根,那么c+b的值为()A.1 B.﹣1 C.2 D.﹣22.若是关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠03.以下图形中,中心对称图形有()A .4个 B.3个 C.2个 D.1个4.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=25.利用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求那个长方形的两边长,设墙的对边长为x m,可得方程()A.x(13﹣x)=20 B.x()=20 C.x(13﹣x)=20 D.x()=206.如下图,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,那么AB边的取值范围是()A.1<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<197.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,那么y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°取得△DCF,连接EF,假设∠BEC=60°,那么∠EFD的度数为()A.10°B.15°C.20°D.25°9.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2 B.y=3(x+3)2+2 C.y=3(x﹣3)2﹣2 D.y=3(x﹣3)2+210.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A .B .C .D .11.九年级(1)班的全部同窗,在新年来临之际,在贺卡上写上自己的心愿和祝愿赠送给其他同窗各一张,全班共互赠了1980张,设全班有x 名同窗,那么依照题意列出的方程是( )A .x (x+1)=1980B .x (x-1)=1980C .x (x+1)=1980×2D .x (x-1)=1980×212.如图,C 是线段BD 上一点,别离以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE ,AD 交CE 于F ,BE 交AC 于G ,那么图中可通过旋转而彼此取得的三角形对数有( )A .1对B .2对C .3对D .4对二、填空:(本大题共6小题,每题3分,共18分)13.已知抛物线y=ax 2﹣2ax +c 与x 轴一个交点的坐标为(﹣1,0),那么一元二次方程ax 2﹣2ax +c=0的根为______. 14.三角形两边的长别离是8和6,第3边的长是一元二次方程x 2﹣16x +60=0的一个实数根,那么该三角形的面积是______.15.已知x 1、x 2是方程x 2+6x+3=0的两实数根,那么2112x x x x 的值为 . 16.如图1,两条抛物线,与别离通过点(﹣2,0),(2,0)且平行于y 轴的两条平行线围成的阴影部份的面积为______.如图1 如图217. 假设关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,那么k 的取值范围是______.18.如图2.已知二次函数y=ax 2+bx +c 的图象如下图,有以下结论:①abc >0,②a ﹣b +c <0,③2a=b ,④4a +2b +c >0,⑤假设点(﹣2,y 1)和(﹣,y 2)在该图象上,那么y 1>y 2.其中正确的结论是______(填入正确结论的序号).三、解答题:(共66分)19.解方程(每题5分)(1)4x 2﹣6x ﹣3=0 (2)(x +8)(x +1)=﹣12.20.(8分)已知:△ABC在座标平面内,三个极点的坐标别离为A(0,3),B(3,4),C(2,2).(正方形网格中,每一个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位,再向左平移1个单位取得的△A1B1C1,并直接写出C1点的坐标;(2)作出△ABC绕点A顺时针方向旋转90°后取得的△A2B2C2,并直接写出C2点的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.21.(8分)在“全民阅读”活动中,某中学对全校学生中坚持天天半小时阅读的人数进行了调查,2021年全校坚持天天半小时阅读有1000名学生,2021年全校坚持天天半小时阅读人数比2021年增加10%,2021年全校坚持天天半小时阅读人数比2021年增加340人.(1)求2021年全校坚持天天半小时阅读学生人数;(2)求从2021年到2021年全校坚持天天半小时阅读的人数的平均增加率.22.(8分)已知二次函数y=﹣3x+4.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、极点坐标、对称轴.(2)画出图象,指出y<0时x的取值范围.(3)当0≤x≤4时,求出y的最小值及最大值.23.(8分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每一个月能售出600件,调查说明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量很多于300件的情形下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会取得最大利润?求出最大利润.24.(12分)如图1,四边形ABCD是正方形,△ADE经旋转后与△ABF重合。
湖北省咸宁市九年级上学期数学期中考试试卷
湖北省咸宁市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·合川模拟) 方程(m﹣2)x2+3mx+1=0是关于x的一元二次方程,则()A . m≠±2B . m=2C . m=﹣2D . m≠22. (2分)(2016·海曙模拟) 如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为()A . 3:5:4B . 1:3:2C . 1:4:2D . 3:6:53. (2分) (2020八下·漯河期中) 已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A . 16B . 16C . 8D . 84. (2分)已知关于x的方程的一个根为x=3,则实数k的值为()A . 1B . -1C . 2D . -25. (2分)(2019·辽阳) 将三角尺按如图所示放置在一张矩形纸片上,,,,则的度数为()A . 130°B . 120°C . 110°D . 100°6. (2分) (2019八上·郑州开学考) 甲、乙两名同学在一次用频率估计概率的实验中,统计了某一个结果出现的频率,绘制了如下的表格,则符合这一结果的实验可能是()实验次数1002003005008001200频率0.4300.3600.3200.3280.3300.329A . 抛一枚质地均匀的硬币,出现正面的概率B . 从一个装有3个红球和2个白球的不透明袋子里任取1球,取出红球的概率C . 掷一枚均匀的正方体骰子,出现的点数是3的倍数的概率D . 从正方形、正五边形、正六边形中任意取一个图形,是轴对称图形的概率7. (2分) (2017八下·曲阜期末) 如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC 的长为()A . 