人教版数学标准教案合集2018七年级下学期第五章《相交线与平行线》全章
七年级下册《相交线与平行线》教案优秀范文五篇
七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
人教版七年级下册第五章相交线与平行线教案
第五章相交线与平行线5.1相交线[教学目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力。
2. 了解邻补角、对顶角以及同位角,内错角,同旁内角,能找出图形中的这些角,理解并能运用它解决一些简单问题。
[教学重难点]重点:邻补角与对顶角,垂线与及同位角,内错角,同旁内角的概念。
难点:理解对顶角相等的性质的探索,垂线的画法。
考点知识1.邻补角:有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
对顶角:有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角;对顶角相等。
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线:⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
C符号语言记作:如图所示:AB⊥CD,垂足为OOA BD⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
人教版2018七年级(下册)数学第五章相交线与平行线整章教案
第五章相交线与平行线第一课时5.1.1 相交线一、教学目标:1.理解并掌握对顶角、邻补角的概念和性质,会识别图形中的对顶角、邻补角.2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算.二、教学重难点:1.重点:邻补角、对顶角的概念,对顶角的性质及应用.2.难点:理解对顶角相等的性质.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:三角板五、教学过程:(一)导入新课:(课件展示图片)问题:1.图片中有相交线和平行线吗?若有,请找出来.2.你能举出一些生活中的相交线和平行线的例子吗?(二)教学活动:问题1:什么叫邻补角,对顶角?邻补角定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.对顶角定义:如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.问题2:对顶角有什么性质?对顶角的性质:对顶角相等.【合作探究】活动1:教师出示一块布和一把剪刀,表演剪布过程.学生认真观察剪刀两个把手之间的角与剪刀张开的口的变化,让学生直观地感知:如果将剪刀的构造看做两条相交的直线,这就关系到两条相交直线所成的角的问题.活动2:学生画直线AB、CD相交于点O,形成图中4个角.思考:(1)∠1和∠2有怎样的位置关系?∠1和∠3呢?(2)分别量一下各个角的度数,∠1和∠2的度数有什么关系?∠1和∠3呢?(3)如果改变图中∠1的大小,上面的关系还成立吗?为什么?学生思考并在小组内交流,全班交流.形成共识:(1)∠1与∠2有一条公共边OA,另一边互为反向延长线.∠1与∠3有公共顶点O,两边互为反向延长线.(2)∠1+∠2=180°,∠1=∠3.(3)成立.归纳结论:邻补角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.对顶角:如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.对顶角相等.【自主探究】 解答下列问题:1.如图所示,直线AB 和CD 相交所成的四个角中,∠1的邻补角是∠2,∠4,与∠2相等的角是∠4.2.如图,取两根木条a ,b ,将它们钉在一起,并把它们想象成两条直线,就得到一个相交线的模型.两根木条所成的角中,如果∠α=35°,其他三个角各等于145°,35°,145°.【合作探究】典例讲解:如图,直线a ,b 相交,∠1=40°,求∠2,∠3,∠4的度数. 解:由邻补角的定义,得∠2=180°-∠1=180°-40°=140°; 由对顶角相等,得∠3=∠1=40°,∠4=∠2=∠140°. (三)课堂小结:知识模块一 对顶角、邻补角的概念及性质 知识模块二 对顶角性质的应用 (四)作业布置: 必做题: 选做题:七、课后反思:第二课时5.2.1 平行线一、教学目标:1.了解平行线的概念,了解同一平面内两条直线的两种位置关系.2.理解并掌握平行线的基本事实.3.会根据几何语言画图,会用直尺和三角板画平行线.二、教学重难点:1.重点:探索和掌握平行线的基本事实.2.难点:理解平行线的概念及由平行线的基本事实导出其推论的过程.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:三角板五、教学过程:(一)导入新课:1.两条直线相交有__1__个交点.2.展示一些生活中的图片,让学生观察生活中的两条直线之间的位置关系.问题:平面内两条直线的位置关系除相交外,还有哪些?(二)教学活动:仔细阅读教材P11的内容,完成下列问题:1.平行定义及表示方法:在同一平面内,不相交的两条直线是平行线.直线a与b平行,记作a∥b.2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.请你举出一些生活中平行线的例子.【合作探究】活动:教师演示教具:分别将木条a,b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线.转动a,直线a从在c的左侧与直线b相交逐步变为在c的右侧与b相交.思考:1.在直线a的转动过程中,有没有直线a与直线b不相交的位置?2.在同一平面内,不重合的两条直线有几种位置关系?3.什么叫两直线平行?如何表示?学生观察、交流.形成共识:1.有;2.两种:相交和平行;3.在同一平面内,两条直线没有交点,称直线a与b平行.记作:a∥b.【自主探究】认真阅读教材P12的内容,完成下列问题:1.在上图转动木条a的过程中,有1个位置使得a∥b.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【合作探究】动手操作:如图,过点B画直线a的平行线;再过点C画直线a的平行线.思考:上图中,(1)过点B画直线a的平行线,能画1条;(2)过点C画直线a的平行线,能画1条;(3)你画的直线有什么位置关系?平行.师生结论:1.平行公理.公理内容:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.符号语言:如图,如果b∥a,c∥a(已知),那么b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).(三)课堂小结:知识模块一平行线知识模块二平行公理及推论(四)作业布置:必做题:选做题:七、课后反思:第三课时5.2.2 平行线的判定(1)一、教学目标:1.掌握两直线平行的判定方法,会判定两直线平行.2.经历探索直线平行的条件的过程,初步了解转化的数学思想方法.二、教学重难点:1.重点:探索并掌握直线平行的判定方法.2.难点:掌握直线平行的条件.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:一副三角板、多媒体课件五、教学过程:(一)导入新课:旧知回顾:1.经过直线外一点,有且只有一条直线与这条直线平行.2.画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD ∥AB.问题:除了平行线的基本事实及其推论可判定两直线平行外,还有没有其他方法可判定两直线平行呢?(二)教学活动:【自主探究】认真阅读教材P12-13,完成下列问题:1.思考:在用直尺和三角尺画平行线的过程中,三角尺起什么样的作用?答:作用是为了画∠PHF,使所画的角与∠BGF相等.2.两条直线被第三条直线所截,同位角满足什么条件,两直线平行?答:同位角相等,两直线平行.【合作探究】动手操作:用直尺和三角尺画平行线,如图.思考:图中∠1与∠2的位置关系是:同位角;数量关系是:∠1=∠2.问题1:我们能否得到一个判定两直线平行的方法?学生交流后得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行问题2:你觉得师傅用角尺画平行线的数学道理是什么?答:同位角相等,两直线平行.学习笔记:准确识别三种角是判断两条直线平行的前提条件,三种基本图形:(1)“F”型(同位角相等,两直线平行);(2)“Z”型(内错角相等,两直线平行);(3)“U”型(同旁内角互补,两直线平行).【自主探究】解答下列问题:如图,直线AB ,CD 被直线EF 所截,若已知∠1=∠2,试完成下面的填空.因为∠2=∠3(对顶角相等). 又因为∠1=∠2(已知),所以∠1=∠3.所以AB ∥CD(同位角相等,两直线平行). 【合作探究】细心的小明在研究右图时发现:当∠1=∠3或∠1+∠4=180°时,AB 与CD 一定平行,你认为他的说法正确吗?为什么?由此你又能得到哪些判定两直线平行的方法?学生思考、验证、交流,达成共识. 正确:(学生展示推理过程) 归纳结论:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行. (三)课堂小结:知识模块一 探索平行线判定方法1知识模块二 探索两直线平行的判定方法2、3(四)作业布置: 必做题: 选做题:七、课后反思:第四课时5.2.2 平行线的判定(2)一、教学目标:1.进一步巩固平行线的判定方法.2.会灵活运用平行线的判定方法进行推理论证.二、教学重难点:1.重点:平行线判定方法的综合运用.2.难点:灵活运用平行线的判定方法推理,论证.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:一副三角板、多媒体课件五、教学过程:(一)导入新课:旧知回顾:平行线有哪些判定方法?1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.(二)教学活动:【自主探究】解答下面问题:1.如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,其中能判定AB∥CD的条件有( C )A.1个B.2个C.3个D.4个2.如图,已知BC平分∠ACD,且∠1=∠2,则AB∥CD,理论依据:内错角相等,两直线平行.3.如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.【合作探究】典例讲解:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,进而用判断两条直线平行的方法进行判定.解:这两条直线平行.理由如下:如图,∵b⊥a,∴∠1=90°.同理∠2=90°.∴∠1=∠2.∴b∥c(同位角相等,两直线平行).思考:你还能利用其他方法说明b ∥c 吗? 【自主探究】 解答下面问题:如图,已知∠1=∠2,再添加什么条件可使AB ∥CD 成立?并就你添加的条件说明AB ∥CD.解:添加BE ∥DF.∵BE ∥DF ,∴∠EBM =∠FDM , ∵∠1=∠2, ∴∠3=∠4, ∴AB ∥CD. 【合作探究】 典例讲解:如图所示,要想判断AB 是否与CD 平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判定两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB 与∠D ,如果∠EAB =∠D ,那么根据“同位角相等,两直线平行”,得出AB 与CD 平行;(2)可以测量∠BAC 与∠C ,如果∠BAC =∠C ,那么根据“内错角相等,两直线平行”,得出AB 与CD 平行;(3)可以测量∠BAD 与∠D ,如果∠BAD +∠D =180°,那么根据“同旁内角互补,两直线平行”,得出AB 与CD 平行.