《电磁场与电磁波》试题10及答案
专升本《电磁场与电磁波》
一、单选 (共16题,每题1分,共16分)1.根据亥姆霍兹定理,一个矢量位由它的()唯一确定。
A.旋度和散度B.梯度和散度C.旋度和梯度D.旋度2.时变电场是______,静电场是______。
A.无旋场;有旋场B.无旋场;无旋场C.有旋场;有旋场D.有旋场;无旋场3.由N 个导体组成的系统中,导体两两间都存在电容。
这些电容与()有关A.各导体的相对位置B.同时选择A 和BC.各导体的电位D.各导体所带电量4.下面的说法不正确的是()A.群速是指信号包络上恒定相位点的移动速度B.相速是指信号恒定相位点的移动速度C.相速代表信号的能量传播的速度D.在导电媒质中,相速与频率有关5.在恒定电场中,分界面两边电流密度矢量的法向方向是()A.不连续的B.不确定的C.等于零D.连续的6.两个点电荷对试验电荷的作用力可表示为两个力的()。
A.算术和B.代数和C.矢量和D.平方和7.关于良导体中的平面波,下列描述中错误的是()A.是衰减波。
频率越高,电导率越大,衰减越快B.磁场能量密度小于电场能量密度C.是TEM 波D.电场强度、磁场强度和传播方向两两垂直,且满足右手定则8.给定两个矢量,,则()。
A.见图B.见图C.见图D.见图9.已知某区域V 中电场强度满足,则一定有()A.V 中电荷均匀分布B.V 中电荷处处为0C.为静电场D.为时变场10.在分界面上电场强度的切向分量总是()A.连续的B.不确定的C.等于零D.不连续的11.下述描述中,错误的是()A.在分界面上磁感应强度的法向分量是不连续的B.若分界面上没有自由电荷,则电位移矢量的法向分量是连续的C.空间任意一点的能流密度由该点处的电场强度和磁场强度确定D.理想导体内部不存在时变的电磁场zy x e e e A 32-+=zy e e B +-=4=⨯B AE E 0∇=E E12.关于理想导体表面上的垂直入射,下列描述不正确的是()A.合成波的相位沿传播方向是连续变化的B.分界面上有表面电流存在C.在理想导体表面上,垂直入射波发生全反射现象D.合成波的电场和磁场均为驻波13.平行板电容器之间的电流属于()A.线电流B.位移电流C.运流电流D.传导电流14.静电场中的介质产生极化现象,与外加电场相比,介质内电场()A.不变B.变大C.不确定D.变小15.静电场的旋度等于()A.电荷密度与介电常数之比B.零C.电荷密度D.电位16.下面关于复数形式的麦克斯韦方程的描述中,有错误的是()A.磁场强度的旋度不等于零。
电磁场与电磁波习题答案10
第十章 电磁辐射及原理重点和难点本章重点是电流元、对称天线、天线阵、面天线、互易原理及惠更斯原理。
以电流元为典型,介绍电磁辐射的求解方法及其远区场特性。
天线方向性是天线的重要特性,应介绍如何图形描述和定量计算。
对称天线的分析以半波天线为主。
天线阵的分析应着重指出天线阵的方向性不仅取决于单元天线的方向性,同时与天线阵的结构有关。
对偶原理及镜像原理容易理解,但应指出磁荷与磁流的概念是假想的。
互易原理在电磁理论中获得广泛应用,应予详细介绍和推演,及其应用举例。
惠更斯原理的定量表示可以从简,着重讲解其物理概念,并与几何光学方法对比。
基于惠更斯原理分析面天线的辐射特性,以均匀同相口径场为例,说明面天线的增益与口径的波长尺寸成正比。
重要公式电流元:场强公式:1j2cos jj 33223kr r e r k rk l I k E -⎪⎭⎫ ⎝⎛+-=πωεθkr e r k rk kr l I k E j 332231j 14sin j-⎪⎭⎫ ⎝⎛++--=πωεθθkre r k kr l I k H j 2221j 4sin -⎪⎭⎫ ⎝⎛+=πθφ0===r H H E θφ近区场:24sin r l I H πθφ=; 3 2cos jr l I E r πωεθ-=; 34sin j r l I E πωεθθ-= 远区场:kre rl ZI E j 2sin j-=λθθ; kre rl I H j 2sin j-=λθφ 辐射功率:22280⎪⎭⎫⎝⎛=λπl I P r辐射电阻: 2280⎪⎭⎫⎝⎛=λπl R r天线参数:方向性系数: 0||0E E rr m P P D ==天线的效率:ArP P =η 天线的增益: ||||00E E AA m P P G ==天线的方向性系数、效率和增益的关系: D G η=对称天线:电流分布:|)|(sin z L k I I m -=远区场:krm e kL kL r I E j sin cos )cos cos(60j--=θθθ方向性因子:θθθsin cos )cos cos()(kLkL f -=半波天线的方向性因子:θθπθsin cos 2cos )(⎪⎭⎫ ⎝⎛=f天线阵:阵因子: ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=)cos (21sin )cos (2sin ),(αθαθφθkd kd n f n 方向性因子: ),(),(),(1φθφθφθn f f f =电流环:场强公式:kr e r k kr SIk E j 222sin 11j 4j-⎪⎭⎫ ⎝⎛--=θπωμφ krr e r k r k ISk H j 33223 cos 11j 2-⎪⎭⎫ ⎝⎛+=θπkre r k r k krSIk H j 33223sin 11j 14-⎪⎭⎫ ⎝⎛++-=θπθ0===φθH E E r远区场:kr e rSI Z E j 2sin -=θλπφkre rSI H j 2sin --=θλπθ 方向性因子: θφθsin ),(=f辐射功率:246320I λπ⎪⎭⎫⎝⎛=a P r辐射电阻:46320⎪⎭⎫⎝⎛=λπa R r含有电流与电荷、磁荷与磁流的麦克斯韦方程:()()()r D r J r H ωj +=⨯∇ ()()()r B r J r E m ωj --=⨯∇ ()()r r B m ρ=⋅∇()()r r D ρ=⋅∇磁荷守恒原理:()()r r J m m ωρj -=⋅∇对偶原理:⎪⎩⎪⎨⎧→-→mm HE EH e e⎩⎨⎧→→εμμε⎪⎩⎪⎨⎧→→mmρρJJ 修正边界条件:()m s n J E E e -=-⨯12()m s n ρ=-⋅12B B e理想导磁体的边界条件:⎩⎨⎧-=⨯=⨯msn n J E e H e 0⎩⎨⎧=⋅=⋅0D e B e s n mn ρ 互易原理:微分形式)]()[(a b b a H E H E ⨯-⨯⋅∇ma b m b a b a a b J H J H J E J E ⋅-⋅+⋅-⋅=积分形式:S H E H E d )]()[( ⋅⨯-⨯⎰a ab Sa⎰⋅-⋅+⋅-⋅=V m a b m b a b a a b V d )(J H J H J E J E罗仑兹互易定理:0d )]()[( =⋅⨯-⨯⎰S H E H Ea b b aS卡森互易定理:V V m b a b a VV m a b a b bad ][d ][ J H J E J H J E ⋅-⋅=⋅-⋅⎰⎰标量绕射公式(基尔霍夫公式):⎰'⎥⎦⎤⎢⎣⎡∂'∂'-∂'∂'=S S S P S n G n G d )(),(),()( )(00r E r r r r r E r E ⎰'⎥⎦⎤⎢⎣⎡∂'∂'-∂'∂'=S S S P S n G n G d )(),(),()( )(00r H r r r r r H r H 惠更斯元的远区场: kr S P e rSj 0)cos 1(2d j-+-=θλψψ 平面口径的远区场:S re S krS P ''+-=⎰-d )cos 1(2j j 0θψλψ均匀同相矩形口径的远区场:j 00sin sin )sin sin sin(cos sin )cos sin sin()cos 1(2jkr S P e kb kb ka ka r abE E -+-=φθφθφθφθθλ 均匀同相矩形口径场的方向性因子:φθφθφθφθθφθsin sin )sin sin sin(cos sin )cos sin sin()cos 1(),(kb kb ka ka f +=均匀同相口径场的方向性系数: 24λπAD =面天线的增益: 1 ,42<=νλπνAG题 解10-1 试证式(10-1-8)。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波试题
电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
电磁场与电磁波试题及答案(2021版)
