自动控制原理

合集下载

自动控制原理

自动控制原理

自动控制原理自动控制原理是一门研究如何利用各种控制方法和技术来实现系统自动化控制的学科。

它涉及到信号处理、传感器、执行器、控制器等多个方面的知识,是现代工程领域中非常重要的一门学科。

一、概述自动控制原理的基本目标是通过对系统的测量和分析,设计出合适的控制策略,使系统能够在给定的性能要求下自动调节和控制。

在自动控制系统中,通常会有一个或多个输入信号(也称为控制量),这些信号通过传感器进行测量,并经过控制器进行处理,最终输出到执行器上,以实现对系统的控制。

二、自动控制系统的基本组成部分1. 传感器:传感器是自动控制系统中的重要组成部分,用于将被控对象的状态转化为电信号或其他形式的信号。

常见的传感器有温度传感器、压力传感器、速度传感器等。

2. 执行器:执行器是控制系统中的输出部分,根据控制信号的指令,将能量转化为机械运动或其他形式的输出。

常见的执行器有电动阀门、电机、液压缸等。

3. 控制器:控制器是自动控制系统中的核心部分,负责接收传感器测量的信号,并根据设定的控制策略进行处理,最终生成控制信号输出给执行器。

常见的控制器有比例控制器、积分控制器、微分控制器等。

4. 反馈环节:反馈环节是自动控制系统中的重要组成部分,通过测量被控对象的输出信号,并将其与期望的控制信号进行比较,从而实现对系统的调节和控制。

三、自动控制系统的基本原理1. 反馈控制原理:反馈控制是自动控制系统中最基本的控制原理之一。

它通过对系统的输出进行测量,并将测量结果与期望的控制信号进行比较,从而生成误差信号,再根据误差信号进行控制器的调整,使系统的输出逐渐趋向于期望值。

2. 开环控制原理:开环控制是自动控制系统中另一种常见的控制原理。

它没有反馈环节,控制器的输出直接作用于执行器,从而实现对系统的控制。

开环控制常用于对系统的输入进行精确控制的场景,但对于系统的稳定性和鲁棒性要求较高的情况下,一般会采用反馈控制。

3. 控制策略:控制策略是指控制器根据系统的特性和要求,设计出的控制算法和参数设置。

自动控制原理的原理是

自动控制原理的原理是

自动控制原理的原理是自动控制原理,又称为控制理论,是一门研究如何通过建立数学模型,设计控制器,并在开环或闭环控制系统中实现对系统状态的调节和稳定的学科。

其核心原理是通过对系统的测量和分析,以及对控制器的建模和设计,实现对系统的自动调节以达到某种预期的目标。

自动控制原理的核心原理可以总结为以下几个方面:1. 反馈与控制:自动控制原理的基本思想是通过对系统输入和输出的采集与测量,将系统的实际输出与期望输出进行比较,并根据比较结果进行调整,以实现对系统状态的控制与调节。

这种通过对系统的反馈进行控制的思想,使控制系统能够自动调节和稳定。

2. 数学模型与控制器设计:为了实现对系统的控制,需要建立系统的数学模型。

数学模型是对系统工作原理的数学描述,它可以基于物理原理、经验公式或统计方法进行建模。

根据系统的数学模型,可以设计相应的控制器,决定输入与输出之间的关系和调节策略。

3. 系统响应与稳定性分析:通过对系统的数学模型进行分析,可以得到系统的一些重要性能指标,如稳态误差、响应速度和稳定边界等。

根据这些指标,可以评估和分析系统的稳定性和控制效果,并对控制器进行优化和调整,以满足系统性能需求。

4. 开环和闭环控制:自动控制系统可以采用开环或闭环控制方式。

开环控制是在固定的输入条件下,根据系统的数学模型预先设定输出值,不对系统的实际状态进行反馈和调节。

闭环控制则是根据系统的实际输出值进行反馈和调节,使系统能够自动调整并适应不同的工况变化。

5. 稳定性与鲁棒性:自动控制系统的稳定性是指无论系统输入和外部扰动如何变化,系统输出都能保持在一定范围内,不发生震荡和不稳定行为。

鲁棒性则是指控制系统对于模型误差、参数变化和噪声等扰动的抵抗能力。

保证系统的稳定性和鲁棒性是自动控制原理中的重要目标和考虑因素。

总之,自动控制原理是一门涉及数学、物理、工程等多学科交叉的学科,它的基本原理是通过对系统的测量和分析,以及对控制器的建模和设计,实现对系统的自动控制和调节。

自动控制原理

自动控制原理

自动控制原理自动控制原理是一门应用科学,也是一门跨学科的学科,它涉及了工程学、物理学、数学、计算机科学等多个领域。

自动控制原理的研究对象是能够被控制的物理、化学、生物、经济系统等,通过建立数学模型、设计控制器并进行系统实现,实现对这些系统的自动控制。

其最基本的任务是对稳态、动态、鲁棒性等性能指标进行分析和设计。

自动控制原理在现代工程技术应用中扮演着重要的角色,如电力系统、水利工程、交通运输、机械制造、航空航天、自动化生产线、冶金矿山等领域都应用了自动控制原理。

自动控制技术的发展也使得人类社会的生活更加方便、安全、环保,成为社会发展的重要推动力之一。

自动控制原理的研究包含三部分:建立数学模型、设计控制器和系统实现。

建立数学模型是指将物理系统抽象为数学模型,通过建立数学模型求解系统的解析解、数值解等方法进行系统分析,掌握系统的稳态、动态行为。

设计控制器是指选取控制策略、设计控制算法、确定控制参数以及对控制器性能进行评估等过程,目的是实现对系统状态的控制。

系统实现是指将控制器实现在计算机、PLC、单片机等控制器硬件平台上,将控制器和物理系统相结合,形成一个闭环控制系统。

在自动控制原理中,最为基础的控制方法包括比例积分控制、比例微分控制、位置控制、速度控制、加速度控制、直接作用与反馈控制的组合等。

其中最基础的PID控制器依旧是工程中常用到的基础控制器,PID控制器的输入为系统误差,输出为被控对象的控制量,通过对比通过误差反馈的输入信号以及给定的目标值产生控制器输出,实现对系统的控制。