(三)课堂小结:知识模块一 灵活选用判定方法判定平行知识模块二 根据平行线的判定方法,添加合适条件(四)作业布置: 必做题: 选做题:七、课后反思:第五课时5.3.1 平行线的性质(1)一、教学目标:掌握平行线的三个性质,并能运用它们作简单的推理.二、教学重难点:1.重点:探索并掌握平行线的性质,能用平行线的性质进行简单的推理和计算.2.难点:能区分平行线的性质和判定方法.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:一副三角板、多媒体课件五、教学过程:(一)导入新课:旧知回顾:思考:如何用同位角、内错角、同旁内角来判定两条直线是否平行?解:(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.问题:若把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又如何表达?(二)教学活动:【自主探究】仔细阅读教材P18-19的内容,完成下面问题:1.两条直线平行,同位角相等.2.两条直线平行,内错角相等.3.两条直线平行,同旁内角互补.【合作探究】活动1:操作观察:用直尺和三角尺画两条平行线a∥b,然后,画一条截线c与这两条平行线相交.思考:(1)(2)∠1~∠8中,哪些是同位角?它们的度数之间有什么关系?(3)由此猜想两条平行线被第三条直线截得的同位角有什么关系.(4)再任意画一条截线d,同样度量并比较各组同位角的度数,你的猜想还成立吗?解:(1)略;(2)∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;相等;(3)相等;(4)成立.形成结论:一般地,平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.活动2:思考:(1)图中哪些角是内错角?它们具有怎样的数量关系?解:∠4与∠6,∠3与∠5;相等;(2)图中哪些角是同旁内角?它们具有怎样的数量关系?解:∠3与∠6,∠4与∠5;互补.(3)演绎推理,发现平行线的其他性质.①已知:如图(1),直线AB、CD被直线EF所截,AB∥CD.求证:∠1=∠2.②已知:如图(2),直线AB、CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.学习笔记:利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.形成结论:性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相行等.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.【自主探究】解答下列问题:1.如图,直线a∥b,∠2=54°,那么∠1=54°,理论依据:两直线平行,同位角相等,∠3=54°,理论依据:两直线平行,内错角相等,∠4=126°,理论依据:两直线平行,同旁内角互补.2.填空:如图:(1)∵a∥b(已知),∴∠1=∠5,∠3=∠7(两直线平行,同位角相等);(2)∵∠3=∠5(已知),∴a∥b(内错角相等,两直线平行);(3)∵∠4+∠5=180°,∴a∥b(同旁内角互补,两直线平行).【合作探究】活动3:小组讨论交流.思考:平行线的判定与性质有什么区别与联系?区别:(1)性质:根据两条直线平行,证角相等或互补.(2)判定:根据两角相等或互补,证两条直线平行.联系:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.(三)课堂小结:知识模块一平行线的性质知识模块二平行线的性质与判定的区别与联系(四)作业布置:必做题:选做题:七、课后反思:第六课时5.3.1 平行线的性质(2)一、教学目标:1.进一步理解平行线的性质,能用平行性质与判定去解决一些问题.2.在学习过程中进一步培养学生的推理能力,发展学生的空间观念.二、教学重难点:1.重点:进一步理解平行线的性质,运用平行线的性质解决问题.2.难点:结合平行线的性质和判定去解决问题.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:五、教学过程:(一)导入新课:旧知回顾:1.平行线有哪些性质?2.平行线的判定方法有哪些?3.二者有什么区别?(二)教学活动:【自主探究】解答下面的问题:1.如图,已知∠1=∠2,AB∥CD吗?为什么?解:AB∥CD.理由:∵∠1=∠2(已知),∠2=∠3(对顶角相等,∴∠1=∠3(等量代换).∴AB∥CD(同位角相等,两直线平行).2.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴AB∥CD.又∵∠1=∠4,∴AB∥EF,∴AB∥CD∥EF.【合作探究】典例讲解:如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.所以∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.学习笔记:【自主探究】解答下列问题:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.解:∵∠A=75°,∠2=75°(已知),∴∠A=∠2,∴AB∥CE(内错角相等,两直线平行),∴∠B=∠1=53°(两直线平行,同位角相等).【合作探究】典例讲解:如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证:AD∥BE.证明:∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠DAC.∵AB∥CD,∴∠4=∠BAE,∴∠4=∠DAC,而∠3=∠4,∴∠3=∠DAC,∴AD∥BE.(三)课堂小结:知识模块一运用平行线的性质解决问题知识模块二平行线性质、判定的综合运用(四)作业布置:必做题:选做题:七、课后反思:第七课时 5.3.2 命题、定理、证明一、教学目标:1.了解命题、定理、证明的概念.能区分命题的题设和结论,并会判断真假.2.掌握推理证明的格式,并会证明简单命题的真假.二、教学重难点:1.重点:理解命题的概念和区分命题的题设与结论.2.难点:区分命题的题设和结论.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:五、教学过程:(一)导入新课:旧知回顾:观察下列两组语句,回答下列问题.第一组:(1)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(2)不等式的两边都加上或减去同一个数,不等号的方向不变.(3)对顶角相等.(4)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.第二组:(1)直线AB与CD平行吗?(2)过点A画直线l的垂线.(3)花儿为什么这样红?问题:1.上述两组语句有什么区别?2.与第二组相比,第一组的四个语句有什么共同特点?结论:第一组语句都是表示判断的陈述句,第二组语句则是疑问句或不表示判断的陈述句.(二)教学活动:【自主探究】认真阅读教材P20-21的内容,回答下面问题:1.判断一件事情的语句叫命题.每个命题都由题设和结论组成.2.如果题设成立,那么结论一定成立,这样的命题是真命题;题设成立,结论不一定成立,这样的命题是假命题.【合作探究】活动1:思考:(1)如果我们把具有第一组特征的语句叫做命题,你能给命题下个定义吗?(2)你能举出几个命题的例子吗?(3)命题的结构有什么特征?学生交流展示:表示判断性的语句叫命题,命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.对应练习:指出下列命题的题设和结论:(1)如果两个数互为相反数,那么这两个数的和为0;(2)两直线平行,内错角相等;(3)等式的两边同乘以一个数,结果仍是等式;(4)绝对值相等的两个数相等;(5)如果AB⊥CD,垂足O,那么∠AOC=90°.学生分小组讨论展示:(1)题设:两个数互为相反数;结论:这两个数的和为0;(2)题设:两直线平行;结论:内错角相等;(3)题设:等式两边同乘以一个数;结论:结果仍是等式;(4)题设:两个数的绝对值相等;结论:这两个数相等;(5)题设:AB⊥CD,垂足是O;结论:∠AOC=90°.活动2:思考:(1)观察下列命题,它们是否正确?①如果两个角相等,那么它们是对顶角.②如果a>b,b>c,那么a>c.③如果两个角互补,那么它们是邻补角.④任意两个直角都相等.(2)如何验证命题的真假?学生讨论、交流、形成共识.归纳结论:如果题设成立,那么结论一定成立的命题叫真命题;若命题的题设成立,结论不一定成立,这样的命题叫假命题.【自主探究】完成下面问题:1.在前面,我们学过的一些图形的性质,都是真命题,其中哪些命题是基本事实?哪些命题的正确性是经过推理证实的?(学生回忆回答)2.什么是定理?答:命题的正确性是经过推理证实的,这样得到的真命题叫定理.3.在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程就叫证明.【合作探究】典例讲解:证明命题“在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条”为例,来说明什么是证明.如图,已知直线b∥c,a⊥b.求证a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义),又b∥c(已知),∴∠1=∠2(两直线平行,同位角相等).∴∠2=∠1=90°(等量代换).∴a⊥c(垂直的定义).(三)课堂小结:知识模块一命题的概念及组成、分类知识模块二定理与证明(四)作业布置:必做题:选做题:七、课后反思:第八课时5.4 平移一、教学目标:1.了解平移的概念,掌握平移的性质.2.了解平移的特征.能按要求作出简单图形平移后的图形.二、教学重难点:1.重点:掌握图形平移的特征.2.难点:理解平移的性质,能解决简单的平移问题.三、教学法:1.教法:讲授法2.学法:…四、教学具准备:五、教学过程:(一)导入新课:情境导入:观察如图美丽的图案,并回答下列问题.问题:1.这五幅图案有什么共同特征?2.能否根据其中的一部分绘制出整个图案?学生回答或展示(二)教学活动:【自主探究】阅读教材P28-29的内容,完成下面问题:1.画一个图形平移后的图形,应注意哪两个方面的问题?答:①平移方向,②平移距离.2.平移的过程中,新图形中的每一点,都是由原图形中的某一点移动后得到的,这两点是对应点,连接各组对应点的线段平行且相等.【合作探究】活动1:探究平移的概念:观察下面的运动方式,回答下列问题:①传送带上物体的运动;②高层建筑内电梯的运动;③时钟的分针的运动;④开关抽屉时抽屉的运动;⑤旋转木马;⑥荡秋千等运动.思考:1.这些运动方式相同吗?2.什么是图形的平移?3.你还能举出生活中的平移现象吗?学生合作交流或展示:归纳结论:把一个图形沿着某一方向移动一段距离叫平移.活动2:探究平移的性质:动手操作:让学生在一张半透明的纸上画一排形状、大小如图1所示的雪人,并完成下列问题.思考:1.这些雪人有什么关系?2.在图2中所画的小雪人图形中任意找三对或更多的对应点,连接这些对应点,观察所得出的线段,它们的位置,长短有怎样的关系?3.你能归纳出平移的性质吗?学生合作交流后展示.归纳总结:把一个图形整体沿着某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,新图形中的每一点都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行(或在同一直线上)且相等.【自主探究】解答下列各题:1.如图,△ABC经过平移得到△A′B′C′,若AB=6,CC′=12,∠BAC=75°,∠ACB =70°,则∠A′B′C′=35°,A′B′=6,BB′=12.2.如图,平移正方形网格中的阴影图案,使AB移动到A′B′的位置.然后再向左平移6个单位.解:如图.【合作探究】典例讲解:如图,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.解:如图,连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.同理,作出C′点,连接A′B′,B′C′,C′A′,△A′B′C′即为所求作的三角形.(三)课堂小结:知识模块一平移的概念与性质知识模块二作简单的图形平移(四)作业布置:必做题:选做题:七、课后反思:。
