radar_1
radar 波长
雷达(Radar)是一种使用无线电波进行探测和测距的技术。
雷达波长是指雷达发射的无线电波的波长,通常用于描述雷达系统的性能和特性。
雷达波长与频率之间存在反比关系,即波长越短,频率越高,反之亦然。
雷达波长的选择对雷达系统的性能和应用有着重要的影响。
1. 雷达波长和频率的关系:•波长(λ)和频率(f)关系:波速(c)等于波长和频率的乘积,即c = λf。
因此,波长和频率之间遵循反比关系。
频率高,波长短;频率低,波长长。
•公式:波长(λ) = 波速(c)/ 频率(f)2. 应用频段和波长范围:•毫米波雷达(mmWave Radar):工作在毫米波频段,波长在1毫米到10毫米之间。
这些雷达系统常用于高分辨率成像、雷达传感器和通信系统中。
•厘米波雷达(cmWave Radar):工作在厘米波频段,波长在1厘米到10厘米之间。
这类雷达广泛用于气象雷达、航空雷达等应用。
•米波雷达(mWave Radar):工作在米波频段,波长在1米到10米之间。
这些雷达通常用于远距离目标检测和导航。
3. 波长选择的考虑因素:•大气传播:不同频段的电磁波在大气中的传播受到不同的影响。
一些波段对大气吸收较小,适合远距离传播,而另一些波段则更易受到大气吸收的影响。
•目标尺寸:不同尺寸的目标对不同波长的电磁波具有不同的散射特性。
选择适当的波长可提高目标检测的效果。
•系统设计:不同波长的雷达系统在设计和制造上有所不同,选择波长也受到系统性能和成本的影响。
4. 实际应用:•气象雷达:使用厘米波和毫米波进行大气观测和天气预测。
•军事雷达:不同频段的雷达在军事应用中有不同的用途,例如,毫米波雷达用于导弹引导。
•民用雷达:用于交通监控、飞机导航、船舶导航等领域,通常采用厘米波和米波。
总体而言,雷达波长的选择需要根据具体应用需求进行权衡,考虑到目标检测距离、大气传播特性以及系统设计等因素。
不同波长的雷达系统在不同领域有着广泛的应用。
radar原理
radar原理雷达是一种利用电磁波进行探测和测距的技术,被广泛应用于军事、民用和科研领域。
雷达原理简单而又重要,本文将对雷达原理进行详细阐述。
一、雷达的基本原理雷达的基本原理是利用电磁波的传播和反射规律来实现目标的探测和测距。
雷达系统由发射器、接收器和信号处理部分组成。
首先,发射器发射一束电磁波,该波束以光速传播,当遇到目标时会发生反射。
接收器接收到反射回来的电磁波,并进行信号处理,最终得到目标位置的信息。
二、雷达的探测原理雷达利用电磁波的传播速度非常快,可以实现对目标的即时探测。
当发射的电磁波遇到目标时,一部分电磁波会被目标吸收,一部分会被目标反射。
接收器接收到反射回来的电磁波,通过信号处理可以确定目标的方向和距离。
三、雷达的测距原理雷达利用电磁波从发射到接收所需的时间差来计算目标的距离。
电磁波以光速传播,因此可以通过测量电磁波的传播时间来得到目标距离。
测距原理可以分为脉冲雷达和连续波雷达两种。
脉冲雷达是通过发送短脉冲信号来测量目标距离,而连续波雷达则是通过测量频率差来计算距离。
四、雷达的工作原理雷达工作时,发射器发射一束电磁波,该波束向外传播,并遇到目标后发生反射。
被反射回来的电磁波被接收器接收到,并进行信号处理,最终得到目标的方向和距离信息。
雷达系统可以通过改变发射的电磁波的频率、功率和波束宽度等参数来实现不同的探测和测距需求。
五、雷达的应用领域雷达技术在军事、民用和科研领域都有广泛的应用。
在军事领域,雷达可以用于目标探测、跟踪和导航等方面,对提高作战效能起到重要作用。
在民用领域,雷达被应用于天气预报、航空航天、交通管制等方面,为人们的生活提供了便利。
在科研领域,雷达可以用于大气探测、地质勘探、天文观测等方面,为科学研究提供了重要工具。
六、雷达的发展趋势随着科技的进步,雷达技术也在不断发展。
目前,雷达技术已经实现了数字化和网络化,可以实现多目标探测和跟踪。
此外,雷达与其他技术的结合也成为发展趋势,如雷达与卫星导航系统的融合,可以实现更精准的定位和导航。
古野 雷达 单词简单翻译
古野雷达单词简单翻译关闭HL OFF数字键1 按住可使船首线暂时消失PANEL BRILL数字键2 调整面板亮度MODE数字键3 调整雷达显示模式1.HEAD UP RM 首向上相对运动模式2.HEAD UP TB RM 首向上真方位相对运动3.COURSE UP RM首向上相对运动4.NORTH UP RM北向上相对运动5.NORTH UP TM 北向上真运动OFF CENTER数字键4 偏心VECTOR数字键5 矢量模式REL VECTOR 相对运动矢量TRUE VECTOR真运动矢量LOST TARGET数字键6 消除丢失物标的报警声、擦去丢失物标的标记EBL OFFSET数字键7 激活和消除电子方位线偏心CHART ALIGN数字键8 海图校对MARK数字键9 输入和擦去标识ACQ 捕捉物标TARGET DATA 物标数据TARGRT CANCEL 物标数据消除RADAR MENU 雷达菜单FUNCTIONS11.TARGET TRAILS 物标试运动尾迹2.TARGET ALARM 物标报警3.ORIGIN MARK 初始标记4.INDEX LINE 助航方位线5.ZOOM 放大6.PULSE WIDTH 脉冲宽度7.INT REJECT 抗同频干扰8.ARPA ARPA功能9.VIDEO PLOT 视觉标绘0.FUNCTION2 功能表2FUNCTIONS2 按0键进入1. FUNCIONS1 按此键返回上级菜单2. BKGD COLOR 背景颜色BLK(GRN CHAR)/数据显示绿色BLK(RED CHAR)/数据显示红色BLU(ECHO APEA)/回波显示蓝色BLU/ 浅蓝色BRT BLU 深蓝色3.ECHO STRECH 回波延伸 OFF/1/2/3 关/1/2/34.ECHO AVERAGE 回波平均 OFF/1/2/3 关/1/2/35.ECHO COLOR 回波颜色 YEL/GRN/COLOR 黄色/绿色/颜色6.SHIP SPEED 船速 LOG/NAV/MAN 计程仪/航行/人工输入7.SET,DRIFT 流向,流速OFF/MAN 关/人工输入8.INDEX LINE 助航方位线9.BRILLIANCE1 亮度调整按此键进入BRILLIANCE(1) 亮度调整菜单11.FUNCTIONS(2) 按此键返回上级菜单2.RINGS BRILL OFF/DIM/M1/M2/BRT 距标圈亮度关/暗/中1/中2/亮3.EBL BRILL DIM/M1/M2/BRT 电子方位线亮度暗/中1/中2/亮4.VRM BRILL DIM/M1/M2/BRT 活动距标圈亮度暗/中1/中2/亮5.+CURSOR BRILL OFF/DIM/M1/M2/BRT 游标亮度关/暗/中1/中2/亮6.CHAR BRILL DIM/M1/M2/BRT 荧光屏亮度暗/中1/中2/亮7.MARK BRILL DIM/M1/M2/BRT 标识亮度暗/中1/中2/亮8.TRAIL BRILL DIM/M1/M2/BRT 物标试运动尾迹亮度暗/中1/中2/亮9.HL BRILL DIM/M/BRT 船首线亮度暗/中/亮0.BRILLIANCE(2) 按0键进入亮度调整菜单2BRILLIANCE(2)1.BRILLIANCE(1) 按此键返回亮度调整菜单12.PLOT BRILL OFF/DIM/M1/M2/BRT 标绘亮度关/暗/中1/中2/亮3.L/L GRID BRILL DIM/M1/M2/BRT 经纬度格子亮度暗/中1/中2/亮4.CHART BRILL DIM/M1/M2/BRT 海图亮度调整暗/中1/中2/亮5.SYMBOLS BRILL DIM/M1/M2/BRT 符号亮度暗/中1/中2/亮0.FUNCTIONS3 功能菜单3按0键进入下一级菜单1.FUNCTIONS3 按此键返回上级菜单2.RADAR1 雷达菜单1按2键进入雷达菜单11.FUNCTIONS(3) 按此键返回功能菜单32.EBL1* REL/TRUE 电子方位线1 相对/真3.EBL2* REL/TRUE 电子方位线2 相对/真4.VRM1*1 NM/KM 活动距标圈1 海里/公里5. VRM2*1 NM/KM 活动距标圈2 海里/公里6.TRAIL REL/TURE 尾迹相对/真7.TRAIL GRAD SGL/MULT8.PULSE WD 1 脉冲宽度19.PULSE WD2 脉冲宽度20.RADAR2 按此键进入雷达菜单21.RADAR1 按此键返回上级菜单2.+CURSOR REL/TURE 游标相对/真3.NOISE REJECT OFF/ON 噪音抑制关/开4.STERN MK OFF/ON 船后线关/开5.SHIPS MK OFF/ON 船关/开6.ALARM IN/OUT 报警进/出7.8.AUDIO ALARM OFF/L/M/H 听觉报警关/底/中/高9.2ND ECHO OFF/ON0.RADAR 3 按此键进入雷达3菜单1.RADAR 2 按此键返回上级菜单2.3.4.5.ORIGIN MK DISP ON/SYMBOL6.ORIGIN MK STAB GND/SEA7.ANTENNA REVOLUTION LOW/HIGH 天线转速底/高8.RADAR NO 1/2 雷达号码 1/29.TUNE MAN/AUTO 调谐手动/自动0.TUNE INITIALIZE 调谐初始化3.FUNCTION KEY1 功能键14.FUNCTION KEY2 功能键25.FUNCTION KEY3 功能键36. FUNCTION KEY4 功能键47.RAADAR 1/2 雷达1/27.INTER SWITCH 内部转换*(雷达上无此功能键)8.9.GYRO SETTING 电罗经航向设置EBL=×××。
Radarsat1数据处理_林
2012秋 北京
SAR平台
地基SAR 机载SAR 星载SAR
Radarsat-1 数据处理方法
2012秋 北京
SAR的成像模式
主要成像模式
聚束
条带
扫描
Radarsat-1 数据处理方法
2012秋 北京
SAR的成像模式
其他模式 双站SAR
B
干涉SAR
3D SAR
多基线SAR
阵列下视SAR
圆迹SAR
Radarsat-1 数据处理方法
2012秋 北京
SAR中的多普勒
二维回波信号(点目标)
雷达与目标的相对运动产生随慢时间变化的R,从而产生多普勒。
sr (τ ,η ) = σ 0 ⋅ wa [η − ηc ] ⋅ exp{− j 4π f 0 R(η ) / c} ×
方位
2
wr [τ − 2 R(η ) / c ] ⋅ exp{ jπ K r [τ − 2 R (η ) / c ] }
]
距离多普勒域信号
S rd ≈ wr (τ −
2 Rrd ( fη )
)Wa ( fη − fη c ) exp{ jθ rd }
RCM的表达式:
Rrd ( fη ) ≈ R0 +
λ 2 R0
8Vr2
fη2
Radarsat-1 数据处理方法
2012秋 北京
距离多普勒域信号——精确
距离多普勒域的信号频谱:
Radarsat-1数据处理方法
——Chirp Scaling 算法
林 赟 中国科学院电子学研究所 微波成像技术国家级重点实验室
Radarsat-1 数据处理方法
2012秋 北京
SAR成像基本原理 Chirp Scaling 线性变标基本原理 RCM的精确表达 变标方程推导 CS处理细节 仿真 星载SAR数据处理 成像几何 多普勒中心 Radarsat-1数据处理方法
什么是雷达
什么是雷达雷达(Radar)是一种利用电磁波进行探测和测量的技术。
它是由英文Radio Detection and Ranging(无线电探测和测距)缩写而来。
雷达系统能够发送出一束电磁波,并接收其反射回来的信号,通过分析这些信号的特征来确定目标物体的位置、速度、方向和其他属性。
雷达技术的发展历史可以追溯到20世纪初。
最初,雷达主要用于军事领域,用于探测和追踪敌方飞机和舰船。
随着科技的进步,雷达技术逐渐应用于民用领域,如天气预报、航空导航和交通控制等。
雷达系统由发射器、接收器和信号处理器组成。
当雷达发射器发出一束电磁波时,它会遇到目标物体并被反射回来。
接收器接收这些反射的信号,并将其传送给信号处理器进行分析。
雷达系统的探测原理基于“回波时间差”原理。
当雷达发射信号时,它记录下发射和接收之间的时间间隔。
通过测量这个时间间隔,可以确定目标物体与雷达系统之间的距离。
通过连续发射信号并记录回波时间差,雷达系统可以得到目标物体的运动信息,如速度和方向。
雷达系统还可以通过分析回波信号的特征来获得目标物体的其他属性。
例如,通过比较接收到的信号的强度和频率变化,雷达系统可以确定目标物体的大小、形状和材质。
这些信息对于区分不同类型的目标物体至关重要。
雷达技术的应用非常广泛。
在军事领域,雷达系统被用于飞机、舰船和导弹的导航和目标追踪。
在天气预报中,雷达系统用于探测降雨和研究气象现象。
在航空导航中,雷达系统用于引导飞机降落和防止碰撞。
此外,雷达技术还被用于交通控制、无人驾驶汽车和安防领域等。
与传统的光学传感器相比,雷达具有许多优势。
首先,雷达系统可以在复杂的天气条件下工作,如雨雪、雾和浓雾。
其次,雷达可以远距离探测目标物体,无需直接视线。
此外,雷达系统对目标物体的大小和形状并不敏感,因此可以在不同环境下进行可靠的探测。
然而,雷达技术也存在一些局限性。
由于雷达使用的是电磁波,因此在某些情况下可能会被其他电子设备干扰。
此外,雷达对目标物体的分辨率有限,无法对小尺寸的物体提供详细信息。
CSol控制台命令
相信很多没优化过的玩家会有这种感觉,有时候你跳跃,走路,屏幕中间的十字准星会跳动,这样会影响准度,现在我教大家用控制台参数关闭它。
按~键打开控制台,然后输入cl_dy,这时会出现下面这个参数
我们选择它,然后把后面的数字1改成0,再敲回车。
OK,你现在进游戏看看是不是不跳了?
fps_max X 设定游戏输出给显示卡的最大fps数,一般设定为60, 75, 85, 101,推荐:PASS
hud_centerid [0,1] 设定为1时,玩家ID会出现在萤幕的正中央,否则会出现在左下角。推荐:1
hud_fastswitch [0,1] 快速换武器,设定为1时按数字键直接换武器,不用再按鼠标左键 推荐:1
m_pitch X 设定鼠标上下移位的加速度,预设值是 0.022 pass
net_graph [0,1,2,3] 打开测FPS与连线速度数据的工具,开起此项功能多少会减少fps 推荐:0
net_graphpos [1,2,3] 设定FPS测量工具的显示位置 推荐:PASS
brightness 亮度(预设1最大3.5) 推荐:3.5
b*volume 背景音效音乐之音量大小
cl_headname 在队友头部显示名称 推荐:随意设置这个在个人设置里也有
cl_oldbuy 设定为1时,使用旧购买选单。设定为0时,使用VGUI菜单。 推荐:PASS个人爱好
max_shells X 子弹的最大显示数量(太多会lag...) X=0~500,预设值是300 推荐:PASS
max_smokepuffs X 烟雾弹的最大显示数量,X=0~500,预设值是120 推荐:PASS
m_yaw X 设定鼠标左右移位的加速度,预设值是 0.022 pass
雷达简介-雷达工作的基本参数-PART1
雷达简介-雷达工作的基本参数-PART1一.雷达简介1.什么是雷达雷达(Radar),又名无线电探测器,雷达的基本任务是探测目标的距离、方向速度等状态参数。
雷达主要由天线、发射机、接收机、信号处理机和显示器等组成。
2.雷达的工作原理雷达通过发射机产生足够的电磁能量,通过天线将电磁波辐射至空中,天线将电磁能量集中在一个很窄的方向形成波束向极化方向传播,电磁波遇到波束内的目标后,会按照目标的反射面沿着各个方向产生反射,其中一部分电磁能量反射到雷达方向,被雷达天线获取,反射能量通过天线送到接收机形成雷达的回波信号。
这里要说明的是,由于在传播过程中电磁波会随着传播距离而衰减,雷达接收的回波信号非常微弱,几乎被噪声所淹没,接收机将这些微弱的回波信号经过低噪放,滤波和数字信号处理,将回波信号处理为可用信号后,送至信号处理机提取含在回波信号中的信息,将这些信息包含的目标距离方向速度等现实在显示器上。
