第4章+3+转速负反馈单闭环直流调速系统[1]
直流调速系统
GT
Ud
Id
-
- Un +
+ RP2
-
n
+ IG
-
U tg
V-M闭环系统原理框图
-
( a ) 给 定 环 节 —— 产 生 控 制 信 号 : 由 高 精 度 直 流 稳压电源和用于改变控制信号的电位器组成。 (b)比较与放大环节——信号的比较与放大;由P、I、 PI运放器组成
(c)触发器和整流装臵环节(组合体)--功率放大
nnom 1000r/min、 Ra=0.05Ω
晶闸管整流器的内阻
Ks=30 问 题
Rrec=0.13Ω
要求D=20,s≤5%
问若采用开环V-M系统能否满足要求? 若采用α=0.015V·min/r转速负反馈闭环系统,问放大 器的放大系数为多大时才能满足要求?
解(1)设系统满足D=20,检验系统是否满足s≤5%?
特点:
损耗较大、有级 调速,机械特性 较软。 (2)弱磁调速 特点: 只能弱磁,调 速范围小
工程上,常将调压与调磁相结合,可以扩大调速范围 。
n
Φn Φ2 Φ1 Φ1 Φ2 Φn nn Un U d3 U d2 U d1 Ten
图1-2 调压和调 磁时的机械特性
U d1 U d2 U d3 U n
①系统结构图
U n
Un U d0
电动机
U n
放大器
U ct 整流器及
触发装置
n
速度检测
②系统中各环节的稳态输入输出关系如下: 电压比较环节 放大器
* U n U n Un
U ct K P U n
晶闸管整流器及触发装臵 U d 0 K sU ct
第4章 直流电动机调速控制系统
调速指标
静态调速指标
• 调速范围 • 静差率 • 调速范围与静差率的关系
动态调速指标
• 跟随性能指标 • 抗扰性能指标
单闭环直流调速系统
单闭环有静差调速系统 单闭环无静差调速系统
单闭环有静差调速系统
系统的组成及原理 系统的静特性及静态结构图
系统的反馈控制规律 单闭环调速系统的动态特性
电动机转速与转矩的关系
如果把E =Cen代入式(4-8) ,便可得出电枢电流I的表达式 Ia=(U- Cen )/Ra (4-9) 由上式可见,直流电动机和一般的直流电路不一样,它的电流不仅 取决于外加电压和自身电阻,并且还取决于与转速成正比的反电动 势(当φ为常数) 。将式(4-1) 代入(4-9) 式,可得 n=U/Ce-R Te/ Ce Cm (4-10) 其中Cm=Kmφ,式(4-10)称为电动机的机械特性,它描述了电 动机的转速与转矩之间的关系。 图4-5是机械特性曲线族。在这一曲线族中,不同的电枢电压对应于 不同的曲线,各曲线是彼此平行的。n0( U/Ce)称为“理想空载转 速” ,而⊿n(R Te/ Ce Cm) 称为转速降落。
脉宽调制器是一个电压—脉冲变换装置。由控制 电压Uct进行控制,为PWM变换器提供所需的脉 冲信号。 脉宽调制器的基本原理是将直流信号和一个调制 信号比较,调制信号可以是三角波,也可以是锯 齿波。锯齿波脉宽调制器电路如图4-42所示, 由锯齿波发生器和电压比较器组成。锯齿波发生 器采用最简单的单结晶体管多谐振荡器4-42a), 为了控制锯齿波的线性度,使电容器C充电电流 恒定,由晶体管VT1和稳压管VST构成恒流源。
电流截止负反馈环节 带电流截止负反馈环节的单闭环无静差调 速系统
(完整版)转速负反馈单闭环直流调速系统.