新版人教版七年级下册数学精品教案 第5章 相交线与平行线 全章教案 改好
新版人教版七年级下册数学精品教案若:=2:3,,则=2如图,直线AB 、CD 相交于点O则5 . 1.3 同位角、内错角、同旁内角教学建议一、知识结构二、重点难点分析本节教学的重点是同位角、内错角、同旁内角的概念.难点为在较复杂的图形中辨认同位角、内错角、同旁内角.掌握同位AOC ∠AOE ∠ 130=∠EOD BOC ∠ 30,90=∠=∠=∠AOC FOB COE =∠EOF(三)教学过程创设情境,复习导入回答下列问题:1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系?2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系?3.如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角?4.如图,三条直线AB、CD、EF两两相交,则图中有几对对项角,有几对邻补角?5.三条直线相交除上述两种情况外,还有其他相交的情形吗?学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线CD,使CD与EF相交于某一点(如图),直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF 所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系.【板书】 2.3同位角、内错角、同旁内角【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况.认识事物间是发展变化的辩证关系.尝试指导,学习新知1.学生自己尝试学习,阅读课本第67页例题前的内容.2.设计以下问题,帮助学生正确理解概念.(1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?(2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?(3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?(4)同位角和同分内角在位置上有什么相同点和不同点?内错角和同旁内角在位置上有什么相同点和不同点?(5)这三类角的共同特征是什么?3.对上述问题以小组为单位展开讨论,然后学生间互相评议.4.教师对学生讨论过程中所发表的意见进行评判,归纳总结.在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(F、Z、U)判断问题就迎刃而解.【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性.学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力.投影显示(投影片2)例题如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角?(2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?[教法说明]例题较简单,让学生口答,回答“为什么”只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太规范,等学习证明时再严格训练.变式训练,巩固新知投影显示(投影片3)【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是c,即a和b被c所截,如c 和a被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提.投影显示(投影片4)【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线”,或是由“三线八角”图形判断同位角、内错角、同旁内角.这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位.这“三看”又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形.如第2题由已知条件结合所求部分,对各个小题分别分解图5 . 2.1 平行线[教学目标]1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.[教学重点与难点]1.教学重点:平行线的概念与平行公理;2.教学难点:对平行公理的理解.[教学过程]一、复习提问相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.(画出图形)2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行.3.对平行线概念的理解:两个关键:一是“在同一个平面内”(举例说明);二是“不相交”.一个前提:对两条直线而言.4.平行线的画法平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c.五、三线八角由前面的教具演示引出.如图,直线a ,b 被直线c 所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是 . 2.在同一平面内,三条直线的交点个数可能是 . 3.下列说法正确的是( )A .经过一点有且只有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行4.若∠与∠是同旁内角,且∠=50°,则∠的度数是( ) A .50° B .130° C .50°或130° D .不能确定5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( ) A .1 B .2 C .3 D .4 6.如图,直线AB ,CD 被DE 所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角.如果∠5=∠1,那么∠1 ∠3. 七、小结让学生独立总结本节内容,叙述本节的概念和结论. αβαβ八、课后作业1.教材P19第7题;2.画图说明在同一平面内三条直线的位置关系及交点情况.[补充内容]1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)5 . 2.2直线平行的条件(一)[教学目标]3.借助用直尺和三角板画平行线的过程,,得出直线平行的条件.4.会用直线平行的条件来判定直线平行.5.激发学生学习数学的兴趣.[教学重点与难点]重点: 理解直线平行的条件.难点: 直线平行的条件的应用[教学设计]提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.2.下面说法中正确的是 ( ).(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种(2) 在同一平面内, 不垂直的两条直线必平行(3) 在同一平面内, 不平行的两条直线必垂直(4) 在同一平面内,不相交的两条直线一定不垂直3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.导言:上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,如果∠4+∠2=180°, a∥ b吗?三种方法可以简单地说成:例题已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.解:因为∠1=∠2,所以 AB ∥CD.又因为∠3+∠1=180°,所以 AB ∥ EF.从而 CD ∥EF (为什么?).课堂练习:1.下列判断正确的是 ( ).A.因为∠1和∠2是同旁内角,所以∠1+∠2=180°B.因为∠1和∠2是内错角,所以∠1=∠2C.因为∠1和∠2是同位角,所以∠1=∠2D.因为∠1和∠2是补角,所以∠1+∠2=180°2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么?(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗?为什么?(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?为什么?3.4.如图所示:(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.第4题图第5题图5.如图,(1)如果∠1=________,那么DE∥ AC;(2) 如果∠1=________,那么EF∥ BC;(3)如果∠FED+ ∠________=180°,那么AC∥ED;(4) 如果∠2+ ∠________=180°,那么AB∥DF.6.7.课后作业:习题5.2 第1,2,4题.补充练习:已知:如图,AB ∥CD,EF分别交 AB、CD于 E、F,EG平分∠ AEF ,FH平分∠ EFD EG与 FH平行吗?为什么?5 . 2.2 直线平行的条件 (第2课时)一.教学目标(1)使学生进一步理解并掌握判定两条直线平行的方法;(2)了解简单的逻辑推理过程.二.教学重点与难点重点:判定两条直线平行方法的应用;难点:简单的逻辑推理过程.三.教学过程复习提问:1.判定两条直线平行的方法有哪些?2.如图(1)(1) 如果∠1=∠4,根据_________________,可得AB ∥CD ; (2) 如果∠1=∠2,根据_________________,可得AB ∥CD ; (3) 如果∠1+∠3=1800,根据______________,可得AB ∥CD .3.如图(2)(1) 如果∠1=∠D ,那么______∥________; (2) 如果∠1=∠B ,那么______∥________; (3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________;新课:例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?答:这两条直线平行. 如图所示理由如下: ∵b ⊥a ,c ⊥a∴∠1=∠2=900(垂直定义)A D如图(2) A B CDEF12 3 4 如图(1)ab c┐1 ┐2∴b ∥c (同位角相等,两直线平行)思考:这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800. (1) 求∠2的度数;(2)FC 与AD 平行吗?