二.雷达的基本用途1.测定目标的距离为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。
根据电磁波的传播速度,可以确定目标的距离公式为:S=CT/2。
其中,S为目标距离T为电磁波从雷达发射出去到接收到目标回波的时间C为光速2.测量目标方位是利用天线的尖锐方位波束测量。
测量仰角靠窄的仰角波束测量。
根据仰角和距离就能计算出目标高度。
雷达发现目标,会读出此时天线尖锐方位的指向角,就是目标的方向角。
两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。
3.测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。
radarsat-1产品格式1
RADARSAT-1 Standard Beam Complex-Format DataNote: 07/15/99.This document was written prior to the availability of full scene complex data and the descriptions have not been updated. Full -scene data is now available as an order processing option. It is planned that sub-scene data will not be supported after Dec 31st , 1999.Summary:This data set is derived from the Alaska SAR Facility's archive of RADARSAT-1 Standard Beam SAR data. These data have been archived since shortly after the RADARSAT-1 launch in November 1995, with regular archiving starting in June 1996 after the commissioning phase was completed. The data represent how strongly the Earth's surface backscattered C-Band (5.66 cm wavelength) radar signals. (See the SAR FAQ for more details). The term 'complex' implies that the data have been left in complex-format, i.e. the In-phase/cosine and Quadrature/sine signal components have been processed separately. This maintains the return signal's phase as arctan(Q/I), information especially relevant for interferometric applications.See the Complex-Format SAR Data Example for more details.The RADARSAT-1 SAR instrument has seven standard beams with incidence anglesranging from 19 to 49 degrees, each with a ground swath near 100 km. Due in part to the large size of these complex-format data, ASF currently provides the products in ~40 km x 50 km subscenes. Each product is approximately 80 MB in size and has pixel spacing near 20 m in range and 5 m in azimuth (approximately 25 m x 7.5 m resolution). These pixel spacings represent approximate ground range distances; the complex data are actually provided in their natural spacing - exact units of 6.25 m in slant range. ASF will be providing full 100 km by 100 km complex-format data early in 1997. These full-swath products will be between 400 and 500 MB each. See the RADARSAT Complex-Format Product Parameters table for more details. The complex data products are available via 4-mm and 8-mm, and DLT tapes.Most of these data cover ASF's station mask, approximated by a circle with radius 3000 km centered at Fairbanks, Alaska. Through ASF, approved U.S. RADARSAT-1 SARresearchers may obtain RADARSAT-1 data obtained by other ground stations and have that data processed at ASF as well. RADARSAT-1 carries two tape recorders, each capable of recording 10 minutes of SAR data, so ASF also archives a significant amount of recorded out-of-mask data. The RADARSAT-1 Antarctic Mapping Mission data represent one such example. In Antarctic mode, the RADARSAT-1 satellite will actually be rotated such that the SAR will be left-looking. RADARSAT-1 will then record SAR data over the Antarcticcontinent and downlink that data to ASF for processing and storage. The entire Antarctic continent will be mapped, once during March 1997 and again a few years later.Note that the Canadian Space Agency (CSA) holds copyrights over all RADARSAT-1 SAR data. NASA/NOAA-approved SAR researchers (generally NASA's ADRO investigators and the National Ice Center) are the primary people who obtain these data directly from ASF, as per agreements between NASA/NOAA and CSA. U.S. government requests beyond the 15%U.S. allocation should obtain the RADARSAT-1 SAR data through Lockheed MartinAstronautics (1-303-971-8929). Commercial users may purchase the data directly through RADARSAT International (RSI, 1-604-244-0400). If you consider yourself a scientist interested in performing fundamental research with this data set but you are not involved in the ADRO project, please see the new user documentation or contact Alaska SAR Facility User Services (907-474-6166, uso@) for information regarding data access.Table of Contents:· 1 Data Set Overview· 2 Investigator(s)· 3 Theory of Measurements· 4 Equipment· 5 Data Acquisition Methods· 6 Observations·7 Data Description·8 Data Organization·9 Data Manipulations·10 Errors·11 Notes·12 Application of the Data Set·13 Future Modifications and Plans·14 Software·15 Data Access·16 Output Products and Availability·17 References·18 Glossary of Terms·19 List of Acronyms·20 Document Information1. Data Set Overview:Data Set Identification:RADARSAT-1 Standard Beam Complex DataData Set Introduction:See the data set summary.Objective/Purpose:The main objective behind providing this data set is to support interferometric research.Please see the ASF-STEP documentation on INSAR Resources or JPL's tutorial oninterferometry.Some of NASA's stated RADARSAT-1 mission objectives include:1.Mapping the entire Antarctic ice sheetNASA scientists will use RADARSAT-1 data to compile, for the first time, a high-resolution map of all of Antarctica, a largely unexplored continent that is bigger thanthe continental United States. Repeated surveys should reveal changes in the ice sheetthat may ultimately lead to a rise in global sea levels. The first mapping is planned forMarch 1997.2.Monitoring sea-ice cover for climate research and navigation purposesThe regular coverage of far northern oceans will allow scientists to apply automatedtechniques for tracking ice floes, and will allow them to study the motion of iceacross the entire Arctic. Further analysis should reveal the rates at which Arctic seaice opens and closes, from which the science team can estimate the rates at whichnew ice forms and study the effects of ice cover on climate change. For example, seethe data products which will be produced by the RADARSAT-1 GeophysicalProcessor System.3.Identifying and mapping land cover and assessing how it changes over timeNASA will use RADARSAT-1 to study the Earth's forests. The data can be used toestimate the kinds of vegetation in a forest, the extent of flooding (which plays a rolein the exchange of chemicals between the forest and the atmosphere) and the amountof vegetation covering an area.Some of the CSA's stated mission objectives:1.To ensure data availability for environmental monitoring2.To create daily sea ice maps based on SAR data collected over the Arctic3.To collect SAR data over selected portions of the globe for the purpose of cropforecasting4.To obtain periodic SAR data coverage of Antarctic sea ice distribution, subject toreceiving station or tape recorder availability5.To collect a global set of stereographic SAR images for mapping6.To obtain the first comprehensive map of the Antarctic continental ice sheet based onSAR images7.To collect site and time specific SAR data in support of approved research studies orapplication demonstrations sponsored either individually or jointly by the partiesinvolved8.To collect site and time specific SAR data for experiments