在现代自动化领域,也涌现出了很多高级控制方法,如模型预测控制、自适应控制、模糊控制、神经网络控制等。

需要注意的是,自动控制原理不仅要求对方法技术的掌握,还需要对系统的工作原理进行深入的理解,不断实践、学习和探索,对科技进步做出自己的贡献。

总之,自动控制原理作为一门跨领域学科,在未来的发展中将面临更多挑战与发展机遇,我们也将在科技创新中不断应用自动控制原理的成果,使其在工业生产、环境治理、能源利用等领域发挥越来越重要的作用。

自动控制原理

自动控制原理

自动控制原理自动控制原理是一门应用广泛且重要的学科,它涉及到许多领域,如机械、电子、计算机等。

本文将探讨自动控制原理的定义、应用以及其在现代社会中的重要性。

一、自动控制原理的定义自动控制原理是一种通过使用传感器、执行器和控制算法来实现系统自动调节的技术。

它的目的是使系统能够自动地响应外部变化,并保持所需的状态。

自动控制原理的核心是反馈机制,通过不断地检测系统状态,并根据反馈信号对系统进行调节,以实现系统的稳定和优化。

二、自动控制原理的应用自动控制原理广泛应用于各个领域,如工业生产、交通运输、航空航天等。

在工业生产中,自动控制原理可以用于控制生产线的运行,实现自动化生产。

在交通运输中,自动控制原理可以用于控制交通信号灯,优化交通流量,提高交通效率。

在航空航天领域,自动控制原理可以用于飞机的自动驾驶系统,提高飞行安全性。

三、自动控制原理的重要性自动控制原理在现代社会中具有重要的意义。

首先,它可以提高生产效率和质量。

通过自动控制原理,可以实现生产过程的自动化,减少人力投入,提高生产效率。

同时,自动控制原理可以实时监测生产过程中的各项指标,并根据需要进行调节,保证产品质量的稳定性和一致性。

其次,自动控制原理可以提高安全性和可靠性。

在一些危险环境下,如核电站、化工厂等,人工控制存在一定的风险。

而自动控制系统可以通过传感器实时监测环境变化,并根据预设的控制算法进行自动调节,减少人为错误的发生,提高安全性和可靠性。

此外,自动控制原理还可以提高能源利用效率。

通过自动控制原理,可以对能源的使用进行优化调节,减少能源的浪费,提高能源的利用效率。

这对于资源有限的社会来说,具有重要的意义。

总之,自动控制原理是一门应用广泛且重要的学科。

它不仅可以提高生产效率和质量,提高安全性和可靠性,还可以提高能源利用效率。

随着科技的不断发展,自动控制原理在各个领域中的应用将会越来越广泛,对于推动社会进步和提高人类生活质量具有重要的作用。

第11章 自动控制原理

第11章 自动控制原理

一般规定为响应曲线进入静差的±2%(或±5%) 范围而不再越出时所需要的时间。
振荡周期 过渡过程从第一个波峰到第二个波峰之间的时间, 反映系统的快速性。
第11章自动控制原理
热工测量与自动控制
第1节复习 难点: 自控系统的品质指标 重点: 1.自控系统组成与框图含义。 2.自控系统的分类、。 3.过渡响应的基本形式与过渡过程的品质指标。 4.各基本概念。
第11章自动控制原理
热工测量与自动控制
第1节概述
第2节构成环节的特性 第3节环节的综合和特性分析
第11章自动控制原理
热工测量与自动控制
第1节概述
一、自动控制系统及其组成 二、控制系统的分类 三、自动控制系统的过渡响应
第11章自动控制原理
热工测量与自动控制
一、自动控制系统及其组成 (一)自动控制与人工控制过程的对比
第11章自动控制原理
热工测量与自动控制
思考题: 6.在阶跃干扰下,调节系统的过渡过程有哪几种形式, 用什么性能指标来衡量。 7.什么是系统的静态特性与动态特性。
第11章自动控制原理
热工测量与自动控制
第2节构成环节的特性
一、环节信号的传递和特性 二、拉普拉斯变换与传递函数
三、对象的过渡响应和数学描述
X c (s) b0 S m b1S m1 bm1S bm W ( s) n n 1 X r (s) a0 S a1S an1S an
第11章自动控制原理
热工测量与自动控制
意义: ①系统或环节的一种形式,表达系统将输入量转换成 输出量的传递关系 ②仅与系统或环节特性有关,与输入量怎样变化无关 ③简化系统动态性能的分析过程
第11章自动控制原理

