Wang 2012 Nat Method lighton

合集下载

纳米银的研究进展

纳米银的研究进展

Hans Journal of Nanotechnology 纳米技术, 2012, 2, 50-57doi:10.4236/nat.2012.23010 Published Online August 2012 (/journal/nat.html)Research Progress of Nanosilver*Haoquan Zhong#, Weijie Ye#, Xiaoying Wang†, Runcang SunState Key Laboratory of Pulp & Paper Engineering, School of Light Industry and Food Sciences,South China University of Technology, GuangzhouEmail: †xyw@Received: May 28th, 2012; revised: Jun. 12th, 2012; accepted: Jun. 19th, 2012Abstract: This article introduces the preparation method of nanosilver material, including chemical reduction, physical reduction and biological reduction. In chemical reduction, the silver nitrate or silver sulfate and reducing agent react in the liquid phase, which can make the nanosilver with small size and good reproducibility. Physical reduction includes optical quantum reduction and microwave reduction, it has high efficiency and no hysteresis effects. Biological reduc-tion is the use of biological resources or natural materials for preparation of nanosilver, it shows great potential because of broad raw materials and green and mild reaction conditions. Moreover, the paper reviews the superior characteristics of nanosilver in thermal, optical, electrical, mechanical field, as well as its strong catalytic activity and antimicrobial properties. At last, we prospect the future development of nanosilver.Keywords: Nanosilver; Preparation Method; Application纳米银的研究进展*钟浩权#,叶伟杰#,王小英†,孙润仓华南理工大学轻工与食品学院,制浆造纸国家重点实验室,广州Email: †xyw@收稿日期:2012年5月28日;修回日期:2012年6月12日;录用日期:2012年6月19日摘要:本文介绍了纳米银材料的制备方法,主要包括化学还原法,物理还原法和生物还原法等。

具有超宽广的波长复用和解复用传统的阵列波导光栅(AWG)器件的多频段应用(IJISA-V4-N2-2)

具有超宽广的波长复用和解复用传统的阵列波导光栅(AWG)器件的多频段应用(IJISA-V4-N2-2)