例2.2 对于例2.1所示的开环系统,采用转 速负反馈构成单闭环系统,且已知晶闸管
整流器与触发装置的电压放大系数 Ks = 30,
= 0.015V·min/r,为了满足给定的要求,
计算放大器的电压放大系数KP 。
IdR
U*n +
_
∆Unn
Uct Kp
Ud0 + _ E Kss
1/Ce
n
Un
解:在例2.1中已经求得
IdR
U*n +
_
∆Unn
Uct Kp
Ks
Ud0 + _ E
1/Ce
n
Un
n
开环机械特性
闭环静特性
B
C
A
A’
D
Ud4 Ud3 Ud2 Ud1
O
Id1
Id2
Id3
Id4
Id
图2.19 闭环系统静特性和开环机械特性的关系
由此看来,闭环系统能够减少稳态速 降的实质在于它的自动调节作用,在于它 能随着负载的变化而相应地改变电枢电压, 以补偿电枢回路电阻压降。
运动控制系统
第2 章
直流调速系统
2.3 转速负反馈单闭环直流调速系统
2.3.1 单闭环调速系统的组成及静特性 2.3.2 单闭环调速系统的动态分析 2.3.3 无静差调速系统的积分控制规律 2.3.4 单闭环调速系统的限流保护
2.3.1 单闭环调速系统的组网 功率驱动装置 电动机
3. 开环系统机械特性 和闭环系统静特性的关系
比较一下开环系统的机械特性和闭环系统的静 特性,就能清楚地看出反馈闭环控制的优越性。如
果断开反馈回路,则上述系统的开环机械特性为
n Ud0 IdR Ce
单闭环直流调速系统实验报告
单闭环直流调速系统实验报告单闭环直流调速系统实验报告一、引言直流调速系统是现代工业中常用的一种电机调速方式。
本实验旨在通过搭建单闭环直流调速系统,探究其调速性能以及对电机转速的控制效果。
二、实验原理单闭环直流调速系统由电机、编码器、电流传感器、控制器和功率电路等组成。
电机通过功率电路接受控制器的指令,实现转速调节。
编码器用于测量电机转速,电流传感器用于测量电机电流。
三、实验步骤1. 搭建实验电路:将电机、编码器、电流传感器、控制器和功率电路按照实验原理连接起来。
2. 调试电机:通过控制器设置电机的运行参数,如额定转速、最大转矩等。
3. 运行实验:根据实验要求,设置不同的转速指令,观察电机的响应情况。
4. 记录实验数据:记录电机的转速、电流等数据,并绘制相应的曲线图。
5. 分析实验结果:根据实验数据,分析电机的调速性能和控制效果。
四、实验结果分析1. 转速响应特性:通过设置不同的转速指令,观察电机的转速响应情况。
实验结果显示,电机的转速随着指令的变化而变化,且响应速度较快。
2. 稳态误差分析:通过观察实验数据,计算电机在不同转速下的稳态误差。
实验结果显示,电机的稳态误差较小,说明了系统的控制效果较好。
3. 转速控制精度:通过观察实验数据,计算电机在不同转速下的控制精度。
实验结果显示,电机的转速控制精度较高,且随着转速的增加而提高。
五、实验总结本实验通过搭建单闭环直流调速系统,探究了其调速性能和对电机转速的控制效果。
实验结果表明,该系统具有较好的转速响应特性、稳态误差较小和较高的转速控制精度。
然而,实验中也发现了一些问题,如系统的抗干扰能力较弱等。
因此,在实际应用中,还需要进一步优化和改进。
六、展望基于本实验的结果和问题,未来可以进一步研究和改进单闭环直流调速系统。
例如,可以提高系统的抗干扰能力,提升转速控制的稳定性和精度。
同时,还可以探索其他调速方式,如双闭环调速系统等,以满足不同的工业应用需求。
直流调速系统基本概念
转换元件:将测速
发电机的转速转换成 电压信号以便与给定 电压进行比较。
测速发电机:与直流电动机 M同轴相连,即两者的速度相 同,测速发电机用来测量电动 机的速度,称检测元件;
由系统的结构分析可知:
❖ 系统的调速方法是改变外加电压调速; ❖ 系统的反馈信号是被控制对象n本身; ❖ 反馈电压和给定电压的极性相反,即:
K2K p( U g U f ) Cen Ia R
K2K pU g K2K pK f n Cen Ia R
n K2K pUg Ia R K2K pK f Ce
令:KG
K2K p ,K
K2K pK Ce
f
则:
n KGU g Ia R Ce(1 K ) Ce(1 K
) nof
n f
直流调速系统基本概念
直流调速系统主要性能指标
机电传动控制系统选择调速方案的依据:
生产机械对调速系统提出的调速技术指标
调速系统的调速技术指标 一、静态技术指标
静态指标 动态指标
1. 静差度S: 静差度表示出生产机械运行时转速稳定的程度。
速度稳定性指标
S n0 ne ne
ne n0 ne 静态速降
可逆系统
无静差直流调速系统 按静态误差的不同:
有静差直流调速系统
任务: ➢ 调节速度; ➢ 扩大调速范围,减小静态误差。
1 单闭环直流调速系统 一、有静差调速系统 单纯由被调量负反馈组成的按比例控制的单闭环系统属有静差的自动调节系
统,简称有静差调速系统;
(一)转速负反馈调速系统 1. 基本组成
放大器:将外加电
Uf Kfn
(2) 静特性
Ud Cen Ia R Ud K2Uk Uk K p ( U g U f ) U f K f n
单闭环直流调速系统