什么是自动控制原理

什么是自动控制原理

什么是自动控制原理
自动控制原理是一种通过不同的控制器和反馈机制来实现系统自动调节和控制的方法。

它基于对系统输入和输出之间关系的分析,利用控制器对系统进行调整和干预,使得输出能够稳定在期望的值上。

自动控制原理涉及到系统模型的建立、控制器的设计和系统性能的评估等方面。

在系统建模过程中,需要根据实际情况确定系统的输入、输出和各个部分之间的关系,通常可以利用数学模型来描述系统的动态特性。

控制器的设计是选择合适的控制算法,根据系统的性能需求来确定参数。

常见的控制器包括比例控制器、积分控制器和微分控制器等。

自动控制原理中,反馈机制起着重要的作用。

通过对系统输出进行测量和与期望值进行比较,可以实时调整控制器的输出,使得系统能够迅速响应和稳定在期望值上。

反馈机制的优点在于可以消除外部干扰和系统参数变化对系统稳定性的影响,提高系统的鲁棒性和适应性。

自动控制原理在工业生产、交通运输、能源管理等领域有广泛应用。

通过自动化控制,可以提高系统的性能、效率和安全性,减少人为操作的误差和风险。

同时,自动控制原理也是控制工程学科的基础和核心内容,为实现各种复杂系统的自动化控制提供了理论和方法的指导。

通俗易懂 自动控制原理

通俗易懂 自动控制原理

通俗易懂自动控制原理
自动控制原理是指通过使用各种控制设备和技术,实现对系统或过程进行自动
监测、调节和控制的原理。

它在各个领域都得到了广泛应用,如工业自动化、交通运输、航空航天等领域。

本文将从通俗易懂的角度,对自动控制原理进行解释。

自动控制原理的核心是建立一个控制系统,该系统包括传感器、执行器、控制
器和反馈机制。

传感器用于监测系统的状态或变量,例如温度、压力、速度等。

执行器则根据控制信号来实施相应的操作,例如开关、阀门、电机等。

控制器是系统的大脑,根据传感器的反馈信息和预设的目标,生成控制信号并发送给执行器。

反馈机制用于将系统的实际输出与预期输出进行比较,从而进行误差修正。

在自动控制原理中,最常用的控制方法是反馈控制。

它基于系统的反馈机制,
通过不断比较实际输出与预期输出的差异,来调节执行器的操作以达到控制目标。

反馈控制具有稳定性好、动态响应快的特点,广泛应用于工业自动化和其他领域。

另外,自动控制原理还涉及到一些重要的概念和理论,例如控制系统的开环和
闭环,控制系统的稳定性分析,以及控制系统的频率响应等。

这些概念和理论为实现有效的自动控制提供了基础。

总之,自动控制原理是一门重要的学科,它通过使用各种控制设备和技术,实
现对系统或过程的自动监测、调节和控制。

通过合理应用自动控制原理,可以提高生产效率,降低人力成本,并且在提高系统稳定性和响应速度方面发挥着重要作用。

在不同领域的实际应用中,自动控制原理的应用将继续发展和完善,为人们提供更高效、安全和可靠的控制方法。

自动控制原理第一章自动控制原理

自动控制原理第一章自动控制原理

如图1-5所示。
给定量 控制器
干扰量
被控量 受控对象
自控系统
图1-5 自动控制系统
第一章 自动控制概论
• 如水位自动控制系统:
比较元件
进 水 + 连 杆
测量 元件
实 际 水 位 浮 子
输出量
M 电 机
干扰 信号
出 水
<
受控对象
图1-3 水位自动控制系统原理图
第一章 自动控制概论
1.2.2 自动控制系统的基本组成
基 本 要 求
通过学习本课程,获得自动控制
系统的基本概念和基本理论;掌握分 析自动控制系统或过程控制系统的基 本方法。
自动控制理论
经典控制理论 线性控制系统
连续控制系统
第 二 章 第 三 章 第 四 章 第 五 章
现代控制理论 非线性控制系统
离散控制系统
第 六 章
第 七 章
第 八 章
第一章 自动控制概论
控制理论和现代控制理论两大部分。
经典控制理论也就是自动控制原理,是20世纪 40年代到50年代形成的一门独立学科。早期的控制
系统较为简单,只要列出微分方程并求解之,就可 以用时域法分析他们的性能。第二次世界大战前后,
由于生产和军事的需要,各国均在大力研制新型武
器,于是出现了较复杂的控制系统,这些控制系统
自动控制的任务—利用控制器操纵受控对象,使其
被控量按技术要求变化。若r(t)—给定量,c(t)—被
控量,则自控的任务之数学表达式为:使被控量满 足c(t) ≈r(t)。自控系统的组成如1-6图所示。
输入量 输出量
串 联 校 正
放 大
执 行
受 控 对 象

自动控制原理

自动控制原理

开环系统:如果系统的输出量没有与其参考输入相比较,即系统的输出与输入量间不存在反馈的通道的控制方式。

闭环系统:若把系统的被控制量反馈到它的输入端,并与参考输入相比较的控制方式。

定值控制系统:给定值为常值的控制系统。

伺服系统:给定值随时间任意变化的控制系统。

线性系统的特点:具有齐和次性叠加原理,如果线性系统的参数不随时间变化,称为线性定常系统,反之,称为线性时变系统。

稳定性:稳定性是保证控制系统正常工作的先决条件,是指控制系统偏离平衡状态后,自动恢复到平衡状态的能力。

比例环节的特点:输出不失真,不延迟,成比例地复现输出信号。

积分环节:输入信号通常是流量或速率,而输出信号则表现该流量或速率随时间而积累的总量,即环节的输出量与输入量之间成积分关系。

惯性环节的特点:输出量缓慢地反映输入量的变化规律,动态方程是一个一阶微分方程。

微分方程:理想的微分方程,其输出与输入信号对时间的微分成正比。

开环传递函数:系统的反馈量B(s)与参考输入R(s)的比,称为闭环系统的开环传递函数。

闭环传递函数:系统的输出Cr(S)与参考输出之比。

上升时间t:从零时刻首次到达稳定值的时间,即阶跃响应曲线从零时刻开始第一次上升到稳定值所需要的时间。

峰值时间:指阶跃响应曲线从零时刻到达第一峰值的时间
最大超调量:指阶跃响应曲线的最大峰值与稳态值之差的百分比
调整时间:指阶跃响应曲线到达并保持在终值的或范围内所需的最短时间。

