简单的三角恒等变换(基础)

合集下载

《简单的三角恒等变换》三角函数简单的三角恒等变换

《简单的三角恒等变换》三角函数简单的三角恒等变换

简单的三角恒等变换xx年xx月xx日•三角函数基本概念•三角恒等变换的基本法则•三角恒等变换的应用目录•常见三角恒等变换技巧•三角恒等变换的注意事项•练习题与解答01三角函数基本概念$\sin x = \frac{y}{r}$正弦函数$\cos x = \frac{x}{r}$余弦函数$\tan x = \frac{y}{x}$正切函数三角函数的定义周期性$2k\pi, k\in Z$振幅$|\sin x| \leq 1, |\cos x| \leq 1$相位$\sin(x+2k\pi) = \sin x$;$\cos(x+2k\pi) = \cos x$;$\tan(x+k\pi) = \tan x$正弦函数$y=|\sin x|$,波动曲线余弦函数$y=|\cos x|$,波动曲线正切函数$y=\tan x$,曲线不连续,无界01020302三角恒等变换的基本法则和差角公式公式二$\cos(x+y)=\cos x\cos y-\sin x\sin y$应用用于解决角度和的问题,如求两角和的正弦、余弦等。

公式一$\sin(x+y)=\sin x\cos y+\cos x\sin y$$\sin x\cosy=\frac{1}{2}(\sin(x+y)+\sin(x-y))$积化和差公式公式一$\cos x\siny=\frac{1}{2}(\sin(x+y)-\sin(x-y))$公式二用于将两角和的正弦与余弦变换成和差角的形式,方便后续计算。

应用公式一$\sin\frac{x}{2}=\pm\frac{1}{\s qrt{2}}(\cos x+1)^{1/2}$公式二$\cos\frac{x}{2}=\pm\frac{1}{\sqrt{2}}(\cos x-1)^{1/2}$应用用于计算半角的角度,适用于解三角形等问题。

半角公式03三角恒等变换的应用利用三角函数解直角三角形,得到直角三角形的三个边长。

高中 简单的三角恒等变换 知识点+例题

高中 简单的三角恒等变换 知识点+例题
辅导讲义――简单的三角恒等变换
教学内容
1.公式的常见变形
(1)tanα+tanβ=tan(α+β)(1-tanαtanβ);tanα-tanβ=tan(α-β)(1+tanαtanβ).
(2)sin2α= ;cos2α= ;sinαcosα= sin 2α.
(3)1+cosα=2cos2 ;1-cosα=2sin2 ;
(1)求f( )的值;
(2)设α,β∈[0, ],f(3α+ )= ,f(3β+2π)= ,求cos(α+β)的值.
解(1)由题设知:
f( )=2sin( - )=2sin = .
(2)由题设知: =f(3α+ )=2sinα,
=f(3β+2π)=2sin(β+ )=2cosβ,
即sinα= ,cosβ= ,
又α,β∈[0, ],∴cosα= ,sinβ= ,
∴cos(α+β)=cosαcosβ-sinαsinβ= × - × = .
11.cos 20°cos 40°cos 60°·cos 80°等于_________.
答案
解析原式= = = = = .
12.定义运算 =ad-bc,若cosα= , = ,0<β<α< ,则β等于______.
答案
解析 方法一因为y= = ,
所以令k= .又x∈ ,
所以k就是单位圆x2+y2=1的左半圆上的动点
P(-sin 2x,cos 2x)与定点Q(0,2)所成直线的斜率.
又kmin=tan 60°= ,所以函数y= 的最小值为 .
方法二y= = = = tanx+ .
∵x∈(0, ),∴tanx>0.
∴ tanx+ ≥2 = .(当tanx= ,即x= 时取等号)

归纳与技巧:简单的三角恒等变换(含解析)

归纳与技巧:简单的三角恒等变换(含解析)