sponsored by the partiesthrough an EAO9.To collect and make available global data to any persons, on a non-discriminatorybasis10.To develop applications of SAR data in a pre-operational environment11.To promote globally the utilization of RADARSAT-1 SAR data and data productsand related information of the Earth's surface in such areas as:·Global ice reconnaissance·Ocean monitoring·Monitoring of renewable and non-renewable land resources·Monitoring of the natural environment·The protection of human life and property from natural disasters12.To contribute to the overall development of a national and international commerciallyviable remote sensing industry13.To contribute to the maintenance and improvement of the Canadian industry'scapability and its high quality profile in the field of remote sensingSummary of Parameters:The phenomena being studied are ground objects' radar backscattering properties.Specifically, these data provide insight into how C-band radar interacts with objects on Earth.The primary variables determining how the radar is backscattered include: the surface'sroughness, the surface material's dielectric properties, and the geometry between thespacecraft and target. For more details, see the SAR FAQ or the SAR Theory/ImageInterpretation document.The complex-format data not only provide information on a target's radar backscatteringproperties (return signal amplitude = sqrt(I^2 + Q^2)), they also record at what phase atarget's backscattered pulse was received (arctan(Q/I)). The phase depends upon the time ittook for the pulse to travel to and from the target, which in turn depends upon the distancebetween satellite and target. If a target is repeatedly imaged from the same location, its return should always arrive at the same phase (the distance and therefore travel time has notchanged). When a target moves, however, the distance to it and therefore the phase of itsbackscattered signal will be altered. By analyzing phase changes between image takes,researchers can monitor targets' motion.Discussion:The complex-format data do not go through any pixel resampling or geometric corrections.The data are kept in slant range; the cross-track spacing is determined by travel time (when a backscattered radar signal arrived and was sensed by the receiver), not a specified distanceon the ground. The natural azimuth spacing, determined by the frequency betweentransmitted pulses, is 5 m compared to the cross-track ground spacing of 20 m. Therefore the data appear somewhat distorted and seem to have much noise known as speckle. To someSAR investigators these "errors" actually contain valuable information and should not be"corrected." If the data points were resampled to have constant ground spacing or if data(more precisely, "looks") were averaged to reduce speckle, resolution would be worsened.Please see the Complex-Format SAR Data Example for more information.Please see ASF-STEP's INSAR Resources for discussions regarding the interferometric applications of this data set.Related Data Sets:ASF provides the digitized backscatter signal (in complex format, representing the cosine/in-phase and sine/quadrature components of the composite return signal at specified timeintervals); SAR data processed but left in its complex data format (data left as in-phase and quadrature components to preserve the phase - especially helpful for interferometry); and the standard images for the ERS-1, ERS-2, and JERS-1 programs. The RADARSAT-1 Standard Beam SAR data will be processed into standard images as well as the complex-format data products. RADARSAT-1 ScanSAR Beam data will be processed into standard images, and geocoding and terrain-correction options will be available. RADARSAT-1 Wide andExtended Beam data will be processed into standard images and complex-format dataproducts. ASF also archives GPS (Geophysical Processing System) products which input SAR data. The GPS archive currently includes ice motion, ice classification, and ocean wave spectra products derived from ERS-1 SAR data. A new RADARSAT-1 GPS (RGPS) will again generate these and other derived products, beginning in 1997. The Geo-Data center, a joint project between ASF and the Geophysical Institute, holds many complementary data sets, each covering Alaska and nearby regions. Their data holdings include LANDSAT, NOAA/AVHRR, and AHAP images as well as USGS maps. A detailed listing of all ASF-related products is available.Though ASF is the only U.S. station downlinking the SAR data, other foreign stations also downlink SAR data of their areas. Many other SAR products, such as those from airborne or Shuttle SAR instruments, are also available. See ASF's list of other SAR data providers.Another good listing of SAR data providers is available from the JPL Radar ImagingHomepage.2. Investigator(s):Investigator(s) Name and Title:Under the aegis of CSA, Canada is responsible for the design and integration ofRADARSAT-1's overall system, for its control and operation in orbit, and for the operation of the data reception and processing stations located in Prince Albert, Saskatchewan and Gatineau, Quebec. NASA launched RADARSAT-1 in exchange for the right to access the satellite on a pro rata basis and is responsible for its data reception and processing station -the Alaska SAR Facilty in Fairbanks, Alaska.Title of Investigation:RADARSAT-1Contact Information:Please direct all queries to ASF User Services:Alaska SAR FacilityGeophysical InstituteUniversity of Alaska Fairbanks903 Koyukuk DriveFairbanks, AK USA 99775-7320Phone: (907) 474-6166FAX: (907) 474-2665E-Mail: uso@3. Theory of Measurements:The interactions between radar signals and ground surfaces depend upon many factorsincluding: the surface material's density and dielectric properties; surface roughness ascompared to the signal's wavelength; topographic variations, the effects of which are related to the SAR's look angle; vegetation cover; and the signal's polarization. Other signalcharacteristics which primarily impact the image products' resolution include: signalstrength; chirp pulse length and bandwidth; the return signal integration time; and the time between pulse transmissions. The time it takes for a transmitted signal to be backscattered to and then received by the satellite determines the distance (range) between the satellite and the sensed object. The complex signal structure permits the various backscattered returns to be discriminated from each other so a high level of range (x-direction) resolution can beachieved. Each location is pulsed many times while within the SAR's view, about 1000 times for ERS-1, and analysis of these slightly different (Doppler shifted) returns allows a fine azimuth resolution to be achieved. Sensing the object many times then synthesizes a multi-antenna array, or similarly a larger antenna. The synthesized antenna has aperture equal to the distance the satellite traveled while sensing a particular