电磁场与电磁波试题及答案(2021版)1. 恒定磁场是( A )A. 无散场B. 旋涡场C.无旋场D. 既是有散场又是旋涡场 2. 已知(25)(2)(23)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( C )A. 03εB. 03/εC. 1D. 0 3. 磁场的矢量磁位的单位是( D )A. V/mB. TC. A/mD. T m 4. 导体在静电平衡下,其内部电场强度( A )A.为零B.为常数C.不为零D.不确定 5. 对于载有时变电流的长直螺线管中的坡印廷矢量S ,下列陈述中,正确的是( C )A. 无论电流增大或减小,S 都向内B. 无论电流增大或减小,S 都向外C. 当电流增大,S 向内;当电流减小时,S 向外D. 无法判断S 的方向6. 根据恒定磁场中磁感应强度B 、磁场强度H 与磁化强度M 的定义可知,在各向同性媒质中( A )A. B 与H 的方向一定一致,M 的方向可能与H 一致,也可能与H 相反B. B 、M 的方向可能与H 一致,也可能与H 相反C. 磁场强度的方向总是使外磁场加强。
D. 三者之间没有联系。
7. 以位函数ϕ为带求量的边值问题中,设()()12,f s f s 都为边界点S 的点函数,则所谓的纽曼问题是指给定( B )A. ()1s f s ϕ=B. ()2sf s nϕ∂=∂C. ()()12112212s s f s f s nϕϕ∂==+=∂和,s s s D.以上皆不对8. 若要增大两线圈直接的互感,可以采用以下措施( A )A.增加两线圈的匝数B.增加两线圈的电流C.增加其中一个线圈的电流D.无法实现 9. 磁场能量密度等于( D )A. E DB. B HC.21E D D. 21B H 10. 以下四个矢量函数中,能表示磁感应强度的矢量函数是( A )A. x y B e y e x =+B. x y B e x e y =+C. 22x y B e xy e x =+D. 2x y B e x e xy =+1. 在恒定磁场中,若令磁矢位A 的散度等于零,则可以得到A 所满足的微分方程__2A J μ∇=-_____。
电磁场与电磁波试题及参考答案
2010-2011-2学期《电磁场与电磁波》课程考试试卷参考答案及评分标准命题教师:李学军 审题教师:米燕一、判断题(10分)(每题1分)1.旋度就是任意方向的环量密度 ( × )2. 某一方向的的方向导数是描述标量场沿该方向的变化情况 ( √ )3. 点电荷仅仅指直径非常小的带电体 ( × )4. 静电场中介质的相对介电常数总是大于 1 ( √ )5. 静电场的电场力只能通过库仑定律进行计算 ( × )6.理想介质和导电媒质都是色散媒质 ( × )7. 均匀平面电磁波在无耗媒质里电场强度和磁场强度保持同相位 ( √ )8. 复坡印廷矢量的模值是通过单位面积上的电磁功率 ( × )9. 在真空中电磁波的群速与相速的大小总是相同的 ( √ ) 10 趋肤深度是电磁波进入导体后能量衰减为零所能够达到的深度 ( × ) 二、选择填空(10分)1. 已知标量场u 的梯度为G ,则u 沿l 方向的方向导数为( B )。
A. G l ⋅B. 0G l ⋅ C. G l ⨯2. 半径为a 导体球,带电量为Q ,球外套有外半径为b ,介电常数为ε的同心介质球壳,壳外是空气,则介质球壳内的电场强度E 等于( C )。
A.24Q r π B. 204Q r πε C. 24Qr πε3. 一个半径为a 的均匀带电圆柱(无限长)的电荷密度是ρ,则圆柱体内的电场强度E 为( C )。
A.22aE r ρε=B. 202r E a ρε= C. 02r E ρε= 4. 半径为a 的无限长直导线,载有电流I ,则导体内的磁感应强度B 为( C )。
A.02I r μπB. 02Ir a μπC. 022Ir aμπ 5. 已知复数场矢量0x e E =E ,则其瞬时值表述式为( B )。
A.()0cos y x e E t ωϕ+ B. ()0cos x x e E t ωϕ+ C. ()0sin x x e E t ωϕ+6. 已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108 Hz ,则电磁波的波长为( C )。
电磁场与电磁波考试试题
电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。
A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。
A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。
A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。
A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。