归纳与技巧:简单的三角恒等变换基础知识归纳半角公式(不要求记忆)1.用cos α表示sin 2α2,cos 2α2,tan 2α2.sin 2α2=1-cos α2;cos 2α2=1+cos α2;tan 2α2=1-cos α1+cos α. 2.用cos α表示sin α2,cos α2,tan α2.sin α2=± 1-cos α2;cos α2=± 1+cos α2; tan α2=± 1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.基础题必做1.(教材习题改编)已知cos α=13,α∈(π,2π),则cos α2等于( )A.63 B .-63 C.33D .-33解析:选B ∵cos α=13,α∈(π,2π),∴α2∈⎝⎛⎭⎫π2,π, ∴cos α2=-1+cos α2=- 1+132=-63.2.已知函数f (x )=cos 2⎝⎛⎭⎫π4+x -cos 2⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π12等于( ) A.12B .-12C.32D .-32解析:选B f (x )=cos 2⎝⎛⎭⎫π4+x -sin 2⎝⎛⎭⎫x +π4=-sin 2x ,∴f ⎝⎛⎭⎫π12=-sin π6=-12. 3.已知tan α=12,则cos 2α+sin 2α+1cos 2α等于( )A .3B .6C .12D.32解析:选A cos 2α+sin 2α+1cos 2α=2cos 2α+2sin α·cos αcos 2α=2+2tan α=3. 4.sin 20°cos 20°cos 50°=________.解析:sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.答案:125.若1+tan α1-tan α=2 013,则1cos 2α+tan 2α=________.解析:1cos 2α+tan 2α=1+sin 2αcos 2α=(cos α+sin α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 013.答案:2 013解题方法归纳三角恒等变换的常见形式三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明. (1)三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.(2)三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.(3)三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.三角函数式的化简典题导入[例1] 化简2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x .[自主解答] 原式=-2sin 2x cos 2x +122sin ⎝⎛⎭⎫π4-x cos 2⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x=12(1-sin 22x )2sin ⎝⎛⎭⎫π4-x cos ⎝⎛⎭⎫π4-x =12cos 22x sin ⎝⎛⎭⎫π2-2x=12cos 2x .解题方法归纳三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2.解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝ ⎛⎭⎪⎫1+sin αcos α·sin α2cos α2=cos 2α2-sin 2α2sin α2·cos α2·cos αcos α2+sin αsinα2cos αcos α2=2cos αsin α·cos ⎝⎛⎭⎫α-α2cos αcosα2 =2cos αsin α·cosα2cos αcosα2=2sin α. 法二:原式=1-tan 2α2tan α2·⎝ ⎛⎭⎪⎫1+sin αsin α2cos αcos α2 =2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cos α2cos α·cosα2=2sin α.三角函数式的求值典题导入[例2] (1) sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.[自主解答] (1)原式=sin (30°+17°)-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝⎛⎭⎫0,π2, ∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×⎝⎛⎭⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎫0,3π2. ∴2α+β=π. [答案] (1)C (2)π解题方法归纳三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.以题试法2. 已知函数f (x )=tan ⎝⎛⎭⎫3x +π4. (1)求f ⎝⎛⎭⎫π9的值;(2)设α∈⎝⎛⎭⎫π,3π2,若f ⎝⎛⎭⎫α3+π4=2,求cos ⎝⎛⎭⎫α-π4的值.解:(1)f ⎝⎛⎭⎫π9=tan ⎝⎛⎭⎫π3+π4=tan π3+tan π41-tan π3tanπ4=3+11-3=-2- 3.(2)因为f ⎝⎛⎭⎫α3+π4=tan ⎝⎛⎭⎫α+3π4+π4=tan(α+π)=tan α=2, 所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝⎛⎭⎫-255×22=-31010.三角恒等变换的综合应用典题导入[例3] 已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.[自主解答] (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合.解:由(1)知f (x )=2sin ⎝⎛⎭⎫x -π4, ∴sin ⎝⎛⎭⎫x -π4=0,∴x -π4=k π(k ∈Z ), ∴x =k π+π4(k ∈Z ).故函数f (x )的零点的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π4,k ∈Z .解题方法归纳三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)当α∈[0,π]时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x =3cos 2 x +sin x cos x -3sin 2x +sin x cos x =3cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝⎛⎭⎫2α+π3=1, 又α∈[0,π],所以2α+π3∈⎣⎡⎦⎤π3,7π3, 所以2α+π3=5π6或2α+π3=13π6,故α=π4或α=11π12.1.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4 B.3π4 C.π3D.π6解析:选A tan A =tan [π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C =--2+131-(-2)×13=1.故A =π4.2.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D 原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos 2α2cos 2α·sin α=cos α.3. 已知直线l: x tan α-y -3tan β=0的斜率为2,在y 轴上的截距为1,则tan(α+β)=( )A .-73B.73C.57D .1解析:选D 依题意得,tan α=2,-3tan β=1, 即tan β=-13,tan(α+β)=tan α+tan β1-tan αtan β=2-131+23=1.4. 若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ=( ) A.35B.45C.74D.34解析:选D 因为θ∈⎣⎡⎦⎤π4,π2,所以2θ∈⎣⎡⎦⎤π2,π, 所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.5. 计算tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α的值为( )A .-2B .2C .-1D .1解析:选D tan ⎝⎛⎭⎫π4+α·cos 2α2cos 2⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos 2α2sin 2⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2α2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=cos 2αsin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α =cos 2αcos 2α=1. 6.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12 B.π6 C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β =sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 故β=π3.7.若tan ⎝⎛⎭⎫π4-θ=3,则cos 2θ1+sin 2θ=________. 解析:∵tan ⎝⎛⎭⎫π4-θ=1-tan θ1+tan θ=3, ∴tan θ=-12.∴cos 2θ1+sin 2θ=cos 2θ-sin 2θsin 2θ+2sin θcos θ+cos 2θ=1-tan 2θtan 2θ+2tan θ+1=1-1414-1+1=3.答案:38.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.答案:π39.计算:cos 10°+3sin 10°1-cos 80°=________.解析:cos 10°+3sin 10°1-cos 80°=2(sin 30°cos 10°+cos 30°sin 10°)2sin 240°=2sin 40°2sin 40°= 2. 答案: 210.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数.(1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域. 解:(1)由题意可知,f ′(x )=cos x -sin x =-2·sin ⎝⎛⎭⎫x -π4, 所以y =f ′(x )的最小正周期为T =2π.(2)F (x )=cos 2x -sin 2x +1+2sin x cos x=1+sin 2x +cos 2x=1+2sin ⎝⎛⎭⎫2x +π4. ∵x ∈⎣⎡⎦⎤0,π2,∴2x +π4∈⎣⎡⎦⎤π4,5π4, ∴sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1. ∴函数F (x )的值域为[0,1+ 2 ].11.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210. (1)求sin α的值;(2)求β的值.解:(1)∵tan α2=12, ∴tan α=2tan α21-tan 2α2=2×121-⎝⎛⎭⎫122=43, 由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45⎝⎛⎭⎫sin α=-45舍去.(2)由(1)知cos α=1-sin 2α = 1-⎝⎛⎭⎫452=35,又0<α<π2<β<π,∴β-α∈(0,π), 而cos(β-α)=210, ∴sin(β-α)=1-cos 2(β-α)= 1-⎝⎛⎭⎫2102=7210, 于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin(β-α)=45×210+35×7210=22. 又β∈⎝⎛⎭⎫π2,π,∴β=3π4. 12.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α;(2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β,得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α.∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy=2x , ∴y =x 1+2x 2,即f (x )=x 1+2x 2.1. 已知曲线y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|15P P |等于( )A .πB .2πC .3πD .4π解析:选B 注意到y =2sin ⎝⎛⎭⎫x +π4cos ⎝⎛⎭⎫π4-x =2sin 2⎝⎛⎭⎫x +π4=1-cos 2⎝⎛⎭⎫x +π4=1+sin 2x ,又函数y =1+sin 2x 的最小正周期是2π2=π,结合函数y =1+sin 2x 的图象(如图所示)可知,|15P P |=2π.2.3-sin 70°2-cos 210°等于( ) A.12B.22 C .2D.32 解析:选C 3-sin 70°2-cos 2 10°=3-cos 20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=2(2-cos 210°)2-cos 210°=2. 3. 已知函数f (x )=sin ⎝⎛⎭⎫2x +π3+sin ⎝⎛⎭⎫2x -π3+3cos 2x -m ,若f (x )的最大值为1. (1)求m 的值,并求f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若f (B )=3-1,且3a =b +c ,试判断三角形的形状.解:(1)f (x )=2sin 2x ·cos π3+3cos 2x -m =sin 2x +3cos 2x -m =2sin ⎝⎛⎭⎫2x +π3-m . 又f (x )max =2-m ,所以2-m =1,得m =1.由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ) 得到k π-5π12≤x ≤k π+π12(k ∈Z ), 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ). (2)由f (B )=3-1,得2sin ⎝⎛⎭⎫2B +π3-1=3-1, 所以B =π6.又3a =b +c ,则3sin A =sin B +sin C ,3sin A =12+sin ⎝⎛⎭⎫5π6-A ,即sin ⎝⎛⎭⎫A -π6=12, 所以A =π3,C =π2,故△ABC 为直角三角形.1.求证:tan α+1tan ⎝⎛⎭⎫π4+α2=1cos α. 证明:左边=sin αcos α+cos ⎝⎛⎭⎫π4+α2sin ⎝⎛⎭⎫π4+α2=sin αsin ⎝⎛⎭⎫π4+α2+cos αcos ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2 =cos ⎝⎛⎭⎫π4+α2-αcos αsin ⎝⎛⎭⎫π4+α2=cos ⎝⎛⎭⎫π4-α2cos αsin ⎝⎛⎭⎫π4+α2 =sin ⎝⎛⎭⎫π4+α2cos αsin ⎝⎛⎭⎫π4+α2=1cos α=右边. 故原式得证.2.已知f (x )=⎝⎛⎭⎫1+1tan x sin 2x -2sin ⎝⎛⎭⎫x +π4·sin ⎝⎛⎭⎫x -π4. (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围. 解:(1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