5B . 6C . 8D . 108. (2分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A .B .C .D .9. (2分)菱形ABCD的周长为16,∠A=60°,则BD的长为()A . 8B . 4C .D .10. (2分)如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为()A . 6.4米B . 8米C . 9.6米D . 11.2米11. (2分)在同一平面上,正方形ABCD的四个顶点到直线l的距离只取四个值,其中一个值是另一个值的3倍,这样的直线l可以有()A . 4条B . 8条C . 12条D . 16条12. (2分)如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有()A . 3个B . 2个C . 1个D . 0个二、填空题 (共4题;共4分)13. (1分)若,则 =________14. (1分) (2018九上·东莞期中) 某药品原价为每盒25元,经过两次连续降价后,售价为每盒16元.若该药品平均每次降价的百分数是x,则可列方程为________.15. (1分) (2019八下·长春月考) 如图,在△ABC中,DE∥BC ,, DE=6,则BC的长是________.16. (1分)如图,点A1、A2、A3、…,点B1、B2、B3、…,分别在射线OM、ON上,A1B1∥A2B2∥A3B3∥A4B4∥….如果A1B1=2,A1A2=2OA1 , A2A3=3OA1 , A3A4=4OA1 ,….那么A2B2=________,AnBn=________.(n为正整数)三、解答题 (共7题;共76分)17. (10分) (2019八下·哈尔滨期中) 解下列方程:(1)(2)18. (6分)(2019·石家庄模拟) 如图,在10×10的正方形网格中,点ABCD均在格点上,以点A为位似中心在网格中画四边形A′B′C′D',使它与四边形ABCD的相似比为2.19. (10分)小莉和哥哥玩扑克牌游戏,小莉有数字为1,2,3,5的四张牌,哥哥有数字为4,6,7,8的四张牌,按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉胜;如果和为奇数,则哥哥胜.(1)请用树状图或列表法分别求出小莉胜和哥哥胜的概率;(2)这个游戏公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.20. (10分)长方形具有四个内角均为直角,并且两组对边分别相等的特征.如图,把一张长方形纸片ABCD 折叠,使点C与点A重合,折痕为EF.(1)如果∠DEF=130°,求∠B AF的度数;(2)判断△ABF和△AGE是否全等吗?请说明理由.21. (10分) (2018九上·宝应月考) 某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价-进价)×售出件数)22. (15分)(2017·兰州模拟) 在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.(1)用含x的代数式表示△MNP的面积S;(2)当x为何值时,⊙O与直线BC相切;(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?23. (15分)(2017·承德模拟) 在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM= AD,点N是折线AB﹣BC上的一个动点.(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为________.(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,①若点A′落在AB边上,则线段AN的长度为;②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;③当点A′落在对角线BD上时,如图4,求的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共76分)17-1、答案:略17-2、答案:略18-1、19-1、19-2、答案:略20-1、20-2、答案:略21-1、答案:略21-2、答案:略22-1、答案:略22-2、22-3、答案:略23-1、23-2、答案:略。
湖北省咸宁市九年级上学期数学期中考试试卷
湖北省咸宁市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2021九上·建湖月考) 下列方程中,一元二次方程是()A .B .C .D .2. (2分)(2017·七里河模拟) 不解方程,判别方程2x2﹣3 x=3的根的情况()A . 有两个相等的实数根B . 有两个不相等的实数根C . 有一个实数根D . 无实数根3. (2分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A . 等腰三角形B . 锐角三角形C . 直角三角形D . 钝角三角形4. (2分)(2017·石家庄模拟) 下列三个三角形中相似的是()A . A与BB . A与CC . B与CD . A,B,C都相似5. (2分) (2019八下·长春期中) 为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“ ”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2 ,求原正方形空地的边长xm,可列方程为()A . (x﹣1)(x﹣2)=18B . x2﹣3x+16=0C . (x+1)(x+2)=18D . x2+3x+16=06. (2分) (2019九上·江阴期中) 给出下列4个命题:①相似三角形的周长之比等于其相似比;②方程x2-3x+5=0的两根之积为5;③在同一个圆中,同一条弦所对的圆周角都相等;④圆的内接四边形对角互补.其中,真命题为()A . ①②④B . ①③④C . ①④D . ①②③④7. (2分) (2017九上·建湖期末) 在同一时刻太阳光线是平行的,如果高1.5米的测杆影长3米,那么此时影长36米的旗杆的高度为()A . 18米B . 12米C . 15米D . 20米8. (2分)如图,AB是⊙O的直径,AC是弦.OD⊥AC于D,OC与BD交于E,若BD=6,则DE等于()A . 1B . 2C . 3D . 49. (2分) (2018八下·韶关期末) 已知如图,四边形ABCD是平行四边形,下列结论中错误的是()A . 当AB=BC时,它是菱形B . 当AC⊥BD时,它是菱形C . 当∠ABC=90°时,它是矩形D . 当AC=BD时,它是正方形10. (2分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共8题;共10分)11. (1分) (2020九上·阜平期中) 将方程化为一般形式为________.12. (1分)(2014·嘉兴) 方程x2﹣3x=0的根为________.13. (2分)(2018·成都模拟) 若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2 ,则x1(x1+x2)+x22的最小值为________14. (1分)若圆锥的底面直径为6 cm,母线长为5cm,则它的侧面积为________.