为什么?巩固练习1. 教科书19页练习2.如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC 与DE 平行吗?AB 与CD 平行吗?3. 如图所示,已知∠D=∠A ,∠B=∠FCB ,试问ED 与CF 平行吗?AB C D E1 2E D C FA B4.如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线.作业:教科书19页习题5.2第7、8题5. 3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程 一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗? 二、新授1.实验观察,发现平行线第一个性质 请学生画出下图进行实验观察.12 3 45m nlab设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?平行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.三、例题例2如图所示,AB ∥CD ,AC ∥BD .找出图中相等的角与互补的角.此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC +∠ACD =180°,∠ABD +∠CDB =180°,∠CAB +∠DBA =180°,∠ACD +∠BDC =180°.相等的角还有:∠ACD =∠ABD ,∠BAC =∠BDC .(同角的补角相等) 例3如图所示.已知:AD ∥BC ,∠AEF =∠B ,求证:AD ∥EF .分析:(执果索因)从图直观分析,欲证AD ∥EF ,只需∠A +∠AEF =180°, (由因求果)因为AD ∥BC ,所以∠A +∠B =180°,又∠B =∠AEF ,所以∠A +∠AEF =180°成立.于是得证. 证明:因为 AD ∥BC ,(已知)所以 ∠A +∠B =180°.(两直线平行,同旁内角互补)因为 ∠AEF =∠B ,(已知)所以 ∠A +∠AEF =180°,(等量代换)所以 AD ∥EF .(同旁内角互补,两条直线平行) 四、练习:1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°. 证明:因为 AB ∥CD , 所以 ∠BAC +∠ACD =180°,87654132FED CBA A BCD又因为 AE 平分∠BAC ,CE 平分∠ACD , 所以,,故.即 ∠1+∠2=90°. (理由略)2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析) 证明:(学生板书) 小结我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 作业:1.如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,为什么?3.如图,已知AD ∥BC ,可以得到哪些角的和为180°?已知AB ∥CD ,可以得到哪些角相等?并简述理由.112BAC ∠=∠122ACD ∠=∠001112()1809022BAC ACD ∠+∠=∠+∠=⨯=5 . 3平行线性质(二)[教学目标]6.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8.能够综合运用平行线性质和判定解题[教学重点与难点]重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用[教学设计]一.复习引入1.平行线的判定方法有哪些?2.平行线的性质有哪些? 3.完成下面填空已知:BE 是AB 的延长线,AD//BC ,AB//CD ,若 则4.那么a ,c 的位置关系如何? 二.新课1.例1,已知a//c,直线b 与c 垂直吗?为什么? 例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?2.实践 与探究(1)学生操作:用三角尺和直尺画平行线,做成一张个格子的方格纸。
新人教版数学七年级下册第五章《相交线与平行线》全章教案
1.【探究一】
合
作 如图,怎样描述直线 AB、CD 和 EF 的位置关系? 学生讨论、回答:
探
究
直线 AB、CD 被直线 EF
所截
师概括为三线八角
2.【探究二】
引导学生观察得出
(1)观察图中的∠1 和∠5 与截线及两条 这 两 个 角 分 别 在 直 线
教学反思:
, 的垂线.
C
A
D
B
B
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(2)
教学目标
了解垂线段、点到直线的距离的概念,会利用三角尺画垂线段,会量点到 直线的距离.
教学重、难点
重点:两个结论的探究、垂线段和点到直线距离的概念. 难点:经历探究“垂线段最短”的过程,掌握垂线性质 2
教 学 过 程设计
角两边的反向延长线。
互为邻补角的两个角的特点:①两个角有一个公共顶点②两个角有一条公共边
(邻)③两个角在公共边两侧④两个角和为
五、布置作业:、 教学反思:
(补)
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(1)
教学目标
1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的 垂线。 2、掌握点到直线的距离的概念,并会度量点到直线的距离。 3、掌握垂线的性质,并会利用所学知识进行简单的推理。
(5)如图直线 AB、CD、EF 相交于点 O,∠BOE 的对顶角是______,∠COF 的邻
a 补角是____ ,若∠AOE=30°,那么∠BOE=_____,∠BOF=_______。 E 2
人教版初中七年级下册数学教案 第五章 相交线与平行线 5.1 相交线 5.1.1 相交线
第五章相交线与平行线 5.1相交线 5.1.1相交线【情境导入】在我们生活的世界中,蕴含着大量的相交线和平行线.同学们对两条直线相交、平行一定不陌生,大桥上的钢梁和钢索,棋盘上的横线与竖线、笔直的高速公路……都给我们以相交线或平行线的形象,从这一章开始,我们正式开始研究平面内不重合的两条直线的位置关系.今天这节课,我们研究相交线.探究点邻补角与对顶角的认识问题1如图①,观察剪刀工作过程(可动态呈现),将其构造抽象成一个几何图形(如图②),这是一个什么样的图形?请你描述一下.答:剪刀的构造抽象成几何图形可看作两条相交的直线.如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点.这个图形的几何描述为:直线AB,CD相交于点O.问题2任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?分别量出各个角的度数,它们存在什么样的数量关系?所以∠1=∠3(同角的补角相等).例1(教材P3例1)如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.解:由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.【对应训练】1.下图中,∠2的邻补角是( A )A∠1B∠3C∠4D没有邻补角2.下列图形中,∠1与∠2互为对顶角的是( C )3.如图,直线AB,CD相交于点O,若∠AOD减小30°,则∠BOC( D )A.增大30°B.增大150°C.不变D.减小30°4.如图,要测量两堵围墙形成的∠AOB的度数,先分别延长AO,BO得到∠COD,然后通过测量∠COD的度数从而得到∠AOB的度数,其中运用的原理是对顶角相等.例2如图,直线AB和CD相交于点O,OE平分∠AOD.若∠1+∠2=80°,求∠AOE的度数.【对应训练】如图,直线CD与EF相交于点O,OC平分∠AOF.若∠AOE=40°,求∠DOE的度数.【随堂训练】见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答:什么是邻补角?邻补角与补角有什么区别和联系?什么是对顶角?对顶角有什么性质?【知识结构】【作业布置】1.教材P7习题5.1第1,2,8,9题.2.《创优作业》主体本部分相应课时训练.1.对顶角:(1)有公共顶点的两个角;(2)其中一个角的两边分别是另外一个角两边的反向延长线.辨认对顶角紧抓以上两点.例1下列示意图中,∠1与∠2是对顶角的是(A)解析:A∠1与∠2有公共顶点,∠1的两边分别是∠2的两边的反向延长线,∠1与∠2是对顶角;B.∠1与∠2没有公共顶点,∠1与∠2不是对顶角;C.∠1与∠2没有公共顶点,∠1与∠2不是对顶角;D.∠1教学步骤师生活动板书设计5.1.1相交线1.邻补角的概念.2.对顶角的概念.3.对顶角的性质:对顶角相等.教学反思本节课中邻补角和对顶角概念的教学都是结合图形进行描述,抓住其本质特征,教会学生如何在图形中识别它们.在学习对顶角的性质时,要让学生明白,由什么条件,依据什么,得出什么结果,初步养成言之有据的习惯.的两边不是∠2的两边的反向延长线,∠1与∠2不是对顶角.故选A.2.邻补角:(1)有公共顶点的两个角;(2)有一条公共边;(3)另一边互为反向延长线.辨认邻补角紧抓以上三点.例2下列各图中,∠1与∠2是邻补角的是(C)例1如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE∶∠EOC=3∶5,OF平分∠BOE.(1)若∠BOD=72°,求∠BOE的度数.(2)若∠BOF=2∠AOE+15°,求∠COF的度数.例2(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)以此类推,n条直线相交,最少有1个交点,最多有个交点,对顶角有n(n-1)对,邻补角有2n(n-1)对.。
(完整word版)新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才二次备课能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是二次备课∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
人教版七年级数学下册第五章相交线与平行线(教案)
(3)在解决实际问题时,引导学生运用平行线知识,分析问题,提高解题能力。例如,在建筑设计中,如何运用平行线知识确定建筑物的结构线条。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相交线与平行线》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如火车轨道、双杠等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法、性质及其在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-平行线在实际问题中的应用:运用平行线知识解决实际问题,培养学生的数学应用意识。
举例解释:
(1)重点讲解平行线的定义,通过图形直观展示,使学生深刻理解平行线的概念。
(2)强调平行线的性质,结合具体实例进行讲解,让学生掌握平行线之间的夹角关系。
(3)详细讲解判定平行线的方法,并通过典型题目进行巩固。
2.教学难点
此外,关于学生小组讨论环节,我觉得整体效果还不错,学生们能够积极参与,提出自己的观点。但在引导和启发学生思考方面,我觉得自己还有待提高。在今后的教学中,我将更加关注学生的思维过程,通过提问和引导,激发他们的思考。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线Array教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.Array 2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案
