二次函数图像与一元二次方程
22.2.1二次函数与一元二次方程
(3)若王强再一次从此处击球,要想让球飞行的最大 高度不变且球刚好进洞,则球飞行路线应满足怎样的抛 物线,求出其解析式.
解:(1) y 1 x2 8 x 1 (x 4)2 16
55
5
5
⸫抛物线开口向下,顶点为
4,16 5
,对称轴为x=4
(2)令y=0 ,得: 1 x2 8 x 0 55
(3)指出(2)的图像中,使y<0时, x的取值范围及使y >0时, x的取值范围
例2:王强在一次高尔夫球的练习中,在某处击球,其
飞行路线满足抛物线 y 1 x2 8 x ,其中y(m)是 55
球的飞行高度,x(m)是球飞出的水平距离,结果球离
球洞的水平距离还有2m.
(1)请写出抛物线的开口方 向、顶点坐标、对称轴.
的值永远为正的条件是__a_>_ 0,△<0 __
3.求抛物线 y=−2(x+1)2+8 ①与y轴的交点坐标; ②与x轴的两个交点间的距离.③何时y>0?
(1)抛物线y=x2+2x−3与x轴的交点有( C)
A.0个 B.1个
C.2个
D.3个
(2)抛物线y=mx2−3x+3m+m2经过原点,则其顶点坐标
图象:是一条抛物线。
图象的特点:(1)开口方向,开口大小; (2)对称轴; (3)顶点(最低点或最高点)。
y
y
o
x
o
x
二次函数y=ax2的图象与y=ax2+k的图象的关系
二次函数y=ax2+k的图象可由二次函数y=ax2 的图象向上(或向下)平移得到:
当k>0时,抛物线 y=ax2向上平移|k|个单 位,得y=ax2+k
九年级数学下册30、5二次函数与一元二次方程的关系第2课时用二次函数的图像解一元二次方程授课课件新版
知1-讲
例1 求方程x2-2x-6=0的近似值.(结果精确到0.1)
解:如图 ,画出二次函数 y=x2-2x-6的图像. 观察画出的抛物线,设它与 x轴的交点的横坐标为x1和x2, 不妨设 x1<x2. 现在来求x1的近似值.
知1-讲
(1) 容易看出:当 x=-2 时,y>0; 当x=-1时,y<0,且在-2<x<-1范围内, y随x的增大二减小,所以-2<x1<-1
知1-练
4 【中考·兰州】下表是一组二次函数y=x2+3x-5的 自变量x与函数值y的对应值:
x 1 1.1 1.2 1.3 1.4 y -1 -0.49 0.04 0.59 1.16
那么方程x2+3x-5=0的一个近似根是( C )
A.1
B.1.1
C.1.2
D.1.3
知1-练
5 【中考·包头】已知一次函数y1=4x,二次函数y2= 2x2+2,在实数范围内,对于x的同一个值,这两个
况,如有公共点,则公共点的横坐标即为ax2+bx+ c=0的根.
知1-练
1 求例题中x2精确到0.1的近似值.
解:如图 ,画出二次函数 y=x2-2x-6的图像. 观察画出的抛物线,现在求x2 的近似值. (1)容易看出:当x=3时,y<0,当x=4时,y>0,且 在3<x<4范围内,y随x的增大而增大,∴3<x2<4.
知1-讲
例2 利用函数的图像,求方程x2+2x-3=0的根.
解:先把方程化成x2=-2x+3. 如图,在同一直角坐标系中 分别画出函数y=x2和 y=-2x+3的图像,得到它 们的交点为(-3,9)和(1,1), 则方程x2+2x-3=0的解为x=-3或x=1.