(结果保留π)[15. (1分)(2017·玉林模拟) 如图,若将平面直角坐标系中“鱼”以原点O为位似中心,按照相似比缩小,则点A的对应点的坐标是________.16. (2分) (2020九上·嘉兴月考) 一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为________cm.17. (1分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD= ________18. (1分) (2020九上·桂林月考) 如图,矩形ABCD中,AB=4,AD=6,点E在边BC上,且BE∶EC=2∶1,动点P从点C出发,沿CD运动到点D停止,过点E作EF⊥PE交矩形ABCD的边于F,若线段EF的中点为M,则点P 从C运动到D的过程中,点M运动的路线长为________.三、解答题 (共9题;共94分)19. (20分) (2019七下·华蓥期中)(1)计算:;(2)已知,求x的值.20. (10分)(2019·昆明模拟) 如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4 ,求MC的长.21. (2分) (2016八上·江阴期中) 如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF= ,求图中阴影部分的面积.22. (10分) (2019九上·淮南月考) 已知关于x的方程(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围23. (10分) (2017九下·萧山月考) 如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B 在第一象限内,BO=10,sin∠BOA=.(1)在图中,求作△ABO的外接圆;(尺规作图,不写作法但需保留作图痕迹)(2)求点B的坐标与cos∠BA O的值;(3)若A,O位置不变,将点B沿轴正半轴方向平移使得△ABO为等腰三角形,请直接写出平移距离.24. (10分)(2019·宝鸡模拟) 甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?25. (15分)(2017·绵阳) 如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N 作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.26. (11分) (2020九上·海港期末) 如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(- 3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB 的面积;(3)在x轴上是否存在点P ,使△APC是直角三角形. 若存在,求出点P的坐标;若不存在,请说明理由.27. (6分)(2020·余姚模拟) 如图1,直线l:y= x+4与x轴交于点A,与y轴交于点B,以AB为直线作⊙M,点P为线段OA上一动点(与点O、A不重合),作PC⊥AB于C,连结BP并延长交⊙O于点D。
湖北省咸宁市九年级上学期期中数学试卷
湖北省咸宁市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列命题:(1)一个圆的内接三角形有且只有一个;(2)一个三角形有唯一的一个外接圆;(3)过一直线上两点和它外一点可以确定一个圆;(4)已知三点A,B,C,过这三点可以作并且只可以作一个圆.其中假命题的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2016九上·江北期末) 四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L,K,C的投影中,与字母N属同一种投影的有()A . L,KB . CC . KD . L,K,C3. (2分)用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A . 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B . 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C . 抛掷2n次硬币,恰好有n次“正面朝上”D . 抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.54. (2分)有一篮球如图放置,其主视图为()A .B .C .D .5. (2分)下列各组线段中,能成比例的是()A . 3,6,7,9B . 2,5,6,8C . 3,6,9,18D . 1,2,3,46. (2分)某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确的是()A . 100(1+2x%)2=120B . 100(1+x2)2=120C . 100(1-x%)2=120D . 100(1+x%)2=1207. (2分)若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A . 20B . 16C . 12D . 108. (2分)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A . a≥1B . a>1且a≠5C . a≥1且a≠5D . a≠59. (2分) (2016九上·金东期末) 美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A . 4cmB . 6cmC . 8cmD . 10cm10. (2分) (2017九上·河源月考) 顺次连结矩形四边中点所得的四边形一定是()A . 菱形B . 矩形C . 正方形D . 等腰三角形二、填空题 (共6题;共6分)11. (1分) (2016九上·赣州期中) 关于x的一元二次方程x2+(2a﹣1)x+5﹣a=ax+1的一次项系数为4,则常数项为:________.12. (1分) (2016九上·嵊州期中) 如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是________.13. (1分)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________ .(用含n的代数式表示,其中n为正整数)14. (1分)(2017·南山模拟) 如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为B(,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是________.15. (1分) (2017八下·洛阳期末) 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,DB=6,E为AD 的中点,则OE的长为________.16. (1分)如图,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一个正方形A1B1C1D1 ,使点A1 , D1分别在AC,BC边上,边B1C1在AB边上;在△BC1D1在截出第二个正方形A2B2C2D2 ,使点A2 , D2分别在BC1 ,D1C1边上,边B2C2在BD1边上;…,依此方法作下去,则第n个正方形的边长为________.