新课标人教版初中数学七年级下册第五章《相交线与平行线》精品教案一. 教学内容:相交线与平行线二. 主要概念:1. 邻补角有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
2. 对顶角一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角。
3. 垂线两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
4. 垂线段过直线外一点,作已知直线的垂线,这点和垂足之间的线段。
5. 点到直线的距离直线外一点到这条直线的垂线段的长度。
6. 平行线在同一平面内,不相交的两条直线叫做平行线。
7. 命题判断一件事情的语句叫做命题。
8. 平移把一个图形整体沿着某一方向平行移动,这种移动叫做平移变换,简称平移。
三. 主要性质:1. 对顶角的性质对顶角相等。
2. 邻补角的性质互为邻补角的两个角和为180°。
3. 垂线的基本性质(1)经过一点有且只有一条直线垂直于已知直线;(2)垂线段最短。
4. 平行线的判定与性质【典型例题】一. 选择题1. 如图,下列条件中,能判断直线∥的是()A. =B. =C. =D. +=2. 如图,直线a、b都与直线c相交,给出下列条件:(1)=;(2)=;(3)+=;(4)+=,其中能判断a∥b的是()A.(1)(3)B.(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)3. 如图,AB∥EF∥DC,EG∥DB;则图中与相等的角(除外)共有()A. 6个B. 5个C. 4个D. 3个4. 如图,若AB∥CD,则()A. =+B. =-C. ++ =D. -+=5. 如图,AB∥EF∥DC,EH⊥CD于H,BAC+ACE+CEH=()A. 180°B. 270°C. 360°D. 450°6. 已知两个角的两边分别垂直,其中一个角比另一个角的3倍少8,那么这个角的度数是()A. 47°或4°B. 133°或4°C. 47°或133°D. 以上都不对7. 下列条件中,能得到互相垂直的是()(1)对顶角的平分线(2)邻补角的平分线(3)内错角的平分线(4)同旁内角的平分线(5)同位角的平分线A. 0个B. 1个C. 2个D. 3个8. 如图,AB∥EF,C=90,则1、2和3的关系是()A. =1+ 3B. +1+ 3 =C. +1- 3 =90D. +3- 1 =909. 若直线a、b分别与直线c、d相交,且+=,-=,=115,那么=()A. 55°B. 65°C. 75°D. 85°10. 如图,已知a∥b,且AB⊥a,ABC=130,则1=()A. 30°B. 40°C. 50°D. 60°11. 下列命题不正确的是()A. 两条不相交的直线是平行线B. 在同一平面内不平行的两条直线必相交C. 在同一平面内不相交的两条直线必平行D. 在同一平面内两条直线的位置关系只有两种:相交、平行12. 一条道路经过两次转弯后,与原来的方向平行,若第一次拐弯为150°,那么第二次转弯度数应为()A. 150°B. 30°C. 150°或30°D. 以上都不对答案:1—5 CDBAB 6—10 ABCBB 11—12 AC二. 解答题:1. 如图所示,图中有几对同旁内角?分析:我们知道两条直线被第三条直线所截共形成八个角,其中有两对同旁内角。
新人教版七年级下册第五章《相交线与平行线》全章教案(
(此文档为word格式,下载后您可任意编辑修改!)第五章相交线与平行线(总第一课时)5.1.1相交线教学过程设计一、联系生活,导入新知生:欣赏美丽的跨海大桥图片,观察思考两直线的位置关系有哪几种?师:这些直线有些是相交线,有些是平行线.相交线、平行线有许多重要性质,并且在生产和生活中有广泛应用.它们就是我们本章要研究的课题.【板书】第五章相交线、平行线5.1 相交线、对顶角【设计意图】在欣赏美丽的图画中寻找出数学模型,让学生体会“数学就在我们身边,初步培养学生从实物中抽象出简单的几何图形的能力,激发学生学习兴趣.二、合作探究,形成概念师:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开.生:画出图形,并用几何语言描述所画的图形.师:思考所画的图形中有几个小于平角的角?生:四个.师:为了方便描述,我们用::∠1、∠2、∠3、∠4来表示这四个角,如果把这四个角中任意两个角组成一对,一共可以组成几对呢?生:(互相补充)∠1和∠2,∠1和∠3,∠1和∠4,∠2和∠3,∠2和∠4,∠3和∠4.师:以小组为单位讨论:这六对角按位置特点来分可以分成几类?为什么?生1:一类是相邻的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,一类是相对的∠1和∠3,∠2和∠4.生2:一类是有公共边的∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4,另一类是无公共边的……师:把这六对角分成两类,一类是有一条公共边,另一边互为反向延长线(∠1和∠2,∠2和∠3,∠3和∠4,∠1和∠4);另一类是没有公共边,两边都互为反向延长线(∠1和∠3,∠2和∠4),这就是今天要学的对顶角和邻补角.【板书】:两条直线相交得到的四个角中:有一个公共顶点,两边互为反向延长线的两个角互为对顶角;有一条公共边,另一边互为反向延长线的两个角互为邻补角.师:强调“相交直线”的前提条件.对顶角:有公共顶点无公共边...........邻补角:有公共顶点且有一公共边“互为”两个字的含义是什么?生:互为是针对两个角而言,如∠1是∠3的对顶角,反过来∠3也是∠1的对顶角.【设计意图】引导学生按位置关系进行分类,并针对分类的原因进行探索和交流,让学生经历概念的形成过程,真正理解对顶角和邻补角的概念.在探索过程中,渗透分类思想,培养探究意识和合作交流能力,调动学生参与积极性.三、及时巩固,加深理解1、下列各图中,∠l和∠2是对顶角吗?为什么?(1)(2)(3)(4)【设计意图】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象.2.下列各图中,∠l和∠2是邻补角吗?为什么?(1)(2)(3)师:图(1)中的邻补角可以看成是怎样形成的?邻补角为什么互补?生:一条直线和一条射线相交形成,邻补角构成一个平角.3、请分别画出图中的∠l对顶角和∠2的邻补角.4、如图,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是,∠EOD的邻补角是.【设计意图】通过辨、画、找,及时反馈学生思维上的一些偏差,加深对两个概念的理解,在画邻补角和找邻补角中让学领会分类思想.四、师生互动,再探性质师:在刚才的练习中,我们知道互为邻补角的两个角的和为180度,互为对顶角的两个角有什么样的大小关系呢?(演示相交线模型)生:相等.师:为什么?生:(讨论交流)生1:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换)生2:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等)师:很好,根据上一章补角的性质“同角的补角相等”说明了对顶角相等这一性质.【板书】:对顶角相等.【设计意图】引导学生观察、猜测、推理,得到本节课的重点——对顶角相等,让学生深刻理解性质,训练学生的说理能力,树立学好几何图形的信心.五、变式训练,提升能力1.已知直线a、b相交,∠l=40°,求∠2、∠3、∠4的度数.2.变式1:把∠l=40°变为∠l=90°,求∠2、∠3、∠4的度数.变式2:把∠l=40°变为∠l=n°,求∠2、∠3、∠4的度数.变式3:把∠l=40°改为∠2是∠l的3倍,求∠1、∠2∠3、∠4的度数.变式4:如图,直线AB、CD相交于O点,OE平分∠AOD,若∠1=20°,那么∠2=______.变式5:如图,直线AB、CD相交于O点,∠AOE=90°,若∠1=20°,那么∠2=____,∠3=____,∠4=____.3.右图是对顶角量角器,你能说出用它测量角的原理吗?4.如图,要测量两堵围墙所形成的角AOB的度数,但人不能进入围墙,如何测量?5.如图,三条直线AB、CD、EF相交于点O,图中共有几对对顶角?变式:图中共有几对邻补角?师:解决这类题目的关键是要善于从复杂图形中分离出基本图形.对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形.如:为此,对顶角有2×3=6个,邻补角的对数为4×3=12个.【设计意图】通过变式,由易到难,培养学生举一反三的能力,在利用数学解决实际问题中感受成功,培养学生从现实情境中建立几何模型的能力,思考题能很好地培养学生的化归能力.六:回顾梳理,归纳小结师:这节课你学到什么知识?理解的怎样?你有哪些方面的感悟?还有什么疑惑?生:……七:布置作业,分层发散1.课本:P7-91,2,8,9;2.探究(选做)四条直线相交于一点,共有几对对顶角?几对邻补角?n条直线呢?【教学反思】:(总第二课时)5.1.2垂线(第1课时)计教学过程设(总第三课时)5.1.2垂线(第2课时)教学过程设计(总第四课时)5.1.3同位角、内错角、同旁内角教学过程设计3.如图,∠6和∠2是_________角,∠(总第五课时)5.2.1平行线教学过程设计(总第六课时)5.2.2平行线的判定(一)教学过程设计(总第七课时)5.2.2平行线的判定(二)教学过程设计(总第八课时)5.3.1平行线的性质(第1课时)教学过程设计(总第九课时)5.3.1平行线的性质(第2课时)教学过程设计(总第十课时)5.3.2命题、定理、证明学过程设计教(总第十一课时)5.4平移教学过程设计2.欣赏并说出下列各商标图案哪些是利用平移来设计的?(总第十二课时)第五章小结与复习教学过程设计第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
新人教版七年级下册第五章《相交线与平行线》全章教案(共12份)44086
赣县四中七年级数学组主备人:李政授课时间:月日总课时数:第五章相交线与平行线5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是Array∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
【精选】人教版七年级下册数学第五章《相交线与平行线》优秀教案
人教版七年级下册数学第五章《相交线与平行线》优秀教案5.1 相交线5.1.1 相交线【教学目标】1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.【重难点】重点邻补角、对顶角的概念,对顶角的性质与应用.难点理解对顶角相等的性质的探索.【教学设计】一、创设情境,引入新课引导语:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.二、尝试活动,探索新知教师出示一块布片和一把剪刀,表演剪刀剪布的过程.教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.教师提问:我们可以把剪刀抽象成什么简单的图形?学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)学生根据观察和度量完成下表:教师提问:如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?学生思考回答:只会改变数量关系而不会改变位置关系.师生共同定义邻补角、对顶角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.教师提问:你同意下列说法吗?如果错误,如何订正?1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.3.邻补角是互补的两个角,互补的两个角也是邻补角.学生思考回答:1、2是对的,3是错的.第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.教师把说理过程规范地板书:在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.教师板书对顶角的性质:对顶角相等.强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.。