自动控制原理概念

自动控制原理概念

自动控制原理概念自动控制原理是指对于一个工程系统或者生产过程,通过输入和测量的信号,使用控制器对系统进行调节和控制的一种方法。

其基本原理是通过测量系统的输出信号与期望值的差异,对系统的输入信号进行调整,使系统能够达到期望的运行状态。

在自动控制原理中,通常会涉及到三个基本组件:传感器、控制器和执行器。

传感器用于对系统输出进行测量,将测量结果转化为电信号输出;控制器接收传感器的信号,并根据预先设定的控制算法来产生控制信号;执行器接收控制信号,并将其转化为物理效应,对系统进行实际的控制。

自动控制原理还包括了一系列的数学和物理理论,如控制系统建模、控制器设计、稳定性分析等。

其中控制系统建模是将实际系统转化为数学表达式,使得可以通过数学方法进行分析和设计控制器;控制器设计则是根据系统的特性和控制要求,选择合适的控制算法,以实现对系统的调节和控制;稳定性分析是评估控制系统是否具有稳定性,即系统能否在有限的时间内达到稳定状态。

通过自动控制原理,可以实现对各种系统或过程的自动化控制,提高系统的稳定性、控制精度和响应速度,提高生产效率和质量,并节约人力、物力和能源。

相邻价态不发生氧化还原反应是指在相邻的两个价态之间不发生电荷的转移。

在氧化还原反应中,通常是由一个物质失去电子(被氧化)而另一个物质获得电子(被还原)。

当两个相邻价态之间电子的能量差较小,电子转移将变得困难,因此不会发生氧化还原反应。

相邻价态的例子包括高价态和低价态之间的转换,如Fe2+和Fe3+之间的转换;以及不同的氧化态之间的转换,如H2O和H2O2之间的转换。

当电子在这些相邻价态之间转移时,能量差较小,因此氧化还原反应通常是不利的。

然而,尽管相邻价态通常不发生氧化还原反应,仍然存在某些特殊情况下可能发生电荷转移的情况。

例如,在某些配位化合物中,中心金属离子的配位方式的变化可能导致相邻价态之间发生电荷转移。

此外,在特殊的催化剂或电化学系统中,通过提供外部条件(如应用电位或添加辅助物质)也可以促进相邻价态之间的电荷转移。

自动控制原理

自动控制原理

自动控制原理自动控制原理是控制工程的基础,它研究如何利用各种控制器和传感器对系统进行监测和调节,以实现系统的稳定性、精确性和可靠性。

自动控制原理广泛应用于各个领域,如工业生产、交通运输、航空航天、能源管理等。

1. 自动控制系统的基本概念自动控制系统由被控对象、传感器、执行器和控制器组成。

被控对象是需要控制的物理系统,传感器用于获取被控对象的信息,执行器用于执行控制指令,控制器则根据传感器的反馈信息对执行器进行控制。

2. 自动控制系统的闭环控制和开环控制闭环控制是指控制器通过传感器获取被控对象的反馈信息,并根据反馈信息进行控制,以实现系统的稳定性和精确性。

开环控制则是指控制器根据预先设定的控制指令对执行器进行控制,但无法对系统的实际状态进行监测和调节。

3. 自动控制系统的反馈控制和前馈控制反馈控制是指控制器通过传感器获取被控对象的反馈信息,并根据反馈信息进行控制。

前馈控制则是指控制器根据被控对象的数学模型和预先设定的控制指令对执行器进行控制,无需反馈信息。

4. 自动控制系统的控制方式自动控制系统的控制方式包括比例控制、积分控制、微分控制和模糊控制等。

比例控制是根据被控对象的误差和比例增益进行控制;积分控制是根据被控对象的误差累积值和积分增益进行控制;微分控制是根据被控对象的误差变化率和微分增益进行控制;模糊控制则是根据模糊逻辑和模糊规则进行控制。

5. 自动控制系统的稳定性和鲁棒性自动控制系统的稳定性是指系统在受到扰动时能够保持稳定的能力。

鲁棒性则是指系统对参数变化和外部干扰的抵抗能力。

稳定性和鲁棒性是自动控制系统设计中需要考虑的重要因素。

6. 自动控制系统的优化控制优化控制是指通过优化算法对控制器参数进行调整,以实现系统性能的最优化。

常用的优化算法包括遗传算法、粒子群算法和模拟退火算法等。

7. 自动控制系统的应用领域自动控制原理广泛应用于各个领域。

在工业生产中,自动控制可以提高生产效率和产品质量;在交通运输中,自动控制可以提高交通流量和安全性;在航空航天中,自动控制可以实现飞行器的稳定性和导航功能;在能源管理中,自动控制可以提高能源利用效率和节约能源。