高中数学简单的三角恒等变换

高中数学简单的三角恒等变换

5.5.2 简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及证明三角恒等式,并能进行一些简单的应用.知识点一 半角公式 sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=b a1.cos α2=1+cos α2.( × ) 2.对任意α∈R ,sin α2=12cos α都不成立.( × )3.若cos α=13,且α∈(0,π),则cos α2=63.( √ )4.对任意α都有sin α+3cos α=2sin ⎝⎛⎭⎫α+π3.( √ )一、三角恒等式的证明例1 求证:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ=2sin θ.证明 方法一 左边=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2+2cos 2θ2+2sin θ2cosθ22sin 2θ2+2sin θ2cosθ2=sinθ2cos θ2+cos θ2sin θ2=1cos θ2sinθ2=2sin θ=右边.所以原式成立.方法二 左边=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ=右边. 所以原式成立.反思感悟 三角恒等式证明的常用方法 (1)执因索果法:证明的形式一般是化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立. 跟踪训练1 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x 4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x =右边.所以原等式成立.二、三角恒等变换的综合问题例2 已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 反思感悟 研究三角函数的性质,如单调性和最值问题,通常是把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化后函数的性质.在这个过程中通常利用辅助角公式,将y =a sin x +b cos x 转化为y =A sin(x +φ)或y =A cos(x +φ)的形式,以便研究函数的性质.跟踪训练2 已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 三、三角函数的实际应用例3 如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 连接OB (图略),设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎫0,π2. 因为A ,D 关于原点对称, 所以AD =2OA =40cos θ. 设矩形ABCD 的面积为S ,则 S =AD ·AB =40cos θ·20sin θ=400sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以当sin 2θ=1, 即θ=π4时,S max =400(m 2).此时AO =DO =102(m).故当A ,D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2. 反思感悟 (1)三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角变换来解决;实际问题的意义常反映在三角形的边、角关系上,故常用三角恒等变换的方法解决实际的优化问题.(2)解决此类问题的关键是引进角为参数,列出三角函数式.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝⎛⎭⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π, ∴α2∈⎝⎛⎭⎫3π4,π,sin α2=1-cos α2=105. 2.若函数f (x )=-sin 2x +12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 答案 D解析 f (x )=-1-cos 2x 2+12=12cos 2x .故选D.3.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.4.函数y =-3sin x +cos x 在⎣⎡⎦⎤-π6,π6上的值域是________. 答案 [0,3]解析 y =-3sin x +cos x =2sin ⎝⎛⎭⎫π6-x . 又∵-π6≤x ≤π6,∴0≤π6-x ≤π3.∴0≤y ≤ 3.5.已知sin α2-cos α2=-15,π2<α<π,则tan α2=________.答案 2解析 ∵⎝⎛⎭⎫sin α2-cos α22=15, ∴1-sin α=15,∴sin α=45.又∵π2<α<π,∴cos α=-35.∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.1.知识清单: (1)半角公式; (2)辅助角公式;(3)三角恒等变换的综合问题; (4)三角函数在实际问题中的应用. 2.方法归纳:换元思想,化归思想.3.常见误区:半角公式符号的判断,实际问题中的定义域.1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2C .-1+a2D .-1-a2答案 D解析 ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4=-1-cosθ22=-1-a2. 2.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.3.已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 4.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( ) A .2+sin α B .2+2sin ⎝⎛⎭⎫α-π4 C .2 D .2+2sin ⎝⎛⎭⎫α+π4 答案 C解析 原式=1+2sin α2cos α2+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α2 =2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.5.设函数f (x )=2cos 2x +3sin 2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎫2x +π6+a +1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴f (x )min =2·⎝⎛⎭⎫-12+a +1=-4. ∴a =-4.6.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 答案 -π6解析 因为3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6, 因为φ∈(-π,π),所以φ=-π6.7.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.答案 ±35解析 由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角, 所以cos θ2=±35.8.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x1+cos x =________.考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 tan x2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x=sin x 1+cos x=tan x2.9.已知cos θ=-725,θ∈(π,2π),求sin θ2+cos θ2的值.解 因为θ∈(π,2π), 所以θ2∈⎝⎛⎭⎫π2,π, 所以sin θ2=1-cos θ2=45, cos θ2=-1+cos θ2=-35, 所以sin θ2+cos θ2=15.10.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z .11.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最大值是( ) A .1 B .2 C.32 D .3答案 C解析 f (x )=1-cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤12,1, ∴f (x )max =1+12=32,故选C.12.化简:tan 70°cos 10°(3tan 20°-1)=________. 答案 -1解析 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1 =sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1.13.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0, 即2sin 2α-cos 2α≤0,所以4sin 2α≤1, 所以-12≤sin α≤12.因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π.14.函数y =sin 2x +sin x cos x +1的最小正周期是______,单调递增区间是________. 答案 π ⎝⎛⎭⎫k π-π8,k π+3π8,k ∈Z 解析 y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎫2x -π4+32.最小正周期T =2π2=π. 令-π2+2k π<2x -π4<π2+2k π,k ∈Z , 解得-π8+k π<x <3π8+k π,k ∈Z . 所以f (x )的单调递增区间是⎝⎛⎭⎫k π-π8,k π+3π8(k ∈Z ).15.已知sin 2θ=35,0<2θ<π2,则2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=________. 答案 12解析 2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4 =⎝⎛⎭⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎫sin θcos π4+cos θsin π4 =cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1=1-tan θtan θ+1. 因为sin 2θ=35,0<2θ<π2, 所以cos 2θ=45,所以tan θ=sin 2θ1+cos 2θ=351+45=13, 所以1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=12. 16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.解 如图所示,设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC的中点,在Rt △ONC 中,CN =sin α,ON =cos α,OM =DM tan π6=3DM =3CN =3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2CN =2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α- 3=2⎝⎛⎭⎫12sin 2α+32cos 2α- 3 =2sin ⎝⎛⎭⎫2α+π3- 3. 因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3. 故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值, 此时S 矩形ABCD =2- 3.。

知识讲解_简单的三角恒等变换_基础

知识讲解_简单的三角恒等变换_基础

简单的三角恒等变换编稿:丁会敏 审稿:王静伟【学习目标】1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧;3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化;4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力;5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力.【要点梳理】要点一:升(降)幂缩(扩)角公式升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-= 要点诠释:利用二倍角公式的等价变形:21cos 2sin2αα-=,21cos 2cos2αα+=进行“升、降幂”变换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换.要点二:辅助角公式1.形如sin cos a x b x +的三角函数式的变形:sin cos a x b x +x x ⎫⎪⎭令cos ϕϕ==,则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+(其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由t a nb a ϕ=确定,或由sin ϕ=和cos ϕ=)2.辅助角公式在解题中的应用通过应用公式sin cos a x b x +=)x ϕ+(或sin cos a x b x +)αϕ-),将形如sin cos a x b x +(,a b)x ϕ+)αϕ-).这种恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数,这样做有利于函数式的化简、求值等.【典型例题】类型一:利用公式对三角函数式进行证明 例1.求证:αααααsin cos 1cos 1sin 2tan-=+=【思路点拨】观察式子的结构形式,寻找式子中α与2α之间的关系发现,利用二倍角公式即可证明. 【证明】方法一:2tan 2cos2sin2cos 22cos2sin2cos 1sin 2αααααααα===+ 2tan 2cos2sin2cos2sin22sin 2sin cos 12αααααααα===- 方法二:sin sin2cossin 222tan 21cos cos cos 2cos 222ααααααααα⋅===+⋅sin sin2sin1cos 222tan2sin coscos 2sin 222ααααααααα⋅-===⋅【总结升华】代数式变换往往着眼于式子结构形式的变换;对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点. 举一反三:【变式1】求证:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 【证明】2222sin cos2tan222sin 2sincos22sin cos 1tan 222ααααααααα===++22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222ααααααααα--=-==++2222sincos2tansin 222tan cos cos sin 1tan 222ααααααααα===--. 例2.求证:(1)1cos cos [cos()cos()]2αβαβαβ=++- (2)cos cos 2coscos 22x y x y x y +-+= 【思路点拨】(1)把右边两角和与差的余弦公式展开、相加即得左边.(2)把右边两角和与差的余弦公式展开、相加,然后观察所得式子与要证明的式子之间的区别,最后令,x y αβαβ+=-=即可得证. 【证明】 (1)cos()cos cos sin sin αβαβαβ+=- ①又cos()cos cos sin sin αβαβαβ-=+ ②∴①+②得1cos cos [cos()cos()]2αβαβαβ=++-结论得证. (2)cos()cos cos sin sin αβαβαβ+=- ①又cos()cos cos sin sin αβαβαβ-=+ ②∴①+②得1cos cos [cos()cos()]2αβαβαβ=++-令,x y αβαβ+=-=,则,22x y x yαβ+-== []1cos cos cos cos 222x y x y x y +-∴=+cos cos 2cos cos 22x y x yx y +-∴+=结论得证.【总结升华】当和、积互化时,角度重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值.正因为如此“和、积互化”是三角恒等变形的一种基本手段.举一反三:【变式1】求证:sin sin 2sin cos22θϕθϕθϕ+-+=【证明】sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-上面两式相加得:sin()sin()2sin cos αβαβαβ++-= 令,αβθαβϕ+=-=,则,22θϕθϕαβ+-==∴sin sin 2sincos22θϕθϕθϕ+-+=结论得证.【变式2】求证:32sin tantan 22cos cos 2x x x x x-=+. 【思路点拨】 从消除恒等式左、右两边的差异入手,将右边的角x ,2x 凑成32x ,2x的形式,注意到322x x x =-,3222x xx =+,于是 【证明】右边32sin 2sin 2233cos cos 2cos cos 2222x x x x x x x x x ⎛⎫- ⎪⎝⎭==+⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭3332sin cos cos sin sin 322222tan tan 3222cos cos cos 222xx x x xx x x x x ⎛⎫- ⎪⎝⎭===-=左边. ∴等式成立.【总结升华】解答中右边分母拆角的目的是利用和(差)角公式.证明(化简)的本质上是一个寻找差异、消除差异、追求和谐的过程,应从消除差异入手.类型二:利用公式对三角函数式进行化简 例3. 已知322πθπ<<【思路点拨】根据化简的基本思想,本题需消去根式,联想到恒等式21sin sin cos 22θθθ⎛⎫±=± ⎪⎝⎭,于是利用此公式先化简. 【解析】原式sincossincos2222θθθθ=+--,∵322πθπ<<,∴342πθπ<<,∴0sin 22θ<<,1cos 22θ-<<-, 从而sincos022θθ+<,sincos022θθ->,∴原式sincos sin cos 2sin 22222θθθθθ⎛⎫⎛⎫=-+--=- ⎪ ⎪⎝⎭⎝⎭. 【总结升华】从局部看(即每个式子本身)上述解法是唯一解法,但从整体看两个根号里面的式子相加得2,相乘得cos 2θ,因此可以“先平方暂时去掉根号”.注意到322πθπ<<,则sin 0θ<,cos 0θ>,设x =,则x <0,则2222cos x θ=-=-=-,又342πθπ<<,故sin02θ>,从而2sin2x θ==-.举一反三: 【变式13,22αππ⎡⎤⎛⎫∈ ⎪⎢⎥⎝⎭⎣⎦. 【解析】∵3,22παπ⎛⎫∈⎪⎝⎭,∴cos α>0cos α=,∴原式=3,24αππ⎛⎫∈ ⎪⎝⎭,∴sin 02α>,sin 2α=. 即原式=sin2α. 类型三:利用公式进行三角函数式的求值 例4.已知1sin()2αβ+=,1sin()3αβ-=,求2tan()tan tan tan tan()αβαββαβ+--+的值. 【解析】原式=2tan()(tan tan )tan tan()αβαββαβ+-++ =2tan()tan()(1tan tan )tan tan()αβαβαββαβ+-+-+=21(1tan tan )tan αββ-- =tan tan αβ =sin cos cos sin αβαβ由1sin()sin cos cos sin ,21sin()sin cos cos sin 3αβαβαβαβαβαβ⎧+=+=⎪⎪⎨⎪-=-=⎪⎩得51sin cos ,cos sin 1212αβαβ== 【总结升华】求解三角函数式的值时,一般先化简所给三角函数式,寻求它与条件的联系,以便迅速找出解题思路.举一反三:【变式1】已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则sin(x +y )的值是( ) A .1 B .-1C.13 D. 12【答案】A【解析】∵sin x -sin y =-23,cos x -cos y =23,两式相加得:sin x +cos x =sin y +cos y , ∴sin2x =sin2y .又∵x 、y 均为锐角,∴2x =π-2y ,∴x +y =2π,∴sin(x +y )=1. 【变式2】若sin cos 3sin cos αααα+=-,tan(α-β)=2,则tan(β-2α)=________. 【答案】43【解析】∵sin cos tan 13sin cos tan 1αααααα++==--,∴tan α=2. 又tan(α-β)=2,∴tan(β-2α)=tan[(β-α)-α] =-tan[(α-β)+α] =tan()tan 1tan()tan αβααβα-+---⋅=43类型四:三角恒等变换的综合应用【高清栏目:简单的三角恒等变换401793 例2】 例5.求函数sin cos sin cos y x x x x =+-;3[,]44x ∈ππ的值域【思路点拨】设sin cos x x t +=,则21s i n c o s 2t xx -=,然后把y 转化为关于t 的二次函数,利用配方法求y 的最值.【解析】 设3sin cos ,,44x x t x ππ⎡⎤+=∈⎢⎥⎣⎦))224t x x x π∴=+=+又344x ππ≤≤,24x πππ∴≤+≤,t ⎡∴∈⎣ 又212sin cos x x t +=,21sin cos 2t x x -∴=则22111222t y t t t -=-=-++ =21(1)12t --+ 当0t =时,min 12y =当1t =时,max 1y =1,12y ⎡⎤∴∈⎢⎥⎣⎦【总结升华】本题给出了sin cos ,sin cos θθθθ+-及sin cos θθ三者之间的关系,三者知一求二,在求解的过程中关键是利用了22sin cos 1θθ+=这个隐含条件. 举一反三:【变式1】已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.【解析】(Ⅰ)1cos 2()222x f x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤. 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.。