总结
知1-讲
利用图像交点法求一元二次方程的根的步骤: (1)将ax2+bx+c=0化为ax2=-bx-c的形式; (2)在同一坐标系中画出y=ax2与y=-bx-c的图像; (3)观察图像:两图像的公共点情况即为方程的根的情
九年级二次函数与一元二次方程的联系和区别
二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。
⑤常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。
对称轴为直线 x =2ab-,。
对称轴与抛物线唯一的交点为抛物线的顶点P 。
特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。
当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。
2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。
Δ= b2-4ac=0时,抛物线与x 轴有1个交点。
Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。
④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。
二次函数和一元二次方程ppt课件
二次函数 y=ax2+bx+c的图
象和x轴交点
有两个交点
一元二次方程 ax2+bx+c= 0的根
一元二次方程 ax2+bx+c= 0根的判
别式Δ=b2-4ac
有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0
o
x
令 y= 0,解一元二次方程的根
(1) y = 2x2+x-3 y
解:当 y = 0 时, 2x2+x-3 = 0
(2x+3)(x-1) = 0
o
x
x 1 =-
3 2
,x 2 = 1
所以与 x 轴有交点,有两个交点。
二次函数的交点式
y =a(x-x1)(x- x 2)
y
(2) y = 4x2 -4x +1
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的飞行路线 是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行 时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2
回顾旧知
二次函数的一般式:
y ax2 bx c (a≠0)
___x___是自变量,__y__是__x__的函数。
当 y = 0 时, ax²+ bx + c = 0
二次函数与一元二次方程
二次函数与一元二次方程二次函数和一元二次方程是高中数学中常见的概念。
它们在数学中具有重要的地位和应用价值。
本文将探讨二次函数和一元二次方程的定义、特点、图像以及它们之间的关系。
一、二次函数的定义和特点二次函数是指一元二次方程的解所构成的函数。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a≠0。
根据一元二次方程的解的性质,二次函数的定义域为实数集R,而值域则取决于抛物线的开口方向和顶点高低。
当a>0时,抛物线开口向上,最值在顶点处取得;当a<0时,抛物线开口向下,最值为负无穷或正无穷。
二次函数的图像是一个抛物线,其对称轴为x=-b/(2a),顶点坐标为(-b/(2a), f(-b/(2a)))。
根据顶点坐标和对称性,可以进一步得到二次函数的对称轴方程和顶点形式方程。
二、一元二次方程的定义和特点一元二次方程是指未知数只有一个,其次数为2的方程。
一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为实数,且a≠0。
一元二次方程的解为x=(-b±√(b^2-4ac))/2a,根据根的性质可知,一元二次方程的解的个数和判别式的大小有关。
当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程无实数解。
一元二次方程在实际问题中有广泛的应用,如物体自由落体、抛体运动、二次函数的最值等等。
三、二次函数与一元二次方程的关系二次函数与一元二次方程之间存在紧密的联系。
一元二次方程的解对应于二次函数的零点,即二次函数与x轴的交点。
对于给定的二次函数y=ax^2+bx+c,可以通过求解一元二次方程ax^2+bx+c=0来确定二次函数的零点。
而解一元二次方程得到的解又可以构成一元二次函数的图象上的点。
具体而言,当一元二次方程有两个不相等的实数解时,也就是判别式大于0时,对应的二次函数与x轴有两个交点,即抛物线与x轴相交于两点;当一元二次方程有两个相等的实数解时,也就是判别式等于0时,对应的二次函数与x轴有一个交点,即抛物线与x轴相切于一个点;当一元二次方程无实数解时,也就是判别式小于0时,对应的二次函数与x轴没有交点,即抛物线不与x轴相交。
二次函数与一元二次方程、不等式
二次函数与一元二次方程、不等式的关系 ◆基础知识对于二次函数),0(2为常数、、c b a a c bx ax y ≠++=一、与一元二次方程的关系:1、当0=y 时,可得一元二次方程02=++c bx ax ,它的解就是二次函数图象与x 轴交点的 。
数形结合:如图,是二次函数c bx ax y ++=2的图象,则方程02=++c bx ax 的解是 。
2、若一元二次方程02=++c bx ax 的解是b x a x ==21,,那么二次函数c bx ax y ++=2与x 的交点坐标是 。
3、求二次函数图象与x 轴的交点坐标,通常令 ,得方程 ,求得的 就是抛物线与x 轴交点的 坐标。