自动控制原理

自动控制原理

自动控制原理
自动控制原理是一门研究如何通过控制器使系统自动实现某种期望状态或行为的学科。

在自动控制原理中,我们关注的是如何设计控制器,使得系统能够根据输入信号和反馈信号自动调节输出信号,以达到所期望的控制目标。

在自动控制原理中,常用的控制器有比例控制器、积分控制器和微分控制器。

比例控制器根据输入信号和反馈信号的差异比例调节输出信号。

积分控制器则通过将输入信号和反馈信号的累积误差积分起来,来调节输出信号。

微分控制器则通过计算输入信号和反馈信号的变化率,来调节输出信号。

在自动控制原理中,我们还关注系统的稳定性和动态响应。

稳定性是指系统在无干扰情况下,输出信号是否趋于稳定。

动态响应则是指系统在面对外部干扰或输入信号变化时,输出信号的变化情况。

通过分析系统的稳定性和动态响应行为,我们可以对系统进行优化和改进,以使其更好地满足控制要求。

除了常规的反馈控制方式,自动控制原理还包括了前馈控制和模糊控制等技术。

前馈控制是指根据已知输入信号的特征,提前对系统进行补偿,以减小系统的误差和响应时间。

模糊控制则是一种基于模糊逻辑的控制手段,它可以处理一些模糊信息和不确定性信息,使系统能够根据不完全准确的输入信号做出相对准确的控制决策。

总结来说,自动控制原理是一门研究系统如何通过控制器自动调节和控制输出信号的学科。

它涉及了控制器的设计、系统的
稳定性和动态响应分析,以及一些先进的控制技术。

通过应用自动控制原理,我们能够提高系统的效率、稳定性和可靠性,实现自动化控制,从而在工业和生活中发挥重要作用。

自动控制原理 理解

自动控制原理 理解

自动控制原理理解
自动控制原理是指利用各种控制器和执行器,通过对被控对象的测量、比较、判断和调节等过程,实现对被控对象的自动化调节和控制。


基本原理是反馈控制原理。

反馈控制原理是指通过对被控对象输出信号与期望值进行比较,得到
误差信号后再经过放大、滤波、积分等处理,最终产生一个修正信号,使被控对象的输出值向期望值靠近的过程。

自动控制系统通常由四个部分组成:传感器、执行器、控制器和反馈
环节。

其中传感器负责将物理量转换为电信号;执行器负责将电信号
转换为物理量;控制器负责处理误差信号,并产生修正信号;反馈环
节则将执行器输出的物理量再次转换为电信号,与期望值进行比较,
形成闭环反馈。

在自动控制系统中,常用的调节方法有比例调节、积分调节和微分调节。

其中比例调节是指根据误差大小来直接产生修正信号;积分调节
是指根据误差累积量来产生修正信号;微分调节是指根据误差变化率
来产生修正信号。

这三种调节方法可以单独使用,也可以组合使用,
以达到更好的控制效果。

自动控制系统广泛应用于工业生产、交通运输、环境保护、医疗卫生等领域。

其优点是能够减少人为干预,提高生产效率和质量,并且能够适应复杂多变的工作环境。

但同时也存在着一些缺点,如系统故障时难以维修和调试,需要专业技术人员进行操作等。

总之,自动控制原理是现代工业生产中不可或缺的重要技术之一。

通过对其原理的深入理解和应用,可以提高生产效率和质量,并为社会发展做出积极贡献。

自动控制原理

自动控制原理
如果某一月份或季度有明显的季节变化,则各期的季节指数 应大于或小于100%
季节周期性数据的分析方法
采用季节指数法消除季节变动以外的三个因素 同期平均法:现象不存在长期趋势或长期趋势不明显的情况
下,一般是直接用平均的方法通过消除循环变动和不规则变 动来测定季节变动 移动平均趋势剔除法:现象具有明显的长期趋势时,一般是 先消除长期趋势,然后再用平均的方法再消除循环变动和不 规则变动
▪ 北宋时期(公元1068-1089年)苏颂和韩公廉制成了一座水运 仪象台,它是一个根据被调节量偏差进行调节的闭环非线性自 动调节系统
▪ 古代罗马人依据反馈原理构建的水位控制装置,至今仍在抽水 马桶的水位控制中使用
▪ 1788年英国人瓦特(Watt)发明的控制蒸汽机速度的离心式调 速器,在自动控制装置中最具代表性,也对后世的自动控制技 术产生了深远的影响
季节周期性数据的分析——同期平均法
“同期平均”就是在同季(月)内“平均”,而在不同季(月)之间 “移动”的一种“移动平均”法
“平均”是为了消除非季节因素的影响,而“移动”则是为了 测定季节因素的影响程度
步骤如下:
➢ 第一,计算各年同季(季月节)指的数平(S均) 数同总月月((或或季季))平平均均数数 100% ➢ 第二,计算各年同季(或同月)平均数的平均数 ➢ 第三,计算季节比率
▪ 自动控制原理研究的是自动控制系统中的普遍性问题,首先研 究其组成和基本结构,然后建立控制系统的数学模型,在数学 模型的基础上便可以计算各个信号之间的定量关系,进而分析 出自动控制系统可否实现预定的控制目标,并研究怎样提高自 动控制系统的控制效果。
1.1 自动控制发 展简介
古代自动控制装置 经典控制理论 现代控制理论 智能控制理论