I.J. Intelligent Systems and Applications, 2012, 2, 16-27Published Online March 2012 in MECS(/)DOI: 10.5815/ijisa.2012.02.02Ultra Wide WavelengthMultiplexing/Demultiplexing Conventional Arrayed Waveguide Grating (AWG) Devices forMulti Band ApplicationsAbd El–Naser A. Mohamed1, Ahmed Nabih Zaki Rashed2*, and Mahmoud M. A. Eid31,2,3Electronics and Electrical Communications Engineering DepartmentFaculty of Electronic Engineering, Menouf 32951, Menoufia University, EGYPT2*E-mail: ahmed_733@Abstract—This paper has proposed new materials based conventional arrayed waveguide grating (AWG) devices such as pure silica glass (SiO2), Lithium niobate (LiNbO3) , and gallium aluminum arsenide (Ga(1-x)Al(x)As) materials for multiplexing and demultiplexing applications in interval of 1.45 µm to 1.65 µm wavelength band, which including the short, conventional, long, and ultra long wavelength band. Moreover we have taken into account a comparison between these new materials within operating design parameters of conventional AWG devices such as diffraction order, length difference of adjacent waveguides, focal path length, free spectral range or region, maximum number of input/output wavelength channels, and maximum number of arrayed waveguides. As well as we have employed these materials based AWG to include Multi band applications under the effect of ambient temperature variations.Index Terms– Diffraction order; Multi band wavelengths; Ultra long wavelength band; Arrayed waveguide grating (AWG); Multiplexing/Demultiplexing applications.I.INTRODUCTIONThe increase on the demand of these services, related to the deregulation processes in USA and Europe in the telecommunications sector [1], has motivated the need of telecommunication transport networks with higher capacity and flexibility. Hence, the general trend in the all the disciplines of telecommunications in the last decade, has been the increase of the capacity and flexibility of existing networks, and the deployment of new networks to cope with the mentioned demand. Therefore, new technologies have appeared and been developed in this period. The discipline of photonics and fiber optic communications has attracted a lot of interest, and has been one of the fields with major increase during this period. Several photonics and optics technologies have made feasible the increase and development of the capacity and flexibility in existing and new telecommunications networks. Nevertheless, two optic technologies have been recognized as the main contributors. First, optical amplification, which has enabled optical fiber transmission systems with higher repeater spacing. Second [2], wavelength division multiplexing, WDM, which has been first used to increase the transmission capacity of point to point optical fiber links, by using serveral wavelengths in the same fiber, to transmit several independent information channels. Optical Raman, Erbium doped and semiconductor amplifiers can regenerate several optical channels at the same time, avoiding the demultiplexer and optoelectronic conversion of each one of the channels in a WDM technique [2, 3].Nevertheless, the use of multiple wavelengths within a fiber, i.e. WDM, has also revealed the possibility of what today is known as all-optical networks, in which the network operations are performed directly in the optical domain, without optoelectronic conversion. The latter has posed several challenges to optics engineers, which can be summarized in the following: the need to design components and systems capable of performing all-optical processing of WDM signals. The term processing encompasses several actions, as for instance generation, combination [4], separation and modification of WDM signals and the individual channels that form the WDM set. Accordingly, the improvement of already existing active and passive optical devices, and the creation of new ones has been a must to perform the mentioned processing. Hence, a lot of efforts have been invested by research institutions and companies to provide cheap devices for WDM applications to the telecommunications [5].In the present study, we have employed three different materials based conventional AWG for multi-wavelength bands for multiplexing and demultiplexing techniques for multi band applications. Also we are taken into account the physical operating parameters of materials based AWG over wide range of the affecting parameters under the temperature variations from room temperature to 65 ºC.II.G ENERAL D ESCRIPTION OF C ONVENTIONAL AWGM ODELAWG is an optical device that can separate the channels of a WDM set, or if operated reversely, combine channels of different wavelengths to form a WDM set, as shown in Fig. 1. (a). From left to right in the figure, the channels in the input port are separated to the output ports. Conversely, the device operation can be described from right to left. The channels with different17Ultra Wide Wavelength Multiplexing/Demultiplexing Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band Applicationswavelengths present as inputs in the ports at the right hand side of the device, are combined in the port on the left hand side. AWG is the wavelength dependency, together with spatial separation/combination. In fact [6], the AWG can be regarded as having a bank of pass band filters, where each filter allows a channel to pass depending on its wavelength is represented in Fig. 1. (b). Thus, the basic application of an AWG is the combination and separation of wavelengths, multiplexer and demultiplexer respectively. The AWG is a passive optical component, and the WDM channels experience some insertion loss, as in other type of optical filters.Fig. 1. Separation/combination of channels from/to a WDM set with an AWG (a), and illustration of the AWG as a bank of pass bandfilters (b).The number of WDM channels that an AWG can handle, and their spacing, depends on the design of the device. The internal construction of an AWG is based in optical waveguides laid over a solid substrate. Hence, the AWG is an integrated-optic component belonging to the family of planar devices, known as Planar Light wave Circuits, PLC. The waveguide arrangement is shown in Fig. 2. There are input waveguides that may be connected to fibers. The light at the input, formed by several wavelengths, is coupled to the arrayed waveguides by means of a slab coupler, which is also known as free propagation region.Fig. 2. AWG waveguide layout.The arrayed waveguides have different lengths, specifically; the path length difference between adjacent waveguides is constant. The different wavelengths of the light experience different phase changes within the arrayed waveguides. The latter, combined with the second slab coupler, produces the spatial separation of the wavelengths composing the light incoming to the device [7].III. M ODELING B ASICS AND A NALYSISIII. 1. M ATERIALS BASED ARRAYED WAVEGUIDE GRATINGA) P URE SILICA GLASS (S I O2) BASED MATERIALThe refractive index of this waveguide is cast under the Sellemier equation as the following [8]:26225242232222121A A A A A A n −+−+−+=λλλλλλ(1)The set of parameters is recast and dimensionally adjusted as: A 1= 0.691663, A 2=a 2T; a 2 = (0.0684043/T o ), A 3= 0.4079426, A4=a 4T; a 4 = (0.1162414/T 0), A 5= 0.8974794, and A 6=a 6T; a 6 = (9.896161/T 0). Where T is the temperature of the material in ºC, T 0 is the room temperature and is considered 25 ºC. Then the differentiation of Eq. (1) w. r. t operating wavelength λ yields:()n d dn λλ−=()()()⎥⎥⎦⎤⎢⎢⎣⎡−+−+−226226522422432222221.A A A A A A A A A λλλ (2)Ultra Wide Wavelength Multiplexing/Demultiplexing18 Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band ApplicationsThe differentiation of Eq. (1) w. r. t T gives:()n dT dn2λ=()()()⎥⎥⎦⎤⎢⎢⎣⎡−+−+−226266522424432222221.A a A A A a A A A a A A λλλ (3)B) L ITHIUM NIOBATE (L I N B O 3) BASED MATERIAL The refractive index of this waveguide is cast underthe Sellemier equation as the following [9]:2109876543212)(λλλB B MB B M B B MB B M B B n −−+++−+++=(4)The set of parameters is dimensionally adjusted as: B 1=5.35583, B 2=4.629x10-7, B 3=0.100473, B 4=3.862x10-8, B 5=0.20692, B 6= -0.89x10-8, B 7=100, B 8=2.657x10-5, B 9=11.34927, B 10=0.015334, and M= (T-T o ). (T+570.82). Equation (4) can be simplified as:21029278256234122λλλB B B B B B n −−+−+= (5)Where B12=B 1+(B 2M), B 34=B 3+(B 4M); B 56=B 5+(B 6M),and B 78=B 7+(B 8M). Differentiation of Eq. (5) w. r. t λ yields:()⎥⎥⎦⎤⎢⎢⎣⎡+−+−−=102292782256234)()(B B B B B n d dnλλλλ (6) The differentiation of Eq. (5) w. r. t T gives:()⎥⎦⎤⎢⎢⎣⎡−+−+−+=)()()2()(2/29282256256346256242B B B B B B B B B n dT dM dT dn λλλ(7) Where (dM/dT)=2T+(570.82-T o ).C) G ALLIUM ALUMINUM ARSENIDE (G A (1-X )A L (X )A S )BASED MATERIAL Parameters required to characterize the temperature and operating wavelength dependence of the refractive-index, where Sellmeier equation is under the form of [10]:2432212λλC C C C n −−+= (8)The set of parameters is recast and dimensionally adjusted as [8]: C 1= 10.906-2.92x, C 2= 0.97501, C 3=c 3T 2; c 3= (0.52886-0.735x/T o )2, for x < 0.36. And C 4=c 4 (0.93721+ 2.0857x10-4T); c 4=0.002467(1.14x+1). Differentiation of Eq. (8) w. r. t λ gives: ()()⎥⎥⎦⎤⎢⎢⎣⎡+−−=42322C C C d dnλλλ (9) The differentiation of Eq. (8) w. r. t T gives:()()⎥⎥⎦⎤⎢⎢⎣⎡×−−=−)100857.2(22124423223λλc C T C c n dT dn (10)III. 2. O PERATING PARAMETERS OF AWGWe expressed the corresponding grating order a function of operating wavelength range according to its band applications for a certain spectrum range as [11]:,λλλ−=f m (11)Where m is the diffraction order, λ is the operating wavelength, λf is the final wavelength. The diffraction order is an important parameter. Once the diffraction order m is determined, some other parameters of the AWG device are also determined, such as the length difference of adjacent waveguides, focal length of the slab optical waveguide, free spectral range, maximum number of input/output wavelength channels, and number of the arrayed waveguides. The path length difference between adjacent arrayed optical waveguides ΔL is given by [12]:,0nm L λ=Δ(12)Where, n is the refractive-index of AWG, and λ0 is thecenter wavelength of the arrayed waveguide in μm. The focal length of slab waveguide (L f ) is given by the following equation [12]:,2gs f n m n d n L λΔ=(13)Where n s is the effective index of the slab waveguide, d isthe pitch length of adjacent input/output channels and arrayed waveguides in μm, Δλ is the wavelength channel spacing in nm, and n g is the group refractive index and is given as the following:,0λλd dn n n g −=(14)An important property of the AWG is the free spectral range (FSR), also known as the demultiplexer periodicity. This periodicity is due to the fact that constructive interface at the output free spectral range or region can occur for a number of wavelengths. The free spectral range denotes the wavelength and frequency spacing between the maximum of the interface pattern because of the periodic characteristic of the AWG transfer function, and can be [12]:,0gn m n FSR λ=(15)The maximum number of I/O wavelength channels N maxdepends on the FSR. The bandwidth of the multiplexed light, that is N max Δλ must be narrow than an FSR to prevent the overlapping of orders in the spectral region. Therefore, N max can be derived as follows [12]: ,int max ⎟⎠⎞⎜⎝⎛Δ=λFSR eger N (16) The number of the arrayed waveguides P is not a dominant parameter in the AWG design because thewavelength channel spacing Δλ and maximum number ofwavelength channels N max do not depend on it. Generally, P is selected so that the number of the arrayed waveguides is sufficient to make the numerical aperture (NA), in which they form a greater number than the input/output waveguides, such that almost all the light diffracted into the free space region is collected by thearray aperture. As a general rule, this number should be bigger than four times the number of wavelength channels [13, 14]:.int 4⎟⎠⎞⎜⎝⎛Δ=λFSR eger P(17)19Ultra Wide Wavelength Multiplexing/DemultiplexingConventional Arrayed Waveguide Grating (AWG) Devices for Multi Band ApplicationsIV.S IMULATION R ESULTS AND D ISCUSSIONSWe have investigated the new materials basedarrayed waveguide grating optical devices for multi-bandmultiplexing/demultiplexing applications. In fact, theemployed software computed the variables under thefollowing operating parameters, for temperaturevariations from T=25 ºC to T=65 ºC. and also underdifferent channel spacing ∆λ=0.4 nm and ∆λ=0.2nm.Table1. Typical values of operating parameters in proposed model [13].Operating parameter Symbol ValueFinal wavelength λf 1.65μmCenter wavelength λ0 1.55 μmPitch length d 15 μmSlab refractive-index n s 3.06A) Variations of the diffraction orderVariations of the diffraction order m are investigatedagainst variations of the controlling set of parameters asdisplayed in Fig. 3 for all materials used in our research(SiO2, LiNbO3 ,Ga(1-x)Al x As). This figure clarifies thatwhile operating wavelengthλ increases, this