① 闭环静特性比开环机械特性硬得多。负载电流相等时
nb
nk 1 K
sk s ② 闭环系统的静差率要比开环小得多。理想空载转速相等时, b 1 K
③ 闭环系统可比开环有更大的调速范围。静差率相等时, Db 1 K Dk ④ 闭环系统比开环系统的抗干扰性能好。
3、如右图所示,设电机开始工 作于A点,当负载电流增大时, 开环和闭环系统工作的原理是不 同的: (1)开环系统,给定不变,电枢电 压就不变,电流增加,工作点将 沿最下面那条机械特性向下移动
(2)而对于闭环调速系统,给定不变,电流增加时,系统有维持转速不 下降的趋势,通过调节,电枢电压升高,工作点将移至B、C或D。 ABCD所在直线就是闭环系统的在该给定电压下的一条静特性曲线。
U d Id R n Ce
由上述四式不难得出
R n Id Ce 1 K Ce 1 K
该式称为系统的静特性方程。
* K p KsU n
K
K p K s Ce
称为系统的开环放大系数。
静特性与机械特性的比较-1
1、机械特性调速系统对开环而言;静特性是对闭环系统而言的。两者 都表示电机转速与负载电流之间的关系,即n=f(Id)。 2、一条机械特性曲线对应于一个不变的电枢电压;而一条静特性曲线 对应于 一个不变的给定电压。
Ud Id R U d↓→ n ↓→ U n ↓→ U↑→ U ct↑→ U d↑→ n↑ Ce
3、单闭环调速系统的静特性
闭环调速稳定工作时,电机转速与负载电流之间的关系称为闭 环调速系统的静特性。 由稳态结构图可知
* U U n Un
U ct K p U
U d K sU ct
当然,转速上升,转速反馈电压会升高,但其升值小于 给定电压增值,电压差总体上是增大的,转速是上升的。
转速负反馈晶闸管-直流电动机调速系统原理图
1、主回路采用半控桥式全波整流电路。
在主回路中加平波电抗器L,减少整流器输出电流的脉动并尽可能使电流连续。
这时电路呈感性,为了保证晶闸管可靠换相而不失控,故接入续流二极管V2,同时,为了保证晶闸管过电压损害,加入RC阻容吸收装置(R1C1,R4C4)。
2、给定电压和转速负反馈回路,由变压器输出的交流110V电源经过全波整流和C13,R7,C14组成的π形滤波后的直流电压为给定电源。
RP4为调速电位器,RP3为高速上限调整用电位器,RP5为低速下限调整用滤波器,调节RP4可以得到不同的给定电压Ug。
TG为测速发电机,其输出电压与转速成正比。
通过转速负反馈提高系统的机械特性硬度,电位器RP6可调整反馈深度。
给定电压Ug和测速反馈电压Utg反极性串联后由117和157输出到放大器。
3、放大电路,117及157两端输入给定电压与反馈电压综合而成的差值信号。
V31为电压放大,放大后的控制信号给锯齿波发生器的晶体管V32,V32相当于一个可变电阻,改变输入信号的大小,就改变了电容C7的充电时间,进行移相。
V8,V9为输入信号的正负向限幅之用。
电容C8对给定及测速电压起滤波作用,还起给定积分作用,即对输入信号的突变起缓冲作用。
4、C5,R5,R23组成的电压微分负反馈电路。
是为了避免系统发生振荡而设的。
振荡最易在低速运行时出现。
5、电流截止负反馈由1Rg、RP2、V10、V33等元件组成,它是防止电动机在高速起动,正反转切换等情况下电流过大而设。
主回路电流在允许范围内时,1Rg上产生的压降不足以使V10击穿,V33截止,该环节不起作用,当主回路超过时,V10击穿,V33趋近导通,则C7的充电受V33的分流而变慢,触发脉冲后移,整流器输出电压变低,主回路电流降到规定值之内,调节RP2就可以改变主回路电流的限制数值,C9滤波,R14是保证V33在V10击穿以前可靠的截止。
6、触发脉冲电路由同步信号,移相环节和脉冲形成三部分组成。
转速负反馈单闭环直流调速系统
为负载电流。
传递函数
在零初始条件下,取等式两侧的拉氏变换,得 电压与电流间的传递函数
Id(s) 1/ R Ud0 (s) E(s) Tls 1
电流与电动势间的传递函数
E(s) R Id (s) IdL (s) Tms
动态结构图
Ud0
+
- E(s)
1/R Tl s+1
Id (s)
Id (s)
检测精度——反馈检测装置的误差也是反馈控制 系统无法克服的,因此检测精度决定了系统输出 精度。
2.3.2 单闭环调速系统的动态分析
通过稳态性能的研究可知:引入转速负 反馈并使放大倍数 K 足够大,就可以减少稳 态速降,满足系统的稳态要求。但是放大系 数过大,会使闭环系统动态性能变差,甚至 造成不稳定,因此有必要对系统进行动态性 能的分析。
例2.2 对于例2.1所示的开环系统,采用转 速负反馈构成单闭环系统,且已知晶闸管
整流器与触发装置的电压放大系数 Ks = 30,
= 0.015V·min/r,为了满足给定的要求,
计算放大器的电压放大系数KP 。
IdR
U*n +
_
∆Unn
Uct Kp
Ud0 + _ E Kss
1/Ce
n
Un
解:在例2.1中已经求得
失控时间Ts的分析
u
2
O
ud
Ud01
t Ud02
O
Uc
Uc1
O
1
1
Ts
Uc2
t
2
2 t
O
t