A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。
A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。
A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。
A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。
A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。
A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。
2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。
3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。
4、位移电流的定义式为________。
5、麦克斯韦方程组的四个方程分别是________、________、________、________。
6、电磁波的波长、频率和波速之间的关系为________。
7、理想导体表面的电场强度________,磁场强度________。
8、均匀平面波的电场强度和磁场强度的比值称为________。
9、线极化波可以分解为两个________极化波的合成。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案导言:电磁场和电磁波是电磁学领域中的重要概念,对于理解电磁现象、电磁波传播及应用都具有重要意义。
本文将针对电磁场和电磁波相关的试题进行解答,帮助读者巩固对这一知识点的理解。
一、电磁场概念及特点1. 试题:电磁场是指什么?电磁场有哪些特点?答案:电磁场指的是电荷或电流所产生的周围空间的物理场。
具体包括静电场和磁场。
电磁场的特点有以下几个方面:- 电磁场具有源极性:任何一个电磁场的产生都必须由电荷或电流来产生。
- 电磁场具有传递性:当源增大或减小时,电磁场的强度也会相应变化。
- 电磁场具有辐射性:电磁场会以电磁波形式向外传播。
- 电磁场具有叠加性:多个电磁场可以在同一空间中叠加。
二、电磁场强度及电磁波的传播1. 试题:电磁场强度的概念是指什么?电磁波的传播过程是怎样的?答案:电磁场强度是指单位电荷所受到的电磁力的大小,通常用矢量表示,其方向为电荷所受电磁力的方向。
电磁波的传播过程主要包括以下几个阶段:- 在电磁场中,源电荷或电流激发出电磁波。
- 电磁波在空间中以垂直波动的方式传播。
- 电磁波的传播过程中,电场和磁场相互垂直、交替变化。
- 电磁波传播速度为光速,即3×10^8 m/s。
三、电磁波的频率和波长1. 试题:电磁波的频率和波长有什么关系?请列举几种常见电磁波的频率和波长范围。
答案:电磁波的频率和波长之间有以下关系:频率 = 光速 / 波长以下是几种常见电磁波的频率和波长范围:- α射线:频率高,波长短,一般范围为10^18 - 10^20 Hz,波长约为10^(-12) - 10^(-10) m。
- 紫外线:频率较高,波长较短,一般范围为10^14 - 10^16 Hz,波长约为10^(-8) - 10^(-7) m。
- 可见光:频率适中,波长适中,范围为4×10^14 - 8×10^14 Hz,波长约为3.75×10^(-7) - 7.5×10^(-7) m。
电磁波与电磁场期末复习题(试题+答案)
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
高三物理电磁场与电磁波试题
高三物理电磁场与电磁波试题1.下面说法正确的是 [ ]A.恒定电流能够在周围空间产生稳定的磁场B.稳定电场能够在周围空间产生稳定的磁场C.均匀变化的电场能够在周围空间产生稳定磁场D.均匀变化的电场和磁场互相激发,形成由近及远传播的电磁波【答案】AC【解析】恒定电流在周围空间产生的磁场是稳定不变的.静止的电荷能够在周围空间产生稳定的电场,不能产生磁场.变化的电场和磁场互相激发,形成由近及远传播的电磁波稳定的电流周围形成稳定的磁场,所以A对;均匀变化的电场周围有稳定的磁场,B错;C对;均匀变化的电场产生稳定的磁场,而稳定的磁场不能产生电场,所以不能互相激发,故D错。