leads todiffraction order m also increases at the assumed set ofthe operating parameters.B) Variations of the path length difference betweenadjacent arrayed waveguidesVariations of ΔL are investigated against variationsof the controlling set of parameters as displayed in Fig. 4for all material used in our research (SiO2, LiNbO3, Ga(1-x)Al x As ). This figure clarifies the following results:i. As diffraction order m increases this results in pathlength difference ΔL also increases for all materials based conventional AWG.ii. For certain value of diffraction order m, the value of path length difference ΔL for SiO2 is the largest than LiNbO3 and Ga(1-x)Al x As.C)Variations of the free spectral rangeVariations of FSR, are investigated againstvariations of the set of parameters as displayed in Figs. (5, 6) for all materials used in research (SiO2, LiNbO3, Ga(1-x)Al x As ). These figures clarify the following results:i. As diffraction order m increases, FSR decreases forall materials based conventional AWG.ii. For certain value of diffraction order m, value of FSR for SiO2 is larger than LiNbO3 and Ga(1-x)AlxAs.iii. As ambient temperature T increases, FSR decreases for all materials, but in the case of using Ga(1-x)AlxAs there was significant decreasing.D) Variations of the path focal length of slabwaveguideVariations of path focal length L f, are investigatedagainst variations of the controlling set of parameters as displayed in Figs. (7-10) for all material used in our research (SiO2, LiNbO3, Ga(1-x)Al x As ). These figures clarify the following results:i. As diffraction order m increases, this results indecreasing of path focal length of slab waveguide forall materials based conventional AWG.ii. For certain value of diffraction order m, value of path focal length of slab waveguide for SiO2 is thelargest than LiNbO3 and Ga(1-x)Al x As.iii. As ambient temperature T increases, this leads to decrease in path focal length for all materials, but inthe case of using Ga(1-x)Al x As there was significantdecreasing.iv. As channel spacing Δλ decreases, this results in increasing path focal length of slab waveguide for allmaterials based conventional AWG.E) Variations of maximum number of I/O wavelengthchannelsVariations of N max, are investigated against variations of the assumed set of parameters as displayed in Figs. (11-14) for all materials based conventional AWG devices in our research (SiO2, LiNbO3, Ga(1-x)Al x As). These figures clarify the following results:i. As diffraction order m increases, this results inmaximum number of transmitted channels N maxdecreases for all materials based conventional AWGdevices.ii. For certain value of diffraction order m, SiO2 basedAWG presents the largest number of transmitted channels than LiNbO3 and Ga(1-x)Al x As.iii. As ambient temperature T increases, this leads to decrease in number of transmitted channels N max forall materials, but in the case of using Ga(1-x)Al x As,there was significant decreasing.iv. As channel spacing Δλ decreases, this results in increasing number of transmitted channels for all materials based conventional AWG.F) Variations of number of the arrayed waveguidesVariations of P, are investigated against variations of the controlling set of parameters as displayed in Figs. (15-18) for all materials used in our research (SiO2, LiNbO3, Ga(1-x)Al x As). These figures clarify the following results:i. As diffraction order m increases, this leads todecrease in number of arrayed waveguides for all used materials.ii. For certain value of diffraction order m, number ofarrayed waveguides for SiO2 is the largest than LiNbO3 and Ga(1-x)Al x Asiii. As ambient temperature T increases, this results indecreasing number of arrayed waveguides for all materials, but in case of using Ga(1-x)Al x As there wassignificant decreasing.Ultra Wide Wavelength Multiplexing/Demultiplexing20Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band Applications21 Ultra Wide Wavelength Multiplexing/DemultiplexingConventional Arrayed Waveguide Grating (AWG) Devices for Multi Band ApplicationsUltra Wide Wavelength Multiplexing/Demultiplexing22Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band Applications23 Ultra Wide Wavelength Multiplexing/DemultiplexingConventional Arrayed Waveguide Grating (AWG) Devices for Multi Band ApplicationsUltra Wide Wavelength Multiplexing/Demultiplexing24Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band Applications25Ultra Wide Wavelength Multiplexing/DemultiplexingConventional Arrayed Waveguide Grating (AWG) Devices for Multi Band Applicationsiv. As channel spacing Δλ decreases, this leads to increase number of arrayed waveguides for all use materials.Ultra Wide Wavelength Multiplexing/Demultiplexing26Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band ApplicationsG) Variations of the refractive indexVariations of refractive-index n, are investigated against variations of the controlling set of parameters as displayed in Figs. (19-21) for all materials based conventional AWG devices (SiO2, LiNbO3, Ga(1-x)Al x As). These figures clarify the following results:i. As diffraction order m increases, refractive index ndecreases for all used materials.ii. For certain value of diffraction order m and ambient temperature T, the refractive index n for SiO2 isthe lowest than LiNbO3 and Ga(1-x)Al x As.iii. As ambient temperature T increases, refractive indexn increases for all materials based conventionalAWG.H) Variations of dn/dTVariations of dn/dT are investigated against variations of the controlling set of parameters as displayed in Figs. (22-24) for all materials based conventional AWG devices (SiO2, LiNbO3, Ga(1-x)Al x As). These figures clarify the following results:a) Within the effect of ambient temperature:i. For SiO2: As ambient temperature T increases,rate of change of refractive-index with respect totemperature dn/dT decreases exponentially untilreach to approximate value of 39 °C, as well asthere is slightly decreasing until reaches toapproximate value of 51 °C, and after that there isexponential increasing.ii. For LiNbO3: As ambient temperature T increases,rate of change of refractive-index with respect totemperature dn/dT increases linearly.iii. For Ga(1-x)AlxAs: As ambient temperature Tincreases, rate of change of refractive-index withrespect to temperature dn/dT increasesexponentially.b)W ithin the effect of wavelength at certaintemperature:i. For SiO2: As operating signal wavelength λincreases, dn/dT also increases exponentially untilreaches to approximate value of 39 °C , and afterthat as λ increases, dn/dT decreases exponentially.ii. For both LiNbO3 & Ga(1-x)Al x As: As operatingwavelength λ increases, dn/dT decreases.V. ConclusionsIn a summary, we have investigated the ultra wide wavelength multiplexing/demultiplexing conventional AWG for multi band applications. It is observed that the increased diffraction order, the decreased refractive index for all materials based AWG devices. We have indicated that the increased of both ambient temperature and diffraction order, the decreased number of arrayed waveguides. As well as the decreased of ambient temperature, channel spacing, and diffraction order, this results in increasing of number of input/output wavelength channels. Moreover we have observed that SiO2 based material for AWG devices presents the highest number of transmitted channels than the other materials based conventional AWG. So SiO2 material based for conventional AWG is the best candidate for core material than the other materials used in our research.REFERENCES[1] Abd El-Naser A. Mohammed, Gaber E. S. M. El-Abyad,Abd El-Fattah A. Saad, and Ahmed Nabih Zaki Rashed, “High Transmission Bit Rate of A thermal Arrayed Waveguide Grating (AWG) Module in Passive Optical Networks,” IJCSIS International Journal of Computer Science and Information Security, Vol. 1, No. 1, pp. 13-22,May 2009.[2] H. Kosek, Y. He, X. Gu, and X. Fernando, “All OpticalDemultiplexing Closely Spaced Multimedia Radio Over Fiber Signals Using Subpicometer Fiber Bragg Grating,”Journal of Lightwave Technology, Vol. 13, No.4, pp. 191-200, 2006.[3] J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “FiberDispersion Influence on Transmission of the Optical Millimeter Waves Generated Using LN-MZM Intensity Modulation,” J. of Ligthwave Technol., Vol. 25, No. 2, pp.3244–3256, 2007.[4] Yang, Y., C. Lou, H. Zhou, J. Wang, and Y. Gao, “Simplepulse compression scheme based on filtering self-phase modulation broadened spectrum and its application in an optical time-division multiplexing systems,” Appl. Opt., Vol. 45, 7524–7528, 2006.[5] S. Sawetanshumala, and S. Konar, “Propagation of amixture of Modes of A laser Beam in A medium With Securable Nonlinearity,” Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, pp. 65–77, 2006. [6] R. Gangwar, S. P. Singh, and N. Singh, “Soliton BasedOptical Communication,” Progress In Electromagnetics Research, PIER Vol. 74, No.3, pp. 157–166, 2007.[7] A. Sangeetha , S. K. Sudheer, and K. Anusudha,“Performance Analysis of NRZ, RZ, and Chirped RZ Transmission Formats in Dispersion Managed 10 Gbit/secLong Haul WDM Lightwave Systems,” International Journal of Recent Trends in Engineering, Vol. 1, No. 4, pp.103-105, May 2009.[8] ITU-T, series G, “General aspects of optical fiber cable,” pp.10-11, 2009.[9] D. H. Jundt, “Temperature-dependent Sellmeier equation forthe index of refraction, n e, in congruent lithium niobate,”Optics Letters, Vol. 22, No. 20, pp.1553-1555, 1997. [10] Osama A. Oraby, “Propagation of An ElectromagneticBeams in Nonlinear Dielectric Slab Wave Guides,”Minufiya Journal of Electronic Engineering Research, Vol.16, No. 1, pp. 27-44, 2006.[11] J. Qiao, F. Zhao, J. W. Horwitz, R. T. Chen, and W. W.Morey “A thermalized Low Loss Echelle Grating Based Multimode Dense Wavelength Division Multiplexer,” J.Applied Optics, Vol. 41, No. 31, pp. 6567-6575, 2002. [12] Abd El-Naser A. Mohammed, Abd El-Fattah A. Saad, andAhmed Nabih Zaki Rashed, “Matrices of the Thermal andSpectral Variations for the fabrication Materials Based Arrayed Waveguide Grating Devices,” International Journal of Physical Sciences, Vol. 4, No. 4, pp. 205-211,April 2009.[13] Abd El-Naser A. Mohammed, Abd El-Fattah A. Saad, andAhmed Nabih Zaki Rashed, “Estimated Optimization Parameters of Arrayed Waveguide Grating (AWG) for C-Band Applications,” International Journal of Physical Sciences, Vol. 4, No. 4, pp. 149-155, April 2009.[14] Abd El-Naser A. Mohammed, Abd El-Fattah A. Saad, andAhmed Nabih Zaki Rashed, “Thermal SensitivityUltra Wide Wavelength Multiplexing/Demultiplexing27 Conventional Arrayed Waveguide Grating (AWG) Devices for Multi Band ApplicationsCoefficients of the Fabrication Materials Based A thermalArrayed Waveguide Grating (AWG) in Wide Area DenseWavelength Division Multiplexing Optical Networks,”International Journal of Engineering and Technology(IJET), Vol. 1, No. 2, pp. 131-139, June 2009.Author’s ProfileDr. Ahmed Nabih Zaki Rashed wasborn in Menouf city, Menoufia State,Egypt country in 23 July, 1976.Received the B.Sc., M.Sc., and Ph.D.scientific degrees in the Electronicsand Electrical CommunicationsEngineering Department from Facultyof Electronic Engineering, MenoufiaUniversity in 1999, 2005, and 2010respectively. Currently, his job carrieris a scientific lecturer in Electronicsand Electrical Communications Engineering Department,Faculty of Electronic Engineering, Menoufia university,Menouf. Postal Menouf city code: 32951, EGYPT.His scientific master science thesis has focused on polymerfibers in optical access communication systems. Moreover hisscientific Ph. D. thesis has focused on recent applications inlinear or nonlinear passive or active in optical networks. Hisinteresting research mainly focuses on transmission capacity, adata rate product and long transmission distances of passiveand active optical communication networks, wirelesscommunication, radio over fiber communication systems, andoptical network security and management. He has publishedmany high scientific research papers in high quality andtechnical international journals in the field of advancedcommunication systems, optoelectronic devices, and passiveoptical access communication networks. His areas of interestand experience in optical communication systems, advancedoptical communication networks, wireless optical accessnetworks, analog communication systems, optical filters andSensors, digital communication systems, optoelectronicsdevices, and advanced material science, network managementsystems, multimedia data base, network security, encryptionand optical access computing systems. As well as he is editorialboard member in high academic scientific International researchJournals. Moreover he is a reviewer member in high impactscientific research international journals in the field ofelectronics, electrical communication systems, optoelectronics,information technology and advanced optical communicationsystems and networks. His personal electronic mail ID (E-mail:ahmed_733@).。