图2.23 晶闸管触发与整流装置的失控时间
最大失控时间Tsmax的计算
显然,失控制时间是随机的,它的大小随发 生变化的时刻而改变,最大可能的失控时间就是 两个相邻自然换相点之间的时间,与交流电源频 率和整流电路形式有关,由下式确定
单闭环直流调速系统
第十七单元 晶闸管直流调速系统第二节单闭环直流调速系统一.转速负反馈宜流调速系统转速负反馈直流调速系统的原理如图17-40所示。
转速负反馈直流调速系统由转速给左、转速调节器ASR 、触发器CF 、晶闸管变流器U 、 测速发电机TG 等组成。
直流测速发电机输出电压与电动机转速成正比。
经分圧器分圧取出与转速n 成正 比的转速反馈电压Ufn 0转速给定电压Ugn 与Ufn 比较,其偏差电压A U=Ugn-Ufn 送转速调节器ASR 输入 端。
ASR 输出电圧作为触发器移相控制电压Uc,从而控制晶闸管变流器输出电压Udo 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统.1. 转速负反馈调速系统工作原理及其静特性设系统在负载T L 时,电动机以给定转速nl 稳定运行,此时电枢电流为Idl,对应 转速反馈电圧为Ufnl,晶闸管变流器输出电压为Udi 。
当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下 降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,A U=Ugn-Ufn 加。
转速调节器ASR 输出电压Uc 增加,使控制角a 减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为:T L t — Id t — ld (R 》+Rd ) t I -*Ufn I U t — Uc t -* a | —Ud t -*n t 。
图17-41所示为闭坏系统静特性和开环机械特性的关系。
n亠 =H o + A//图17—41闭环系统静特性和开环机械特性的关系.图中①②③④曲线是不同Ud之下的开环机械特性。
假设当负载电流为Idl时,电动机运行在曲线①机械特性的A点上。
当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由丁•电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至&点,转速只能相应下降。
转速负反馈单闭环直流调速系统的
第三章
单闭环直流调速系统
转速负反馈调速系统的调节过程
第三章
结论:
单闭环直流调速系统
①转速负反馈自动调节过程依靠偏差电压 来进行调节;
②这种系统是以存在偏差为前提的,反馈环节只是检测偏差,减小偏差
,而不能消除偏差,因此它是有静差调速系统; ③经转速负反馈调整稳定后的转速将低于原来的转速。
第三章
单闭环直流调速系统
第三章
单闭环直流调速系统
复习导入:
转速负反馈单闭环直流调速系统的结构电路图
第三章
单闭环直流调速系统
转速负反馈单闭环直流调速系统的工作原理: 通过调节给定电位器RP1,改变给定电压Ug,即可调 节直流电动机的转速。当Ug增大,转速n升高。其具 体调节过程如下:
Ug U Ug Ud n
当负载转矩减小时,闭环系统的自动调节过程又是怎样的?
第三章
单闭环直流调速系统
二、转速负反馈单闭环调速系统的工作原理
1.电动机内部自动调节过程
①此调节过程主要通过电动机内部电动势E的变化来 进行调节; ②调节过程是以转速的改变为前提,当负载发生变化
时,通过转速的改变,使其达到新的稳定状态。
第三章
单闭环直流调速系统
2.转速负反馈自动调节过程
安徽工程大学期末考试《电力拖动自动控制系统》往年简答题答案范围总结讲..
2012~2013年(本)1、平波电抗器的大小是如何选择的?答:一般按低速轻载时保证电流连续的条件来选择,通常首先给定最小电流I(以A为单位),再利用它计算所需的总电感(以mH为单位)。
减去电枢电感,即得平波电抗应有的电感值。
2、转速负反馈单闭环有静差调速系统中,电枢电阻、转速反馈系数,这些参数变化时系统是否有调节作用?为什么?答:在电压负反馈单闭环有静差调速系统中,当放大器的放大系数Kp发生变化时系统有调节作用再通过反馈控制作用,因为他们的变化最终会影响到转速,减小它们对稳态转速的影响。
当电动机励磁电流、电枢电阻Ra发生变化时仍然和开环系统一样,因为电枢电阻处于反馈环外。
当供电电网电压发生变化时系统有调节作用。
因为电网电压是系统的给定反馈控制系统完全服从给定。
当电压反馈系数γ发生变化时,它不能得到反馈控制系统的抑制,反而会增大被调量的误差。
反馈控制系统所能抑制的只是被反馈环包围的前向通道上的扰动。
(无调节作用。
因为反馈控制系统所能抑制的只是被反馈包围的前向通道上的扰动。
)3、对于经常正、反运行的调速系统,理想的起动过渡过程应什么样?答:始终保持电流(电磁转矩)为允许的最大值,使调速系统以最大的加(减)速度运行。
当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。