object.See the SAR FAQ or the SAR Theory/Image Interpretation Document for more information.A tutorial about interferometry is available on the JPL Imaging Radar Homepage, and ASF-STEP provides on-line INSAR Resources. You might also be interested in the ASF SAR Processing Algorithm Document.4. Equipment:Sensor/Instrument Description:Collection Environment:Polar-Orbiting, Sun-Synchronous SatelliteSource/Platform:RADARSAT-1 is an advanced Earth observation satellite project developed by the Canadian Space Agency (CSA) to monitor environmental change and to support resourcesustainability. NASA launched RADARSAT-1 in exchange for access to the satellite on a pro rata basis through its Alaska SAR Facility (ASF). At the heart of RADARSAT-1 is an advanced radar sensor called Synthetic Aperture Radar (SAR). SAR is a microwaveinstrument which sends pulsed signals to the Earth and processes the received reflectedpulses. RADARSAT-1's SAR-based technology provides its own microwave illumination and thus will operate day or night, regardless of weather conditions. RADARSAT-1 was placed into a sun-synchronous polar orbit in order to provide global coverage. Research emphasis will be on the polar regions, though on-board tape recorders will allow imaging of any region. Data downlinked to the Canadian stations (Prince Albert, Saskatchewan and Gatineau, Quebec) will be made available through RADARSAT-1 International (RSI). Data downlinked to NASA's stations (McMurdo, Antarctica and ASF in Fairbanks, Alaska) will be made available through the Alaska SAR Facility.Some potential applications of RADARSAT-1's data include: sea-ice monitoring - daily ice charts; extensive cartography; flood mapping and disaster monitoring in general; glacier monitoring; forest cover mapping; oil spill detection; assessment of the likelihood of mineral, oil and gas deposits; urban planning; crop production forecasts; coastal surveillance(erosion); and surface deformation detection (seismology, volcanology). Some of the large RADARSAT-1 activities include: the Antarctic mapping project; "Arctic Snapshots"showing the complete Arctic ice extent at given times (4 snapshots every 24 days); aGeophysical Processor System (RGPS) to provide derived data sets such as sea ice motion products; and a global set of stereographic SAR images. RADARSAT-1 was launchedNovember 4, 1995 and has a design lifetime of 5.25 years.Source/Platform Mission Objectives:See Section 1.3, "Objective/Purpose"Key Variables:The backscattered radar return signal is separated into its reference (cosine) and quadrature (sine or 90 degrees shifted) components prior to sampling. The data is then downlinked and processed at the Alaska SAR Facility as complex numbers, the real part (I, in-phase) holding the signal's cosine component and the imaginary part (Q, quadrature or 90 degrees shifted) representing the signal's sine component. Each sample then describes a section of the return signal with amplitude equal to sqrt(I^2 + Q^2) and phase equal to atan(Q/I). Similarly, these complex data will maintain the I, Q format throughout processing to preserve the amplitude and phase of the backscattered pulses.Principles of Operation:The RADARSAT-1 SAR, by sending out rapid radar pulses while orbiting overhead, is able through signal processing to simulate a large multi-antenna array to achieve high image resolution. The antenna points to the side to enhance terrain variations and for technicalsignal processing reasons. Radar pulses are transmitted and the targets' radar backscatter received by the same antenna. The time it takes for a transmitted signal to be backscattered to and then received by the spacecraft determines the distance (range) between the spacecraft and the sensed object. The integrated return signal, composed of numerous individualbackscattered signals, is brought to a more managable frequency before it is compared to both a reference and a quadrature signal. The reference signal was also used in generating the transmitted pulse and is regulated by a stable oscillator. The quadrature signal is simply the reference shifted by 90 degrees. The results of these two comparisons are sampled and then downlinked (along with a host of engineering data) digitally as the return signal's cosine and sine components. The complex signal structure permits the various backscattered returns to be discriminated from each other so a high level of range (x-direction) resolution can be achieved. Each location is pulsed many times while within the SAR's view, and analysis of these slightly different (Doppler shifted) returns allows a fine azimuth resolution to beachieved.For more information on radar/ground interactions, see the SAR Theory/Image Interpretation Document, the ASF Scientific SAR User's Guide or the SAR FAQ. For information on how the downlinked data are processed at ASF, see the ASF SAR Processing AlgorithmDocument.Sensor/Instrument Measurement Geometry:RADARSAT-1's SAR instrument is a 15 m x 1.5 m rectangular antenna aligned with the satellite's flight path direction. The antenna is pointed to the side in order to view the ground obliquely. The antenna generally looks to the right (north) except during the Antarctic mode, where the satellite will be rotated such that the antenna will be left-looking. This SARinstrument has many different beam modes which allow it to image the Earth at a variety of incidence angles and swath widths. The radar's wavelength is 5.66 cm (C-Band), making it sensitive to surface variabilities of that size.Relevant documents include:·RADARSAT-1 Orbit Parameters·RADARSAT-1's Beams - Ground Geometry·RADARSAT-1's Beams - Signal ParametersOther relevant parameteters include:Frequency: 5.3 GHz (C-Band)Wavelength: 5.66 cmPolarization:HHRF Bandwidth:11.6, 17.3, or 30.0 MHzPulse Repitition Frequency:1200-1400 HzTransmitter Peak Power: 5 kWTransmitter Avg Power:300 WTape Recorders: 2 high speed(10 minutes capacity)Available SARUse per Orbit:28 minutesRadar Data Rate:77-105 MbpsTape Playback Data Rate:85 MbpsSample Word Size: 4 bits each I and QRange ChirpChirp Type:Linear FM down chirpChirp Rate/Transmit BW/Sampling Rate:-279.300 KHz/u-sec / 11.731 MHz / 12.927 MHz-416.200 KHz/u-sec / 17.480 MHz / 18.467 MHz-721.400 KHz/u-sec / 30.299 MHz / 32.317 MHz Resolution Bandwidth:11.583 MHz / 17.282 MHz / 30.002 MHz Transmit Pulse Width:42.0 u-secManufacturer of Sensor/Instrument:Industrial partners in this mission include:·Spar Aerospace (Montreal)- Primary Contractor·Ball Aerospace, Space Systems Division- Spacecraft Bus·McDonnell-Douglas- Launch Vehicle (Delta II-7920)·MacDonald Dettwiler & Associates/SED/BALL- Mission Control System·CAL Corporation- SAR Antenna·COMDEV- Low Power Transmitter, Receiver, Calibration Subsystems and Phase Shifters ·DORNIER- High Power Microwave Circuit·ODETICS- High Data Rate Tape Recordersalong with Astro Aerospace, First Mark Technologies, Fleet Industries, IMP, MPBTechnologies, Prior