自动控制原理的原理及应用

自动控制原理的原理及应用

自动控制原理的原理及应用1. 前言自动控制原理是一门研究系统控制的学科,它通过对各种物理量进行感知、测量、比较和调整,实现对系统的自动化控制。

本文将介绍自动控制原理的基本原理和常见的应用。

2. 自动控制原理的基本原理自动控制原理是基于反馈原理的一种控制方法。

它通过传感器感知系统的实际状态,与期望状态进行比较,并根据比较结果调整系统的控制信号,使系统保持在期望状态。

自动控制原理的基本原理包括以下几个要素: - 传感器:用于感知系统的实际状态,并将其转化为电信号。

- 比较器:将传感器输出的实际状态与期望状态进行比较,产生误差信号。

- 控制器:根据误差信号调整控制信号,控制系统的行为。

- 执行器:根据控制信号执行相应的操作,调整系统参数。

3. 自动控制原理的应用自动控制原理广泛应用于各个领域,以下是几个常见的应用。

### 3.1 自动温度控制系统自动温度控制系统是自动控制原理的典型应用之一。

它通过感知室内的温度,并与设定的温度进行比较,调整空调或暖气的输出,使室内温度保持在设定的范围内。

自动温度控制系统包括以下几个组成部分:- 温度传感器:用于感知室内温度。

- 控制器:根据温度传感器的输出和设定的温度,调整空调或暖气的输出。

- 空调或暖气:根据控制器的输出调整制冷或加热效果。

3.2 自动流量控制系统自动流量控制系统用于实现对流体流量的自动控制。

它通过感知流体的流量并与设定的流量进行比较,调整阀门或泵的开度,使流体流量保持在设定的范围内。

自动流量控制系统包括以下几个组成部分: - 流量传感器:感知流体的流量。

- 控制器:根据流量传感器的输出和设定的流量,调整阀门或泵的开度。

- 阀门或泵:根据控制器的输出调整流体的流量。

3.3 自动化生产线自动化生产线是自动控制原理在制造业中的重要应用之一。

它通过传感器感知产品的状态,与期望状态进行比较,并根据比较结果调整机械臂、输送带等设备的运行,实现产品的自动化生产。

自动控制原理

自动控制原理

自动控制原理自动控制原理是指自动控制系统的基础理论,它涉及系统的输入、输出、感知、计算、控制以及操纵器的运行。

自动控制系统可以自动完成一定的任务,其主要任务是维护机器或设备的状态按照预定的期望。

自动控制系统不仅可以自动控制一个系统,还可以控制多个设备系统,以此完成系统控制。

因此,自动控制系统可以大大提高工作效率,是实现许多复杂任务的关键技术。

自动控制系统是基于控制理论而建立的,控制理论是由控制系统、传感器、控制器、输入输出单元和观测器组成的。

这些部件完成一系列功能,使系统实现自控的目的。

控制系统中的控制器是自动控制的核心元素,是控制系统的主要部件。

它类似于一个电脑,用来运算、求解控制系统的模型,并输出控制信号来更新系统的变量。

根据输出的控制信号,控制器可以控制系统的运行状态,从而实现系统自动控制。

传感器是控制系统的重要部件,它可以检测系统内的变量,将其变量值传递给控制器,使控制器能够更新系统的变量。

传感器的类型多种多样,如温度传感器、湿度传感器、变频器和光学传感器等。

输入输出单元可以控制系统的输入和输出。

它可以通过控制器调节系统的输入信号,并将系统的输出结果输出到外部。

观测器可以用来检测系统的运行状态,它可以实时监测系统的输入和输出,以便及时发现系统故障。

自动控制原理是由传感器、控制器、输入输出单元和观测器组成的,可以实现机器的自动控制,使机器的运行更加精确和高效。

自动控制原理的主要内容包括:系统输入输出的检测、控制原理的研究、控制器的设计和实现、控制系统的构建和控制系统在应用中的研究。

首先,我们要研究系统输入输出的检测,包括传感器、控制器以及输入输出单元的设计和实现。

其次,我们要研究系统的控制原理,研究不同控制系统的不同部件如何协同工作,控制系统的作用是维持系统的状态,而不是充当机器的器官。

最后,要研究自动控制系统在应用中的研究,解决不同系统在复杂环境中的控制问题,研究不同控制系统的抗干扰能力。

自动控制原理概述

自动控制原理概述

自动控制原理概述自动控制原理是指利用传感器、执行器和控制器等设备对系统进行监测和调节,实现系统自动化运行的一门学科。

它广泛应用于各个领域,如工业生产、交通运输、航空航天、能源等,对提高生产效率、降低成本、保障安全具有重要意义。

自动控制原理的核心在于反馈控制。

通过传感器获取系统的反馈信号,与期望值进行比较,然后通过控制器对执行器进行调节,使系统输出接近期望值。

这种反馈控制的基本原理被广泛应用于各种控制系统中。

自动控制原理的基本组成部分包括传感器、执行器和控制器。

传感器负责将系统的状态转化为电信号,如温度传感器、压力传感器、光电传感器等。

执行器负责根据控制信号进行相应的操作,如电动机、气动阀门、液压缸等。

控制器是自动控制系统的核心部分,负责对传感器信号进行处理,生成控制信号,实现系统的自动调节。

常见的控制器包括PID控制器、模糊控制器、神经网络控制器等。

自动控制原理中的PID控制器是最常见的一种控制器。

它基于比例、积分和微分三个控制参数,通过调整这三个参数的值来实现对系统的控制。

比例控制用于根据误差大小调整输出信号,提高系统的响应速度;积分控制用于消除系统的稳态误差,提高系统的稳定性;微分控制用于抑制系统的超调和震荡,提高系统的动态性能。

自动控制原理不仅可以实现对系统的稳态调节,还可以实现对系统的动态控制。

动态控制是指对系统的动态特性进行调节,以满足系统的动态性能要求。

常见的动态控制方法包括根轨迹法、频率响应法等。

根轨迹法通过绘制系统的根轨迹图来分析系统的稳定性和响应特性;频率响应法通过绘制系统的频率响应曲线来分析系统的频率特性和稳定性。

自动控制原理还涉及到系统建模和系统辨识。

系统建模是指将实际系统抽象为数学模型,以便对系统进行分析和设计。

常见的系统建模方法包括传递函数法、状态空间法等。

系统辨识是指根据系统的输入输出数据,估计系统的数学模型。

常见的系统辨识方法包括最小二乘法、系统辨识工具箱等。

自动控制原理的应用非常广泛。

自动控制原理_详解

自动控制原理_详解

自动控制原理_详解1.自动控制系统的基本概念自动控制系统包括被控对象、系统输入、系统输出、传感器、比例调节器、执行机构和控制器等组成。

其中,被控对象是指需要进行控制的设备或系统;系统输入是指作用于被控对象的控制变量;系统输出是指被控变量,即被控对象的输出信号;传感器是控制系统获取被控对象实际变量信息的设备,将它转换成合适的信号形式并送到比例调节器;比例调节器是根据传感器的信息对输入信号进行调整的设备;执行机构是能够对被控对象进行调节或操作的设备;控制器是自动调节执行机构的设备,通常包括比例、积分和微分三个部分,用于根据系统的反馈信息调整系统的输出信号,使系统达到稳定状态。