所以答案选AC.【考点】电磁波的产生原理点评:麦克斯韦电磁场理论:变化的电场产生磁场,变化的磁场产生电场,所谓的稳定的电场相当于静止的电荷产生的静电场,而均匀变化的电场相当于稳恒电流,也就是定向移动的电荷,根据进一步对麦克斯韦电磁理论的理解进行解析。
2.建立完整的电磁场理论并首先预言电磁波存在的科学家是 [ ]A.法拉第B.奥斯特C.赫兹D.麦克斯韦【答案】D【解析】法拉第发现了法拉第电磁感应定律,奥斯特发现了电流的磁效应,麦克斯韦创立了完整的电磁理论并预言了电磁波的存在,而赫兹用实验验证了电磁波的存在.法拉第发现了法拉第电磁感应定律,故A错误.奥斯特发现了电流的磁效应,故B错误.赫兹用实验验证了电磁波的存在,故C错误.麦克斯韦创立了完整的电磁理论并预言了电磁波的存在,故D正确.故D正确.【考点】物理学史点评:电磁这部分涉及到的物理人物很多,所以要多看课本,强化记忆,从人物发现规律的历史背景去记忆会容易些,这是高考必考的知识点。
3.某电磁波从真空中进入介质后,发生变化的物理量有 [ ]A.波长和频率B.波长和波速C.频率和波速D.频率和能量【答案】B【解析】电磁波从真空进入介质,频率不变,波速变化,根据λ=判断波长的变化.根据E=hγ判断能量的变化.频率由波本身性质决定,与介质无关,所以电磁波从真空中进入介质后,频率不变,波速减小,根据λ=知波长变短.根据E=hγ知,能量不变.故B正确,A、C、D错误.故选B.【考点】电磁波的传播波长、波速和频率的关系点评:本题关键抓住电磁波特性:电磁波从一种介质进入另一种介质时,频率不变,波速改变4.如图为某LC振荡电路中电容器两板间的电势差U随时间t的变化规律,由图可知[ ]A.时刻电路中的磁场能最小B.时刻电路中的磁场能最小C.从到时间内,电流不断减小D.在到时间内,电容器正在充电【答案】AD【解析】电路中由L与C构成的振荡电路,在电容器充放电过程就是电场能与磁场能相化过程.电量体现电场能,电流体现磁场能.在t1时刻,电路中的q最大,说明还没放电,所以电路中无电流,则磁场能最小.故A正确;B 错误;在t1到t2时刻电路中的q不断减小,说明电容器在不断放电,由于线圈作用,电路中的电流在不断增加.故C不正确;在t2到t3时刻电路中的q不断增加,说明电容器在不断充电,故D正确;故选:AD【考点】LC振荡电路能量的转化点评:电容器具有储存电荷的作用,而线圈对电流有阻碍作用5.下列说法中错误的是[ ]A.电磁波又叫无线电波B.电磁波的传播不需要任何介质C.电磁波的传播过程就是电磁场能量的传播过程D.电磁波在各种介质中传播速率都相等【答案】BC【解析】无线电波属于电磁波的一种,故A错;电磁波是由电磁场相互激发向远处传播的,所以不需要介质,B对;电磁波的传播过程中电场能和磁场能也随着传向了远方,所以电磁波传播的是能量,C对;电磁波的传播速度和频率、介质都有关系,所以在不同介质中电磁波传播速度不同,D错。
电磁场与电磁波习题及答案
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u v g2静电场的基本方程积分形式为:CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。
12ϕϕ= 1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
电磁场与电磁波精彩试题问题详解
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ϖ和磁场H ϖ满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S ϖϖϖ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A ϖϖ穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ϖϖ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=ϖ是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+=ϖ,z y x e e eB ˆˆ3ˆ5--=ϖ,求(1)B A ϖϖ+ (2)B A ϖϖ⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆϖ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球任一点的电场强度 (2)球外任一点的电位移矢量。
(完整版)电磁场与电磁波试题及答案.