(起动电流呈矩形波,转速按线性增长)4、什么是软起动器?答:当电压降低时,起动电流将随电压成正比地降低,从而可以避开起动电流冲击的高峰。
起动转矩与电压的平方成正比,起动转矩的减小将比起动电流的降低更多,降压起动时又会出现起动转矩不够的问题。
降压起动只适用于中、大容量电动机空载(或轻载)起动的场合。
5、对于通用变频器,所谓的“通用”有什么含义?答:一是可以和通用的笼型异步电动机配套使用;二是具有多种可供选择的功能,适用于各种不同性质的负载。
6、什么是正弦脉宽调制技术?答:由它们的交点确定逆变器开关器件的通断时刻,从而获得幅值相等、宽度按正弦规律变化的脉冲序列,这种调制方法称作正弦波脉宽调制7、比例积分控制中比例和积分部分各有什么特点?答:比例部分能迅速响应控制作用,积分部分则最终消除稳态偏差。
转速负反馈单闭环直流调速系统
Δnop = 275 r/min, 但为了满足D = 20,s < 5%的调速要求,须
Δncl = 2.63 r/min,
由式:
ncl
nop 1 K
可得
Knop12751103.6
ncl
2.63
代入已知参数,则得
K
10 .63
K pK s/C e3 00.01 /0.5 246
即只要放大器的放大系数等于或大于46, 闭环系统就能满足所需的稳态性能指标。
显然,失控制时间是随机的,它的大小随发 生变化的时刻而改变,最大可能的失控时间就是 两个相邻自然换相点之间的时间,与交流电源频 率和整流电路形式有关,由下式确定
Ts max
1 mf
式中 f — 交流电流频率; m — 一周内整流电压的脉冲波数。
Ts值的选取
相对于整个系统的响应时间来说,Ts 是不大的, 在一般情况下,可取其统计平均值 Ts = Tsmax /2,并认 为是常数。也有人主张按最严重的情况考虑,取Ts = Tsmax 。下表列出了不同整流电路的失控时间。
scl
sop 1 K
(3) 静差率一定时,闭环系统调速范围大大提高
如果电动机的最高转速都是nmax;而对最低速 静差率的要求相同,那么:
开环时,Dop
nnoms nop(1 s)
闭环时,Dcl
nnoms ncl (1 s)
再考虑Δnop和Δncl之间的关系,得
Dcl (1K)Dop
(4) 给定电压相同时,闭环系统空载转速大大降低
运动控制系统
第2 章
直流调速系统
2.3 转速负反馈单闭环直流调速系统
2.3.1 单闭环调速系统的组成及静特性 2.3.2 单闭环调速系统的动态分析 2.3.3 无静差调速系统的积分控制规律 2.3.4 单闭环调速系统的限流保护
直流调速系统概述
指系统在受到外部干扰时,能够保持稳定运行的 能力。抗干扰能力越强,系统鲁棒性越好。
04 典型直流调速系统分析
单闭环直流调速系统
转速负反馈单闭环调速系统
通过引入转速负反馈,实现转速的无静差调节,提高系统的动态性能和稳态精度 。
电压负反馈单闭环调速系统
通过引入电压负反馈,稳定直流电动机的端电压,从而改善系统的静态特性和动 态性能。
现状
目前,直流调速系统已经广泛应用于各个领域,如工业、交 通、能源等。随着电力电子技术和控制理论的不断发展,直 流调速系统的性能不断提高,应用领域也不断扩展。
应用领域与前景
应用领域
直流调速系统广泛应用于需要精确控制转速的场合,如机床、风机、水泵、压缩机、卷扬机等机械设备,以及电 动汽车、电动自行车等交通工具。
前景
随着工业自动化和智能制造的推进,以及新能源汽车等产业的快速发展,直流调速系统的需求将不断增长。同时, 随着电力电子技术和控制理论的不断进步,直流调速系统的性能将不断提高,应用领域也将不断扩展。未来,直 流调速系统将在更多领域发挥重要作用,推动相关产业的持续发展。
02 直流调速系统组成及工作 原理
流。
多环控制直流调速系统
三环控制直流调速系统
在双闭环的基础上,引入第三个控制环,如位置环、速度环或加速度环等,进一步提高系统的控制精 度和动态性能。
多环串级控制直流调速系统
将多个控制环按照串制。该系统适用于对控制精度和动态性能要求较高的场合。
双闭环直流调速系统
转速、电流双闭环调速系统(ASR+ACR)
在转速负反馈的基础上,引入电流负反馈,构成转速、电流双闭环调速系统。其中, ASR为转速调节器,ACR为电流调节器。该系统具有较快的动态响应和良好的稳态精度。
《电力拖动自动控制系统》复习要点
阮毅、陈伯时《电力拖动自动控制系统(第4版)》复习要点第一章绪论1、运动控制系统的组成2、运动控制系统的基本运动方程式me L d JT T dt ω=-mm d dtθω=3、转矩控制是运动控制的根本问题。
4、负载转矩的大小恒定,称作恒转矩负载。
a )位能性恒转矩负载b)反抗性恒转矩负载。
5、负载转矩与转速成反比,而功率为常数,称作恒功率负载。
6、负载转矩与转速的平方成正比,称作风机、泵类负载。
直流调速系统第二章转速反馈控制的直流调速系统1、直流电动机的稳态转速:e U IR n K -=Φ2、调节直流电动机转速的方法:(1)调节电枢供电电压;(2)减弱励磁磁通;(3)改变电枢回路电阻。
3、V-M系统原理图4、触发装置GT 的作用就是把控制电压U c 转换成触发脉冲的触发延迟角α。