三、解下列方程 (共8题;共77分)17. (20分) (2017八下·上虞月考) 用适当的方法解下列方程:(1)x2=3x(2)2x2﹣x﹣6=0.(3)y2+3=2 y;(4)x2+2x﹣120=0.18. (12分)(2018·山西) 请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴ .同理可得.∴ .∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A . 平移B . 旋转C . 轴对称D . 位似19. (5分) (2016九上·仙游期末) 一个袋子中装有大小完全相同的3粒乒乓球,其中2粒白色,1粒黄色.请你用它为甲、乙两位同学设计一个能决定胜负的公平的摸球游戏规则.并说明公平的理由.20. (5分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.21. (5分) (2017九上·三明期末) 为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.22. (5分) (2016九上·芦溪期中) 某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?23. (15分) (2016九上·嘉兴期末) 如图,已知抛物线y=﹣x2+3x与x轴的正半轴交于点A,点B在抛物线上,且横坐标为2,作BC⊥x轴于点C,⊙B经过原点O,点E为⊙B上一动点,点F在AE上.(1)求点A的坐标;(2)如图1,连结OE,当AF:FE=1:2时,求证:△ACF∽△AOE;(3)如图2,当点F是AE的中点时,求CF的最大值.24. (10分) (2017八上·北海期末) 如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE的延长线于点G.(1)求证:DB=BG;(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解下列方程 (共8题;共77分)17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、。
咸宁市九年级上学期期中数学试卷
咸宁市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A . 1B . 0,1C . 1,2D . 0,1,22. (2分)在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A .B .C .D .3. (2分)关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实数根x1 , x2 ,且有x1-x1x2+x2=1-a,则a的值是()A . 1B . -1C . 1或-1D . 24. (2分) (2019九下·江都月考) 如图,⊙O是△ABC的外接圆,BC=2,∠BAC=45°,则劣弧BC的长为()A .B .C . πD .5. (2分)要得到y=﹣5(x﹣2)2+3的图象,将抛物线y=﹣5x2作如下平移()A . 向右平移2个单位,再向上平移3个单位B . 向右平移2个单位,再向下平移3个单位C . 向左平移2个单位,再向上平移3个单位D . 向左平移2个单位,再向下平移3个单位6. (2分)三角形两边长分别为3和6,第三边是方程x2-6x+8=0的解,则这个三角形的周长是()A . 11B . 13C . 11或13D . 11和137. (2分)已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A . 1B . 5C . 6D . 48. (2分)(2017·洛宁模拟) 若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k 的取值范围是()A . k>B . k≥C . k>且k≠1D . k≥ 且k≠19. (2分) (2019九上·黄石期中) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A . ③④B . ②③C . ①④D . ①②③10. (2分)“双十一”即指每年的11月11日,是指由电子商务代表的,在全中国范围内兴起的大型购物促销狂欢日.2013年双十一淘宝销售额达到350亿元.2015年11月12日,第七个天猫双11全球狂欢节落下帷幕,全天交易额达912.17亿元,设2013年到2015年年平均增长率为x,则下列方程正确的是()A . 350(1+x)=912.17B . 350(1+2x)=912.17C . 350(1+x)2=912.17D . 350(1+x)+350(1+x)2=912.1711. (2分)已知函数y=(1-a)x+a+4的图象不经过第四象限,则满足题意的整数a的个数是()A . 4个B . 5个C . 6个D . 无数个12. (2分)函数y=x2+bx+c与函数y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③b<0;④方程组的解为,;⑤当1<x<3时,x2+(b﹣1)x+c>0.其中正确的是()A . ①②③B . ②③④C . ③④⑤D . ②③⑤13. (2分) (2015九上·应城期末) 下列说法:①三点确定一个圆;②垂直于弦的直径平分弦;③三角形的内心到三条边的距离相等;④圆的切线垂直于经过切点的半径.其中正确的个数是()A . 0B . 2C . 3D . 414. (2分) (2019九上·宁河期中) 若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是C . 当时,y的最大值为4D . 抛物线与x轴的交点为,二、填空题 (共5题;共5分)15. (1分)(2017·和平模拟) 当a=9时,代数式a2+2a+1的值为________.16. (1分) (2018九上·通州期末) 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,已知 .求作:的角平分线 .小霞的作法如下:①如图,在平面内任取一点;②以点为圆心,为半径作圆,交射线于点,交射线于点;③连接,过点作射线垂直线段,交⊙ 于点;④连接 .所以射线为所求.老师说:“小霞的作法正确.”请回答:小霞的作图依据是________.17. (1分)有一个人患流感,经过两轮传染后共有y人患了流感,每轮传染中,平均一个人传染了x人,则y与x之间的函数关系式为________ .18. (1分) (2020九上·石城期末) 如图,在Rt△ABC中,∠ACB=90°,AC=BC= ,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________。
湖北省咸宁市九年级上学期期中数学试卷