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
《电磁场与电磁波》2010试题+部分答案
《电磁场与电磁波》试题1填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为: B=uH 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 拉普拉斯 方程。
3.时变电磁场中,数学表达式H E S ⨯=称为 坡印廷矢量(电磁能流密度矢量) 。
4.在理想导体的表面,电场的切向分量等于零。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: ()S d r A S ⋅⎰ 。
6.电磁波从一种媒质入射到理想 导体 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 0 。
8.如果两个不等于零的矢量的 点乘 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 右手螺旋 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 磁矢位 A函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为唯一性定理。
它的意义:给出了定解的充要条件:既满足方程又满足边界条件的解是正确的14.写出位移电流的表达式,它的提出有何意义? .答:位移电流:tD J d ∂∂= 位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。
三、计算题 (每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz e y B ˆˆ2+-= 是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E e E --=004ˆ3ˆ(1) 试写出其时间表达式;(2) 说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
电磁场与电磁波试题与答案
电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)1.设一个矢量场 =x x+2y y+3z z,则散度为( )A. 0B. 2C. 3D. 62.人们规定电流的方向是( )运动方向。
A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为( )A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是( )A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为( )A. •B. E2C. εE2D. εE26.电容器的大小( )A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为( )A. =0,Tq= •B. =0, = ×C. = • ,= ×D. = • , =08.在 =0的磁介质区域中的磁场满足下列方程( )A. × =0, • =0B. × ≠0, • ≠0C. × ≠0, • =0D. × =0, • ≠09.洛伦兹条件人为地规定的( )A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( )A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。
2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。
3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。
4.矢量场的性质由它的______决定。
5.在静电场中,电位相同的点集合形成的面称为______。
6.永久磁铁所产生的磁场,称之为______。
7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》试题(10)
一、填空题(共20分,每小题4分)
1.对于矢量,若=+
+,
则:
=;=; =;= 。
2.对于某一矢量,它的散度定义式为;
用哈密顿算子表示为 。
3.对于矢量,写出:
高斯定理 ; 斯托克斯定理 。
4.真空中静电场的两个基本方程的微分形式为和 。
5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 。
二.判断题(共20分,每小题2分)
正确的在括号中打“√”,错误的打“×”。
1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( )
2.标量场的梯度运算和矢量场的旋度运算都是矢量。
( )
3.梯度的方向是等值面的切线方向。
( )
4.恒定电流场是一个无散度场。
( )
5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。
( )
6.静电场和恒定磁场都是矢量场,在本质上也是相同的。
( )
7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。
( )
8.泊松方程和拉普拉斯方程都适用于有源区域。
( )
9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。
( )
10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。
( )
三.简答题(共30分,每小题5分)
A A x e
x A y e y A z
e z
A y e ∙x e z e ∙z e
z e ⨯x e x e ⨯x e
A
A
1.用数学式说明梯无旋。
2.写出标量场的方向导数表达式并说明其涵义。
3.说明真空中电场强度和库仑定律。
4.实际边值问题的边界条件分为哪几类?
5.写出磁通连续性方程的积分形式和微分形式。
6.写出在恒定磁场中,不同介质交界面上的边界条件。
四.计算题(共30分,每小题10分)
1.半径分别为a,b(a>b),球心距为c(c<a-b)的两球面之间有密度
为的均匀
电荷分布,
球半径为b 的球面内任何一点的电场强度。
2.总量为q 的电荷均匀分布在单位半径为a ,介电常数为的体内,球外为空气,求静电能量。
3.证明矢位
和
给出相同得磁场并证明它
们
有相同的电流分布,它们是否均满足矢量泊松方程?为什么?