简单的三角恒等变换

简单的三角恒等变换

第2课时 简单的三角恒等变换1.二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α=2sin αcos α.(2)公式C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.(3)公式T 2α:tan 2α=2tan α1-tan 2α. 2.常用的部分三角公式(1)1-cos α=2sin 2α2,1+cos α=2cos 2α2.(升幂公式) (2)1±sin α=⎝⎛⎭⎫sin α2±cos α22.(升幂公式) (3)sin 2α=1-cos 2α2,cos 2α=1+cos 2α2,tan 2α=1-cos 2α1+cos 2α.(降幂公式) (4)a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.(辅助角公式) 微思考1.思考三角恒等变换的基本技巧.提示 (1)变换函数名称:使用诱导公式.(2)升幂、降幂:使用倍角公式.(3)常数代换:如1=sin 2α+cos 2α=tan π4. (4)变换角:使用角的代数变换、各类三角函数公式.2.进行化简求值时一般要遵循什么原则?提示 异名化同名、异次化同次、异角化同角、弦切互化等.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)(2020·全国Ⅱ改编)若α为第四象限角,则sin 2α>0.( × )(2)∀α∈R,1+sin α=⎝⎛⎭⎫sin α2+cos α22.( √ ) (3)∀α∈R,2cos 2α+cos 2α-1=0.( × )(4)∃α∈R ,tan 2α=2tan α.( √ )题组二 教材改编2.sin 15°cos 15°等于( )A .-14 B.14 C .-12 D.12答案 B解析 sin 15°cos 15°=12sin 30°=14. 3.已知sin α-cos α=15,0≤α≤π,则cos 2α等于( ) A .-2425 B.2425 C .-725 D.725答案 C解析 ∵sin α-cos α=15,sin 2α+cos 2α=1,0≤α≤π, ∴sin α=45,∴cos 2α=1-2sin 2α=1-2⎝⎛⎭⎫452=-725. 4.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4= . 答案 16解析 方法一 cos 2⎝⎛⎭⎫α+π4=12⎣⎡⎦⎤1+cos ⎝⎛⎭⎫2α+π2=12(1-sin 2α)=16. 方法二 cos ⎝⎛⎭⎫α+π4=22cos α-22sin α, 所以cos 2⎝⎛⎭⎫α+π4=12(cos α-sin α)2 =12(1-2sin αcos α)=12(1-sin 2α)=16. 题组三 易错自纠5.计算:4tan π123tan 2π12-3等于( ) A.233 B .-233 C.239 D .-239答案 D解析 原式=-23·2tanπ121-tan 2π12=-23tan π6=-23×33=-239.6.(2020·泸州模拟)若tan α=12,则cos 2α等于( ) A .-45 B .-35 C.45 D.35答案 D解析 ∵tan α=12, ∴cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-141+14=35.题型一 三角函数式的化简1.(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( ) A.53 B.23 C.13 D.59答案 A解析 由3cos 2α-8cos α=5,得3(2cos 2α-1)-8cos α=5,即3cos 2α-4cos α-4=0,解得cos α=-23或cos α=2(舍去). 又因为α∈(0,π),所以sin α>0,所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53. 2.(2020·江苏改编)已知sin 2⎝⎛⎭⎫π4+α=23,则sin 2α的值是( ) A .-13 B.13 C .-23 D.23答案 B解析 ∵sin 2⎝⎛⎭⎫π4+α=23, ∴1-cos ⎝⎛⎭⎫π2+2α2=23, 即1+sin 2α2=23,∴sin 2α=13. 3.(2019·全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A.15 B.55 C.33 D.255答案 B解析 由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝⎛⎭⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55,故选B. 4.21+sin 4+2+2cos 4等于( )A .2cos 2B .2sin 2C .4sin 2+2cos 2D .2sin 2+4cos 2答案 B解析 21+sin 4+2+2cos 4=2sin 22+2sin 2cos 2+cos 22+2+2(2cos 22-1)=2(sin 2+cos 2)2+4cos 22=2|sin 2+cos 2|+2|cos 2|.∵π2<2<π, ∴cos 2<0, ∵sin 2+cos 2=2sin ⎝⎛⎭⎫2+π4,0<2+π4<π, ∴sin 2+cos 2>0,∴原式=2(sin 2+cos 2)-2cos 2=2sin 2.思维升华 (1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.题型二 三角函数的求值命题点1 给角求值例1 (1)cos 20°·cos 40°·cos 100°= .答案 -18解析 cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-sin 20°·cos 20°·cos 40°·cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18. (2)cos 40°cos 25°1-sin 40°的值为( ) A .1 B. 3 C. 2 D .2答案 C解析 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25° =2cos 25°cos 25°= 2. 命题点2 给值求值例2 (1)已知cos ⎝⎛⎭⎫θ+π4=1010,θ∈⎝⎛⎭⎫0,π2,则sin ⎝⎛⎭⎫2θ-π3= . 答案 4-3310解析 由题意可得cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=110,cos ⎝⎛⎭⎫2θ+π2=-sin 2θ=-45,即sin 2θ=45. 因为cos ⎝⎛⎭⎫θ+π4=1010>0,θ∈⎝⎛⎭⎫0,π2, 所以0<θ<π4,2θ∈⎝⎛⎭⎫0,π2, 根据同角三角函数基本关系式,可得cos 2θ=35, 由两角差的正弦公式,可得sin ⎝⎛⎭⎫2θ-π3=sin 2θcos π3-cos 2θsin π3=45×12-35×32=4-3310. (2)若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4+2cos 2α的值为 . 答案 0解析 ∵tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2, ∴tan α=3或tan α=13(舍), 则sin ⎝⎛⎭⎫2α+π4+2cos 2α, =sin 2αcos π4+cos 2αsin π4+2·1+cos 2α2=22sin 2α+2cos 2α+22 =22(2sin αcos α)+2(cos 2α-sin 2α)+22 =22·2sin αcos αsin 2α+cos 2α+2·cos 2α-sin 2αsin 2α+cos 2α+22=22·2tan αtan 2α+1+2·1-tan 2αtan 2α+1+22=22×69+1+2×1-91+9+22=0.命题点3 给值求角例3 已知α,β均为锐角,cos α=277,sin β=3314,则cos 2α= ,2α-β= . 答案 17 π3解析 因为cos α=277,所以cos 2α=2cos 2α-1=17. 又因为α,β均为锐角,sin β=3314, 所以sin α=217,cos β=1314, 因此sin 2α=2sin αcos α=437, 所以sin(2α-β)=sin 2αcos β-cos 2αsin β=437×1314-17×3314=32.因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α<π2, 又β为锐角,所以-π2<2α-β<π2, 又sin(2α-β)=32,所以2α-β=π3. 思维升华 (1)给角求值与给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法.(2)给值求角问题:先求角的某一三角函数值,再根据角的范围确定角.跟踪训练1 (1)cos 275°+cos 215°+cos 75°cos 15°的值等于( ) A.62 B.32 C.54 D .1+34答案 C解析 原式=sin 215°+cos 215°+sin 15°cos 15°=1+12sin 30°=1+14=54. (2)已知α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1= . 答案 268 解析 ∵α∈⎝⎛⎭⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0, 则(2sin α-3cos α)·(sin α+cos α)=0,又∵α∈⎝⎛⎭⎫0,π2,sin α+cos α>0, ∴2sin α=3cos α,又sin 2α+cos 2α=1,∴cos α=213,sin α=313, ∴sin ⎝⎛⎭⎫α+π4sin 2α+cos 2α+1=22(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)=24cos α=268. (3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为 . 答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0, ∴0<α<π2. 又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0, ∴0<2α<π2, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0, ∴2α-β=-3π4.题型三 三角恒等变换的综合应用例4 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求函数f (x )的最小正周期及单调递减区间;(2)若α∈(0,π),且f ⎝⎛⎭⎫α4-π8=22,求tan ⎝⎛⎭⎫α+π3的值. 解 (1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以函数f (x )的最小正周期T =π2. 