锂空气电池Thelithium-airbattery_BrunoScrosati
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The lithium‐air battery (organic electrolyte)
Unprotected electrode design
Lithium-air battery with unprotected lithium metal anode (non aqueous electrolyte) Li + ½ O2 ½ Li2O2 Theor. energy density (oxygen only) : 11,420 Wh/kg
ORR process in a fuel cell
Courtesy of Dr. Y. Shao-Horn and H.A. Gasteiger, MIT, Cambridge, USA
The lithium-air battery
Protected anode design (aqueous electrolyte)
Intercalation materials
Carbon anodes
High capacity cathodes
Super‐ Battery <200kg/500km Li/S, Li/O2
"0V" High capacity
250
500
750
1000 1250 1500 1750
Capacity / Ah kg‐1 Courtesy of Dr. S.Passerini, Muenster University, Germany
K. Nakajima, Scalable Energy Storage Beyond Lithium Battery: Materials Perspectives Symp., ONRL, Oct 2010 11
The lithium-air battery
The lithium-air battery
2
The lithium-air battery Target setting value
Difficult by 材料的に困難 material
Voltage (V) 電池作動電 圧 (V)
500Wh/kg 以上
over
4V, 150Ah/kg
Technically 技術的に可能 possible
higher capacity cathodes needed:
Li/air
J.‐M. Tarascon & M. Armand, Nature 414 (2001) 359
projected specific energy for Li‐Air cathodes ?
The lithium-air battery
The lithium-air battery Potentiodynamic Cycling (PCGA)
Lithium superoxide formation Lithium peroxide formation Lithium oxide formation
Reaction mechanism
The “holy graLeabharlann Baidul of batteries” !
BUT : still a long way to go, many issues to be addressed Sensitive to humidity, very low rate discharge, choice of catalyst, reactivity of the lithium metal electrode, …….
Issues: high voltage hysteresis loop, limited cycle life, stability of the organic electrolytes, reactivity of the lithium metal anode…..
Courtesy of Prof O.Yamamoto, Mie University, Japan
21
The lithium-air battery
Reaction routes. Expected : O2 and Li2O2 should be obtained under charge and discharge. Actual: decomposition of organic carbonate solvents!
Courtesy of Dr. Mark Salomom, Max Power Inc.
10
The lithium-air battery
Protected anode design (aqueous electrolyte) Use of a lithium ion glass ceramic film to cover the lithium electrode
The lithium-air battery
The lithium-air battery
Developing companies: IBM, Excellatron,Liox Power, Lithion Yardney , Poly Plus, Rayovac, Max Power, … and many more Research: AIST Japan, St.Andrews, UK: Michigan State University, USA; Mie University, Japan; Brookhaven Natl. Laboratory, USA; Argonne Laboratories,USA; University of Dayton Research Institute, USA; University Picardie Amiens, France; Technical University Munich, Germany; Muenster University, Germany; Technion, Israel,….
Lecture # 6 SUPERBATTERIES
The lithium- air battery
The lithium-air battery
6 5 4
Where should we go?
Potential vs. Li/Li+
"4V"
Oxide Cathodes
3 2 1 0 0
Li‐ion
Super‐ Battery
< 200kg
200 Wh/kg*
Estimated limit of Lithium‐Ion Technology
170 Wh/kg*
140 Wh/kg*
Li‐ion Batteries
Present 2012 2017
Year
Courtesy of Dr. Stefano Passerini, Munster University, Germany
Present Lithium Ion technology (C-LiCoO2): Theor energy density: 420 Wh/kg
9
The lithium-air battery
Protected anode design (aqueous electrolyte)
Mainly primary
carbon
round‐trip <70% (2.7/4.0V) at low rates of 70 mA/gcarbon (0.1 mA/cm2; C‐rate 1/40)
Li‐Air cathode catalysis is critical for increasing round‐trip & i
A.Debart, A.J. Peterson, J.Bao, P.G.Bruce, Angewandte Chemie, 120 (2008) 4597
17
The lithium-air battery (organic electrolyte)
Unprotected electrode design Organic electrolytes
catalysts may affect also capacity via product distribution (LiO2, Li2O2, Li2O)
The lithium-air battery
ORR process in a lithium air cells
Courtesy of Dr. Y. Shao-Horn and H.A. Gasteiger, MIT, Cambridge, USA
Discharge curve
Courtesy of Dr. Mark Salomon, Max Power Inc. USA
The lithium‐air battery (aqueous electrolyte)
Protected anode design
Remaining issues: mechanical stability of the protecting film, high interfacial resistance, solubility of the reaction products...
Capacity (Ah / kg or Ah / L)L) 電 気容量(Ah/ kg または、Ah/
The lithium-air battery
Revolutionary Technology‐ Change
>500 Wh/kg
Electric Vehicle - The energy issue
Courtesy of Prof O.Yamamoto, Mie University, Japan
15
The lithium-air battery
Fuminori Mizuno, Scalable Energy Storage Beyond Lithium Battery: Materials Perspectives Symp., ONRL, Oct 2010
Li‐Ion Batteries for Vehicles: Challenges
specific energy [Wh/kg] largely limited by intercalation cathode durability/safety needs further lower Wh/kg: ‐ low depth of charge/discharge ‐ low‐potential cathodes (LiFePO4) ‐ high‐potential anodes (Ti‐oxides)
18
Li/Air Batteries: Performance & Capacity
charge: (Li2O2)solid 0.5 O2 + 2 Li+ + 2 e‐
Erev 2.96 V
discharge: 0.5 O2 + 2 Li+ + 2 e‐ (Li2O2)solid
A. Débart, A.J. Paterson, J. Bao, P.G. Bruce; Angew. Chem. Int. Ed. 47 (2008) 4521
8
The lithium-air battery Potential store 5-10 times more energy than today best systems Two battery versions under investigation
Lithium-air battery with protected lithium metal anode and/or protected cathode (aqueous electrolyte) 2Li + ½ O2 + H2O 2LiOH Theor. energy density : 5,800 Wh/kg Lithium-air battery with unprotected lithium metal anode (non aqueous electrolyte) Li + ½ O2 ½ Li2O2 Theor. energy density : 11,420 Wh/kg