湖北省咸宁市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015七下·简阳期中) 若a、b是有理数,则下列说法正确的是()A . 若a2>b2 ,则a>bB . 若a>b,则a2>b2C . 若|a|>b,则a2>b2D . 若|a|≠|b|,则a2≠b22. (2分) (2016九上·高安期中) 如图,不是中心对称图形的是()A .B .C .D .3. (2分) (2016七上·金华期中) 下列运算正确的是()A . 3a+2b=5abB . 3a2b﹣3ba2=0C . 3x2+2x3=5x5D . 3m4﹣2m4=14. (2分)在△ABC中,∠A=90°,AB=3cm,AC=4cm,若以A为圆心3cm为半径作⊙O,则BC与⊙O的位置关系是()A . 相交B . 相离C . 相切D . 不能确定5. (2分)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A . 1B . 2C . 3D . 46. (2分) (2019九上·惠山期末) 抛物线的顶点坐标是()A . (1,2)B . (1,-2)C . (-1,2)D . (-1,-2)7. (2分)用配方法解下列方程是,配方有错误的是()A . 3x2﹣4x﹣2=0化为(x﹣)2=B . 2t2﹣7t﹣4=0化为(t﹣)2=C . x2+8x+9=0化为(x+4)2=25D . x2﹣2x﹣99=0化为(x﹣1)2=1008. (2分) (2019九上·武汉开学考) 有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a·c≠0,a≠c,下列四个结论:① 如果M有两个相等的实数根,那么N也有两个相等实数根;② 如果M与N有实数根,则M有一个根与N的一个根互为倒数;③ 如果M与N有实数根,且有一根相同,那么这个根必是1;④ 如果M的两根符号相同,那么N的两根符号也相同;其中正确的是()A . ①②③B . ①②④C . ②③④D . ①③④9. (2分)如图,在4×4的正方形网格中,ΔMNP绕某点旋转一定的角度,得到ΔM1N1P1 ,则其旋转中心可能是()A . 点AB . 点BC . 点CD . 点D10. (2分)某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场()A . 4个B . 5个C . 6个D . 7个11. (2分) (2018七上·天台月考) 这是一根起点为0的数轴,现有同学将它弯折,如图所示,例如:虚线上第一行0,第二行6,第三行21,,第十行的数是().A . 351B . 378C . 702D . 75612. (2分)(2017·黔南) 二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A . 3个B . 4个C . 5个D . 6个二、填空题 (共6题;共7分)13. (1分)直线y=x+3上有一点P(m,2),则P点关于原点的对称点P′的坐标为________ .14. (1分)已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2+b+3的值为________ .15. (1分)已知函数y=(m+2)是关于x的二次函数,则m的值为________ .16. (1分) (2015七上·龙岗期末) 根据龙岗城市发展建设需要,政府计划增加固定资产投资152亿元,确保项目更新得到落实,152亿元用科学记数法表示为________元.17. (2分)数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100110120130…月销量(件)200180160140…已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是________件,销售该运动服的月利润为________元(用含x的式子表示).18. (1分)(2013·盐城) 如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为cm2________.三、解答题 (共8题;共76分)19. (5分)已知关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足, m2+a2m﹣8a=0,m2+b2m﹣8b=0.求:(1)m的值;(2)△ABC的面积.20. (10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.21. (5分)解方程:x2+2x﹣8=0.22. (15分)(2017·市北区模拟) 如图,需在一面墙上绘制两个形状相同的抛物绒型图案,按照图中的直角坐标系,最高点M到横轴的距离是4米,到纵轴的距离是6米;纵轴上的点A到横轴的距离是1米,右侧抛物线的最大高度是左侧抛物线最大高度的一半.(结果保留整数或分数,参考数据: = , = )(1)求左侧抛物线的表达式;(2)求右侧抛物线的表达式;(3)求这个图案在水平方向上的最大跨度是多少米.23. (10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.24. (10分)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?25. (6分)(2017·湖州模拟) 如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)(1)结论:AF=________.(2)证明结论。
2017年湖北省咸宁市中考数学试卷
2017年湖北省咸宁市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温﹣1℃0℃﹣2℃2℃A.潜山公园B.陆水湖C.隐水洞D.三湖连江2.(3分)在绿满鄂南行动中,咸宁市计划2015年至2017年三年间植树造林1210000亩,全力打造绿色生态旅游城市,将1210000用科学记数法表示为() A.121×104B.12.1×105C.1.21×105D.1。
21×1063.(3分)下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷a D.(a2)34.(3分)如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.(3分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b%C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)6.(3分)已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断7.(3分)如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若∠BOD=∠BCD,则的长为()A.πB.C.2πD.3π8.(3分)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0) C.(,0)D.(3,0)二、填空题(每小题3分,共24分)9.(3分)8的立方根是.10.(3分)化简:÷=.11.(3分)分解因式:2a2﹣4a+2=.12.(3分)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.13.