令2k π+π2≤4x +π4≤2k π+3π2,k ∈Z , 得k π2+π16≤x ≤k π2+5π16,k ∈Z . 所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π2+π16,k π2+5π16,k ∈Z .(2)因为f ⎝⎛⎭⎫α4-π8=22,所以sin ⎝⎛⎭⎫α-π4=1. 又α∈(0,π),所以-π4<α-π4<3π4, 所以α-π4=π2, 故α=3π4, 因此tan ⎝⎛⎭⎫α+π3=tan 3π4+tan π31-tan 3π4tan π3=-1+31+3=2- 3. 思维升华 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为f (x )=A sin(ωx +φ)+b 的形式再研究其性质,解题时注意观察角、函数名、结构等特征,注意利用整体思想解决相关问题. 跟踪训练2 已知函数f (x )=24sin ⎝⎛⎭⎫π4-x +64·cos ⎝⎛⎭⎫π4-x . (1)求函数f (x )在区间⎣⎡⎦⎤π4,3π2上的最值;(2)若cos θ=45,θ∈⎝⎛⎭⎫3π2,2π,求f ⎝⎛⎭⎫2θ+π3的值. 解 (1)由题意得f (x )=24·sin ⎝⎛⎭⎫π4-x +64cos ⎝⎛⎭⎫π4-x =22×⎣⎡⎦⎤12sin ⎝⎛⎭⎫π4-x +32cos ⎝⎛⎭⎫π4-x =-22·sin ⎝⎛⎭⎫x -7π12. 因为x ∈⎣⎡⎦⎤π4,3π2,所以x -7π12∈⎣⎡⎦⎤-π3,11π12, 所以sin ⎝⎛⎭⎫x -7π12∈⎣⎡⎦⎤-32,1, 所以-22sin ⎝⎛⎭⎫x -7π12∈⎣⎡⎦⎤-22,64,即函数f (x )在区间⎣⎡⎦⎤π4,3π2上的最大值为64,最小值为-22. (2)因为cos θ=45,θ∈⎝⎛⎭⎫3π2,2π, 所以sin θ=-35,所以sin 2θ=2sin θcos θ=-2425, 所以cos 2θ=cos 2θ-sin 2θ=1625-925=725,所以f ⎝⎛⎭⎫2θ+π3=-22sin ⎝⎛⎭⎫2θ+π3-7π12 =-22·sin ⎝⎛⎭⎫2θ-π4=-12(sin 2θ-cos 2θ) =12(cos 2θ-sin 2θ)=12·⎝⎛⎭⎫725+2425=3150.课时精练1.已知sin α-cos α=43,则sin 2α等于( ) A .-79 B .-29 C.29 D.79答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α,∴sin 2α=1-⎝⎛⎭⎫432=-79. 2.已知α,β为锐角,tan α=43,则cos 2α等于( ) A.725 B .-725 C.2425 D .-2425答案 B解析 ∵tan α=43,tan α=sin αcos α, ∴sin α=43cos α, ∵sin 2α+cos 2α=1,∴cos 2α=925, ∴cos 2α=2cos 2α-1=-725. 3.计算:1-cos 210°cos 80°1-cos 20°等于( ) A.22 B.12 C.32 D .-22答案 A解析 1-cos 210°cos 80°1-cos 20°=sin 210°sin 10°1-(1-2sin 210°)=sin 210°2sin 210°=22. 4.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α 等于( )A .-78 B .-14 C.14 D.78答案 A 解析 cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫2π3-2α=-cos ⎝⎛⎭⎫2π3-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎣⎡⎦⎤1-2×⎝⎛⎭⎫142=-78.5.(多选)已知函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14,则f (x )的值不可能是() A .-12 B.12 C .-2 D .2答案 CD解析 方法一 f (x )=sin x sin ⎝⎛⎭⎫x +π3-14 =sin x ⎝⎛⎭⎫12sin x +32cos x -14=12sin 2x +32sin x cos x -14=12·1-cos 2x 2+34sin 2x -14 =34sin 2x -14cos 2x=12⎝⎛⎭⎫32sin 2x -12cos 2x=12sin ⎝⎛⎭⎫2x -π6,∴f (x )∈⎣⎡⎦⎤-12,12.方法二 f (x )=sin x sin ⎝⎛⎭⎫x +π3-14=-12⎣⎡⎦⎤cos ⎝⎛⎭⎫x +x +π3-cos ⎝⎛⎭⎫x -x -π3-14=-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2x +π3-cos ⎝⎛⎭⎫-π3-14=-12cos ⎝⎛⎭⎫2x +π3+14-14=-12cos ⎝⎛⎭⎫2x +π3 ∴f (x )∈⎣⎡⎦⎤-12,12. 6.(多选)下列说法不正确的是( )A .存在x ∈R ,使得1-cos 3x =log 2110B .函数y =sin 2x cos 2x 的最小正周期为πC .函数y =cos 2⎝⎛⎭⎫x +π3的一个对称中心为⎝⎛⎭⎫-π3,0 D .若角α的终边经过点(cos(-3),sin(-3)),则角α是第三象限角答案 ABC解析 在A 中,因为cos x ∈[-1,1],所以1-cos 3x ≥0,因为log 2110<log 21=0, 所以不存在x ∈R ,使得1-cos 3x =log 2110,故A 错误; 在B 中,函数y =sin 2x cos 2x =12sin 4x 的最小正周期为π2,故B 错误; 在C 中,令2⎝⎛⎭⎫x +π3=π2+k π,k ∈Z , 得x =-π12+k π2,k ∈Z , 所以函数y =cos 2⎝⎛⎭⎫x +π3的对称中心为⎝⎛⎭⎫-π12+k π2,0,k ∈Z ,故C 错误; 在D 中,因为cos(-3)=cos 3<0,sin(-3)=-sin 3<0,所以角α是第三象限角,故D 正确.7.若α∈⎝⎛⎭⎫π2,π,sin α=31010,则tan 2α= . 答案 34解析 ∵α∈⎝⎛⎭⎫π2,π,sin α=31010, ∴cos α=-1-sin 2α=-1010, ∴tan α=sin αcos α=-3, ∴tan 2α=2tan α1-tan 2α=-2×31-(-3)2=34.8.已知sin α=cos 2α,α∈⎝⎛⎭⎫π2,π,则tan α= .答案 -33解析 ∵sin α=cos 2α=1-2sin 2α,α∈⎝⎛⎭⎫π2,π,∴sin α=12或sin α=-1(舍去), ∴α=5π6,则tan α=tan 5π6=-tan π6=-33. 9.(2021·淄博模拟)已知tan ⎝⎛⎭⎫π4+θ=3,则sin 2θ-2cos 2θ= .答案 -45解析 ∵tan ⎝⎛⎭⎫θ+π4=3, ∴tan θ=tan ⎣⎡⎦⎤⎝⎛⎭⎫θ+π4-π4=tan ⎝⎛⎭⎫θ+π4-tan π41+tan ⎝⎛⎭⎫θ+π4tan π4=3-11+3=12, ∴sin 2θ-2cos 2θ=2sin θcos θ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1=1-214+1=-45. 10.3tan 12°-3(4cos 212°-2)sin 12°= . 答案 -43解析 原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12° =23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin (-48°)2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24° =-23sin 48°12sin 48°=-4 3. 11.已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求: (1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值.解 (1)sin ⎝⎛⎭⎫α+π4=210, 即sin αcos π4+cos αsin π4=210, 化简得sin α+cos α=15,① 又sin 2α+cos 2α=1,②由①②解得cos α=-35或cos α=45, 因为α∈⎝⎛⎭⎫π2,π.所以cos α=-35. (2)因为α∈⎝⎛⎭⎫π2,π,cos α=-35, 所以sin α=45, 则cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425, 所以sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250. 12.已知α,β为锐角,tan α2=12,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)∵tan α2=12, ∴tan α=2tan α21-tan 2α2=2×121-14=43. 又α为锐角,且sin 2α+cos 2α=1,tan α=sin αcos α, ∴sin α=45,cos α=35, ∴cos 2α=cos 2α-sin 2α=-725. (2)由(1)得,sin 2α=2sin αcos α=2425, 则tan 2α=sin 2αcos 2α=-247. ∵α,β∈⎝⎛⎭⎫0,π2,∴α+β∈(0,π).又cos(α+β)=-55, ∴sin(α+β)=1-cos 2(α+β)=255, 则tan(α+β)=sin (α+β)cos (α+β)=-2, ∴tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.13.设θ∈R ,则“0<θ<π3”是“3sin θ+cos 2θ>1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 3sin θ+cos 2θ>1⇔3sin θ>1-cos 2θ=2sin 2θ⇔(2sin θ-3)sin θ<0⇔0<sin θ<32.当0<θ<π3时,0<sin θ<32;当0<sin θ<32时,2k π<θ<π3+2k π,k ∈Z 或2π3+2k π<θ<π+2k π,k ∈Z .所以0<θ<π3是3sin θ+cos 2θ>1的充分不必要条件.故选A. 14.在平面直角坐标系xOy 中,角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边交单位圆O 于点P (a ,b ),且a +b =75,则cos ⎝⎛⎭⎫2α+π2的值是 . 答案 -2425解析 由任意角的三角函数的定义得,sin α=b ,cos α=a .又a +b =75,∴sin α+cos α=75, 两边平方可得sin 2α+cos 2α+2sin αcos α=4925, 即1+sin 2α=4925,∴sin 2α=2425. ∴cos ⎝⎛⎭⎫2α+π2=-sin 2α=-2425.。