二、与不等式的关系:1、当0>y 时,可得一元二次不等式02>++c bx ax ,它的解集是当函数值y 大于0时,函数图象所对应的 的取值范围;当0<y 时,可得一元二次不等式02<++c bx ax ,它的解集是当函数值y 小于0时,函数图象所对应的 的取值范围;数形结合:如图,是二次函数c bx ax y ++=2的图象,则一元二次不等式02>++c bx ax 的解集是 ,一元二次不等式02<++c bx ax 的解集是 。
2、若二次函数c bx ax y ++=2的图象与一次函数b kx y +=图象相交时,一元二次不等式b kx c bx ax +>++2的解集是 ,不等式b kx c bx ax +<++2的解集是 。
数形结合:如图,是二次函数c bx ax y ++=2和一次函数b kx y +=的图象,则不等式b kx c bx ax +>++2的解集是,不等式b kx c bx ax +<++2的解集是。
◆典例解析例1、二次函数c bx ax y ++=2的图象如图所示,根据图象回答下列问题:(1)方程02=++c bx ax 的两个根是 ;(2)不等式02>++c bx ax 的解集是 ;(3)若方程k c bx ax =++2有两个不相等的实数根,则k 的取值范围是 。
《二次函数的图像与一元二次方程》教案
5.6二次函数的图像与一元二次方程教材分析:这节课是在学生学习了二次函数的概念、图象、性质及其相关应用的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过具体的二次函数的图像与x 轴交点个数的不同创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况.这样,学生结合图像就能直观地对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法.教学设想:本节课主要采用自主学习与小组交流两种学习方式,在整节课的教学过程中,要注意循序渐进的认知规律.以前已经学习了一次函数与一元一次不等式的关系和解一元二次方程的代数方法,对旧知识的复习为本节课的学习奠定基础.学习目标:知识与技能:1.经历图象法求解一元二次方程近似值的过程,并体验用图象法解一元二次方程.2.利用二次函数的图象,求一元二次方程的近似值,提高科学估算的能力.过程与方法:经历利用二次函数的图象求出一元二次方程的近似解的过程,培养学生分析问题,解决问题的能力.情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用.学习重难点:重点:正确运用函数的图象求出一元二次方程的近似值.难点:从实际问题中抽象出二次函数的模型.课前准备教具准备教师准备PPT课件教学过程:引入新课:问题:比较二次函数的表达式y=x²-2x-3与一元二次方程x²-2x-3=0,你能说出二者之间有什么关系吗?(4)一元二次方程x²-2x-3=0的实根与二次函数y=x²-2x-3的图像与x轴的交点的横坐标有什么关系?(5)通过以上探索活动,你发现一元二次方程x²-x+1/4=0与二次函数y=x²-x+1/4的图像有什么关系?(6)一般的,如果一元二次方程ax²+bx+c=0有实根,那么该方程的实根与二次函数y=ax²+bx+c的图像与x轴的公共点的横坐标有什么关系?归纳总结:如果一元二次方程ax²+bx+c=0有实根,那么二次函数y=ax²+bx+c的图像与x轴有公共点,且公共点的横坐标是这个一元二次方程的实数根;反之,如果二次函数y=ax²+bx+c的图像与x轴有公共点,那么公共点的横坐标就是一元二次方程ax²+bx+c=0的实数根.【设计意图】:对相应的问题组织学生自己独立完成,然后小组讨论得出结论.例题讲解:例2.利用二次函数的图象讨论一元二次方程x2-2x+3=0的根.解:(1)画出二次函数y=x2-2x+3的图象如图.(2)由于图象与x轴没有公共点,所以一元二次方程x2-2x+3=0 没有实根.【设计意图】:通过例题讲解引导学生再一次经历探索过程,有助于对那点的突破,同时激发学生思维的宽度与广度.当堂检测:1.如图,抛物线y=ax2+bx+c的对称轴是直线 x=-1,由图象知,关于x的方程ax2+bx+c=0的两个根分别是x1=1.3 ,x2=___2.已知抛物线y=ax2+bx+c的图象如图,则关于x的方程ax2+bx+c-3=0根的情况是( ) A.有两个同号的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根3.已知抛物线y=ax²+bx+c,当a、b、c满足什么条件时,(1)抛物线与x轴有两个公共点?(2)抛物线与x轴只有一个公共点?(3)抛物线与x轴没有公共点?4.根据下列表格的对应值:判断方程ax2+bx+c=0 (a≠0,a,b,c为常数)一个解x的范围是( )A.3< x < 3.23 B.3.23 < x < 3.24C.3.24 <x< 3.25 D.3.25 <x< 3.265.你能利用二次函数的图象解一元二次方程 x2+2x-10=0的根吗?(1)用描点法作二次函数y=x2+2x-10的图象;(2)观察估计二次函数y=x2+2x-10的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之间,分别约为-4.3和2.3(可将单位长再十等分,借助计算器确定其近似值).(3)确定方程x2+2x-10=0的解;由此可知,方程x2+2x-10=0的近似根为:x1≈-4.3,x2≈2.3.课堂小结:二次函数y=ax²+bx+c与一元二次方程ax²+bx+c=0关系:△=b²-4ac≥0 一元二次方程ax²+bx+c=0有实数根抛物线y=ax²+bx+c与x轴有两个交点△=b²-4ac <0一元二次方程ax²+bx+c=0无实数根抛物线y=ax²+bx+c与x轴没有交点作业:课本 P.49第1,2题板书设计:5.6二次函数的图像与一元二次方程引入新课:归纳总结:例1例2。