Data Sciences, SED Systems, SAFT, FIAR, Loral, GORE, TST, COI, Gulton INP, Barnes, South West Research, Allied Signal, Adcole, SEAKR Schoeastedt, FRE Composites, and British Aerospace.Calibration:Specifications:ASF has placed many corner reflectors at strategic locations and orientations around itsstation mask. ASF employees regularly check these reflectors to obtain precise orientation information. With the knowledge of the reflectors' characteristics and the state of thespacecraft/SAR when an image of the reflector was taken, each reflector's signal response can be predicted. These predictions are compared against the measured signal responses to determine the products' radiometric accuracy. The corner reflectors' known positions are compared against the SAR processor's position estimates to determine the products'geometric accuracy.Tolerance:The radiometric and geolocation accuracy of these products has yet to be determined. It is estimated that the values will be close to those for ERS-1 SAR products: +/- 1.0 dB relative and +/- 2.0 dB absolute radiometric accuracy, and +/- 500 m geolocation accuracy.Frequency of Calibration:ASF calibrations are performed as often as the orbit and acquisition schedules allow. Images are checked for miscalibration every two weeks at least, while the corner reflectors'characteristics are re-measured depending on their distance from ASF. The corner reflectors centered around Delta are checked at least monthly, but due to the remote location and harsh winter conditions of the reflectors up in the Brooks Range, they are only checked about oncea year. The Brooks Range reflectors are only utilized soon after they have been checked.Other Calibration Information:The final result of these calibration procedures is a function giving the correction to pixel intensity as a function of range (cross track pixel number). This radiometric correction vector is applied to the data during processing and included in each product's metadata.See ASF's Calibration Homepage for more information.5. Data Acquisition Methods:The RADARSAT-1 SAR emits a radar pulse known as a chirp. The pulse has a basefrequency of 5.3 GHz and decreases in frequency during the 42.0 microsecond pulseduration. That pulse illuminates an area on the ground (called its "footprint"); in this case the swath width is near 100 km. The radar pulse is backscattered from objects within thatfootprint as outlined in the SAR Theory/Image Interpretation Document. The RADARSAT-1 SAR antenna then monitors the backscattered returns, and the resulting composite signal is down converted to a more convenient frequency and compared to both the reference (cosine function used to generate the pulse and made reliable by a high quality stable oscillator) and quadrature (90 degrees shifted reference function, or sine function) functions. The results of these two comparisons (i.e. the backscattered pulses' cosine and sine components) aredigitized and downlinked as I (in-phase) and Q (quadrature) samples of the received radar return signal, along with a host of other engineering data.The Alaska SAR Facility receives this bit stream (at 105 Mbit/sec for real-time data or 85 Mbit/sec for recorded data) while the RADARSAT-1 satellite is within its station mask. The particular downlink times are dictated by the RADARSAT-1 orbit, requests for particular regional coverage, possible conflicts with other satellite passes, etc. ASF processes the data as outlined in the ASF SAR Processing Algorithm Document.Approved users may request satellite data acquisitions through an ASF Web-based utility and may order the processed data through NASA's Information Management System. U.S.government requests beyond the RADARSAT-1 allocation should obtain the data through Lockheed Martin Astronautics (1-303-971-8929). Commercial users may orderRADARSAT-1 data through RADARSAT International (RSI, 1-604-244-0400). Contact ASF User Services at 907-474-6166 or uso@ for more information. 6. Observations:Data Notes:The RADARSAT-1 SAR commissioning ended in early June 1996. ASF calibration of the various beams and validation of data products will likely continue through December 1996.The quality of these data is highly dependent upon precise satellite attitude information. Field Notes:The ASF SAR Research Bibliography references many ground truth studies and provides some abstracts and images as well as topical summaries of significant results.7. Data Description:Spatial Characteristics:Spatial Coverage:Each complex subscene covers approximately 40 km by 50 km. In early 1997, full 100 km x 100 km swath complex data products will also be available. (See the RADARSAT Complex-Format Product Parameters table for more details.) The region for which the Alaska SAR Facility can downlink RADARSAT-1 SAR data are approximately a circle of radius 3000 km centered at Fairbanks, Alaska. Through ASF, approved U.S. RADARSAT-1 SARresearchers may obtain RADARSAT-1 data obtained by other ground stations and have that data processed at ASF as well. ASF can also downlink tape-recorded RADARSAT-1 SAR data of other regions, one notable example being data obtained for the RADARSATAntarctic Mapping Project (RAMP).Spatial Coverage Map:An approximate map of ASF's station mask is available.Spatial Resolution:These products have approximate ground-range pixel spacing as follows: 20 m in range, 5 m in azimuth. This corresponds to 25 m x 1.5 m resolution. The data are precisely spaced every6.25 m in slant range.See the RADARSAT Complex-Format Product Parameters table for details on each of the seven standard beams.Projection:The data are left in their natural slant range.The data are corrected to an ellipsoidal surface, but suface elevation or departures of the true geoid from the ellipsoid are not taken into account for these products. The ASF STEPprogram has written software to provide for other projections, however.Grid Description:The ellipsoidal surface used in data correction is the GEM06 (Goddard Earth Model - 6). It assumes an equatorial radius of 6378.144 km and a polar radius of 6356.755 km. Temporal Characteristics:Temporal Coverage:The RADARSAT-1 Standard Beam data have been archived since shortly after the satellite's launch in November 1995; reliable (post-commissioning) data coverage began in June 1996.Each subscene represents approximately 7 seconds of data acqusition; a full 100 km x 100 km product represents near 15 seconds of data acquisition.Temporal Coverage Map:Not available.Temporal Resolution:The RADARSAT-1 satellite's orbit repeats every 24 days, but repeat coverage can be more frequent depending upon a site's location.。
雷达测速是什么 情圣一号V1金刚侠电子狗解读
雷达测速简介雷达测速主要是利用多普勒效应(Doppler Effect)原理和情圣一号V1智能测速预警系统:当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机频率。
如此即可借由频率的改变数值,计算出目标与雷达的相对速度。
现已经广泛用于警察超速测试等行业。
应用在交通工程上,速度是计量与评估道路绩效和交通状况的基本重要数据之一。
速度数据的搜集方法有许多种,包括人工测量固定距离行驶时间、压力皮管法、线圈法、影像处理法、雷达测速法与激光测速法等。