《电磁场与电磁波》试题(10)参考答案
一、填空题(共20分,每小题4分)
1.0,1,y e
-,0
2.0
()()
()lim
s
A r dS r divA r ττ
→∙=⎰ ;A ∇∙
3.s Ad A dS ττ∇∙=∙⎰⎰ ;C
S
A dl rotA dS ∙=∙⎰⎰
4.D ρ∇∙=;0E ∇⨯=
5.0()()B r H r μ=;真空的磁特性方程或本构关系
二.判断题(共20分,每小题2分)
√,√,×,√,√,×,√,×,√,×
三.简答题(共30分,每小题5分)
ρ
ε1cos sin x y A e y e x
=+ 2(sin sin )
y A e x x y =+
B
1.x y z d d d e e e dx dy dz ϕϕϕϕ∇=++
222222()(
)()()()0
x y z x y z e e e d
d d
e e e dx dy dz z y z y x z x z x y x y d d d dx
dy
dz ϕϕϕϕϕϕϕϕϕϕϕ⎛
⎫ ⎪ ⎪
⎪∂∂∂∂∂∂∇⨯∇==---+-
⎪∂∂∂∂∂∂∂∂∂∂∂∂ ⎪ ⎪ ⎪⎝⎭
∇⨯∇=
2.00
cos cos cos ||m m u u u
x y z
u l
αβγ∂∂∂=
++∂∂∂∂∂,其中cos α,cos β,cos γ为方向余弦,
表示数量场沿某一方向的变化率。
3.电场强度表示电场中某单位试验正点电荷所受到的力,其定义式为:0
lim
q F
E q
→=。
库仑定律是描述真空中两个静止点电荷之间相互作用的规律,其表达式为:2
0F=
4R
Qq e
R
πε。
4.实际边值问题的边界条件分为三类:第一类是整个边界上的电位函数均已知,第二类是已知整个边界上的电位法向导数,第三类是一部分边界上电位已知,而另一部分边界上的电位法向导数已知。
5.
0s
B dS ∙=⎰ ;0B ∇∙=
6.1212()0n n n B B B B ∙-==或;12()S n H H J ⨯-=
四.计算题(共30分,每小题10分)
1.解:
为了使用高斯定理,再半径为b 的空腔内分别加上密度为+ρ, -ρ的体电荷,这样,任何一点的电场就当于带正电的大球体和一个带负电的小球体共同作用的结果.正负电体所成生的电场分别由高斯定理计算 正电体在空腔内产生的电场为
1
1103r r E e ρε=
负电体在空腔内产生的电场为
2
2203r r E e ρε=-
单位向量
1r e 2
r e 分别以大小球体的球心为球面坐标的原点,考虑到
1212r r x r e r e ce c
-==
最后得到空腔内的电场为
03x
c E e ρε=-
2.解:
1232,344r r r
r r E e e E e a r ρρρεπεπε===
静电能量为
22
102111222e W D EdV E dV E dV
εε==+⎰⎰⎰ 22220330022011()4()42424408a a r r r dr r dr a
r q q a a ρρεπεππεπεπεπε=+=+
⎰⎰
3.证明:
与给定矢位相应的磁场为
11(cos sin )
cos sin 0x y z z e e e B A e x y x y z y x ⎛⎫
⎪∂∂∂ ⎪
=∇⨯==+ ⎪∂∂∂ ⎪ ⎪⎝⎭ 22(cos sin )0sin sin 0x y z z
e e e B A e x y x y z x x y ⎛⎫
⎪∂∂∂ ⎪=∇⨯==+ ⎪∂∂∂ ⎪ ⎪+⎝⎭
所以,两者的磁场相同.与其相应的电流分布为
1100
11(cos sin )
x y J A e y e x μμ=∇⨯=+
2200
11(cos sin )
x y J A e y e x μμ=∇⨯=+
可以验证,矢位1A
满足矢量泊松方程,即
2
2
101
(cos sin )(cos sin )x y x y A e y e x e y e x J μ∇=∇+=-+=-
但是 矢位2A 不满足矢量泊松方程.即
2
2
202
[(sin sin )](sin sin )y y A e x x y e x x y J μ∇=∇+=-+≠-
这是由于2A 的散度不为0,当矢位不满足库仑规范时,矢位与电流的关系为 2
22202()A A A J μ∇⨯∇⨯=-∇+∇∇=
可以验证,对于矢位2A ,上式成立,即
2
22()(sin sin )(cos )
y A A e x x y x y -∇+∇∇=++∇
02
(sin sin )cos sin sin cos y x y y x e x x y e y e x y e x e y J μ=++-=+=。