2.自动控制系统的分类根据控制方式的不同,自动控制系统可以分为开环控制系统和闭环控制系统。

开环控制系统是一种单向传递信号的控制系统,它不能对被控对象的输出进行监测和调整;闭环控制系统是一种能通过传感器对被控对象的输出进行监测并调整的控制系统。

3.自动控制系统的主要特性自动控制系统主要包括稳态误差、超调量、调节时间和稳态时间等特性。

稳态误差是指系统在达到稳态时输出与设定值之间的差异;超调量是指系统在调节过程中,输出扩大超过设定值的程度;调节时间是指系统从初始状态到达稳态之间所需要的时间;稳态时间是指系统从初始状态到达稳态所需的时间。

4.自动控制系统的控制方式根据控制策略的不同,自动控制系统可以分为比例控制、积分控制、微分控制和PID控制等。

比例控制是根据被控量与设定值之间的误差大小来调整输入信号的控制方式,其调整速度较快,但会导致系统产生稳态误差;积分控制是根据被控量与设定值之间的误差的时间积分来调整输入信号的控制方式,其能够消除稳态误差,但容易引起系统的超调;微分控制是根据被控量的变化率来调整输入信号的控制方式,其能够提高系统的响应速度,但容易引起系统的振荡;PID控制是综合了比例控制、积分控制和微分控制的控制方式,可以在稳态误差小、响应速度快和稳定性好之间进行折中。