(3分)小明的爸爸是个“健步走"运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:步数(万步)1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年湖北省咸宁市崇阳县桃溪中学九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均由四个备选答案,其中有且只有一个正确,请将各题正确答案的代号填入到答题卷相应的答题栏中1.(3分)如果﹣2是方程x2﹣m=0的一个根,则m的值为()A.2 B.﹣4 C.3 D.42.(3分)下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A.正方形B.正五边形C.正六边形D.正八边形3.(3分)将二次函数y=x2的图象向下平移一个单位,再向右平移2个单位,则平移以后的解析式为()A.y=(x﹣2)2﹣1 B.y=(x+2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣1)2+2 4.(3分)制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低的百分率是()A.8.5% B.9% C.9.5% D.10%5.(3分)电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是()A.x(x+1)=81 B.1+x+x2=81 C.1+x+x(x+1)=81 D.1+(x+1)2=81 6.(3分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.7.(3分)如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE ⊥BC,∠ADC=65°,则∠ABC的度数为()A.30°B.40°C.50°D.60°8.(3分)对于抛物线y=ax2﹣4ax+3a下列说法:①对称轴为x=2;②抛物线与x 轴两交点的坐标分别为(1,0),(3,0);③顶点坐标为(2,﹣a);④若a<0,当x>2时,函数y随x的增大而增大,其中正确的结论有()个.A.1个 B.2个 C.3个 D.4个9.(3分)如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C与原点重合,点A(﹣1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为A1,经过第二次翻滚点A对应点记为A2…依此类推,经过5次翻滚后点A 对应点A5的坐标为()A.(5,2) B.(6,0) C.(8,0) D.(8,1)10.(3分)如图,等边△ABC的边长为3,F为BC边上的动点,FD⊥AB于D,FE⊥AC于E,则DE的长为()A.随F点运动,其值不变B.随F点运动而变化,最大值为C.随F点运动而变化,最小值为D.随F点运动而变化,最小值为二、填空题(共6小题,每小题3分,满分18分)11.(3分)x2﹣6x+()=(x﹣)212.(3分)二次函数y=x2﹣2x﹣3的图象的顶点坐标是.13.(3分)若m、n是方程x2+6x﹣5=0的两根,则3m+3n﹣2mn=.14.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),该抛物线的对称轴为直线x=﹣1,若点C(﹣,y1),D(﹣,y2),E(,y3)均为函数图象上的点,则y 1,y2,y3的大小关系为.15.(3分)已知点C为线段AB上一点,且AC2=BC•AB,则=.16.(3分)若x1、x2是方程x2+2(m﹣2)x+m2+4=0的两个实数根,且x12+x22﹣x1x2=21,则m=.三、解答题(共72分)17.(8分)(1)用配方法解方程:2x2﹣x﹣3=0.(2)已知a是方程x2﹣2x﹣1=0的根,b是方程y2﹣2y﹣1=0的根,求的值.18.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.(1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.19.(7分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是ycm2,设金色纸边的宽为xcm,要求纸边的宽度不得少于1cm,同时不得超过2cm.(1)求出y关于x的函数解析式,并直接写出自变量的取值范围;(2)此时金色纸边的宽应为多少cm时,这幅挂图的面积最大?求出最大面积的值.20.(9分)如图,线段AB两个端点的坐标分别为A(1,﹣1),B(3,1),将线段AB绕点O逆时针旋转90°到对应线段CD(点A与点C对应,点B与D对应).(1)请在图中画出线段CD;(2)请直接写出点A、B的对应点坐标C(,),D (,);(3)在x轴上求作一点P,使△PCD的周长最小,并直接写出点P的坐标(,).21.(8分)如图,在△ABC中,AB=AC,点D为BC上一点,以AD为腰作等腰△ADE,AD=AE,∠BAC=∠DAE,连接CE.(1)求证:BD=CE;(2)已知BC=8,∠BAC=∠DAE=30°,若△DCE的面积为1,求线段BD的长.22.(10分)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?23.(10分)如图,在正方形ABCD中,将正方形的边AD绕点A顺时针旋转到AE,连接BE、DE,过点A作AF⊥BE于F,交直线DE于P.(1)如图①,若∠DAE=40°,求∠P的度数;(2)如图②,若90°<∠DAE<180°,其它条件不变,试探究线段AP、DP、EP 之间的数量关系,并说明理由;(3)继续旋转线段AD,若旋转角180°<∠DAE<270°,则线段AP、DP、EP之间的数量关系为(直接写出结果)24.(12分)在平面直角坐标系中,抛物线C1:y=ax2+4x+4a(0<a<2)(1)当C1与x轴有唯一一个交点时,求此时C1的解析式;(2)如图①,若A(1,y A),B(0,y B),C(﹣1,y C)三点均在C1上,连BC 作AE∥BC交抛物线C1于E,求点E到y轴的距离;(3)若a=1,将抛物线C1先向右平移3个单位,再向下平移2个单位得到抛物线C2,如图②,抛物线C2与x轴相交于点M、N(M点在N点的左边),抛物线的对称轴交x轴于点F,过点F的直线l与抛物线C2相交于P,Q(P在第四象限)=2S△FNP,求直线l的解析式.且S△FMQ2016-2017学年湖北省咸宁市崇阳县桃溪中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均由四个备选答案,其中有且只有一个正确,请将各题正确答案的代号填入到答题卷相应的答题栏中1.(3分)如果﹣2是方程x2﹣m=0的一个根,则m的值为()A.2 B.﹣4 C.3 D.4【解答】解:∵x=﹣2是方程的根,∴x=﹣2代入方程有:4﹣m=0,解得:m=4.故选:D.2.(3分)下列正多边形中,绕其中心旋转72°后,能和自身重合的是()A.正方形B.正五边形C.正六边形D.正八边形【解答】解:A、正方形的最小旋转角度为90°,故本选项错误;B、正五边形的最小旋转角度为=72°,故本选项正确;C、正六边形的最小旋转角度为=60°,故本选项错误;D、正八边形的最小旋转角度为=45°,故本选项错误;故选:B.3.