人教版 数学 七年级数学下册第五章相交线与平行线教案
第五章相交线与平行线5.1相交线5.1.1相交线1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.2.理解对顶角相等,并能运用它解决一些问题.重点邻补角、对顶角的概念,对顶角的性质与应用.难点理解对顶角相等的性质的探索.一、创设情境,引入新课引导语:我们生活的世界中,蕴涵着大量的相交线和平行线.本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.二、尝试活动,探索新知教师出示一块布片和一把剪刀,表演剪刀剪布的过程.教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.教师提问:我们可以把剪刀抽象成什么简单的图形?学生回答:画成两条相交的直线,学生画直线、相交于点O,并说出图中4个角.教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)学生根据观察和度量完成下表:如果改变∠的大小,会改变它与其他角的位置关系和数量关系吗?学生思考回答:只会改变数量关系而不会改变位置关系.师生共同定义邻补角、对顶角:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.教师提问:你同意下列说法吗?如果错误,如何订正?1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.3.邻补角是互补的两个角,互补的两个角也是邻补角.学生思考回答:1、2是对的,3是错的.第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.教师把说理过程规范地板书:在右图中,∠的邻补角是∠和∠,所以∠与∠互补,∠与∠互补,根据“同角的补角相等”,可以得出∠=∠,类似地有∠=∠.教师板书对顶角的性质:对顶角相等.强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.三、例题讲解【例】如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.【答案】由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.四、巩固练习1.判断下列图中是否存在对顶角.2.按要求完成下列各题.(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.,图(1)) ,图(2))(2)如图,若∠= 90°,那么直线与的位置关系如何?【答案】1.都不存在对顶角.2.(1)对顶角,邻补角.对顶角:∠和∠,∠和∠.邻补角:∠和∠,∠和∠,∠和∠,∠和∠.(2)垂直.五、课堂小结教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.5.1.2垂线(1)1.了解垂直的概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”.2.会用三角尺或量角器过一点画一条直线的垂线.重点两条直线互相垂直的概念、性质和画法.难点两条直线互相垂直的性质和画法.一、创设情境,引入新课老师引导学生进行有关的思考:教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……这些给大家留下什么印象?在小组内进行讨论.二、尝试活动,探索新知教师出示相交线的模型,演示模型,并能引导学生观察思考有关的问题:固定木条a,转动木条b,当b的位置变化时,a、b所成的角α是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?教师再组织学生交流,并能引导学生明白:当b的位置变化时,角α从锐角变为钝角,其中角α是直角是特殊情况.教师补充其特殊之处还在于:当角α是直角时,它的邻补角、对顶角都是直角,即a、b所成的四个角都是直角.教师引导学生总结并给出垂直的定义及垂直的表示方法:垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线垂直于直线,垂足为O”,则记为⊥,垂足为O,并在图中任意一个角处作上直角记号,如图:教师引导学生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”是指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名.如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”;如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”.画图实践,探究垂线的性质:教师引导学生用三角尺或量角器画已知直线l的垂线.已知直线l(教师在黑板上画一条直线l),画出直线l的垂线.找学生上黑板画出直线l的垂线.教师追问学生:还能画出直线l的垂线吗?能画几条?通过师生交流,学生明确直线l的垂线有无数条,即存在,但有不确定性.师:怎样才能确定直线l的垂线位置?生:在直线l上方取一点A,过点A画直线l的垂线.(动手画出图形)教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.教师让学生通过画图操作将所得的两个结论合并成一个,并板书:垂线性质1:过一点有且只有一条直线与已知直线垂直.三、尝试反馈,理解新知1.过点P画射线的垂线,Q为垂足.2.过点P画射线的垂线,交射线的反向延长线于Q点.3.过点P画线段的垂线,交线段的延长线于Q点.学生画完图后,教师归纳:画一条射线或线段的垂线,就是画它们所在直线的垂线.四、巩固练习判断以下两条直线是否互相垂直:两条直线相交所成的四个角中有一个是直角;两条直线相交所成的四个角相等;两条直线相交,有一组邻补角相等;两条直线相交,对顶角互补.【答案】上述说法中的两条直线均互相垂直.五、课堂小结本节课学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线的一个性质,你能说出相关的内容吗?通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各种方法解决问题,达到了基本的教学效果,但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.5.1.2垂线(2)1.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义.2.学会度量点到直线的距离.重点垂线段最短的性质,点到直线的距离的概念及其简单应用.难点对点到直线的距离的概念的理解.一、创设情境,引入新课教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考.教师以问题的形式,启发学生思考.问题1:上学期我们曾经学过什么最短的知识,还记得吗?问题2:如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线l,那么原问题就是怎么连线的数学问题.学生说出:两点之间,线段最短.二、尝试活动,探索新知学生能在教师的引导下用数学眼光思考:在连接直线l外一点P与直线l上各点的线段中,哪一条最短?教师演示教具,给学生直观的感受.如图:在硬纸板上固定木条l,l外有一点P,转动的木条a一端固定在点P.使木条l与a相交,左右摆动木条a,l与a的交点A随之变化,线段的长度也随之变化.最短时,a与l的位置关系如何?用三角尺检验.教师引导学生画图操作:学生看图总结,得出结论:(1)画出直线l及l外的一点P;(2)过P点作⊥l,垂足为O;(3)点A1、A2、A3……在l上,连接1、2、3……(4)用叠合法或度量法比较、1、2、3……的长短.教师请同学们与组内的同学进行充分的配合,讨论相应的结论,并选派代表发言.教师引导学生交流,得出垂线的另一个性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.三、尝试反馈,理解新知关于垂线段,教师引导学生思考:(1)垂线段与垂线的区别与联系;(2)垂线段与线段的区别与联系.结合课本图形(图5.1-9),深入认识垂线段: ⊥l,∠1=90°,O为垂足,垂线段与其他线段1、2……相比,长度是最短的.教师根据两点间的距离的意义给出点到直线的距离命名.教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.教师强调,在图5.1-9中,的长度是点P到直线l的距离,1、2……的长度都不是点P 到直线l的距离.四、提升练习判断下列说法是否正确,如果正确,请说明理由;如果错误,请订正.(1)直线外一点与直线上一点间的线段的长度是这一点到这条直线的距离;(2)如图,线段的长是点A到直线的距离;(3)如图,线段是点C到直线的距离.【答案】(1)错误,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;(2)正确;(3)错误,线段的长是点D到直线的距离.五、课堂小结本节课学习了哪些新的知识,对于垂线段的理解有没有什么收获?是不是学会了如何作出垂线段?你还有哪些没有解决的问题呢?大部分学生经历观察、操作、想象、归纳、交流等活动,进一步发展空间观念,培养用几何语言准确表达的能力并且了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,但是度量点到直线的距离的方法掌握得还不够好.5.1.3同位角、内错角、同旁内角明确构成同位角、内错角、同旁内角的条件,了解其命名的含义.重点同位角、内错角、同旁内角的概念.难点各对角之间关系的辨认以及复杂图形的辨认.一、创设情境,引入新课中国最早的风筝据说是由古代哲学家墨翟制作的,风筝的骨架构成了多种关系的角,这就是我们这节课要讨论的问题:两条直线和第三条直线相交的关系.学生能由教师的叙述认真地观察风筝的图形并能抽象出以下图形.二、尝试活动,探索新知教师组织学生讨论:两条直线和第三条直线相交的关系.如图:直线a1、a2被直线a3所截,构成了八个角.学生在教师的组织下完成以下活动:观察∠1与∠5的位置:它们都在第三条直线a3的同侧,并且分别位于直线a1、a2的同一侧,这样的一对角叫做“同位角”.观察∠3与∠5的位置:它们分别在第三条直线a3的异侧,并且都位于两条直线a1、a2之间,这样的一对角叫做“内错角”.观察∠2与∠5的位置:它们都在第三条直线a3的同旁,并且都位于两条直线a1、a2之间,这样的一对角叫做“同旁内角”.学生通过小组合作交流,讨论以下各对角的关系:∠1与∠5;∠2与∠6;∠2与∠5;∠2与∠8;∠3与∠5;∠3与∠7;∠3与∠8;∠4与∠8.