《二次函数的图像与一元二次方程》课件二次函数的图像与一元二次方程
02
通过解一元二次方程,可以找到抛物线与x轴的交点,进而确定
函数图像与坐标轴的交点。
判断函数图像的对称性
03
一元二次方程的对称性和抛物线图像的对称性密切相关,可以
通过方程的性质判断图像的对称性。
二次函数图像与一元二次方程在实际问题中的应用
解决几何问题
在几何问题中,经常需要 利用二次函数图像和一元 二次方程来解决面积、体 积和角度等问题。
《二次函数的图像与一元二 次方程》课件二次函数的图 像与一元二次方程
汇报人: 2023-12-23
目录
• 二次函数图像的基本概念 • 一元二次方程的基本概念 • 二次函数图像与一元二次方程
的关系 Байду номын сангаас 实际应用案例分析
01
二次函数图像的基本概念
二次函数图像的形状
01
02
03
开口方向
根据二次项系数a的正负 判断,a>0向上开口, a<0向下开口。
公式法是通过一元二次方程的根 的公式来求解,即 $x = frac{-b
pm sqrt{b^2-4ac}}{2a}$。
因式分解法是将一元二次方程化 为两个一次方程,然后求解。
一元二次方程的根的性质
01
02
03
04
一元二次方程的根的性质包括 根的和、根的积和判别式。
根的和是指方程的两个根的和 等于方程的一次项系数除以二 次项系数所得的商的相反数。
实例
例如,在建筑设计中,需要计算支撑结构的受力分布,可以利用一元二次方程来求解。同 时,通过绘制二次函数图像,可以直观地观察到受力分布的情况,有助于更好地进行结构 设计。
THANKS
谢谢您的观看
利用二次函数图像解一元二次不等式
一元二次不等式及其解法知识点:1、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.同步练习:1、不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭3、若不等式210x mx ++>的解集为R ,则m 的取值范围是( ) A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-4、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是( )A .6-B .5-C .6D .55、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a 6、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14- B .14 C .10- D .107、不等式222693191122x x x x -+++⎛⎫⎛⎫≤⎪ ⎪⎝⎭⎝⎭的解集是( )A .[]1,10-B .()[),110,-∞-+∞C .RD .(][),110,-∞-+∞ 8、不等式()()120x x --≥的解集是( )A .{}12x x ≤≤B .{}12x x x ≥≤或C .{}12x x <<D .{}12x x x ><或 9、不等式()20ax bx c a ++<≠的解集为∅,那么( )A .0a <,0∆>B .0a <,0∆≤C .0a >,0∆≤D .0a >,0∆≥11、若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( ) A .1a x a<<B .1x a a<< C .x a <或1x a>D .1x a<或x a >12、不等式()130x x ->的解集是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .()1,00,3⎛⎫-∞ ⎪⎝⎭C .1,3⎛⎫+∞ ⎪⎝⎭D .10,3⎛⎫ ⎪⎝⎭13、二次函数()2y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是____________________________.14、若0a b >>,则()()0a bx ax b --≤的解集是_____________________________.15、不等式20ax bx c ++>的解集为{}23x x <<,则不等式20ax bx c -+>的解集是________________________.16、不等式2230x x -->的解集是___________________________. 17、不等式2560x x -++≥的解集是______________________________. 18、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________. 19、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________. 20、求下列不等式的解集:⑴ ()()410x x +--<; ⑵ 232x x -+>; ⑶ 24410x x -+>.22、已知不等式220ax bx ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,求a 、b 的值.23、已知集合{}290x x A =-≤,{}2430x x x B =-+>,求A B ,A B .。
用二次函数的图象解一元二次方程(不等式)
12.(中考•滨州)根据下列要求,解答相关问题. (1)请补全以下求不等式-2x2-4x≥0的解集的过程.