miRNA使用说明

miRNA使用说明

miRNA产品使用说明RN:R10034.6 产品简介micr ON™ miRNA mimic是miRNA模拟物,化学合成的成熟miRNA双链,即用型;micr OFF™ miRNA inhibitor是miRNA抑制物,化学修饰的成熟miRNA互补单链,即用型;micr ON™ miRNA agomir是特殊化学修饰的miRNA 激动剂,适用于细胞实验、动物实验,即用型;micr OFF™ miRNA antagomir是特殊化学修饰的miRNA 拮抗剂,适用于细胞实验、动物实验,即用型。

运输保存产品以冻干粉的形式,常温运输。

收到产品后,请于-20℃~-80℃保存,冻干粉可以稳定保存一年。

使用前瞬时离心,用RNase-free HO或灭菌2ddH2O,配制成20μM储存液,分装保存,避免反复冻融(不超过5次)。

表1 20μM储存液的配置参考注:如需进行高内涵筛选试验,可选择miRNA Library。

使用前须知为避免外界因素(包括酶,极端pH或者温度条件等)导致产品降解,所有操作请严格遵循RNA操作规则。

实验过程中,产品最好于冰上放置,使用完毕后请于-20℃~-80℃小心保存。

细胞实验方法:为了降低细胞密度、试剂用量,转染效率等因素导致的孔间差异,保证实验的可靠性和可重复性,一般建议:1)转染实验中每个转染样品至少设置3个复孔;2)接种细胞时,每孔接种的细胞数量尽量保持一致,且细胞在各孔的表面平均分布。

1. 转染浓度miRNA产品最佳工作浓度因不同的细胞类型及研究目的而异。

锐博生物推荐的miRNA mimic初始浓度为50nM,miRNA inhibitor浓度为100nM,客户可根据实验具体情况优化转染浓度,优化的范围建议为10~200nM。

注:miRNA inhibitor往往需要用到较大的用量才能观察到较好的抑制效果,相当于miRNA mimic的几倍用量,这可能与miRNA inhibitor竞争性抑制的作用机制及作用效率有关。