教师总结:同位角:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8.内错角:∠2和∠8,∠3和∠5.同旁内角:∠2和∠5,∠3和∠8.三、尝试反馈,理解新知教师出示以下问题:在下面的同位角、内错角、同旁内角中任选一对,请你说说这对角的四条边与“前提”中的“三线”有什么关系?学生思考,教师总结:四边所在的直线正好是前提中的三线,并且有两条边所在的直线是同一条直线.四、巩固练习找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角.【答案】∠1、∠3是同位角,∠2、∠3是内错角,∠1、∠2是同旁内角.五、课堂小结本节课的内容你都掌握了吗?适当地强调有关的知识点.如何确定“三线”构成的“八角”(注意“一个前提”)?如何根据“关系角”确定“三线”(注意找“前提”)?本节课的教学内容量有点大,学生认识角的问题有一定的难度,所以本节课的教学效果一般,小组同学的合作学习效果还可以.通过本节课的学习,大部分学生能明确构成同位角、内错角、同旁内角的条件,并能在各类图形中找出各类角.5.2平行线及其判定5.2.1平行线了解平行线的概念、平面内两条直线相交和平行的两种位置关系,知道平行公理以及平行公理的推论.重点探索和掌握平行公理及其推论.难点对平行线本质属性的理解,用几何语言描述图形的性质.一、创设情境,引入新课教师提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答:两条直线相交有且仅有一个交点.在平面内,两条直线除了相交外,有其他的位置关系吗?学生思考回答:不相交的情况.二、尝试活动,探索新知教师演示教具:顺时针转动木条b两圈,教师组织学生交流并达成共识.学生思考:把a,b想象成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点的位置将发生什么变化?在这个过程中,有没有直线b与c不相交的情况?可以想象一定存在一个直线b的位置,使它与直线a没有交点.学生结合演示的结论,与教师共同用数学语言描述平行的定义:同一平面内,存在一个直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线,直线a与b是平行线,记作“∥”,这里“∥”是平行符号.教师板书:平行线的定义及表示方法.教师应强调平行线定义的本质属性:第一,同一平面内的两条直线;第二,没有交点的两条直线.同一平面内,两条直线的位置关系:教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.教师引导学生完成以下活动:1.在转动教具木条b的过程中,有几个位置能使b与a平行?直线b绕直线a外一点B转动,有且只有一个位置使a与b平行.2.用直尺和三角尺画平行线:已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?3.通过观察画图,归纳平行公理及其推论.(1)学生对照垂线的第一性质说出画图所得的结论,并在充分交流后,归纳平行公理.(2)在学生充分交流后,教师板书:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质:共同点:都是“有且只有一条直线”,这表明过一点与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外;垂线性质中对“一点”没有限制,可在直线上,也可在直线外.三、尝试反馈,理解新知师生共同归纳平行公理的推论:(1)学生直观判定过B点、C点的直线a的平行线b、c是互相平行的.(2)从直线b、c作图的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推的方法验证b∥c.(4)师生用数学语言表达这个结论,教师板书:两条直线都与第三条直线平行,那么这两条直线也互相平行.结合图形,教师引导学生用符号语言表达平行公理的推论:如果b∥a,c∥a,那么b∥c.四、课堂小结本节课主要学习了平行线的概念及其表示方法,并学习了用直尺和三角尺画平行线,通过具体的操作活动,加深了学生对本节内容的理解,并能灵活运用.通过本节课的教学,学生了解了平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论的内容并能在实际问题中予以正确的运用,但是个别同学的学习态度不端正,教师要加以引导与教育.5.2.2平行线的判定(1)掌握两直线平行的判定条件,并能解决一些问题.重点探索并掌握直线平行的条件.难点掌握直线平行的条件.一、创设情境,引入新课教师出示有关的几个问题,复习巩固上节课的知识:学生思考下列问题:1.填空:经过直线外一点,与这条直线平行.2.画图:已知直线,点P在直线外,用直尺和三角尺画过点P的直线,使∥.3.反思:在用直尺和三角尺画平行线的过程中,三角尺起什么样的作用?学生讲出是为画∠,使所画的角与∠相等.教师指出:既然两个角相等与两条直线平行能联系起来,那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法?这是本课要研究的内容之一.二、尝试活动,探索新知1.根据上图,分析问题.(1)让学生先描述∠1、∠2的方位.(2)教师指出像∠1、∠2这样分别位于直线、的下方,又在直线的右侧,也就是位置相同的两个角叫做同位角.(3)让学生识别图中其他的同位角,并标记出它们,要求正确而又不遗漏.2.归纳利用同位角判定两条直线平行的方法.(1)学生根据同位角的意义以及平推三角尺画出平行线的活动,叙述判定两条直线平行的方法.教师引导学生正确表达平行线的判定方法1,并板书:方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.(2)教师引导学生,结合图形用符号语言表述两直线平行的判定方法1:如果∠1=∠2,那么∥.教师强调两直线平行判定方法1的条件中有两层意思:第一层意思是这两个角是这两条直线被第三条直线所截而成的一对同位角;第二层意思是这两个角相等,两者缺一不可.(3)简单应用教师表演木工用角尺画平行线的过程,让学生说出用角尺画平行线的道理(结合课本图5. 2-7).教师板书规范的说理过程:因为∠与∠是直线、被直线所截而成的同位角,而且∠=∠,即同位角相等,根据直线平行的判定方法,从而得∥.三、尝试反馈,理解新知1.探索两条直线平行的其他方法:(1)演示教具,使学生体会当内错角相等时,两条直线平行.(2)师生归纳判定两条直线平行的方法:学生思考:为什么内错角相等时,两条直线平行?你能用学过的两直线平行的判定方法1来说明吗?学生猜想、讨论,教师引导学生说理.2.教师板书:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.学生思考、讨论:同旁内角数量上满足什么关系时,两直线平行?(1)因为∠4+∠2=180°,而∠4+∠3 =180°,根据同角的补角相等,所以有∠3=∠2,即内错角相等,从而a∥b.(2)因为∠4+∠2=180°,而∠4+∠1=180°,根据同角的补角相等,所以有∠2=∠1,即同位角相等,从而a∥b.结合图形,用符号语言表达:如果∠4+∠2=180°,那么a∥b.3.师生归纳两条直线平行的判定方法:教师板书:两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.简单记为:同旁内角互补,两直线平行.四、提升练习已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.【答案】a∥b,可以用平行线的三种判定方法加以说明,其一:因为∠1+∠2=180°,又∠3=∠1(对顶角相等),所以∠2+∠3=180°,所以a∥b(同旁内角互补,两直线平行),其他略.五、课堂小结可以采用师生问答的方式或先让学生归纳,然后教师补充的方式进行,发挥学生的主体作用,培养学生的归纳能力.学生能由教师的引导思考:通过本节课的学习,你学习了什么知识?你有什么收获呢?你还有哪些困惑呢?能谈一谈你的想法吗?通过本节课的学习,学生理解并掌握了平行线的三种判定方法,在教学过程中运用实例引导及提问思考的教学方式,调动学生的活动积极性,使学生能够更深入理解并运用新知识.5.2.2平行线的判定(2)探索两直线平行的条件,并能应用其解决一些实际问题.重点直线平行的条件的应用.难点选取适当的判定直线平行的方法进行说理.一、复习引入师:我们学过哪些判定两直线平行的条件?生:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.二、尝试活动,探索新知【例】在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?要判定两条直线是否平行,先考虑学过哪些判定平行线的方法,题中的条件与某种判定方法的条件是否相同?学生先口述判断的理由,教师纠正,并规范板书两步推理的过程:如图.因为b⊥a,c⊥a,所以∠1=∠2=90°,从而b∥c.教师说明:这个说理过程有两个因为……,所以……,第一个“因为”、“所以”是根据垂直的定义,第二个只写出“所以”的内容b∥c,中间省略一个“因为”的内容,这个内容就是第一个“所以”中的∠1=∠2.这样处理是使说理表达更简练,第二个“因为”、“所以”是根据同位角相等,两直线平行.三、尝试反馈,理解新知例题讲解后,师提问:你还能利用其他方法说明b∥c吗?教师鼓励学生模仿课本方法用图(1)内错角相等的方法写出理由,用图(2)同旁内角互补的方法写出理由.如果∠1、∠2不是同位角,也不是内错角、同旁内角,如图(3),教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由:如图(3),因为a⊥b,c⊥a,所以∠1=90°,∠2=90°.因为∠3=∠1=90°,所以∠3=∠2.从而b∥c(同位角相等,两直线平行).四、提升练习已知:如图,直线a、b被直线c所截,且∠1+∠2 =180°,那么直线a与b平行吗?为什么?【答案】a∥b,理由略.五、课堂小结通过本节课的学习,你学习了什么知识?你有什么收获呢?对于平行的判定是否有了一个清晰的思路,针对不同的情况,学生应该选取适当的定理进行平行的判定.通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足.针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用.。
人教版七年级数学下册全册教案第五章相交线与平行线