20
①构造函数,画出图象:根据不等 式特征构造二次函数y=-2x2- 4x,并在下面的坐标系(如图①) 中画出二次函数y=-2x2-4x的 图象(只画出图象即可); 图略
21
②求得界点,标示所需:当y=0时,求得方程-2x2 -4x=0的解为__x_1_=__0_,__x_2=__-__2__,并用锯齿线标 示出函数y=-2x2-4x的图象中y≥0的部分; 图略
上标出方程的解.
略.
返回 17
题型
2
图象法说明一元二次方程 的解与不等式的解集关系
11.二次函数y=ax2+bx+c(a≠0) 的图象如图所示,根据图象 解答下列问题:
(1)直接写出方程ax2+bx+c=0 的两个根:__x_1_=__1_,__x_2=__3___;
18
(2)直接写出不等式ax2+bx+c>0的解集:_1_<__x__<__3__;
第22章 二次函数
22.2 二次函数与一元二次方程 第2课时 用二次函数的图象解一元二次方
程(不等式)
1
1
2
3
4
Hale Waihona Puke 5678
9
10
11
12
2
知识点 1 用图象法求一元二次方程的近似解
1.用图象法求一元二次方程ax2+bx+c=0的解的常 用方法: 方法一:画出二次函数y=ax2+bx+c的图象,图
象与x轴的公共点的__横__坐__标__就是一元二次方程ax2+ bx+c=0的根;
二次函数的图像与一元二次方程
知识归纳
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次 方程ax2+bx+c=0的根有什么关系?
二次函数 y=ax2+bx+c的图
象和x轴交点
一元二次方程 ax2+bx+c=0的根
一元二次方程
ax2+bx+c=0根的判 别式Δ=b2-4ac
有两个交点
有两个不相 等的实数根
b 2-4ac > 0
球的飞行高度达不到20.5米
达到20.5m的高
度?
(4)球从飞出到落地要用多少时间? h
( 4) 解 方 程
0=20t- 5t2 ,
O
t
t2- 4t= 0 ,
t1=0, t2 =4 .
当 球 飞 行 0秒 和 4秒 时 , 它 的 高 度 为 0 m.
即 0秒 时 球 从 地 面 飞 出 , 4秒 时 球 落 回 地 面 。
只有一个交点
有两个相等 的实数根
b 2-4ac = 0
没有交点
没有实数根
b 2-4ac < 0
二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点
有三种情况:
(1)有两个交点
b2–4ac > 0
(2)有一个交点
b2–4ac= 0
(3)没有交点
b2–4ac< 0
若抛物线y=ax2+bx+c与x轴有交点,则 b2 – 4ac≥0
即铅球推出的距离是10 m.
答案:10
通过本课时的学习,需要我们掌握: 1.由一元二次方程ax2+bx+c=0根的情况可确定二次函数 y=ax2+bx+c与x轴交点的个数情况; 2.用图象法求一元二次方程的近似根.