磷酸铁锂电池材料知识演进及发展趋势的可视化分析

磷酸铁锂电池材料知识演进及发展趋势的可视化分析

第42卷第3期2023年3月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.3March,2023磷酸铁锂电池材料知识演进及发展趋势的可视化分析高档妮1,郭宏伟2,王㊀毅2,白㊀赟2,高依博2(1.陕西科技大学图书馆,西安㊀710021;2.陕西科技大学材料科学与工程学院,西安㊀710021)摘要:本文从文献计量分析视角出发,对磷酸铁锂(LiFePO 4,LFP)电池材料研究领域的SCI-E 论文进行梳理分析㊂利用CiteSpace6工具,基于SCI-E 数据库构建了LFP 电池材料研究领域的突显词时区图谱和关键词聚类可视化知识图谱,探究了LFP 电池材料知识演进及可视化发展趋势㊂通过LFP 电池材料突显词时区图谱,发现LFP 电池材料的知识演进路径由制备方法延伸至应用领域的性能研究,最后到退役LFP 电池材料的回收再利用㊂通过LFP 电池材料关键词聚类可视化知识图谱发现,LFP 电池材料的代表性发展趋势涉及动力电池性能提升技术㊁退役电池回收再利用和电池在线热失控管理等㊂关键词:磷酸铁锂电池材料;知识演进;突显词时区图谱;聚类可视化知识图谱中图分类号:TM912㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)03-1086-10Visualization Analysis of Knowledge Evolution and Development Trend for Lithium Iron Phosphate Battery MaterialsGAO Dangni 1,GUO Hongwei 2,WANG Yi 2,BAI Yun 2,GAO Yibo 2(1.Library,Shaanxi University of Science and Technology,Xi an 710021,China;2.School of Materials Science and Engineering,Shaanxi University of Science and Technology,Xi an 710021,China)Abstract :The SCI-E papers in the field of lithium iron phosphate (LiFePO 4,LFP)battery materials were sorted out and analyzed in this article from bibliometric analysis ing CiteSpace6tool,based on SCI-E database,the highlight word time zone map and keyword clustering visualization knowledge map of LFP battery materials were constructed,simultaneously exploring the knowledge evolution and visualization development trend of LFP battery materials.Through LFP battery materials highlight word time zone map,the knowledge evolution path of LFP battery materials extends from preparation method to the performance research in application field,and finally to the recycling of spent LFP battery materials.According to keyword clustering visualization knowledge map,the development trend was obtained.The representative development trends of LFP battery materials involve power battery performance improvement technology,spent battery recycling and battery online thermal runaway management.Key words :lithium iron phosphate battery material;knowledge evolution;highlight word time zone map;clustering visualization knowledge map 收稿日期:2022-12-22;修订日期:2023-01-05基金项目:国家重点研发计划(2017YFB0310201)作者简介:高档妮(1981 ),女,博士研究生㊂主要从事材料科学学科数据分析方面的研究㊂E-mail:gaodangni@ 0㊀引㊀言随着人类文明不断发展,能源与环境问题日益严峻,电动车实现了路面零排放和低能耗[1]㊂商业化锂动力电池中应用最广的是三元锂电池和磷酸铁锂(LiFePO 4,LFP)电池[2]㊂三元锂电池以镍钴锰酸锂㊁镍钴铝酸锂为正极材料,虽然较高的能量密度能带来超长续航,但因为钴资源稀缺和成本高,三元锂电池日益被LFP 电池替代[3]㊂以LFP 为正极材料的LFP 电池是由Pahdi 等[4]提出的,之后国内外学者进行了大量研究,电池的低温性能和倍率放电等问题得到有效解决,目前LFP 电池已经具有优良的循环性能㊁较低的发热量㊁第3期高档妮等:磷酸铁锂电池材料知识演进及发展趋势的可视化分析1087㊀良好的热稳定性和环境安全性等特点,在国内市场占据主导地位㊂有关LFP 电池材料的研究成果也颇为丰硕,因此有必要对这方面做一个梳理总结㊂随着信息可视化技术日益成熟,伴之出现的知识图谱绘制工具也层出不穷,其中CiteSpace6可视化工具成为目前流行工具之一㊂鉴于CiteSpace6工具得出的可视化图谱可直观反映某一研究领域知识演进和热点前沿的发展趋势[5],国内学者借助CiteSpace6工具对锂离子电池用低温电解液[6]㊁退役锂电池回收[7]㊁电动汽车充电负荷[8]等领域的发展趋势和前沿动态进行了分析㊂但是鲜有文献利用CiteSpace6工具对LFP 电池材料研究领域的文献信息做出总体分析㊂本文从文献信息分析角度,以Web of Science (WOS)核心合集为数据源,采用查全率和查准率更高的数据检索策略,获得LFP 电池材料研究领域文献数据,利用CiteSpace6构建LFP 电池材料研究领域的作者和文献共被引图谱㊁突显词时区演进和关键词聚类可视化知识图谱,通过对图谱进行多维度深入剖析,将LFP 电池材料的知识演进路径㊁研究规律和发展态势可视化地呈现给学术研究者,为后续LFP 电池材料研究及商业化应用提供参考,为信息分析工作者提供新的可视化思路㊂1㊀数据来源与研究方法本文所涉及的数据来源于WOS 核心合集中的Science Citation Index Expanded (SCI-E)数据库㊂为全面了解LFP 电池材料知识演进过程,数据检索时间范围定为1985年1月1日至2022年10月30日㊂以LiFePO 4㊁LFP㊁lithium iron phosphate㊁cathode㊁battery 为检索词进行检索,导出其全记录格式题录信息㊂检索结果经过筛选㊁去重等数据清洗处理,最终获取到4042篇文献㊂本文以CiteSpace6为研究工具,以共被引分析㊁突显词分析㊁关键词聚类分析以及内容分析等为主要研究方法,对上述途径获取的LFP 电池材料研究领域的SCI-E 文献进行突显词探测分析,以构建LFP 电池材料突显词时区演进图谱㊁关键词聚类可视化知识图谱㊂共被引分析可在海量参考文献中高效便捷地定位出研究领域重要的研究者和知识基础,即核心作者和经典文献;对文献之间的关联性和发展脉络进行分析和挖掘,可在一定程度上体现出某些作者和参考文献的学术影响力㊂突显词分析是利用突显算法监测出频次变化率高㊁频次增长速度快的主题词,进而识别出代表研究前沿的若干主题,相较于词频高低的分析,更能帮助科学工作者快速㊁直观㊁便捷地发现该学科领域的知识演进㊂关键词聚类分析是根据关键词的共现情况,将联系紧密的关键词归纳总结成一个个小团体,并根据主题在聚类可视化知识图谱中给出聚类标签㊂在分析各聚类包含主题词的同时,对关键文献进行必要的内容分析,使得出的研究热点和发展趋势更接近实际情况㊂2㊀结果与讨论图1㊀LFP 电池材料研究发表年代分布Fig.1㊀Time distribution of research on LFP battery materials 2.1㊀年代分布文献发表数量是衡量一个研究领域发展情况的重要指标㊂LFP 电池材料的SCI-E 文献发表年代分布如图1所示㊂由图1可以发现,有关LFP 电池材料的文献首次出现在1997年,随后LFP 电池材料的发展经历了起步㊁快速增长㊁稳定研究三个阶段㊂1)起步阶段(1997年至2009年)㊂从文献数量上来看,此阶段LFP 电池材料的研究文献总量为591篇,年平均发文量约为46篇,发展缓慢,但已经引起了学者的广泛关注,文献数量逐年持续增长㊂2)飞速增长阶段(2010年至2013年)㊂此阶段文献总量为1529篇,逐年快速增长,且增幅较大,年平均发文量约为293篇㊂由此可见,LFP 电池材料的研究取得了较大进展,且持续升温,越来越多的学者加入到LFP 电池材料的研究当中,LFP 电池材料的研究进入1088㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷了一个飞速发展的阶段㊂3)稳定研究阶段(2014年至2022年)㊂此阶段研究LFP 电池材料的文献总量为2280篇,年平均发文量约为253篇,分布均匀,但论文数量比飞速增长阶段有所下降,可能由于LFP 电池材料的基础研究趋于成熟之后,进入商业化应用,因此基础研究论文相应减少㊂每年发文量没有特别明显的起伏现象,说明LFP 电池材料发展过程平稳,每年的研究成果仍保持在一个稳定的状态㊂这与国家对碳排放标准的严格要求以及电动车需求增多都有着密切的联系,未来一段时间内LFP 