改变触发延迟角α可得到不同的U d0,相应的机械特性为一族平行的直线。
5、脉宽调制变换器的作用:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电动机转速。
6、调速范围:生产机械要求电动机提供的最高转速n max 和最低转速n min 之比。
7、静差率:当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落Δn N 与理想空载转速n 0之比。
8、调速范围、静差率和额定速降之间的关系:(1)N N n s D n s =∆-N N ND n s n D n ∆=+∆(1)N N n s n D s ∆=-9、转速负反馈闭环直流调速系统稳态结构框图10、直流电动机的动态结构11、开环系统机械特性和比例控制闭环系统静特性的关系:(1)闭环系统静特性可以比开环系统机械特性硬得多;(2)闭环系统的静差率要比开环系统小得多;(3)如果所要求的静差率一定,则闭环系统可以大大提高调速范围。
12、当负载转矩增大,闭环调速系统转速自动调节的过程:TL ↑→I d ↑→n ↓→U n ↓→∆U n ↑→U c ↑→U d0↑→n ↑13、比例调节器的输出只取决于输入偏差量的现状,而积分调节器的输出则包含了输入偏差量的全部历史。
单闭环直流调速系统的基本工作原理
单闭环直流调速系统的基本工作原理系统的基本原理是根据电机的实际转速和设定转速之间的误差,通过调节电源电压来控制电机的转速,使实际转速与设定转速保持一致。
具体工作过程可以分为以下几个阶段:
1.电源输入:将交流电源转换为直流电源供给电机。
交流电源经过整流电路,将交流电转换为直流电。
2.电流控制:通过变阻器来改变电压,调节电阻的大小,从而控制直流电机的输入电流。
当电阻增大时,电机的输入电流减小,反之亦然。
3.转速检测:通过转速传感器测量电机的实际转速,并将测量值与设定值进行比较,计算出转速的误差。
转速传感器通常是使用光电传感器或霍尔传感器等。
4.控制器:根据转速误差来调节电机输入电压。
控制器可以是模拟控制器或数字控制器,根据系统的要求来选择。
控制器通过与电机控制电路相连,从而控制电机的输出。
5.输出功率:经过调整电源电压后,电机输出的功率与实际负载相匹配。
控制电路会根据设定值和转速误差来调节电机输出的功率,使其尽可能接近设定值。
总结起来,单闭环直流调速系统的基本原理是通过将交流电源转换为直流电源,通过调节电压来控制电机的输入电流,利用转速传感器测量实际转速并与设定值比较,然后通过控制器调节电机的输入电压,使实际转速与设定转速之间的误差尽可能减小。
通过这种方式,可以实现对直流电机的调速控制,适应不同负载要求和工作条件。
转速负反馈单闭环有差直流调速系统
JIU JIANG UNIVERSITY电力电子技术课程设计题目转速负反馈单闭环有差直流调速系统院系电子工程学院专业自动化姓名王强年级电A113201(13)指导教师张波2014年 6 月电力电子技术课程设计摘要运动控制系统中应用最普遍的是自动调速系统。
自动调速系统主要包括直流调速系统和交流调速系统。
在高性能的拖动技术领域中,相当长时间内基本采用直流电力拖动系统。
直流调速是指人为地或自动地改变直流电动机的转速,已满足工作机械的要求。
从机械特性上看就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和负载机械特性的的交点,使电动机的稳定运转速度发生变化。
本文以直流电动机为对象,对转速负反馈有差直流调速系统在单闭环控制下的情形,进行了深入的分析研究,并用计算机仿真工具MATLAB的Simulink工具箱对系统模型进行了仿真研究。
关键词:直流电机调速;单闭环;MATLAB仿真目录引言 (1)1 设计任务及要求 (2)1.1 设计任务 (2)1.2 设计要求 (2)2 设计方案论证 (3)3 设计电路的原理分析 (4)3.1 单闭环控制的直流调速系统的组成 (4)3.2 转速单闭环直流电机调速系统的静态分析 (5)3.3 反馈控制单闭环直流调速系统的动态分析 (7)3.4 转速负反馈单闭环有差直流调速系统原理 (8)4 转速负反馈单闭环有差直流调速系统的仿真模型 (9)4.1 转速负反馈单闭环有差直流调速系统的建模 (9)4.2 仿真模型使用模块提取的路径及其参数设置 (9)5 转速负反馈单闭环有差直流调速系统的仿真及分析 (11)5.1 转速负反馈单闭环有差直流调速系统的仿真 (11)5.2 转速负反馈单闭环有差直流调速系统的仿真结果分析 (11)结论 (12)参考文献 (13)转速负反馈单闭环有差直流调速系统引言三十多年来,直流电机调速控制经历了重大的变革。
首先实现了整流器的更新换代,以三相整流桥等整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。
电力拖动自动控制系统思考题标准答案
第2章三、思考题2-1 直流电动机有哪几种调速方法?各有哪些特点?答:调压调速,弱磁调速,转子回路串电阻调速,变频调速。
特点略。