初中数学 一元二次方程的解与二次函数的图像有何关系
初中数学一元二次方程的解与二次函数的图像有何关系初中数学中一元二次方程的解与二次函数的图像之间的关系引言:在初中数学中,一元二次方程和二次函数是重要的概念。
一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c是已知的实数,而x是未知数。
二次函数则是由一元二次方程所定义的函数,其图像是抛物线。
本文将探讨一元二次方程的解与二次函数的图像之间的关系,并分析其重要性。
一、一元二次方程的解与二次函数的图像1.1 解的定义一元二次方程的解是指能使方程成立的x值。
对于一元二次方程ax^2 + bx + c = 0,如果存在实数解,则称其为有实数解;如果不存在实数解,则称其为无实数解。
1.2 抛物线的图像二次函数的图像是一条抛物线,其形状由方程的系数a决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点是抛物线的最低点或最高点,它的横坐标为-h/2a,其中h为方程的系数b的平方减去4ac的平方根。
1.3 解与抛物线的关系一元二次方程的解与二次函数的图像之间存在紧密的关系。
首先,如果一元二次方程有实数解,那么抛物线与x轴有交点,即抛物线与x轴相交于解的位置。
其次,一元二次方程的解还可以告诉我们抛物线是否与x轴相切或不相交。
当一元二次方程有两个不相等的实数解时,抛物线与x轴相交于两个解的位置;当一元二次方程有两个相等的实数解时,抛物线与x轴相切于解的位置;当一元二次方程无实数解时,抛物线不与x轴相交。
二、一元二次方程的解与二次函数的图像的重要性2.1 职业选择的指导作用了解一元二次方程的解与二次函数的图像的关系可以帮助我们更好地理解数学知识在实际生活中的应用。
这对于职业选择非常重要。
例如,许多职业需要处理大量的数据和统计分析,这就需要有扎实的数学基础。
通过学习一元二次方程和二次函数,我们可以更好地理解和应用统计学、经济学、物理学等领域的知识,从而选择更适合自己兴趣和能力的职业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同样的,可以求出一元二次方程x2-3x-2=0的较大 根的近似值,列表如下:
x 3.0 -2 3.5 3.6 3.7 3.8 3.9 4.0 2
y
-0.25 0.16
0.59
1.04 1.51
由上表可见,方程的较大根在3.5和3.6之间, 所以可以将3.5或3.6看作二次方程x2-3x-2=0较 大根的近似值,即二次方程x2-3x-2=0的较大根 为x≈3.5或x≈3.6
计算7与8之间的根:
x 7 7.1 7.2 7.3 7.4 7.5 8 3
y
-0.5 -0.20 0.12
0.45
0.78 1.13
对于一元二次方程 ax2+bx+c=0(a,b,c为常数,a≠0), ① 由于一元二次方程的根的个数由代数式b2-4ac的符号决 定,因此把b2-4ac叫做一元二次方程根的判别式,通 常用希腊字母 表示,即 =b2-4ac 具体来说,一元二次方程的根有三种情况: (1)当 >0时,方程①有两个不相等的实数根; (2)当 =0时,方程①有两个相等的实数根; (3)当 <0时,方程①没有实数根。
意义
定义
如果有根,它的根是什么?
一元二次方程x 2 - x
2
(4)一元二次方程 与x轴的公共点的横坐标有什么关系?
1 x -x+ =0 的根和抛物线 y=x -x+ 4 4
2
1 1 0的根是x1 x2 . 41 2
。
相等
y=x2-2x-3
y=x2-x+
1 4
(4)一元二次方程x2-2x-3=0的 根和抛物线y=x2-2x-3 与x轴的 公共点的横坐标有什么关系?
可再将-1和-0.5之间分为5等份,每个分点 作为x值,利用计算器求出所对应的函数值, 列表:
x y -1.0 2 -0.9 1.51 -0.8 1.04 -0.7 0.59
-0.6
-0.5
0.16 -0.25
可以看出,这个根在-0.6和-0.5之间,由于本题要求 精确到0.1,所以可以将-0.6或-0.5看作二次方程 x2-3x-2=0较小根的近似值,即二次方程x2-3x-2=0 的较小根为x≈-0.6或x≈-0.5
1 2 x -x+ =0 (4)一元二次方程 4 1
2
的根和抛物线 y=x -x+ 4 与x轴的 公共点的横坐标有什么关系?
通过刚才解答的问题, 你能得到什么样的结论?
y=x2-2x-3
y=x2-x+
1 4
抛物线y=ax2+bx+c与x轴公共点的横坐标, 恰为一元二次方程ax2+bx+c=0的实根。 若一元二次方程ax2+bx+c=0有实根,则 抛物线y=ax2+bx+c与x轴有公共点,且 公共点的横坐标是这个一元二次方程的实 根。
学习目标
1.探索抛物线与x轴的交点横坐标和一元二次方程 的根的关系,体会方程与函数的密切关系; 2.学会用图像法求一元二次方程近似根;
观察抛物线y=x2-2x-3,思考 下面的问题:
.