其中后两者属于携带容易而且精确度高的方法,因此广受采用。
超速行车在交通违规中占有极大比例,此一现象可从高速公路过去四年间违规告发项目中,超速案件比例均在三分之二左右看出端倪,而超速行车一直被认为是肇事之重要因素之一;因此从交通执法观点而言,取缔超速系比较具体的维护交通安全之手段。
国内取缔违规超速一向以雷达测速枪当工具,径行举发案件则辅以照相设备;只是近年来,雷达侦测器盛行,价格普及化之后,即使法规明令禁止使用,一般民众仍趋之若鹜,因为其价格只需逃避一至两次取缔的机会即可完全回收成本。
以交通工程观点来看,驾驶人若装有雷达侦测器,则路边定点所测得的车速即会因驾驶人感知受测速,误以为警察人员执行取缔而有普遍减速现象;除造成数据失真外,并因而有引起事故之可能。
基本原理雷达为利用无线电回波以探测目标方向和距离的一种装置。
雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。
全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。
二次大战后,雷达开始有许多和平用途。
在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。
雷达目标模拟器(1)
人机交互 控制机
I路
计算系统调 制函数 Q路
雷达发射 信号
I路 卷积
Q路
D/A+LPF
视频输出
射频输出
上变频
目录
雷达目标模拟器
一、雷达原理简述 二、雷达目标模拟器模拟信号形式 三、雷达模拟器的实现技术 四、SAR雷达目标模拟器回波信号举例
四、SAR雷达目标模拟器回波信号举例
早期雷达
现代雷达
“无线电探测与测距” “无线电探测、定位、测轨和识别”
普通测距雷达,目标静止时发射信号和回波的时间间隔
r c
2
实际加入噪声的回波:
实现了雷达测距
二、雷达目标模拟器模拟信号形式:发射信号形式LFM
早期雷达: 脉冲信号
现代雷达: LFM
时宽 带宽
1
tB
发射功率 距离分辨率
r
c 2B
时宽和带宽的矛盾
PRT
s(t) a(t) exp[ j(2fct K rt 2 )]
雷达目标模拟器
高鑫 2010-1-15
目录
雷达目标模拟器
一、雷达原理简述 二、雷达目标模拟器模拟信号形式 三、雷达模拟器的实现技术 四、SAR雷达目标模拟器回波信号举例
一、雷达原理简述
雷达: 利用目标对电磁波的反射(或称为二次散射)现 象来发现目标并测定其位置的装置。 ——发射信号
——散射 ——接收目标散射回波
系统参数
回波数据
回波数据
模拟数据
RF信号
人机交互 计算机软件 硬盘 高速总线 D/A+LPF 上变频
3.微机+模拟器DSP组合 数字信号处理(DSP)芯片由于具有特殊的结构、高效的计算能力 已经在雷达领域得到广泛的应用。绝大部分雷达信号模拟器采 用“微机+模拟器DSP组合”方案,信号模拟过程分为数据库产 生、数据传输、数据实时再处理以及数据输出。
雷达系统2018_脉冲多普勒雷达 (1)
主瓣杂波多普勒中心频率
f MB f d (0 )
2v R
cos 0
主瓣杂波最大展宽多普勒频率 B B 2v R f MB f d (0 ) f d (0 ) B sin 0 2 2
脉冲多普勒雷达的杂波
旁瓣杂波
旁瓣杂波强度
载机的高度 地物反射特性 载机速度 天线参数
f c max
B sin 0 1.68kHz 2v R 45kHz
2v R
绘出地杂波谱图,给出各部分杂波的参数。
1o 0.0175 rad
f r 2kHz 时 ① 当低PRF,
f r fc max 45kHz
无杂波区不存在,地杂波谱高度重叠
目标信号 f d 落入多次重叠杂波谱中,造成检测难, f dT 检测产生模糊,即测速模糊
脉冲多普勒雷达的杂波
HPRF下的杂波谱
29
MPRF的杂波谱,无距离模 糊
30
31
32
33
机载PD雷达原理框图
PD雷达解距离模糊与速度模糊
• 问题
机载PD雷达下视时,不是采用HPRF,就是采用MPRF,两 者均会出现距离模糊。采用MPRF时,还会出现速度模糊
•
解决方法
多重PRF解模糊
如 ������������ = ������������������������������, ������������ = ������������������������������,则最大公约频率 ������������ = ������������������������ ,最大不模糊距离 ������������ = ������������������ → ������������������������������ 。
radar_1_intro
• 雷达对地观察理论与应用,郭华东等,科学出版社 • 雷达干涉测量,廖明生,林珲,测绘出版社
– components, radar image geometry, & system parameters (wavelength, polarization, & incidence angle)
• Radar return signatures from terrain • Real aperture radar and synthetic aperture radar (SAR)
along track or flight direction
Ra = GR ⋅ β 0.7Sλ = D
S – slant range D – dimension of antenna λ – wavelength
Real or synthetic aperture radar
• Differ primarily in the method used to achieve resolution in the azimuth direction
Radar imaging geometry
RADAR
Nomenclature for imaging radar geometry
θd
θd
Spatial resolution: range
θd
in the radar look direction
雷达课件第1部分
C A’ B 岛屿 C’
本船
(a) 侧视图
A
外形轮廓
本船
(b ) 俯视图
岛屿
扫描 方向
扫描线 扫描原点 O (本船) 实际距离 探测距离 (c) 雷达图像 A
岛屿
C CRT边缘
• 2.径向扩展 • 发射脉冲宽度τ、接收机通频带宽度△f以
及荧光屏光点直径d会使物标回波在半径 方向上产生扩展。现以点物标为例进行 说明。 • 宽度为τ的发射脉冲打到点物标时,显然 ,回波的宽度也为τ。宽度为r的回波脉冲 通过接收机放大时,会使回波宽度失真 变形,增加约1/△f的宽度,这样,一 个点物标的回波宽度变成C(τ+1/△f)/2 。
两侧较暗。若扫描亮度、增益控钮稍些, 波的两侧边缘也会向中缩。 • 物标回波图像的横向缩小可提高雷达的 方位分辨率,但可能丢尖物标的真正边 缘.造成雷达测方位的误差。
radar 规则
radar 规则
雷达规则是指在雷达系统中用于判断目标性质、追踪目标运动以及辨识目标特
征的一系列准则和原则。
雷达规则是雷达系统工作的基础,它们决定了雷达系统对目标的识别和追踪的准确度和效率。
首先,雷达规则包括目标检测规则。
目标检测规则是雷达系统中的第一步,它
用来判断环境中是否存在目标。
根据雷达系统的性能和工作环境,目标检测规则可以采用不同的方法,如门限规则、概率规则等。
目标检测规则的准确性直接影响着雷达系统的工作效果。
其次,雷达规则还包括目标跟踪规则。
目标跟踪规则用于确定目标运动的轨迹
和状态。
针对不同的目标运动特征,目标跟踪规则可以采用多种方法,比如卡尔曼滤波、多普勒处理等。
目标跟踪规则的有效性关系着雷达系统对目标运动的准确追踪能力。
此外,雷达规则还包括目标辨识规则。
目标辨识规则用于识别目标的特征,如
大小、形状、反射特性等。
目标辨识规则可以采用多种技术,包括特征提取、模式识别等。
目标辨识规则的准确性对于雷达系统对不同目标的正确识别具有重要意义。
综上所述,雷达规则是雷达系统运行的基本准则和原则,它们包括目标检测规则、目标跟踪规则和目标辨识规则。
这些规则的合理应用可以提高雷达系统的工作效果和实现对目标的准确追踪和识别。
正向反向一样的英文单词
正向反向一样的英文单词
在英文中,存在一些单词,无论是正着读还是倒着读,它们的拼写都是一样的。
这些单词被称为“回文词”(palindrome)。
回文词在英语中非常普遍,以下是一些常见的回文词:
1. racecar - 赛车
2. level - 水平
3. madam - 女士
4. radar - 雷达
5. deified - 被奉为神的
回文词的存在是英语语言的一种有趣的元素。
这些单词在文学、音乐、电影等方面都得到了广泛的运用。
例如,在音乐中,一些歌曲的歌词或歌曲的名字是回文词;在电影中,一些电影的名字或电影的主题也是回文词。
回文词既有趣又富有挑战性。
我们可以在生活中使用回文词来提高我们的英语水平和语言技能。
- 1 -。
SystemVue雷达快速入门
• UWB
• PAA
• FMCW • MIMO
雷达信号处理
• Digital Pulse Compression (PC) • Moving Target Indication (MTI) • Moving Target Detection (MTD) • Pulse Doppler Processing (PD) [2] • Constant False Alarm Rate (CFAR) • Digital Beam-forming 3D • Space-Time Adaptive Processing (STAP) • Step-Frequency Radar Processing • Wideband Receiving • Adaptive PAA
可以试着更改工作区的名字,或者在工 作区目录树中增加其它的元件
在这里进行原理图设计
Part Selector(元件选择栏) : 从元件库中选择元件插入 到原理图中…
在起始页面,也可以选择打开 RF 或者 Data Flow template…(射频或数据流模板)
1
6
Mar. 2014
RF Architecture Template
© 2014 Agilent Techno2lo3gies
Mar. 2014
实验1 ---图表和曲线属性 在数据集窗口,鼠标选中S1,点击右键,可以看到添加图表选项,并选择New Graph
New Graph = 缺省图表 (直接坐标) Wizard = 从当前工作区任意数据集中选择绘图类型/数据组合
© 2014 Agilent Techno2lo6gies
16
Mar. 2014
快速浏览基本的功能…
Radarsat1数据处理_林
CS1.6弹道优化命令
CS1.6弹道优化命令CS1.6弹道优化命令cl_rate 20000rate 25000cl_updaterate 101cl_cmdrate 101ex_interp 0.01//这个参数一般都放在userconfig.cfg中,所有的世界高手都是0.01以后出去打lan 只改这些就够了。
ex_interp 0.01 情况下压枪特好,一压就死,反而0.1 只在墙上描绘的弹道很集中,其实子弹很散。
fps_max 101cl_dynamiccrosshair 0//关闭武器动画,在行进中准星不变。
默认是1_cl_autowepswitch 1//是否自动捡枪brightness "5"//明亮些,默认是1s_eax "1"//打开声卡的EAX,方位感更好,默认是0m_filter "0"//“关闭鼠标平滑”,感觉定位更准,KING在CCSK上也是这么说,默认是1cl_righthand "0" // 玩家持枪0左手,1右手cl_bob "0" // 奔跑时手臂摆动的幅度cl_bobup "0" // 奔跑时手臂摆动的范围cl_solid_players "1" // 固定玩家模型cl_weather "0" // 关闭天气(如:de_aztec)cl_cmdbackup "2" // 20-ping调2,30-ping调3...r_waterwarp "0" // 关闭天气在水面上的反应gl_spriteblend "1" // 加大血迹.准星显示(0开1关)cl_lw "1" // BUG->设"0"会变成用刀是另外一只手,有无武器的动画,最好设1_cl_autowepswitch "0" // 自动切换到拣起的更好的武器cl_crosshair_size "medium" // 准星大小,自动=auto,大=large,中=medium,小=smallcl_crosshair_translucent "0" // 透明准星cl_crosshair_color "255 255 0" // 准星颜色cl_dynamiccrosshair "0" // 动态准星cl_logocolor "#Valve_Ltblue" // 喷图颜色cl_logofile "5HP005" // 喷图图案cl_radartype "1" // 实心雷达fps_max "101" // 游戏输给显卡的最大FPS数fps_modem "101" // 互联网游戏中的最大FPS值graphheight "30"net_graphpos "1" // \net_graphwidth "100" // \ FPSnet_graph "3" // / 显示位置net_scale "5" // /console "1"_snd_mixahead "0.1" // 左右声道混合度_windowed_mouse "0"ati_npatch "0"ati_subdiv "0"bgmvolume "1" // 播放CD音乐bottomcolor "6" // 设定玩家人物模型的底部颜色brightness "3" // 调节图像的亮度和对比度cl_highmodels "0" // 建模质量cl_allowdownload "1" // 允许下载cl_allowupload "1" // 允许上传cl_backspeed "400" // 后退的速度cl_career_difficulty "0"cl_corpsestay "140" // 尸体沉入地面前的时间cl_dlmax "128"cl_download_ingame "0" // 允许在游戏里下载其它玩家LOGO、贴图cl_forwardspeed "400" // 前进的速度cl_gaitestimation "1"cl_himodels "0" // 使用较底细节的人物皮肤,提高显示速度,0是预设值,如果你的机子好的话可以设成1cl_idealpitchscale "0.8"cl_lc "1" // 和cs的新的网络技术有关,最好设1cl_minmodels "1" // 是否减少人物模型以减少资源占用cl_nolerp "0"cl_nopred "0"cl_observercrosshair "1" // 观察员模式的时候是否要开起准星cl_pred_fraction "0.5"cl_pred_maxtime "255"cl_pitchspeed "225"cl_sidespeed "400"cl_shadows "0" // 关闭玩家阴影cl_showfps "0" // 是否在画面左上脚显示fps值cl_timeout "30" // 设定连接超时cl_vsmoothing "0.05" // 屏幕显示方面的预测crosshair "1" // 显示武器的准星d_spriteskip "0" // 关闭动态特效(.spr效果)developer "0" // 左上角显示console讯息fastsprites "0" // 烟雾细节gamma "3" // gamma亮度值gl_playermip "4" // 2混合玩家建模纹理*gl_picmip "0" // 1混合纹理*gl_wateramp "0" // 不显示水波gl_texturemode "GL_LINEAR_MIPMAP_NEAREST" // 设置纹理模式gl_round_down "5" // 纹理降级等级固定(1-99越高质量越低)* gl_palette_tex "0" // 