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。

下面总结了九种常见的三角恒等变换技巧。

1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。

2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。

3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。

4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。

5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。

三角变换所有公式基础三角恒等式

三角变换所有公式基础三角恒等式
三角变换公式有如下
1、sin(-α)=-sinα
2、cos(-α)=cosα
3、sin(π/2-α)=cosα
4、cos(π/2-α)=sinα
5、sα)=-sinα
7、sin(π-α)=sinα
8、cos(π-α)=-cosα
9、sin(π+α)=-sinα
由三条线段首尾顺次相连得到的封闭几何图形叫做三角形三角形是几何图案的基本图形
三角变换所有公式 基础三角恒等式
由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。 平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。由三条线段首尾顺次相连,得到的封闭几何图形叫做三角形,三角形是几何图案的基本图形。
10、tanα=sinα/cosα
11、tan(π/2+α)=-cotα
12、tan(π/2-α)=cotα
13、tan(π-α)=-tanα
14、tan(π+α)=tanα
基础三角恒等式
sin²α+cos²α=1
1+tan²α=sec²α
1+cot²α=csc²α
sinα/cosα=tanα
secα/cscα=tanα
cosα/sinα=cotα

高考数学知识点:简单的三角恒等变换

高考数学知识点:简单的三角恒等变换

高考数学知识点:简单的三角恒等变换一、半角公式(不要求记忆)
典型例题1:
二、三角恒等变换的常见形式
三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明.
1、三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.
2、三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.
3、三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.典型例题2:
三、三角函数式的化简要遵循“三看”原则
1、一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;
2、二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;
3、三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.
典型例题3:
四、三角函数求值有三类
1、“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.
2、“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
3、“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
典型例题4:
三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y=Asin(ωx+φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.典型例题5:
【作者:吴国平】。

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

三角恒等变换公式总结

三角恒等变换公式总结

三角恒等变换公式总结1. 引言三角恒等变换公式,这个听起来有些复杂的名字,实际上就像是数学里的“调味料”,能让我们在解决各种问题时,轻松又有趣。

想象一下,生活中的各种角度和三角形,不论是你在量房子的时候,还是在看风景时,三角函数都在悄悄发挥着作用。

今天就带大家轻松了解这些公式,保证让你有种“豁然开朗”的感觉!2. 基本三角恒等式2.1 正弦与余弦的关系首先,咱们得从最基础的说起,正弦(sin)和余弦(cos)。

你知道吗?它们就像是一对好朋友,总是形影不离。

基本恒等式之一就是sin²x + cos²x = 1。

简单来说,就是不论你选择哪个角度,它们俩加起来永远都是1。

这就像生活中的一种平衡,太多或太少都不行!2.2 正切的神奇接下来,咱们聊聊正切(tan)。

正切其实是余弦和正弦的比值,公式就是 tanx = sinx/cosx。

想象一下,这就好比你在餐厅里点了一份大餐,正弦是主菜,余弦是配菜,而正切就是你整个用餐体验的完美比例,缺一不可!3. 重要的三角恒等式3.1 角度和的公式说到三角恒等变换公式,角度和的公式可得好好聊聊。