(3分)将二次函数y=x2的图象向下平移一个单位,再向右平移2个单位,则平移以后的解析式为()A.y=(x﹣2)2﹣1 B.y=(x+2)2+1 C.y=(x+2)2﹣1 D.y=(x﹣1)2+2【解答】解:原抛物线y=x2的顶点为(0,0),向下平移1个单位,再向右平移2个单位,那么新抛物线的顶点为(2,﹣1).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x﹣2)2﹣1.故选:A.4.(3分)制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低的百分率是()A.8.5% B.9% C.9.5% D.10%【解答】解:设平均每次降低的百分率为x,根据题意,得100(1﹣x)2=81解得:x=0.1,x=1.9(舍去).故选:D.5.(3分)电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是()A.x(x+1)=81 B.1+x+x2=81 C.1+x+x(x+1)=81 D.1+(x+1)2=81【解答】解:设每轮感染中平均一台电脑会感染x台电脑.根据题意,得:1+x+x(1+x)=81,故选:C.6.(3分)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.7.(3分)如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE ⊥BC,∠ADC=65°,则∠ABC的度数为()A.30°B.40°C.50°D.60°【解答】解:∵△ABC绕点A旋转到△AED的位置,∴AD=AC,∠BAE=∠CAD,∵AD=AC,∴∠ACD=∠ADC=65°,∴∠CAD=180°﹣65°﹣65°=50°,∴∠BAE=50°,∵AE⊥BC,∴∠ABC=90°﹣∠BAE=40°.故选:B.8.(3分)对于抛物线y=ax2﹣4ax+3a下列说法:①对称轴为x=2;②抛物线与x 轴两交点的坐标分别为(1,0),(3,0);③顶点坐标为(2,﹣a);④若a<0,当x>2时,函数y随x的增大而增大,其中正确的结论有()个.A.1个 B.2个 C.3个 D.4个【解答】解:对称轴x=﹣=﹣=2,故①正确;令y=0,得ax2﹣4ax+3a=0,解得x=1或3,∴抛物线与x轴两交点的坐标分别为(1,0),(3,0),故②正确;==﹣a,∴顶点坐标为(2,﹣a),故③正确;当a<0,当x<2时,函数y随x的增大而增大,故④错误,故选:C.9.(3分)如图,矩形ABCD的两边BC、CD分别在x轴、y轴上,点C与原点重合,点A(﹣1,2),将矩形ABCD沿x轴向右翻滚,经过一次翻滚点A对应点记为A1,经过第二次翻滚点A对应点记为A2…依此类推,经过5次翻滚后点A 对应点A5的坐标为()A.(5,2) B.(6,0) C.(8,0) D.(8,1)【解答】解:如下图所示:由题意可得上图,经过5次翻滚后点A对应点A5的坐标对应上图中的坐标,故A5的坐标为:(8,1).故选项A错误,选项B错误,选项C错误,选项D正确.故选:D.10.(3分)如图,等边△ABC的边长为3,F为BC边上的动点,FD⊥AB于D,FE⊥AC于E,则DE的长为()A.随F点运动,其值不变B.随F点运动而变化,最大值为C.随F点运动而变化,最小值为D.随F点运动而变化,最小值为【解答】解:作AG⊥BC于G,∵△ABC是等边三角形,∴∠B=60°,∴AG=AB=,∵S△ABF +S△ACF=S△ABC,∴AB•DF+AC•EF=BC•AG,∵AB=AC=BC=3,∴DF+EF=AG=,∵△DEF中,DE<DF+EF,∴DE的长随F点运动而变化,当F运动到BC中点时DE最小值为.故选:C.二、填空题(共6小题,每小题3分,满分18分)11.(3分)x2﹣6x+(9)=(x﹣3)2【解答】解:∵(x﹣3)2=x2﹣6x+32=x2﹣6x+9,故答案为:9,3.12.(3分)二次函数y=x2﹣2x﹣3的图象的顶点坐标是(1,﹣4).【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4).13.(3分)若m、n是方程x2+6x﹣5=0的两根,则3m+3n﹣2mn=﹣8.【解答】解:∵m、n是方程x2+6x﹣5=0的两根,∴m+n=﹣6,mn=﹣5,∴3m+3n﹣2mn=3(m+n)﹣2mn=3×(﹣6)﹣2×(﹣5)=﹣8.故答案是:﹣8.14.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),该抛物线的对称轴为直线x=﹣1,若点C(﹣,y1),D(﹣,y2),E(,y3)均为函数图象上的点,则y1,y2,y3的大小关系为y3<y1<y2.【解答】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,开口向下,∴离对称轴近的点的函数值大,∵|﹣+1|<|﹣+1|<|+1|∴y3<y1<y2.故答案为y3<y1<y2.15.(3分)已知点C为线段AB上一点,且AC2=BC•AB,则=.【解答】解:∵点C为线段AB上一点,AC2=BC•AB,∴点C为线段AB的黄金分割点,∴=,故答案为:.16.(3分)若x1、x2是方程x2+2(m﹣2)x+m2+4=0的两个实数根,且x12+x22﹣x1x2=21,则m=﹣1.【解答】解:根据题意得△=4(m﹣2)2﹣4(m2+4)≥0,解得m≤0,由根与系数的关系得到x1+x2=﹣2(m﹣2),x1x2=m2+4,∵x 12+x22﹣x1x2=21,∴(x1+x2)2﹣3x1x2=21,∴4(m﹣2)2﹣3(m2+4)=21,整理得m2﹣16m﹣17=0,解得m1=17,m2=﹣1,而m≤0,∴m=﹣1.故答案是:﹣1.三、解答题(共72分)17.(8分)(1)用配方法解方程:2x2﹣x﹣3=0.(2)已知a是方程x2﹣2x﹣1=0的根,b是方程y2﹣2y﹣1=0的根,求的值.【解答】解:(1)x2﹣x=,x2﹣x+=+,(x﹣)2=x﹣=±,所以x1=,x2=﹣1;(2)∵a是方程x2﹣2x﹣1=0的根,b是方程y2﹣2y﹣1=0的根,∴a2﹣2a﹣1=0,b2﹣2b﹣1=0,当a=b时,原式=1=1=2;当a≠b时,a、b可看作方程x2﹣2x﹣1=0的两根,则a+b=2,ab=﹣1,∴原式====﹣6,即的值为2或﹣6.18.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.(1)判断这个一元二次方程的根的情况;(2)若等腰三角形的一边长为3,另两条边的长恰好是这个方程的两个根,求这个等腰三角形的周长及面积.【解答】解:(1)∵△=[﹣(2k+1)]2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程有两个实数根;(2)①当3为底边长时,△=(2k﹣3)2=0,∴k=,此时原方程为x2﹣4x+4=0,解得:x1=x2=2.∵2、2、3能组成三角形,∴三角形的周长为2+2+3=7,三角形的面积为×3×=;②当3为腰长时,将x=3代入原方程,得:9﹣3×(2k+1)+4(k﹣)=0,解得:k=2,此时原方程为x2﹣5x+6=0,解得:x1=2,x2=3.∵2、3、3能组成三角形,∴三角形的周长为2+3+3=8,三角形的面积为×2×=2.综上所述:等腰三角形的周长为7或8,面积为或2.19.