开关调色贴图值;材质,使纹理平滑gl_keeptjunctions "0" // 开关显示材质间的缝隙gl_cull "1" // 只渲染可见目标gl_dither "1" // 开关颜色抖动gl_flipmatrix "0" // 开关特殊的准星修正当适用3DNow和3D fx Mini OpenGL驱动时gl_fog "1"gl_monolights "0" // 开关统一光源(无阴影)OpenGL适用gl_overbright "0" // 开关最大亮度模式gl_polyoffset "0.1" // 设定多边形补偿gl_max_size "256" // "128"设定纹理大小*gl_affinemodels "0"gl_alphamin "0.25" // 设定最小alpha混合等级gl_clear "0" // 对画面上各个模型连接的部分的连贯渲染gl_flashblend "0"gl_lightholes "0" // 光洞效果开关gl_spriteblend "0"hisound "1" // 使用高品质音频hpk_maxsize "0.2" // hpk文件最大值hud_capturemouse "1" // 游戏图形菜单的选择是否用鼠标(建议使用)hud_centerid "1" // 玩家ID出现在屏幕的正中央hud_deathnotice_time "6"hud_draw "1" // AWP开镜后的黑框hud_fastswitch "1" // 按数字直接换武器不用再按鼠标hud_saytext_internal "1"hud_classautokill "1"hud_saytext_time "5"hud_takesshots "0" // 游戏结束时截取玩家成绩图像文件hud_saytext_time "5"joystick "0" // 关闭游戏操纵杆lookspring "0" // 自动回复视角到中心当mlook关闭时lookstrafe "0" // 鼠标平移当mlook开启时m_filter "0" // 鼠标调整(使移动平滑)m_forward "1"m_pitch "0.022"m_side "0.8"m_yaw "0.022"model "gordon"MP3FadeTime "2"MP3Volume "0.8"mp_decals "20" // 贴图分辨率max_shells "0" // 0关闭子弹退镗,不显示弹壳max_smokepuffs "30" // 0关闭烟雾扩散效果precache "1" // 开启预读模型模式r_mmx "1" // 允许使用CPU MMX指令集r_shadows "0" // 关闭阴影r_norefresh "0" // 非必要时不更新hud和consoler_bmodelhighfrac "5" // 模型的highfrac值r_detailtextures "0" // 把材质的细部调到最低,增加效能r_dynamic "1" // 动态光影效果,固定动态光源r_novis "0" // 关闭水波特效r_traceglow "1" // 光影特效r_wateralpha "1" // 如果在r_novis 中设置为0,这里就请设置为1r_mirroralpha "0" // 关闭反射图片*开关alpha镜像混合r_lightmap "0"// 声音s_a3d "0"s_automax_distance "30"s_automin_distance "2"s_bloat "2"s_distance "60"s_doppler "0"s_eax "0"s_leafnum "0"s_max_distance "1000"s_min_distance "8"s_numpolys "200"s_polykeep "1000000000"s_polysize "10000000"s_refdelay "4"s_refgain "0.4"s_rolloff "1"s_verbwet "0.25"skin ""spec_autodirector_internal "1"spec_drawcone_internal "1"spec_drawnames_internal "1"spec_drawstatus_internal "1"spec_mode_internal "3"spec_pip "0"suitvolume "0.25"sv_aim "0"sv_voiceenable "1"team ""topcolor "30" // 玩家人物模型的顶部颜色viewsize "120" // 改变显示窗口尺寸(最好别小于100) voice_enable "1"voice_forcemicrecord "1"voice_modenable "1"voice_scale "1"volume "0.8" // 音量setinfo "_vgui_menus" "0" // 图形购买界面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sheet 1 of 11RADAR IntroductionRAdio Detection And Ranging Part 1 of 2Applications: Detection and Ranging of ground, sea and air targets Air Traffic Control (ATC) Guidance Tracking Meteorological applications Collision avoidance Speed measurement Remote sensing Why use microwave frequencies? 1. Low absorption by the atmosphere • • • • see Figure 1low attenuation below about 20 GHz, particularly below 10GHz resonant peaks due to oxygen and water molecular absorption at higher frequencies operate in 'windows' at about 35GHz, 94GHz etc much lower absorption by fog, rain, snow at microwave frequencies than at optical frequenciesFigure 1 Graph showing attemuation of a microwave signal through the atmosphere with varying conditions and frequencies 2. Antenna sizes • • • • angular resolution limited by beamwidth beamwidth determined by λ/D - D is antenna diameter - θ(radians) ≈ λ require D = 10λ for 6° beamwidth suggests using high microwave frequencies to reduce antenna size, but a balance must be struck with the atmospheric attenuationDSheet 2 of 11Types of radar 1. Bistatic Monostatic separate transmit and receive antennas same antenna for transmit and receiveTXRXTX RXBistatic (i)Bistatic (ii)MonostaticFigure 2 2. • 3. • 4. • CW radar • CW radarMonostatic and bistatic radar transmits continuous wave (CW)can detect objects, measures velocity from Doppler shift, but cannot measure range FM-CW radar frequency-modulated CW transmitted signaldetects, measures range and radial velocity Pulsed radar includes MTI (moving target indicator) and Pulsed Dopplerdetects, measures range and velocity, but has blind speeds and rangescan be bistatic or monostaticTXRXTX RXBistatic (i)Bistatic (ii)MonostaticFigure 3Monostatic and bistatic CW radarSheet 3 of 11•transmitter and receiver both operate continuously - hence no range measurement. Difficult to avoid Tx to Rx feed-through, even with separate antennas measure radial velocity of target from Doppler shift•foVrTX⎛ 2.vr ⎞ fo + ⎜ ⎟ fo ⎝ c ⎠Doppler shiftFig. 4. Doppler frequency shift for reflected signal Mix Tx and Rx signals to give difference frequency - the Doppler frequency⎛ 2v ⎞ ⎛ 2v ⎞ fD = f0 + ⎜ ⎟ f0 − f0 = ⎜ ⎟ f0 ⎝ c ⎠ ⎝ c ⎠• Ships ∴ radial velocity in range 0 to 30 knots typically at an operating frequency of 2GHz, i.e. 0 to 15ms-1f D is in the range 0 to 200HzUsing homodyne detection, where the Rx and Tx signals are mixed directly to give the Doppler frequency problems arise due to flicker noise in the detectors and amplifiers because the noise power is proportional to 1/f and flicker noise is large at low frequencies such as 200Hz.1/fFlicker noise Power densityNoise power density is Area for given bandwidth and is greater at lower Frequencies.B.WfFig. 5. Flicker noise versus frequencySheet 4 of 11A solution is to use heterodyne detection in which the Rx signal is mixed with a local oscillator (LO) with a frequency which differs from the Tx frequency by, for example, 30MHz. The received signal + LO generate an IF (intermediate frequency) output at 30 MHz which contains the same information - ie Doppler frequency shift - as the Rx signal. After amplification the Doppler frequency shift can be extracted by further mixing.(fo+fD) → RX (fo+fD)- fLO ≈ 30MHzamplify without flicker noiseLO fLOVelocity ambiguity with CW radar Velocity ambiguity is the inability to distinguish between approaching and receding targets. It arises because in a mixer with an LO frequency f 0 input signals with frequencies f 0 + f D and f 0 − f D give the same IF frequency ie the same IF output is obtained for targets that are approaching or receding from the radar at the same radial speed. Velocity ambiguity can be removed by splitting the received signal into two equal components. A 90° phase change is applied to one of the components. After further mixing the relative phases of the two components gives the sign of the Doppler frequency. Thus approaching and receding targets are distinguished. A system that achieves the removal of velocity ambiguity is shown in Figure 6. The outputs are called the I (In phase) and Q (Quadrature phase) outputs. With Withf D +veQ output leads I by 90° Q output lags I by 90°approaching target receding targetf D -veFM-CW radar • • • • frequency modulate the CW signal to give range as well as velocity the frequency is swept repeatedly betweenf 1 and f 2the range is found from the frequency difference between the transmitted and the returned signal - see figure 7 for a stationary target if the target is moving there is an additional Doppler frequency shift. For an approaching target the frequency of the returned signal is increased. For m positive (m is the rate of change of frequency with time for the transmitted signal) the range frequency is decreased by the Doppler frequency, whereas