比如说,sin(a + b) = sin a * cos b + cos a * sin b。

这就像是两个不同口味的冰淇淋,混合在一起后,产生了新鲜的口感,意外的美味总是让人惊喜。

而 cos(a + b) = cos a * cos b sin a * sin b,则是让人感觉有点酸酸甜甜的感觉,确实让人难忘!3.2 角度差的公式当然,除了和,角度差的公式也很有意思。

sin(a b) = sin a * cos b cos a * sin b。

这个公式就像是两位舞者,偶尔要展示一下各自的魅力,虽有些抵触,却又能擦出火花。

cos(a b) = cos a * cos b + sin a * sin b,则让人觉得温暖,像是朋友间的默契配合。

4. 应用实例4.1 解决实际问题学习这些公式,关键还是要知道如何运用。

简单的三角恒等变换

简单的三角恒等变换

简单的三角恒等变换三角恒等变换是指在三角函数中,通过一系列等价转换,将一个三角函数表达式转化为另一个等价的三角函数表达式的过程。

掌握三角恒等变换的关键是熟悉三角函数的基本性质和一些常见的恒等关系。

一、基本恒等变换:1.正弦函数和余弦函数的关系:sin^2(x) + cos^2(x) = 12.余弦函数和正弦函数的关系:cos(x) = sin(x + π/2)sin(x) = cos(x - π/2)3.正切函数的定义:tan(x) = sin(x) / cos(x)4.正切函数和余切函数的关系:tan(x) = 1 / cot(x)cot(x) = 1 / tan(x)5.正弦函数和余切函数的关系:sin(x) = cos(x) / cot(x)cot(x) = cos(x) / sin(x)6.余弦函数和余切函数的关系:cos(x) = sin(x) / csc(x)csc(x) = sin(x) / cos(x)7.倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x) tan(2x) = (2tan(x)) / (1 - tan^2(x))8.半角公式:sin(x/2) = ±√((1 - cos(x)) / 2)cos(x/2) = ±√((1 + cos(x)) / 2)tan(x/2) = ±√((1 - cos(x)) / (1 + cos(x)))二、和差角公式:1.正弦函数的和差角公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)2.余弦函数的和差角公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)3.正切函数的和差角公式:tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓ tan(x)tan(y))三、倍角公式与半角公式:1.正弦函数的倍角公式:sin(2x) = 2sin(x)cos(x)2.余弦函数的倍角公式:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)3.正切函数的倍角公式:tan(2x) = (2tan(x)) / (1 - tan^2(x))4.正弦函数的半角公式:sin(x/2) = ±√((1 - cos(x)) / 2)5.余弦函数的半角公式:cos(x/2) = ±√((1 + cos(x)) / 2)6.正切函数的半角公式:tan(x/2) = ±√((1 - cos(x)) / (1 + cos(x)))四、和差化积公式:1.正弦函数的和差化积公式:sin(x) + sin(y) = 2sin((x + y)/2)cos((x - y)/2)sin(x) - sin(y) = 2cos((x + y)/2)sin((x - y)/2)2.余弦函数的和差化积公式:cos(x) + cos(y) = 2cos((x + y)/2)cos((x - y)/2)cos(x) - cos(y) = -2sin((x + y)/2)sin((x - y)/2)3.正切函数的和差化积公式:tan(x) + tan(y) = sin(x + y) / (cos(x)cos(y))tan(x) - tan(y) = sin(x - y) / (cos(x)cos(y))以上是一些常见的三角恒等变换,通过熟练掌握和灵活运用这些公式,可以在解决三角函数相关问题时简化计算过程,提高解题效率。

三角恒等变换所有公式

三角恒等变换所有公式

三角恒等变换所有公式三角恒等变换是指三角函数之间相互转化的一系列公式,利用这些公式可以简化三角函数的计算与证明。

下面是一些常用的三角恒等变换公式(完整版):1.倍角公式:- $\sin(2\theta) = 2\sin\theta\cos\theta$- $\cos(2\theta) = \cos^2\theta - \sin^2\theta =2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$2.半角公式:- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$- $\cos\left(\frac{\theta}{2}\right) =\pm\sqrt{\frac{1+\cos\theta}{2}}$- $\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$3.和差公式:- $\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm\cos\alpha\sin\beta$- $\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp\sin\alpha\sin\beta$- $\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm\tan\beta}{1 \mp \tan\alpha\tan\beta}$4.二倍角公式:- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$- $\cos(2\alpha) = \cos^2\alpha - \sin^2\alpha$- $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$5.和差化积公式:- $\sin\alpha\sin\beta = \frac{1}{2}(\cos(\alpha-\beta)-\cos(\alpha+\beta))$- $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$- $\sin\alpha\cos\beta =\frac{1}{2}(\sin(\alpha+\beta)+\sin(\alpha-\beta))$6.积化和差公式:- $\sin\alpha+\sin\beta =2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\sin\alpha-\sin\beta = 2\sin\left(\frac{\alpha-\beta}{2}\right)\cos\left(\frac{\alpha+\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$7.和差化积与积化和差的关系:- $\sin\alpha\pm\sin\beta =2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha \mp\beta}{2}\right)$- $\cos\alpha+\cos\beta =2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$- $\cos\alpha-\cos\beta = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$8.和差化积的平方形式:- $\sin^2\alpha+\sin^2\beta = 1 -\cos(\alpha+\beta)\cos(\alpha-\beta)$- $\cos^2\alpha+\cos^2\beta = 1 +\cos(\alpha+\beta)\cos(\alpha-\beta)$这些公式在解三角方程、化简三角函数表达式、证明三角恒等式等方面有重要应用。

三角恒等变换与方程的性质知识点总结

三角恒等变换与方程的性质知识点总结

三角恒等变换与方程的性质知识点总结三角恒等变换是指在三角函数表达式中,通过一系列等价的变换,将一个三角函数表达式转化为另一个等价的三角函数表达式。

这种变换在解决三角方程、简化三角表达式等数学问题中有着重要的应用。

本文将对三角恒等变换及相关的方程性质进行总结,并提供一些例子来帮助读者更好地理解和应用这些知识点。

一、平凡的三角恒等变换:1. 正弦函数的平方等于1减去余弦函数的平方:sin^2(x) = 1 -cos^2(x)该恒等变换适用于解决三角方程中含有sin^2(x)类型的问题。

2. 余弦函数的平方等于1减去正弦函数的平方:cos^2(x) = 1 -sin^2(x)该恒等变换适用于解决三角方程中含有cos^2(x)类型的问题。

3. 正切函数的平方加1等于割函数的平方:tan^2(x) + 1 = sec^2(x)该恒等变换适用于解决三角方程中含有tan^2(x)类型的问题。

4. 余切函数的平方加1等于余割函数的平方:cot^2(x) + 1 = csc^2(x)该恒等变换适用于解决三角方程中含有cot^2(x)类型的问题。

以上四个平凡的三角恒等变换是基础中的基础,掌握了这些变换,可以更好地应对复杂的三角恒等变换问题。

二、复杂的三角恒等变换:除了上述的平凡的恒等变换外,还存在一些复杂的恒等变换,下面是其中的两个例子:1. 和差化积公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)和差化积公式常用于解决三角方程中的和差类型问题,其中的正负号取决于题目中给出的具体条件。

2. 二倍角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)二倍角公式常用于解决三角方程中的二倍角类型问题,同样,具体的变换方式需根据题目给出的条件而定。