(7分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是ycm2,设金色纸边的宽为xcm,要求纸边的宽度不得少于1cm,同时不得超过2cm.(1)求出y关于x的函数解析式,并直接写出自变量的取值范围;(2)此时金色纸边的宽应为多少cm时,这幅挂图的面积最大?求出最大面积的值.【解答】解:(1)镶金色纸边后风景画的长为(80+2x)cm,宽为(50+2x)cm,∴y=(80+2x)•(50+2x)=4x2+260x+4000(1≤x≤2).(2)∵二次函数y=4x2+260x+4000的对称轴为x=﹣=﹣,∴在1≤x≤2上,y随x的增大而增大,∴当x=2时,y取最大值,最大值为4536.答:金色纸边的宽为2cm时,这幅挂图的面积最大,最大面积的值为4536cm2.20.(9分)如图,线段AB两个端点的坐标分别为A(1,﹣1),B(3,1),将线段AB绕点O逆时针旋转90°到对应线段CD(点A与点C对应,点B与D对应).(1)请在图中画出线段CD;(2)请直接写出点A、B的对应点坐标C(1,1),D(﹣1,3);(3)在x轴上求作一点P,使△PCD的周长最小,并直接写出点P的坐标(0.5,0).【解答】解:(1)如图,CD为所作;(2)C(1,1),D(﹣1,3);(3)P(0.5,0).故答案为1,1;﹣1,3;0.5,0.21.(8分)如图,在△ABC中,AB=AC,点D为BC上一点,以AD为腰作等腰△ADE,AD=AE,∠BAC=∠DAE,连接CE.(1)求证:BD=CE;(2)已知BC=8,∠BAC=∠DAE=30°,若△DCE的面积为1,求线段BD的长.【解答】(1)证明:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)过D作DF⊥EC交EC的延长线于F,∵△ABD≌△ACE,∴∠ACE=∠B,∵∠BAC=30°,∴∠B+∠ACB=150°,∴∠BCE=∠ACB+∠ACE=150°,∴∠DCF=30°,∴DF=CD=(BC﹣BD)=(8﹣BD),∵CE=BD,∴DF=4﹣CE,∵△DCE的面积为1,∴DF•CE=CF•BD=(8﹣BD)•BD=1,解得:BD=4﹣,BD=4+(不合题意,舍去).22.(10分)某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?【解答】解:(1)由图象可知其顶点坐标为(2,﹣2),故可设其函数关系式为:S=a(t﹣2)2﹣2.∵所求函数关系式的图象过(0,0),于是得:a(0﹣2)2﹣2=0,解得a=.∴所求函数关系式为:S=(t﹣2)2﹣2,即S=t2﹣2t.答:累积利润S与时间t之间的函数关系式为:S=t2﹣2t;(2)把S=30代入S=(t﹣2)2﹣2,得(t﹣2)2﹣2=30.解得t1=10,t2=﹣6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得S=×72﹣2×7=10.5,把t=8代入关系式,得S=×82﹣2×8=16,16﹣10.5=5.5,答:第8个月公司所获利是5.5万元.23.(10分)如图,在正方形ABCD中,将正方形的边AD绕点A顺时针旋转到AE,连接BE、DE,过点A作AF⊥BE于F,交直线DE于P.(1)如图①,若∠DAE=40°,求∠P的度数;(2)如图②,若90°<∠DAE<180°,其它条件不变,试探究线段AP、DP、EP 之间的数量关系,并说明理由;(3)继续旋转线段AD,若旋转角180°<∠DAE<270°,则线段AP、DP、EP之间的数量关系为PE=PD+PA(直接写出结果)【解答】解:(1)∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∵AD绕点A顺时针旋转到AE,∴AD=AE,∵∠DAE=40°,∴∠ADE=∠AED=70°,∠BAE=50°,∵AF⊥BE,∴∠FAE=∠FAB=25°,∴∠P=∠AED﹣∠PAE=45°;(2)如图2,过A作AQ⊥DE于Q,则∠PAQ=∠BAQ+∠FAB,∵AE=AB,AF⊥BE,∴∠FAE=∠BAF,∴∠APQ=∠EAF+∠AEP,∵∠BAD=∠AQP=90°,∴∠BAQ=∠ADQ,∵AE=AD,∴∠ADQ=∠AEP,∴∠BAQ=∠AEP,∴∠APQ=∠PAQ=45°,∴PQ=AP,∴PE+PQ=PD﹣PQ,即PE+AP=PD﹣AP,∴PD=AP+PE;(3)如图3,过A作AQ⊥DE于Q,则∠AQP=90°,∵AD=AE,∴DQ=EQ,∠AEQ=∠ADQ,∵AE=AB,AF⊥BE,∴∠3=∠FAB,∵∠APQ=∠3﹣∠AEQ=∠3﹣∠ADQ,∵∠1+∠FAB=∠FAB+∠ABF=90°,∴∠1=∠ABF=∠AEF,∴∠2=90°﹣∠1﹣∠ADP=90°﹣(90°﹣∠3)﹣∠AEP=∠3﹣∠AEP,∴∠2=∠APQ=45°,∴PQ=AP,∴PD+PQ=PE﹣PQ,即PD+PA=PE﹣PA,∴PE=PD+PA.故答案为:PE=PD+PA.24.(12分)在平面直角坐标系中,抛物线C1:y=ax2+4x+4a(0<a<2)(1)当C1与x轴有唯一一个交点时,求此时C1的解析式;(2)如图①,若A(1,y A),B(0,y B),C(﹣1,y C)三点均在C1上,连BC 作AE∥BC交抛物线C1于E,求点E到y轴的距离;(3)若a=1,将抛物线C1先向右平移3个单位,再向下平移2个单位得到抛物线C2,如图②,抛物线C2与x轴相交于点M、N(M点在N点的左边),抛物线的对称轴交x轴于点F,过点F的直线l与抛物线C2相交于P,Q(P在第四象限)=2S△FNP,求直线l的解析式.且S△FMQ【解答】解:(1)根据题意得△=42﹣4•a•4a=0,解得a1=1,a2=﹣1,而0<a<2,所以a=1,所以此时C1的解析式为y=x2+4x+4;(2)根据题意得A(1,5a+4),B(0,4a),C(﹣1,5a﹣4),设直线BC的解析式为y=kx+4a,把C(﹣1,5a﹣4)代入得﹣k+4a=5a﹣4,解得k=4﹣a,∴直线BC的解析式为y=(4﹣a)x+4a,∵BC∥AE,∴AE的解析式可设为y=(4﹣a)x+n,把A(1,5a+4)代入得4﹣a+n=5a+4,解得n=6a,∴直线AE的解析式为y=(4﹣a)x+6a,方程组消去y得x2+x﹣2=0,解得x1=1,x2=﹣2,∴E点的横坐标为﹣2,∴点E到y轴的距离为2;(3)作QA⊥x轴于A,PB⊥x轴于B,如图,当a=1时,y=x2+4x+4=(x+2)2,抛物线C1的顶点坐标为(﹣2,0),把点(﹣2,0)先向右平移3个单位,再向下平移2个单位得到对应点的坐标为(1,﹣2),所以抛物线C2的解析式为y=(x﹣1)2﹣2,即y=x2﹣2x﹣1,则抛物线的对称轴为直线x=1,所以F(1,0)∵抛物线C2与x轴相交于点M、N(M点在N点的左边),∴FM=FN,=2S△FNP,∵S△FMQ∴QA=2PB,∵AQ∥PB,∴==2,即FA=2BF,设P(t,t2﹣2t﹣1),则BF=t﹣1,∴AF=2(t﹣1),∴OA=2(t﹣1)﹣1=2t﹣3,∴Q[3﹣2t,(3﹣2t)2﹣2(3﹣2t)﹣1]∴(3﹣2t)2﹣2(3﹣2t)﹣1=﹣2(t2﹣2t﹣1),整理得t2﹣2t=0,解得t1=0(舍去),t2=2,∴P(2,﹣1),Q(﹣1,2),设直线PQ的解析式为y=px+q,把P(2,﹣1),Q(﹣1,2)代入得,解得,∴直线l的解析式为y=﹣x+1.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。