电池材料仍备受人们青睐㊂2.2㊀国家分布图2㊀LFP 电池材料研究国家分布Fig.2㊀Country distribution of research on LFP battery materials LFP 电池材料研究的国家可视化知识图谱如图2所示㊂LFP 电池材料研究领域SCI-E 论文4042篇,涉及76个国家㊂由图2可知发文量最多的是中国,2294篇,约占到总数的56.8%,我国发文量第一的原因之一是我国对电动车产业以及储能技术研发的大力支持㊂我国从2010年开始对新能源汽车实施政策补贴,之后国内新能源汽车市场更是得到大力发展,比亚迪㊁CATL㊁国轩㊁力神㊁亿纬㊁沃特玛等纷纷引入LFP 电池㊂特别是2014年以来,在财政补贴,限购政策驱动下,动力电池装机在新能源汽车高速增长下实现大幅增长㊂国内学者对LFP 电池材料的研究热情高涨㊂美国在LFP 电池材料领域的发文量为456篇,约占到总数的11.3%,另外韩国㊁日本㊁法国㊁加拿大㊁德国㊁澳大利亚㊁印度在该领域的SCI-E 论文量也在前列㊂2.3㊀LFP 电池材料的知识演进2.3.1㊀知识基础从知识领域的角度看,某研究领域的知识基础是被众多科研工作者关注㊁大规模引用的参考文献㊂利用CiteSpace6分析参考文献的共被引网络可得出某研究领域的知识基础㊂通过运行CiteSpace6中的 Reference 可得出文献共被引知识图谱,图谱中字体越大㊁圆圈越大表示文献越关键,此类文献一般是提出重要新理论或是具有重大理论创新的经典文献,也是最有可能形成科学研究知识基础的文献,通过分析这些文献可得出某研究领域的知识基础[5]㊂图3㊀LFP 电池材料共被引研究文献的可视化知识图谱Fig.3㊀Visualization knowledge map of co-citation references on LFP battery materials将LFP 电池材料研究领域中的SCI-E 论文4042篇题录信息录入CiteSpace6,节点类型设置为 Reference ,构建文献共被引可视化知识图谱,见图3㊂从图3可清晰看出LFP 电池材料研究领域的关键节点文献㊂表1仅列出共被引排名前10的文献详细信息㊂其中Padhi 与2019年诺贝尔化学奖得主Goodenough等合作报道了高温固相法制备LFP,并发现LFP 是低功耗㊁可再充电锂电池阴极的优异候选材料,且价格低廉㊁无毒㊁环境友好㊂随后Yamada 等采用同样方法制备了LFP,发现烧结温度在500~600ħ获得的样品颗粒细小,分布均匀㊂其余文献研究内容大多与LFP 电池性能提升有关,比如Kang 和Ceder 报道了可实现电池超快速充放电的LFP 电池材料的制备方法,有望实现插电式混合动力电动汽车的超大电池需要㊂Chung 等通过掺杂的方法向纳米LFP 颗粒内部掺入金属阳离子(Mg,Al,Ti,Nb 或W),其电子导电性提升了108倍,充放电时间大大缩短㊂Sun 等结合高温煅烧,利用溶剂热法,制备由具有开放三维多孔微观结构的纳米颗粒组成的LFP 微球,LFP 作为电极,表现出优异的速率能第3期高档妮等:磷酸铁锂电池材料知识演进及发展趋势的可视化分析1089㊀力和循环稳定性㊂Huang 和Wang 等制备LFP /C 纳米复合材料,以其作为阴极的电池容量㊁速率能力和稳定性均得到提升㊂这些文献不仅是LFP 电池材料研究的知识基础,且在LFP 电池的历史长河中具有里程碑意义㊂Yuan 和Wang 分别对锂离子电池阴极材料LFP 和碳包覆LFP 进行了综述㊂结合笔者平时对LFP 电池材料国内外研究的关注,得出此类关键文献均为LFP 电池材料的知识基础研究㊂由此,更足以说明利用CiteSpace6文献共被引知识图谱分析出某研究领域的知识基础是可行的,且结果是可信的㊂表1㊀LFP 电池材料共被引可视化知识图谱中的关键文献Table 1㊀Key references in co-citation visualization knowledge map on LFP battery materialsNo.Citation frequency Information17140PADHI A K,NANJUNDASWAMY K S,GOODENOUGH J B.J Electrochem Soc ,1997,144:1188-1194.23045KANG B,CEDER G.Nature ,2009,458:190-193.32915CHUNG S Y,BLOKING,J T,CHIANG Y M.Nat Mater ,2002,1:123-128.41884YAMADA A,CHUNG SC,HINOKUMA K.J Electrochem Soc ,2001,148:A224-229.51482HUANG H,YIN S C,NAZAR L F.Electrochem Solid S T ,2001,4:A170-172.61193PADHI A K,NANJUNDASWAMY K S,MASQUELIER C,et al.J Electrochem Soc ,1997,144:1609.7966YUAN L X,WANG Z H,ZHANG W X,et al.Energ Environ Sci ,2011,4:269-284.8843WANG Y G,WANG Y R,HOSONO E J,et al.Angew Chem Int Edit ,2008,V47:7461-7465.9791WANG J J,SUN X L.Energ Environ Sci ,2012,5:5163-5185.10625SUN C W,RAJASEKHARA S,GOODENOUGH J B,et al.J Am Chem Soc ,2011,133:2132-2135.2.3.2㊀知识演进本文利用CiteSpace6中提供的突显词探测技术和算法,通过考察词频的时区分布,将其中频次变化率高(激增)的词从大量的主题词中探测出来,依据词频的变动趋势,来确定国际LFP 电池材料的知识演进路径㊂通过运行CiteSpace6工具,构建LFP 电池材料研究领域突显词时区演进可视化知识图谱,如图4所示㊂图4㊀LFP 电池材料研究领域突显词时区演进可视化知识图谱Fig.4㊀Visualization knowledge map of highlight word time zone evolution on LFP battery materials research 由图4可知,起步阶段(1997年至2009年)出现的coprecipitation(共沉淀)㊁sol gel synthesis(溶胶凝胶合成)㊁pulsed laser deposition(脉冲激光沉积)㊁spray pyrolysis(喷雾热解)等突显词均与LFP 电池材料制备方法有关,说明这一时期科学研究者的关注点主要集中在LFP 电池材料的制备㊂飞速增长阶段(2010年至2013年)出现的突显词主要有carbon coated LiFePO 4(碳包覆LFP)㊁carbothermal reduction method (碳热还原)㊁Li insertion /extraction (锂的嵌/放)㊁diffusion coefficient (扩散)㊁energy storage and conversion(储能和转换)㊁thermal stability(热稳定性)㊁high capacity(高容量)等㊂经过起步1090㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷阶段的研究,LFP 电池材料制备方法趋于成熟,且研究中发现LFP 电池具有原材料价格低廉㊁比容量大㊁循环寿命长㊁稳定性高等诸多优点,但也存在电子电导率低的缺陷㊂随着碳包覆和碳热还原技术的发展,LFP 电池的电子电导率得到大大提高,综合性能得到进一步改善,由此引发研究热潮㊂随着基础研究趋于成熟,LFP 电池开始进入大规模应用阶段㊂稳定研究阶段(2014年至2022年)出现的突显词主要有electric vehicle(电动车)㊁state of charge(SOC,荷电状态)㊁capacity fade(容量衰减)㊁cycle life(循环寿命)㊁energy density(能量密度)㊁cycling stability(循环稳定性)㊁heat generation(发热)㊁thermal runaway(热失控)㊁recovery(回收)㊁spent LFP battery(退役LFP 电池)㊁selective recovery(选择性回收)等,可以看出电池动力㊁高倍率性能㊁循环稳定性㊁电池管理系统㊁电动车㊁热失控㊁回收再利用等是LFP 电池材料应用研究方面比较受关注的问题㊂此后一段时间内LFP 电池作为新能源电动车汽车的核心部件,在容量㊁电池热管理㊁循环寿命问题㊁退役电池回收等方面的研究将持续升温㊂另外,通过分析对比LFP 电池材料研究领域的论文发表年代分布和关键词突显时区演进可视化图谱可知,各个阶段出现的研究主题与新材料研究的普遍规律 材料制备-性能研究-应用研究-回收再利用 相吻合㊂2.4㊀LFP 电池材料发展趋势的可视化分析对某一领域㊁某一时期的关键词按照时间轴进行聚类可得到可视化时间线图,图中各聚类中关键词的数量和时间跨度,反映出各聚类所代表研究领域的重要性和时间特征,从而看出一个特定聚类的兴起㊁繁荣以及衰落过程,得出某一领域㊁某一时期的发展趋势[5]㊂图5为LFP 电池材料研究可视化的关键词聚类时间线图谱,该组文献共出现了9个聚类,其中聚类编号在图中用#0㊁#1㊁#2 #8表示,编号越小,聚类的规模越大㊂图5㊀LFP 电池材料关键词聚类可视化时间图谱Fig.5㊀Visualization time zone map of key words clustering on LFP battery materials 从图5的聚类情况发现:#0(lithium iron phosphate)㊁#1(phospho ovlivine)㊁#2(lithium-iron battery)聚类处于前列,规模较大;突显关键词出现的年代早,说明在LFP 电池材料研究的早期,主题相对集中于LFP 的制备方法㊁内部晶型结构和物化性能等㊂#3(state of charge)㊁#4(recovery)㊁#5(thermal runaway)㊁#6(kinetics)㊁#7(rate