第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教案目标1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念, 培养识图能力、推理能力和有条理表达能力.2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角, 理解对顶角相等,并能运用它解决一些问题. 重点、难点重点:邻补角、对顶角的概念, 对顶角性质与应用. 难点: 理解对顶角相等的性质的探索.教案手段与方法师生共同探讨教案准备三角尺课件教案过程一、读一读, 看一看教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.学生欣赏图片, 阅读其中的文字.师生共同总结:我们生活的世界中, 蕴涵着大量的相交线和平行线本章要研究相交线所成的角和它的特征, 相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题.二、观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思想、回答,得出:握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.三、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB CD相交于点0,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确地表达,如:/A0C和/BOOT一条公共边0C它们的另一边互为反向延长线•/ AOC和/BOD有公共的顶点O,而是/ AOC勺两边分别是/ BOD W 边的反向延长线.2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.3.学生根据观察和度量完成下表:教师再提问:如果改变/ AOC的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念.(1)师生共同定义邻补角、对顶角.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(2)初步应用.练习1:下列说法,你同意吗?如果错误,如何订正.①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.②邻补角可看成是平角被过它顶点的一条射线分成的两个角.③邻补角是互补的两个角,互补的两个角也是邻补角?5.对顶角性质.(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.(2)教师把说理过程,规范地板书:在图1中,/ AOC的邻补角是/ BOC和/AOD所以/ AOC与/ BOC 互补,/AOC与/AOD 互补,根据“同角的补角相等”,可以得出 / AOD h BOC类似地有/ AOC h BOD.教师板书对顶角性质:对顶角相等.强调对顶角概念与对顶角性质不能混淆:对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.四、巩固运用1.例:如图,直线a,b相交,/仁40° ,求/2, / 3, Z4的度数教案时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.2.练习:(1) 课本P5练习.(2)补充:判断下列图中是否存在对顶角.五、作业课本P9.1,2,P10.7,8.垂线第五章第一节第二课时教案目标一、素质教育目标(一)知识教案点1 .使学生掌握垂线的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】 1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为,称这两个角互为。
用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD 两边的,称这两个角互为。
用量角器量一量这两个角的度数,会发现它们的数量关系是。
3.用语言概括邻补角、对顶角概念. 的两个角叫邻补角。
的两个角叫对顶角。
4.探究对顶角性质._O_D_C _B _ A在图1中,∠AOC 的邻补角有两个,是和,根据“同角的补角相等”,可以得出=,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等...... 注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗? 【巩固运用】1.例题:如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.2. 练习:完成课本P 3练习.【反思总结】本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决)【达标测评】1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图(1),三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
3.如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•求∠EOB 的度数.12121221OF E D CBA ba 43214.如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数5.若4条不同的直线相交于一点,图中共有几对对顶角?若n 条不同的直线相交于一点呢?OE D CBA cba3412O DCBA课题:5.1.2 垂线(1)【学习目标】1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
【学习重点】垂线的定义及性质。
【学习难点】垂线的画法【学具准备】相交线模型,三角尺,量角器【自主学习】1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ 2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。
【合作探究】1.阅读课本P 3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。
2.用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3.垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB 垂直于直线CD ,垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。
4.垂直的推理应用: (1)∵∠AOD=90°() ∴AB ⊥CD () (2)∵ AB ⊥CD () ∴∠AOD=90°() 5.垂直的生活应用观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象?找一找:在你身边,还能发现哪些“垂直”的实例?【画图实践】1.用三角尺或量角器画已知直线L 的垂线.(1)已知直线L ,画出直线L 的垂线,能画几条? L小组内交流,明确直线L 的垂线有_________条,即存在,但位置有不______性。
(2)怎样才能确定直线L 的垂线位置呢?E(3)O D CBA (2)O DCBA(1)ODC B在直线L 上取一点A,过点A 画L 的垂线, 能画几条?再经过直线L 外一点B 画直线L 的垂线,这样的垂线能画出几条?B .A .LL从中你能得出什么结论? ____________________________________________ 2.变式训练,请完成课本P 5练习第2题的画图。
画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线.【反思总结】本节课你你有那些收获?还有什么疑难需老师或同学帮助解决? 【达标测评】(有困难同学可以选做) (一)判断题.1.两条直线互相垂直,则所有的邻补角都相等.( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ). (二)填空题.1.如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.2.如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.3.如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB的位置关系是_________.(三)解答题.1.已知钝角∠AOB,点D 在射线OB 上.(1)画直线DE ⊥OB (2)画直线DF ⊥OA,垂足为F.2.已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.E DC BA3.你能用折纸方法过一点作已知直线的垂线吗?课题:5.1.2 垂线(2)【学习目标】1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。
2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离。
【自主学习】1.上学期我们学习过“什么什么最短”的几何知识,还记得吗?。
2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短?3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?【合作探究】1.问题转化如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。
那么最短渠道问题会变成是怎样的数学问题?(提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短?)2.学具感受自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA 长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何?用三角尺检验一下。
3.画图验证(1)画直线L,在L外取一点P;(2)过P点出PO⊥L,垂足为O;(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段最小。
4.归纳结论.连接直线外一点与直线上各点的所有线段中,.简单说成:.5.知识类比_l _P_a_AEDC B A(1)垂线段与垂线有何区别联系? (2)垂线段与线段有何区别与联系?6.解决问题:此时你会解决课本P 5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7.探究“点到直线的距离”?定义:(1) 学习课本P 6第二段内容回答什么叫“点到直线的距离”?默写一遍: 叫做点到直线的距离.......。
.(2)对照课本P 5图5.1-9,回答线段PO 、PA 1、PA 2、PA 3、PA 4……中,哪一条或几条线段的长度是点P 到直线L 的距离?(3) 如果课本P 5图5.1-8中比例尺为1:100000,试计算农田P 到小河的距离有多远?【运用举例】例1:判断对错,并说明理由:.(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)如图,线段AE 是点A 到直线BC 的距离.(3)如图,线段CD 的长是点C 到直线AB 的距离.例:2:已知直线a 、b,过点a 上一点A 作AB ⊥a,交b 于点B,过B 作BC ⊥b 交a 于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离? 并且用刻度尺测量这个距离.【反思总结】本节课你学到了哪些知识或方法?还有什么困惑?相互交流一下。
【达标测评】1.如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点的距离是_________.baCBA2.如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?3.用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB, 垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?CBAFE D C B A课题:5.1.3同位角、内错角、同旁内角【学习目标】1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.【学习重点】同位角、内错角、同旁内角的识别。