for m negative the range frequency is increased by the Doppler frequency. Using both measurements both the range and radial velocity of the target can be obtained - see figure 8.Sheet 5 of 11System to remove Velocity Ambiguity with CW Radar TX fo CW TxfoLO at IFLO fIF (fd+fIF) <90 degreesfd < 90 degrees QRX fo+fdfo-fIFAmplifier90 degrees3dB (Approachin g target) (fo-fd)-(fo-fIF) = fd+fIF fd+fIF fIFfd < 0 degrees(fd+fIF) < 0 degreesIWith fd +ve (approaching target) Q output 90 degrees AHEAD of I outputWith fd -ve (receding target) Q output 90 degrees BEHIND of I outputFigure 6Sheet 6 of 11FM-CW Radar Frequency-modulate CW signal to give range information. (1) Stationary targetTxRxF2Frequency∆fm=∂f T ∂tF12R CtimetFigure 7 Tx frequency – increases with time⎛ ∂f ⎞ f T = f1 + ⎜ T ⎟t = f1 + m.t ⎝ ∂t ⎠Rx signal lags Tx signal by time to target and backTXRTR =2R CMixing Rx and Tx frequencies gives difference frequency ∆f∆f =m 2R C⎛ 2R ⎞ ∴ ∆f = f R = m⎜ ⎟ ⎝ C ⎠Range frequencySheet 7 of 11(2) Moving target with FM-CW due to Doppler - additional frequency shift due to Doppler effectTxRxF2fDFrequencyfD ∆frApproaching targetF1fr – fD = ∆frtimeFigure 8 Approaching target : Rx signal frequency increased by fdTherefore ∆f (measured) = fR-fd ( for m positive ) = f+ For m negative ∆f (measured) = fR+fd = fTherefore, fR = ½(f+ + f-) fd = ½(f- - f+) simultaneous equationsSheet 8 of 11•ambiguity can arise between very close fast moving targets and slow moving distant targets. It may not be possible to decide whether the difference frequency is f R − f D or f D − f R.Pulsed radar • short pulses (pulse length ∼ 1µs) of RF radiation are transmitted with relatively long intervals ( T(PRF)) ∼ ms) between them. PRF is the pulse repetition frequencyΤ ~ 1usEcho E1TXT R = (2R)/CT/RT (PRF) ~ 10-3sRXFigure 9 Pulsed radar and radar pulses • the time delay between the transmitted and reflected signal targetTR gives the range to theRTX RXTR =2R CR=1 CTR 2Figure 10 Transmitted and reflected signals • • each time delay of 1µs corresponds to an increase in range of 150m a T/R cell is connected between the transmitter and the receiver to protect the sensitive receiver from the high power pulses from the transmitter. This disables the receiver during pulse transmissionSheet 9 of 11•the maximum unambiguous range of the radar occurs when TR = ranges the echo returns after the transmission of the next pulse.T ( PRF ) . For longerR (unambiguou s ) = cT (PRF ) 2=c 2PRF• the blind range of the radar occurs when the echo signal arrives back when the next pulse is being transmitted and the receiver is disabled - ie TR = T ( PRF ) . This is the same as the maximum unambiguous range. to avoid the blind range and to distinguish targets that are beyond the maximum unambiguous range a variable PRF should be used. If we combine the reflections from several pulses, targets with R < R(unambiguous) will all have the same time delay with respect to the transmitted signal, but those will appear to have a variable delay, because they actually originated from an earlier transmitted pulse.T1 T2 T3 TWill move if R > R (unambiguous)•E1E2E1E2Fixed for all transmission pulses if R < R (unambiguous)combineFigure 11 Use of variable PRF to distinguish targets beyond the unambiguous range • the radar range resolution is the ability of the radar to distinguish two targets with similar ranges. The resolution is determined by the pulse duration τ . The smallest time interval that the radar can resolve is τ which gives a range resolution of cτ 2 . If τ = 1µs the range resolution is 150m.T1 T2τR = ½.CTR AR = ½.C(A.TR)τFigure 12 Radar resolutionSheet 10 of 11•the angular resolution of the radar is determined by the beamwidth of the antenna, which is in turn set by the frequency of operation and the antenna diameter θ (radians)≈ λ/D.Blind speeds with pulsed radars If the frequency of the echo signal is measured the target radial velocity can be determined as well as its range. The sketches below show the time domain and the frequency domain forms of the transmitted pulses.τ⎛ sin(x) ⎞ sin x 2 = ⎜ ⎟ ⎝ x ⎠2Time DomainP(f)Line spectrum∆f1 =1 = PRF T(PRF )PRF fofTransmitted Waveformsfo −1 τfofo +1 τFrequency domainFigure 13 Time and frequency domain forms of a radar pulse train In the frequency domain the pulse contains frequency components with spacing ∆f 1 = ( PRF ) from the transmitted frequency f 0 . If the Doppler-shifted echo signal falls on one of these frequency components it cannot be distinguished, and so the radar is 'blind' to the corresponding radial velocities - ie to velocities that give f D = n∆f1 =n( PRF ) where n = 1, 2, 3, etc.Blind speeds c.n(PRF) ⎛ 2.v r ⎞ f D = n(PRF) = ⎜ ⎟ fo ; v r (blind) = c ⎠ 2 fo ⎝ eg fo = 10GHz; PRF= 1KHz vr = 3x108 x n x 103 = 15n....15ms −1 ; 30ms −1 ; 45ms −1 10 2x10Sheet11 of 11 For a pulsed radar with a frequency of 10GHz which transmits pulses at millisecond intervals-1-1-1-1(PRF = 1kHz) the blind speeds are 15ms, 30ms, 45ms etc. 15ms is about 30mph, so in some applications there would be many blind speeds within the speed range of interest eg aircraft.To avoid problems due to blind speeds the radar must be operated so that they do not fall into the range of interest. This can be achieved by increasing the PRF. However, this reduces the unambiguous range and so a compromise must be reached.ms-1Example: Blind speeds less than 1500mph (670) are to be avoided. For a radar operating at 10GHz this corresponds to a Doppler shift, and hencea PRF of 45kHz. This PRF gives an unambiguous range of only 3.3km.The value of the Doppler frequency, and hence the PRF, could be reduced by operating the radar at a lower frequency -eg 2GHz -but this might mean using a larger antenna to give the same angular resolution.Two broad categories of pulsed radar are1. MTI (Moving Target Indicator) radar•distinguishes moving targets from the stationary background by Doppler shift. Only those echoes with a frequency shift are displayed. The reflections from thebackground are known as clutter.•MTI uses a low PRF to avoid range ambiguity, and gives a large range•the blind range is small because the receiver is only disabled for a small % of the time•'blind' to many speeds, starting from quite low speeds•the low PRF reduces the number of hits per target as the radar beam is scanned.This reduces the radar sensitivity.2. Pulse Doppler radar• uses high PRF to avoid blind speeds•short unambiguous range, more extended blind range•more hits per target increases sensitivityNote: Hits per target gives the number of pulses that hit the target as the radar beam is scanned. The signal at the receiver is averaged over several pulses to average out the effects of noise. The radar sensitivity increases with the number of hits per target. If a beam with width 2° is scanned at 36° per second a target will be in the beam for 1/18 seconds. With a PRF of 300Hz the number of hits per target will be 300/18 = 15.。