performance)㊁#8(transformation)聚类的关键词时间跨度大,说明近几年研究者的目光持续集中在这几个聚类,通过分析聚类标签代表的主题发现LFP 电池材料研究主要围绕电池商业化性能(倍率㊁容量㊁动力学)提升㊁退役电池回收再利用技术以及热失控问题等三个方面开展,可代表LFP 电池材料研究领域的发展趋势㊂本文就这三个研究方向进行深入可视化分析㊂第3期高档妮等:磷酸铁锂电池材料知识演进及发展趋势的可视化分析1091㊀2.4.1㊀LFP 动力电池性能提升从图5可知,#3㊁#6㊁#7㊁#8聚类中出现的关键词有eletric vehicle(电动车)㊁cycling stability(循环稳定性)㊁conductive network (导电网络)㊁energy density (能量密度)㊁carbon coated LiFePO 4(碳包覆LFP)㊁carbothermal reduction method(碳热还原)㊁nanoparticle(纳米颗粒)㊁nano sheet(纳米片)㊁intercalation lithium battery(夹层结构锂离子电池)㊁rate capability(倍率性能)㊁graphite anode(石墨阳极)等,均与LFP 电池材料性能提升技术(碳包覆㊁纳米化)有关㊂随着LFP 电池进入商业化应用阶段,该领域研究工作者对其性能提升以及解决应用过程中出现的实际问题的技术研究越来越多,且涌现了大批卓著成果㊂Xu 等[9]利用沸石咪唑盐骨架-8(ZIF-8)对市售LFP 电池进行表面改性,使其在5.0C 下200次循环后的放电比能量提升到141.7mWh㊃g -1(保持率约为99%),LFP /C ZIF-8合成过程示意图和不同阴极样品的放电比容量见图6㊂Yuan 等[10]设计了LFP /Li 2Sn 混合体系,该系统具有较大的比容量(0.2C 时为439mAh㊃g -1)㊁良好的倍率性能(2C 时为323mAh㊃g -1)和稳定的循环性能(200次循环的容量保持率为82%)㊂还有学者通过聚酰亚胺(PI)取代传统的PVDF 粘合剂[11],在LFP 上涂布Timcal 导电石墨[12]等来提高LFP 电池的容量㊁倍率性能和循环稳定性㊂图6㊀LFP /C ZIF-8合成过程示意图和不同阴极样品的放电比容量[9]Fig.6㊀Schematic illustration of LFP /C ZIF-8synthesis process and discharge specific energy of different cathode samples [9]另一方面,监测动力电池运行和老化过程中的性能变化和在线荷电状态估计也备受研究工作者的青睐㊂Tian 等[13]提出了一种基于深度神经网络的方法,以仅10min 的充电电压和电流数据来估计SOC㊂Shibagaki 等[14]用差示热伏安法诊断LFP 电池运行中的健康状况㊂Li 等[15]建立了一个滞后的电池模型来描述LFP 电池的实时动态特性,并独立估计模型参数和SOC,以避免模型参数和SOC 之间的交叉干扰;在SOC 变化迅速的情况下,使用小波变换AUKF 算法来估计SOC㊂以上研究分析表明,关于LFP 动力电池材料的性能提升方面的研究取得了一定进展,根据国家对新能源电动车的一系列鼓励政策,消费者对电动车的抵触感急剧下降,市场需求越来越大,但对其性能要求也越来越高㊂以LFP 为正极材料的电池作为电动车的动力电池,只有通过串联或并联成百上千块单体组成电池组,才能完成整车的供电,而动力电池组之间难免产生不一致,那么均衡控制是后续研究的一个重要方向㊂2.4.2㊀退役LFP 电池回收新能源电动车得到人们青睐,随之而来的电池退役呈爆发式增长态势[16]㊂作为国家战略资源的金属锂相对匮乏,未妥善处理的退役电池,会造成严重的环境污染及能源浪费㊂因此退役LFP 电池材料的回收再1092㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷利用就尤为重要,对动力电池行业的可持续发展来说大有裨益㊂该领域研究工作者积极开展工作,得到的研究成果颇为丰富,因此产生了较大规模的聚类 #4(recovery)㊂从图5可知,#4聚类中出现的关键词主要有selective recovery(选择性回收)㊁polyacrylic acid(聚丙烯酸)㊁valuable metal(贵金属)㊁spent LiFePO 4(退役LFP 电池)等,均与电池回收利用技术有关㊂其中Yang 等[17]通过H 2O 2来调节或控制不同浸出溶液(草酸㊁乙酸㊁HCl 等)氧化状态和质子活性,发现锂在含双氧水的乙酸中浸出率最高,为94%㊂Jin 等[18]在室温下直接采用空气氧化-水浸出从废LFP 电池材料中选择性回收锂,锂的浸出效率为99.3%,且经济效益显著,图7为回收流程和回收1t 废LFP 电池材料的初步经济分析㊂Xu 等[19]通过引入过氧化氢作为浸出剂,将阴极片直接分解为铝箔㊁高纯度FePO 4和含锂溶液㊂Wang 等[20]采用固态电极反应将锂和铁浸出到磷酸电解液中,电池级FePO 4和Li 3PO 4产品可直接用于LFP 再生㊂Zhang 等[21]用过硫酸钠(Na 2S 2O 8)将LiFePO 4氧化为FePO 4,从废LFP 电池中选择性回收锂㊂Li 等[22]提出用低成本柠檬酸对废LFP 进行共研磨,溶解过滤,再加入H 2O 2,Li 的提取效率可高达99.35%㊂图7㊀回收1t 废LFP 电池阴极材料的流程图和初步经济分析[18]Fig.7㊀Flow chart and preliminary economic analysis for recycling 1t waste LFP cathode material [18]此外,除选择性回收锂元素之外,许多学者提出了行之有效的全面回收退役LFP 电池和其他再生材料的方法㊂Liang 等[23]通过Li /Fe /P 元素补偿和热处理,成功再生了LFP 正极材料㊂Yadav 等[24]使用弱酸有机酸(甲基磺酸和对甲苯磺酸),在室温下提取Li 和Fe,浸出率较高(95%),且提取的金属离子可合成新的LFP 电池阴极㊂另一方面,退役LFP 电池材料回收的Fe 离子可用于制备具有吸附-光催化协同能力的可见光光催化剂NaFeS 2,磷元素可用于制备具有耐酸性的磷接枝缓释肥料㊂电动车市场不断壮大,催生了巨大的LFP 电池材料需求市场㊂而LFP 电池材料大批量退役后再利用是后续亟待解决的问题㊂未来一段时间内适用于大规模㊁低成本㊁高效率的产业化回收再利用LFP 电池的工艺流程还有待进一步研究;另一方面,LFP 电池之所以从电动车中退役是因为长时间多次充电,电池能量密度降低,不能满足电动车的要求,但在一定程度上可以满足低速电动车㊁通信基站等对电池能量密度要求不高的场合,使电池得到梯次利用,这也是今后的研究方向㊂2.4.3㊀LFP 电池材料热失控LFP 电池在使用过程中即使是内部或者外部受到碰撞或伤害,依旧不易起火或者爆炸,足见其安全性能良好[25]㊂但随着新能源电动车的大规模应用,电池的热失控(thermal runaway,TR)和火灾行为已然成为重要问题,火灾释放的有毒气体对人类健康构成了巨大威胁[26]㊂因此近年来有大批研究者专注于研究电池的热失控问题㊂通过分析#5(thermal runaway)聚类中的关键词temperature behavior(温度行为)㊁capacity fade第3期高档妮等:磷酸铁锂电池材料知识演进及发展趋势的可视化分析1093㊀(容量衰减)㊁heat generation (发热量)㊁Bernardi equation (伯纳迪方程)㊁thermophysical property (热物理性质)㊁safety(安全)和文献,发现电池热失控和加热㊁过充㊁碰撞㊁挤压㊁穿刺㊁短路等运行工况有关,研究方法有加速量热法[27]㊁烘箱暴露法[28]㊁原位量热计[29]等㊂Mao 等[30]对300Ah LFP 电池材料在外部加热下进行了一系列热失控试验,试验装置见图8㊂他们将电池燃烧分为四个阶段,随后模拟电动公交车火灾场景,通过更新新鲜空气来控制火灾,计算安全换气率,为车库通风管理提供建议㊂Peng 等[31]利用傅里叶变换红外光谱和1/2ISO 全尺寸试验室,研究了68Ah 袋式锂离子电池热致失效引起的热危害和毒性危害,在线检测到有毒气体为CO㊁HF㊁SO 2㊁NO 2㊁NO 和HCl,有效剂量和有效浓度模型可用于定量评估整体气体毒性㊂Wang 等[32]研究发现锂枝晶对LFP 电池热失控和析气有一定影响,可降低自加热(T 开始)的温度和热失控的温度㊂图8㊀电池热失控试验装置[30]Fig.8㊀Battery thermal runaway test device [30]此外,有学者提出了有效抑制电池材料热失控的方法,Monika 等[33]设计了矩形微型通道冷板,将其夹在两个连续的7Ah 棱柱状LFP 电池之间,并提供穿过冷板微型通道的冷却剂流,形成电池模块㊂Meng 等[34]提出将十二氟-2-甲基戊烷-3-酮与间歇喷雾冷却相结合抑制LFP 电池材料着火,随着喷雾频率和占空比的增加,C 6F 12O 试剂对冷却性能首先表现出增强作用,然后表现出抑制作用;建议抑制14Ah LFP 电池材料着火的最佳占空比为55.4%㊂随着LFP 电池材料生产技术提高和新能源电动车整车轻量化,整个电池组的外观尺寸进一步减小,冷却通道也变得狭小,对电池热失控管理系统的要求也将变高㊂除考虑最常见的过充热失控以及单体电池热失控特性之外,综合工况下电池组热失控管理系统㊁电池组热失控抑制技术以及预警系统仍旧是今后工作的一个方向㊂3㊀结㊀论1)通过分析文献发表年代分布,发现LFP 电池材料的发展进程经历了起步(1997年至2009年)㊁飞速增长(2010年至2013年)㊁稳定研究(2014年至2022年)三个阶段㊂近十年来没有明显的降低趋势,每年的研究成果仍保持在一个稳定的状态㊂2)利用CiteSpace6构建了LFP 电池材料文献共被引可视化知识图谱,分析得出的该领域经典文献构成了LFP 电池材料研究的知识基础㊂通过分析LFP 电池材料突显词时区演进可视化知识图谱,起步阶段研究者主要关注LFP 电池材料的制备,随着碳包覆和碳热还原等技术的发展,LFP 电池材料的综合性能得到进一步改善,LFP 电池材料的研究出现飞速增长趋势,并逐步进入大规模商业化应用研究阶段㊂3)通过LFP 电池材料研究关键词聚类时间线图谱及发展趋势可视化分析,发现近年来研究者的目光持。