.
(1)抛物线与x轴有几个公共点? 公共点的坐标分别是什么? 抛物线与x轴有两个公共点(-1,0) 3,0)。 。 ,(。 意 义 (2)当x取何值时,函数 y=x2-2x-3的值是0? 当x=-1,x=3时,函数y的值是0.即x2-2x-3=0。 2-2x-3=0有没有根? (3)一元二次方程x定 义 如果有根,它的根是什么? 。 2=3 。 一元二次方程x2-2x-3=0的根是x1=-1,x , (4)一元二次方程x2-2x-3=0的根和抛物线y=x2-2x-3 有什么关系? 与x轴的公共点的横坐标 相等
两个公共点 有两个不等实 根
>0
一个公共点
有两个相等实根
=0
没有公共点
没有实根
<0
课堂小结:
3、利用二次函数的图象求一元二次方程的近似解。
当堂检测: 1、二次方程x2+x-6=0的两根为x1=-3,x2=2, 则二次函数y=x2+x-6的图象与x轴公共点的坐标 为(-3,0),(2,0) 。 2、如果关于x的一元二次方程x2-2x+m=0有 两个相等的实数根,则m= 1 ,此时抛物线 y=x2-2x+m与x轴有 1 个公共点。
观察抛物线 下面的问题:
1 y=x -x+ 4
2
,思考
(1)抛物线与x轴有几个公共点? 交点的坐标分别是什么?
.
。
1 1 抛物线y x 2 - x 与x轴的交点坐标是( , 0)。 4 2 1 (2)当x取何值时,函数 y=x2-x+ 4 的值是0? 1 1 当x 时,函数y的值是0. 即x 2 - x 0. 2 4 1 (3)一元二次方程 x2-x+ =0 有没有根? 4
转化为
抛物线y=ax2+bx+c 与x轴有公共点
转化为
二次方程ax2+bx+c=0 有实根
二次方程ax2+bx+c=0 的根的判别式 ≥ 0
转化为
抛物线y=ax2+bx+c 与x轴无公共点
转化为
二次方程ax2+bx+c=0 无实根
二次方程ax2+bx+c=0 的根的判别式 <0
课堂小结:
例2 用图象法讨论一元二次方程x2-2x+3=0的根。
解: (1)画出抛物线y=x2-2x+3 (2)由于图象与x轴没有公共点, 所以一元二次方程x2-2x+3=0没有 实数根yxyx
抛物线y=ax2+bx+c
转化为
与x轴无公共点
二次方程ax2+bx+c=0 无实根
转化为
广角镜
一元二次方程根的判别式
抛物线y=ax2+bx+c 与x轴有公共点
转化为
二次方程ax2+bx+c=0 有实根
转化为
画抛物线y=x2-3x-2,判断一元二次方程 x2-3x-2=0根的情况。
例1
(精确到0.1) 用图象法讨论一元二次方程x2-3x-2=0的根
解:
(1)画抛物线y=x2-3x-2. (2)由图象可知,在-1与0 之间以 及 3与4之间各有一个根. 分别计算x=0,x=-1,x=-0.5的函数值, 列表如下: 由于在画图和观察过程中 x 存在误差,所以得到的往往 -0.5 0 -1 是二次方程根的近似值 y 2 -0.25 -2 由于当x=-1时,y>0,当x=-0.5时,y<0,所以方程 的根在-1和-0.5之间。
当堂检测: 3 2 3、用图象法讨论一元二次方程 x 3x 3 0 的根。
4 1 4、用图象法讨论一元二次方程 x 2 4x 3 0 的根 2
(精确到0.1)。
分析:
计算0与1之间的根:
x y 0 3 0.5 1.13 0.6 0.78 0.7 0.45 0.8 0.9 1 -0.5 0.12 -0.20
1、二次函数y=ax2+bx+c的图象与一元二次方程 ax2+bx+c=0的关系。 2、根据二次函数的系数,判断它的图象与x轴的位置关系。
二次函数y=ax2+bx+c 二次函数 y=ax2+bx+c的图象 的图象与x轴的公共点 的个数 二次方程 ax2+bx+c=0的根 二次方程 ax2+bx+c=0的 根的判别式