2-2 简述直流PWM 变换器电路的基本结构。
答:直流PWM 变换器基本结构如图,包括IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流PWM 变换器,通过改变直流PWM 变换器中IGBT 的控制脉冲占空比,来调节直流PWM 变换器输出电压大小,二极管起续流作用。
2-3 直流PWM 变换器输出电压的特征是什么?答:脉动直流电压。
2-4 为什么直流PWM 变换器-电动机系统比V-M 系统能够获得更好的动态性能?答:直流PWM 变换器和晶闸管整流装置均可看作是一阶惯性环节。
其中直流PWM 变换器的时间常数Ts 等于其IGBT 控制脉冲周期(1/fc),而晶闸管整流装置的时间常数Ts 通常取其最大失控时间的一半(1/(2mf)。
因fc 通常为kHz 级,而f 通常为工频(50 或60Hz为一周内),m 整流电压的脉波数,通常也不会超过20,故直流PWM 变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。
2-5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流PWM 变换器的输出。
电枢回路中还有电流,因为电枢电压和电枢电阻的存在。
2-6 直流PWM 变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?答:为电动机提供续流通道。
若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。
2-7 直流PWM 变换器的开关频率是否越高越好?为什么?答:不是。
因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。
2=8 泵升电压是怎样产生的?对系统有何影响?如何抑制?答:泵升电压是当电动机工作于回馈制动状态时,由于二极管整流器的单向导电性,使得电动机由动能转变为的电能不能通过整流装置反馈回交流电网,而只能向滤波电容充电,造成电容两端电压升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 K = K p K sα / Ce ,可以求得放大器的放大系数为
n
α
图 4.3.8
转速单闭环调速系统的动态结构图(基于假设 ω c ≤ 1/ 3Ts )
Ce (1 + K ) n( s ) Wc1 ( s ) = * == U n (s) TmT1Ts 3 Tm (T1 + Ts ) 2 Tm + Ts s + s + s +1 1+ K 1+ K 1+ K
转速负反馈单闭环调速系统的传递函数: K p Ks
nN s 1000 × 0.05 ΔnN = = = 2.63 r / min D (1 − s ) 20(1 − 0.05)
转速负反馈自动调速系统静态参数的计算:
例 4.3-1 对于例 4.2-2 所示的开环系统,采用转速负反馈构 成单闭环系统,且已知晶闸管整流器与触发装置的电压放大 系数 K s =30,转速反馈系数 α = 0.015V i min/ r ,为了满足给 定的要求,计算放大器的电压放大系数 K p 。
图 4.3.5 闭环调速系统的给定和扰动
4.3.2 单闭环调速系统的动态分析和校正
1 动态数学模型 2 单闭环调速系统的动态分析和校正 (1) 单闭环调速系统的稳定性 (2) 校正环节(控制器)及其控制规律 (3) 采用PI调节器的单闭环调速系统的动态校正和特性
1 动态数学模型
(1)额定励磁下直流电动机的传递函数
+
* Un
us
+ ΔU n − +
U ct
L
Id
UCR U d
−
M
A
−
+ Un
−
n
TG
图 4.3.2 转速负反馈单闭环调速系统的构成
结构原理图(以晶闸管整流电源为例,A为调节器)
2 转速负反馈闭环调速系统的静特性 静特性方程:表示系统静态的各量之间的关系 分析:定性分析,定量计算。
为突出主要矛盾,先作如下假定 (1) 忽略各种非线性因素, 各环节的输入输出关系都是线性的; (2) 由可控直流电源供电的直流电机的电枢电流是连续的(由 电力电子技术知,不连续时一般使得机械特性变为非线性) ; * (3) 忽略提供 U n 的直流电源的负载效应; (4) 电机磁通 Φ 为常数 Φ N 。
解:已知系统当电流连续时,
C E Φ N = (U N − Ra I dN ) / n N = 0.199 ≈ 0.2 V·min/r; I R 305 × 0.18 Δn N = N = = 274.5r / min R = Rs + RL + Ra CE Φ N 0.2
如果要满足 D=20, s ≤ 5%的要求,可以根据式(4.2-8)求得额定 负载下的转速降落 ΔnN 为
Ce (1 + K )
* K p K sU n
−
RI d = n0,cl − Δncl Ce (1 + K )
特点: ① Δnc1 =
Δnop 1+ K. Nhomakorabean0,op = n0,cl
② 当理想空载转速相同,即
时, sc1 =
sop 1+ K
.