自动控制原理

自动控制原理

自动控制原理
自动控制原理是研究自动化系统中信号处理、控制与调节的原理和方法。

它是现代工程技术中的一门重要学科,广泛应用于工业、军事、交通、能源等各个领域。

自动控制原理的核心是控制系统。

控制系统由输入、传递函数和输出组成。

输入是控制系统接收的信号,传递函数是描述输入与输出之间关系的数学模型,输出是控制系统输出的信号。

控制系统通过不断调节输出使其接近预期目标,达到控制的目的。

自动控制原理的基础是系统理论。

系统理论是研究系统结构、性能和行为规律的学科。

它包括系统模型的建立、系统稳定性分析、系统响应特性分析等内容。

系统理论为自动控制提供了理论依据和方法。

自动控制原理的方法主要包括经典控制方法和现代控制方法。

经典控制方法是指基于频域分析和时域分析的传统控制方法,如比例控制、积分控制、微分控制等。

现代控制方法是指基于状态空间分析和最优控制理论的控制方法,如状态反馈控制、最优控制、自适应控制等。

这些方法各有特点,可以根据不同的控制要求和系统特点选择合适的方法。

自动控制原理的研究内容还包括控制系统的设计和实现。

控制系统的设计涉及控制器的设计和参数调节,需要根据实际需求确定控制策略和参数值。

控制系统的实现包括硬件设计和软件编程,需要将控制算法转化为可执行的指令,并制备控制器硬
件进行实时控制。

总之,自动控制原理是对自动化系统中信号处理、控制与调节原理和方法的研究,包括控制系统、系统理论、控制方法、控制系统设计和实现等内容。

这门学科在工程技术中具有广泛应用,对提高生产效率和质量、提升系统性能和稳定性具有重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 s1 1 j, s2 1 j
10
0011 0010 1010 1101 0001 0100 1011
如果把不同K值 的闭环特征根布置在 s平面上,并连成线, 则可以画出如图所示 系统的根轨迹。
412 11
4-2 根轨迹方程
0011 0010 1010 1101 0001 0100 1011
极点数目之和应为 奇数。
证明:
设一系统开环零、 极点分布如图。
412 28
在实轴上任取一试验点s1 代入相角方程则
3
4
(s z ) (s p ) 0011 0010 1010 1101 0001 0100 1011
i
i
i 1
i 1
(s z1 ) (s z2 ) (s p1 )
1 (2k 1)
42 所以相角方程成立,即 s1是根轨迹上的点。
29
一般,设试验点右侧有L个开环零点,h个开环极
点,则有关系式
0011 0010 1010 1101 0001 0100 1011
l
h
(s zi ) (s pi ) (l h)
i 1
i 1
•如满足相角条件必有
1 (l h) (2k 1)
对应的 K* 值。
•根轨迹法可以在已知开环零、极点时,迅速求
1 出开环增益(或其他参数)从零变到无穷时闭环
42 特征方程所有根在复平面上的分布,即根轨迹。 24
4-3 绘制根轨迹的基本法则
0011 0010 一101、0 1根101轨00迹01 的010分0 1支011数
分支数=开环零点数m与开环极点 数n中的大者
起点 K * 0 → s pi 0 → s pi
终点 K* → s zi 0 → s zi
1 若开环零点数m < 开环极点数n
2 (有n m个开环零点在无穷远处)
4 则有(n m)条根轨迹趋于无穷远点 27
四、实轴上的根轨迹
实轴上根轨迹区段 0011 0的010右10侧10,110开1 0环00零1 0、100 1011
根轨迹法根据反馈控制系统的开、闭环传
递函数之间的关系,直接由开环传递函数零、 极点求出闭环极点(闭环特征根)。这给系
1 统的分析与设计带来了极大的方便。
2 根轨迹的作用:可看出参数变化对系
统性能的影响,是分析、设计线形定常
4 控制系统的一种图解方法,也是古典控
制理论解决问题的基本方法之一。 6
定义 0011 0010 1010 1:10根1 0轨001迹01是00 指101系1 统开环传递函数中某个参
1 统性能的影响。
2 求解闭环传递函数极点的困难: sn a1sn1 an1s an 0
4 高于2次的代数方程不存在一般的求根公式 5
1948年,W.R.Evans根据开环 和闭环传递函数的关系,提出了一 0011 0010 1010 1101 0001 0100 1011
种图示的求解方法:根轨迹法。
2 i1
i 1
4 k 0,1,2,
16
注意
0011 0010• 101模0 1值101方00程01 不010但0 1与011开环零、极点有关,还与开 环根轨迹增益有关;而相角方程只与开环零、 极点有关。 • 相角方程是决定系统闭环根轨迹的充分必要 条件。
1 • 在实际应用中,用相角方程绘制根轨迹,
二、根轨迹对称于实轴
1 闭环极点为
2 实数→在实轴上
4 复数→共轭→对称于实轴
返回子目录
25
三、根轨迹的起点与终点
0011 0010 1010 1101 0001 0100 1011
起于开环极点,终于开环零点。
由根轨迹方程有:
m
1 (s
i 1
2 n
(s
zi ) pi )
1 K*
4 i1
26
0011 0010 1010 1101 0001 0100 1011
第四章
根轨迹法41 2 0011 0010 1010 1101 0001 0100 1011
2022/3/23
1
第4章 根轨迹法
基本要求 0011 0010 1010 1101 0001 0100 1011 4-1 根轨迹与根轨迹方程 4-2 绘制根轨迹的基本法则 4-3 广义根轨迹
1 4-4 系统闭环零、极点分布与阶跃
数(如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动的轨迹。
•当闭环系统为正反馈时,对应的轨迹为零度
1 根轨迹;而负反馈系统的轨迹为180 根轨
42 迹。
返回子目录
7
例子
0011 0010 1010 1101 0001 0100 1011
1 • 如图所示二阶系统,系统的开环传递函数为:
2 G(s) K
41 2 5.了解绘制广义根轨迹的思路、要点和方法。 4
4-1 根轨迹的概念
• 0011 00求10 解101闭0 11环01 0传001递01函00 1数011极点的必要性:
– 判断系统的稳定性; – 研究系统瞬态响应的基本特征; – 系统结构、参数变化时,闭环极点的变
化情况,从而了解系统结构、参数对系
dB(s)
ds
K0
s s0
ds
0
s s0
412
35
0011 0010 1101G0(1s1)H01(s0)00100100 1011
G(s)H (s) KB(s) A(s)
A(s) KB(s) 0
K A(s) B(s)
1 dK A(s)B(s) A(s)B(s)
ds
[B(s)]2
01
0p021)01190
90
(2k 1)
22
(k 1)
以 s2为试验点,可得
(s1 p1 ) (s1 p2 ) 900 900
(2k 1)
22
(k=0)
421
图4-4
20
可见, s1, s2 都满足相角方程, s , s 0011 0010所10以10,1101 0001 0100 1点01是1 闭环极点。
4 s(0.5s 1) 8
•开环传递函数有两个极点 p1 0, p2 2 。
没有零点,开环增益为K。
0011 0010 1010 1101 0001 0100 1011
闭环传递函数为
(s)
C(s) R(s)
s2
2K 2s
2K
1 •闭环特征方程为 D(s) s2 2s 2K 0
42 •闭环特征根为 s1 1 12K,s2 1 12K
• 如图所示系统闭环传递函数为
(s) G(s)
1 G(s)H (s)
图4-3
421控制系统 12
• 闭环特征方程
0011 0010 101D0 1(1s0)1=0100+1 G010(0s1)0H11(s)=0
闭环极点就是闭环特征方程的 解,也称为特征根。 • 根轨迹方程
1 G(s)H(s)=-1
1
1 (s pi )
i 1
2 不难看出,式子为关于s的复数方程,因
4 此,可把它分解成模值方程和相角方程。
14
• 将开环传递函数G(s)H(s)表示为:
0011 0010 1010 1101 0001 0100 1011
m
m
K (is 1) K (s zi )
G(s)H(s)
i1 n
i1 n
2 而模 值方程主要用来确定已知根轨迹上某一点
4 的 K*值。 17
例4-1
0011 0010 1已01知0 11系01统00的01 开010环0 1传011递函数
G(s)H (s) 2K /(s 2)2
试证明复平面上点 s1 2 j4, s2 2 j4 是该系统的闭环极点。
1 证明: 该系统的开环极点
4 s(s 2) 31
按绘制根规迹法则逐步进行: ① 法则一,有两条根轨迹 0011 0010 1010 1101 0001 0100 1011
② 法则三,两条根轨迹分别起始于开环极点 0、-2,一条终于有限零点-1,另一条 趋于无穷远处。
1 ③ 法则四,在负实轴上,0到-1区间和-2 到负无穷区间是根轨迹。 42 最后绘制出根轨迹如图4-7所示。 32
412 根轨迹的会合点; 34
• 分离点与会合点的确定方法:
0011 0010 1010 1101 0001 0100 1011
1 G(s)H(s) 0
G(s)H (s) KB(s)
A(s) KB(s) 0
A(s)
设K=K0时,s0是重根,则有
A(s0 ) K0B(s0 ) 0
dA(s)
2 式中G(s)H(s)是系统开环传递函
数,该式明确表示出开环传递函数
4 与闭环极点的关系。 13
设开环传递函数有m个零点,n个极点,并假定 0011 001n0≥1m01,0 这110时1 式000(1 401-001120)11又可以写成:
m
(s zi )
G(s)H (s) K*
i 1 n
9
从特征根的表达式中看出每个特征根都随K的变化 而变化。例如,设
0011 0010 1010 1101 0001 0100 1011
K=0 s1 0, s2 2
K=0.5 K=1 K=2.5 K=+∞
s1 1, s2 1
1 s1 1 j, s2 1 j
2 s1 1 2 j, s2 1 2 j
1 3.正确理解根轨迹法则,法则的证明只需一般了解, 熟练运用根轨迹法则按步骤绘制反馈系统开环增益 42 K从零变化到正无穷时的闭环根轨迹。
返回子目录
3
相关文档
最新文档