简单的三角恒等变换

简单的三角恒等变换

cos2 cos2·2sin2
asin x+bcos x= a2+b2 sin(x+θ)(其中 tan θ=ba).
已知
sin
θ=45,且52π<θ<3π,求
cosθ2和
θ tan2.
【思路探究】 解答本题先求 cos θ,而后确定θ2的范围,
最后应用半角公式化简.
【自主解答】 ∵sin θ=45,52π<θ<3π, ∴cos θ=- 1-sin2θ=-35. 由 cos θ=2cos2θ2-1 得 cos2θ2=1+c2os θ=15. ∵54π<θ2<32π.
简单的三角恒等变换
【问题导思】
为丰富三角变换,我们曾由和角公式引出倍角公式,且
“倍角是相对的”,那么倍角公式中的 2α 能否化为 α,结果
怎样?
【提示】
能,结果是 sin α=2sin
α 2cos
α2;cos α=2cos2α2
α -1=1-2sin2α2=cos2α2-sin2α2;tan α=1-2tatann22α2.
2.本题充分运用两角和(差)、二倍角公式、辅助角转换 公式消除差异,减少角的种类和函数式的项数,为讨论函数 性质提供了保障.
如图所示,要把半径为 R 的半圆形木料截成长 方形,应怎样截取,才能使△OAB 的周长最大?
【思路探究】
图 3-2-1
【自主解答】 设∠AOB=α,△OAB 的周长为 l,则 AB=Rsin α,OB=Rcos α,
∴l=OA+AB+OB =R+Rsin α+Rcos α =R(sin α+cos α)+R = 2Rsin(α+4π)+R. ∵0<α<π2,∴π4<α+π4<34π.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的三角恒等变换(基础)【学习目标】1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧;3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化;4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力;5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力.【要点梳理】要点一:升(降)幂缩(扩)角公式升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-= 要点诠释:利用二倍角公式的等价变形:21cos 2sin2αα-=,21cos 2cos2αα+=进行“升、降幂”变换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换.要点二:辅助角公式1.形如sin cos a x b x +的三角函数式的变形:sin cos a x b x +x x ⎫⎪⎭令cos ϕϕ==,则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+(其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan baϕ=确定,或由sin ϕ=和cos ϕ=)2.辅助角公式在解题中的应用 通过应用公式sin cos a x b x+=)x ϕ+(或sin cos a x b x +)αϕ-),将形如sin cos a x b x +(,a b 不同时为零)收缩)x ϕ+)αϕ-).这种恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数,这样做有利于函数式的化简、求值等.【典型例题】类型一:利用公式对三角函数式进行证明 例1.求证:αααααsin cos 1cos 1sin 2tan-=+=【思路点拨】观察式子的结构形式,寻找式子中α与2α之间的关系发现,利用二倍角公式即可证明. 【证明】方法一:2tan 2cos2sin2cos 22cos2sin2cos 1sin 2αααααααα===+ 2tan 2cos2sin2cos2sin22sin 2sin cos 12αααααααα===- 方法二:sin sin2cossin 222tan 21cos cos cos 2cos 222ααααααααα⋅===+⋅sin sin2sin1cos 222tan2sin coscos 2sin 222ααααααααα⋅-===⋅【总结升华】代数式变换往往着眼于式子结构形式的变换;对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点. 举一反三:【变式1】求证:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 【证明】2222sin cos2tan222sin 2sincos22sin cos 1tan 222ααααααααα===++22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222ααααααααα--=-==++ 2222sincos2tansin 222tan cos cos sin 1tan 222ααααααααα===--. 例2.求证:(1)1cos cos [cos()cos()]2αβαβαβ=++- (2)cos cos 2coscos 22x y x y x y +-+= 【思路点拨】(1)把右边两角和与差的余弦公式展开、相加即得左边.(2)把右边两角和与差的余弦公式展开、相加,然后观察所得式子与要证明的式子之间的区别,最后令,x y αβαβ+=-=即可得证.【证明】(1)cos()cos cos sin sin αβαβαβ+=- ① 又cos()cos cos sin sin αβαβαβ-=+ ②∴①+②得1cos cos [cos()cos()]2αβαβαβ=++-结论得证.(2)cos()cos cos sin sin αβαβαβ+=- ① 又cos()cos cos sin sin αβαβαβ-=+ ②∴①+②得1cos cos [cos()cos()]2αβαβαβ=++-令,x y αβαβ+=-=,则,22x y x yαβ+-== []1coscos cos cos 222x y x y x y +-∴=+ cos cos 2cos cos 22x y x yx y +-∴+=结论得证.【总结升华】当和、积互化时,角度重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值.正因为如此“和、积互化”是三角恒等变形的一种基本手段.举一反三:【变式1】求证:sin sin 2sin cos22θϕθϕθϕ+-+=【证明】sin()sin cos cos sin αβαβαβ+=+ ,sin()sin cos cos sin αβαβαβ-=-上面两式相加得:sin()sin()2sin cos αβαβαβ++-= 令,αβθαβϕ+=-=,则,22θϕθϕαβ+-==∴sin sin 2sin cos 22θϕθϕθϕ+-+= 结论得证.【变式2】求证:32sin tantan 22cos cos 2x x x x x-=+. 【思路点拨】 从消除恒等式左、右两边的差异入手,将右边的角x ,2x 凑成32x ,2x的形式,注意到322x x x =-,3222x xx =+,于是 【证明】右边32sin 2sin 2233cos cos 2cos cos 2222x x x x x x x x x ⎛⎫- ⎪⎝⎭==+⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭3332sin cos cos sin sin 322222tan tan 3222cos cos cos 222xx x x xx x x x x ⎛⎫- ⎪⎝⎭===-=左边. ∴等式成立.【总结升华】解答中右边分母拆角的目的是利用和(差)角公式.证明(化简)的本质上是一个寻找差异、消除差异、追求和谐的过程,应从消除差异入手.类型二:利用公式对三角函数式进行化简例3. 已知322πθπ<< 【思路点拨】根据化简的基本思想,本题需消去根式,联想到恒等式21sin sin cos 22θθθ⎛⎫±=± ⎪⎝⎭,于是利用此公式先化简.【解析】原式sincossincos2222θθθθ=+--,∵322πθπ<<,∴342πθπ<<,∴0sin 22θ<<,1cos 22θ-<<-, 从而sincos022θθ+<,sincos022θθ->,∴原式sincos sin cos 2sin 22222θθθθθ⎛⎫⎛⎫=-+--=- ⎪ ⎪⎝⎭⎝⎭. 【总结升华】从局部看(即每个式子本身)上述解法是唯一解法,但从整体看两个根号里面的式子相加得2,相乘得cos 2θ,因此可以“先平方暂时去掉根号”.注意到322πθπ<<,则sin 0θ<,cos 0θ>,设x ,则x <0,则2222cos x θ=-=-=-,又342πθπ<<,故sin 02θ>,从而2sin 2x θ==-.举一反三:【变式13,22αππ⎡⎤⎛⎫∈ ⎪⎢⎥⎝⎭⎣⎦.【解析】∵3,22παπ⎛⎫∈⎪⎝⎭,∴cos α>0,cos α=,∴原式=3,24αππ⎛⎫∈ ⎪⎝⎭,∴sin 02α>,sin 2α=.即原式=sin2α. 类型三:利用公式进行三角函数式的求值 例4.已知1sin()2αβ+=,1sin()3αβ-=,求2tan()tan tan tan tan()αβαββαβ+--+的值. 【解析】原式=2tan()(tan tan )tan tan()αβαββαβ+-++ =2tan()tan()(1tan tan )tan tan()αβαβαββαβ+-+-+ =21(1tan tan )tan αββ--=tan tan αβ =sin cos cos sin αβαβ由1sin()sin cos cos sin ,21sin()sin cos cos sin 3αβαβαβαβαβαβ⎧+=+=⎪⎪⎨⎪-=-=⎪⎩得51sin cos ,cos sin 1212αβαβ== 【总结升华】求解三角函数式的值时,一般先化简所给三角函数式,寻求它与条件的联系,以便迅速找出解题思路.举一反三:【变式1】已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则sin(x +y )的值是( )A .1B .-1C.13 D. 12【答案】A【解析】∵sin x -sin y =-23,cos x -cos y =23,两式相加得:sin x +cos x =sin y +cos y ,∴sin2x =sin2y .又∵x 、y 均为锐角,∴2x =π-2y ,∴x +y =2π,∴sin(x +y )=1. 【变式2】若sin cos 3sin cos αααα+=-,tan(α-β)=2,则tan(β-2α)=________. 【答案】43【解析】∵sin cos tan 13sin cos tan 1αααααα++==--,∴tan α=2. 又tan(α-β)=2,∴tan(β-2α)=tan[(β-α)-α] =-tan[(α-β)+α] =tan()tan 1tan()tan αβααβα-+---⋅=43类型四:三角恒等变换的综合应用例5.求函数sin cos sin cos y x x x x =+-;3[,]44x ∈ππ的值域【思路点拨】设sin cos x x t +=,则21sin cos 2t x x -=,然后把y 转化为关于t 的二次函数,利用配方法求y 的最值. 【解析】 设3sin cos ,,44x x t x ππ⎡⎤+=∈⎢⎥⎣⎦))4t x x x π∴==+又344x ππ≤≤,24x πππ∴≤+≤,t ⎡∴∈⎣ 又212sin cos x x t +=,21sin cos 2t x x -∴=则22111222t y t t t -=-=-++ =21(1)12t --+ 当0t =时,min 12y =当1t =时,max 1y =1,12y ⎡⎤∴∈⎢⎥⎣⎦【总结升华】本题给出了sin cos ,sin cos θθθθ+-及sin cos θθ三者之间的关系,三者知一求二,在求解的过程中关键是利用了22sin cos 1θθ+=这个隐含条件. 举一反三:【变式1】已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.【解析】(Ⅰ)1cos 2()22x f x x ωω-=112cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤. 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.。

相关文档
最新文档