③ 当要求的静差率一定时, Dc1 = (1 + K ) Dop . ④ 当给定电压相同时, n0,c1 =
U in , U ex
U ex
U exm
K PIU in
0
U in
t
特点: 比例积分调节器:兼有P和I调节的优点,而PID调解器虽兼 有PI和PD的特点,但参数多,实现和调试比较麻烦。
图 4.3.10 阶跃输人时 PI 调节器的输出特性
(3)采用PI调节器的单闭环调速系统的动态校正和特性
串联校正:
(2) 校正环节(控制器)及其控制规律:PI、PD、PID
U in
R0 R3 R1
+ +
C
R
R
-
Uex
R/2
图 4.3.9 比例积分(PI)调节器
积分调节器和积分控制规律: 1 1 1 (4.3-26) U ex = ∫ idt = ∫ U in dt = τ I ∫ U in dt C R0 C τ I = R0C 为积分调节器的积分时间常数。
− n, Te
E M
−
(a)
ud 0 e
id 1/ R Tl p + 1 Cm
TL Te 375 GD 2 p n
Ce
(b )
模型的化简:
U d 0 (S )
TL / Cm
1/ R Tl S + 1 R Tm S
E (S ) 1 Ce
n(S )
(a)
U d 0 (S )
R(Tl S + 1) I dL ( S )
开环调速系统存在的问题:至少有静态(稳态)误差 (没有讨论跟随性能、抗扰性能等)。 为了解决各种指标之间的矛盾,以满足较高的调速 指标要求,采用闭环控制。 即:引入被调量转速的负反馈。
扰动量 输入量 控制器 可控电源 被控对象 输出量
检测单元 图 4.3.1 闭环系统方框图
1 转速单闭环调速系统的组成
2 单闭环调速系统的动态分析和校正 (1)单闭环调速系统的稳定性:
TmTlTs 3 Tm (Tl + Ts ) 2 Tm + Ts s + s + s +1 = 0 1+ K 1+ K 1+ K
临界放大系数(用“劳斯稳定判据”): a0 , a1 , a2 , a3 > 0, a1a2 − a0 a3 > 0 Tm (Tl + Ts ) + Ts2 Tm Tm Ts 或, K < K< + + TlTs Ts Tl Tl
KCe 103.6 × 0.2 = = 46 Kp = K sα 30 × 0.015
为什么闭环特性比开环特性硬了?
开环机械特性
n
闭环静特性
Id
* Un
1/ Cm
Te = TL
1 Ce
n0 ,op A B A' U d01 U d 01 O I d1 Id 2
闭环系统静特性
U ct Kp Ks
Ud 0 +
n0,op 1+ K
.
结论:闭环系统可以获得比开环系统硬得多的静态特性。在 满足一定静差率的要求下,闭环系统大大提高了调速范围。 但是闭环系统必须设置检测装置和电压放大器。
转速负反馈自动调速系统静态参数的计算(例题4.2-2 )
例 4.2-2 某 V—M 直流调速系统的直流电动机的额定值为 60kW, 220V,305A,1000r /min,主回路总电阻 R=0.18Ω,电枢电阻 Ra =0.066Ω,要求 D=20, s ≤ 5%。开环调速系统能否满足要求?
L / dB 低频段
中频段 高频段
ωc
− 20 dB /10 倍频程
ω / S −1
图 4.3.11 系统预期开环对数幅频特性的大致形状
①中频段以 −20dB/dec 的斜率穿越零分贝线,而且这一斜率 占有足够的宽度,以保证系统具有一定的相对稳定性; 以提高系统的快速性; ②具有尽可能大的开环截止频率 ω c , ③低频段的斜率要陡、增益要高,以保证系统的稳态精度; ④高频段衰减要快一些, 即应有较大的斜率, 以提高系统抵 抗高频噪声干扰的能力。
U
* n
Id
1/ Cm
Te = TL
1 Ce
U ct
Kp
+
Ks
Ud 0
R
n
+
α
图 4.3.3 转速负反馈单闭环调速系统静态结构图
KP KS R * Un − Id 静特性方程 n = Ce (1 + K ) Ce (1 + K ) n0,cl − Δncl =
↑ ↑ 理想空载转速 静态速降
3 开环系统机械特性与闭环系统静特性的比较 机械特性比较:
各环节的静态输入输出关系:
电压比较环节: 可控直流电源: 电机的开环机械特性: 测速发电机:
* ΔU n = U n − U n
控制器(设为比例调节器) U ct = K p ΔU n :
U d0 = K sU ct Ud 0 − Id R n= Ce Un = α n
(4.3-2)
静态结构图(虚框内为电机模型)
开环机械特性
n
闭环静特性
A
B A'
C
D U d04 U d03 U d02 U d01
O
I d1
I d2
I d3
I d4
Id
图 4.3.4
闭环系统静特性与开环系统机械特性的关系
开环机械特性 n = 闭环机械特性 n =
* K p K sU n
Ce
RI d − = n0,op − Δnop Ce
(4.3-4) (4.3-5)
①在电流连续的条件下, 直流电动机电枢回路的电压平衡方程为 did ud0 = Rid + L +e (4.3-10) dt 其中的电阻 R 包含整流装置内阻 Rrec 和平波电抗器的电阻在内,电 感 L 包含平波电抗器电感和电机电枢回路中的总电感。 ② 电动机轴上的转矩和转速应服从电力拖动系统的运动方程式 (在忽略粘性摩擦的情况下,即第三章 3.2.1 节的转矩平衡方 程式(3.2-4)) : GD 2 dn Te - TL = (4.3-11) 375 dt