AXIS P1465-LE 2 MP 全能防盗摄像头说明书

AXIS P1465-LE 2 MP 全能防盗摄像头说明书

DatasheetAXIS P1465-LE Bullet CameraFully featured,all-around2MP surveillanceBased on ARTPEC-8,AXIS P1465-LE delivers excellent image quality in2MP.It includes a deep learning processing unit enabling advanced features and powerful analytics based on deep learning on the edge.With AXIS Object Analytics, it can detect and classify humans,vehicles,and types of vehicles.Available with a wide or tele lens,this IP66/IP67, NEMA4X,and IK10-rated camera can withstand winds up to50m/s.Lightfinder2.0,Forensic WDR,and OptimizedIR ensure sharp,detailed images under any light conditions.Furthermore,Axis Edge Vault protects your Axis device ID and simplifies authorization of Axis products on your network.>Lightfinder2.0,Forensic WDR,OptimizedIR>Analytics with deep learning>Audio and I/O connectivity>Built-in cybersecurity features>Two lens alternativesAXIS P1465-LE Bullet Camera CameraModels AXIS P1465-LE9mmAXIS P1465-LE29mmImage sensor1/2.8”progressive scan RGB CMOSPixel size2.9µmLens Varifocal,remote focus and zoom,P-Iris control,IR correctedAXIS P1465-LE9mm:Varifocal,3-9mm,F1.6-3.3Horizontal field of view117˚-37˚Vertical field of view59˚-20˚Minimum focus distance:0.5m(1.6ft)AXIS P1465-LE29mm:Varifocal,10.9-29mm,F1.7-1.7Horizontal field of view29˚-11˚Vertical field of view16˚-6˚Minimum focus distance:2.5m(8.2ft)Day and night Automatic IR-cut filterHybrid IR filterMinimum illumination 0lux with IR illumination on AXIS P1465-LE9mm: Color:0.06lux,at50IRE F1.6 B/W:0.01lux,at50IRE F1.6 AXIS P1465-LE29mm: Color:0.06lux,at50IRE F1.7 B/W:0.01lux,at50IRE F1.7Shutter speed With Forensic WDR:1/37000s to2sNo WDR:1/71500s to2sSystem on chip(SoC)Model ARTPEC-8Memory1024MB RAM,8192MB Flash ComputecapabilitiesDeep learning processing unit(DLPU) VideoVideo compression H.264(MPEG-4Part10/AVC)Baseline,Main and High Profiles H.265(MPEG-H Part2/HEVC)Main ProfileMotion JPEGResolution16:9:1920x1080to160x9016:10:1280x800to160x1004:3:1280x960to160x120Frame rate With Forensic WDR:Up to25/30fps(50/60Hz)in all resolutions No WDR:Up to50/60fps(50/60Hz)in all resolutionsVideo streaming Up to20unique and configurable video streams aAxis Zipstream technology in H.264and H.265Controllable frame rate and bandwidthVBR/ABR/MBR H.264/H.265Low latency modeVideo streaming indicatorSignal-to-noiseratio>55dBWDR Forensic WDR:Up to120dB depending on sceneMulti-viewstreamingUp to8individually cropped out view areasNoise reduction Spatial filter(2D noise reduction)Temporal filter(3D noise reduction)Image settings Saturation,contrast,brightness,sharpness,white balance,day/night threshold,exposure mode,exposure zones,defogging,compression,orientation:auto,0°,90°,180°,270°includingcorridor format,mirroring of images,dynamic text and imageoverlay,polygon privacy masks,barrel distortion correctionScene profiles:forensic,vivid,traffic overviewAXIS P1465-LE29mm:Electronic image stabilization Image processing Axis Zipstream,Forensic WDR,Lightfinder2.0,OptimizedIR Pan/Tilt/Zoom Digital PTZ,digital zoomAudioAudio features AGC automatic gain controlNetwork speaker pairing Audio streaming Configurable duplex:One-way(simplex,half duplex)Two-way(half duplex,full duplex)Audio input10-band graphic equalizerInput for external unbalanced microphone,optional5Vmicrophone powerDigital input,optional12V ring powerUnbalanced line inputAudio output Output via network speaker pairingAudio encoding24bit LPCM,AAC-LC8/16/32/44.1/48kHz,G.711PCM8kHz,G.726ADPCM8kHz,Opus8/16/48kHzConfigurable bit rateNetworkNetworkprotocolsIPv4,IPv6USGv6,ICMPv4/ICMPv6,HTTP,HTTPS b,HTTP/2,TLS b,QoS Layer3DiffServ,FTP,SFTP,CIFS/SMB,SMTP,mDNS(Bonjour),UPnP®,SNMP v1/v2c/v3(MIB-II),DNS/DNSv6,DDNS,NTP,NTS,RTSP,RTP,SRTP/RTSPS,TCP,UDP,IGMPv1/v2/v3,RTCP,ICMP,DHCPv4/v6,ARP,SSH,LLDP,CDP,MQTT v3.1.1,Syslog,Link-Localaddress(ZeroConf)System integrationApplicationProgrammingInterfaceOpen API for software integration,including VAPIX®,metadataand AXIS Camera Application Platform(ACAP);specifications at/developer-community.ACAP includes Native SDK andComputer Vision SDK.One-click cloud connectionONVIF®Profile G,ONVIF®Profile M,ONVIF®Profile S andONVIF®Profile T,specification at VideomanagementsystemsCompatible with AXIS Companion,AXIS Camera Station,videomanagement software from Axis’Application DevelopmentPartners available at /vmsOnscreencontrolsAutofocusDay/night shiftDefoggingVideo streaming indicatorWide dynamic rangeIR illuminationPrivacy masksMedia clipAXIS P1465-LE29mm:Electronic image stabilizationEvent conditions ApplicationDevice status:above operating temperature,above or belowoperating temperature,below operating temperature,withinoperating temperature,IP address removed,new IP address,network lost,system ready,ring power overcurrent protection,live stream activeDigital audio input statusEdge storage:recording ongoing,storage disruption,storagehealth issues detectedI/O:digital input,manual trigger,virtual inputMQTT:subscribeScheduled and recurring:scheduleVideo:average bitrate degradation,day-night mode,tampering Event actions Audio clips:play,stopDay-night modeI/O:toggle I/O once,toggle I/O while the rule is activeIllumination:use lights,use lights while the rule is activeMQTT:publishNotification:HTTP,HTTPS,TCP and emailOverlay textRecordings:SD card and network shareSNMP traps:send,send while the rule is activeUpload of images or video clips:FTP,SFTP,HTTP,HTTPS,networkshare and emailWDR modeBuilt-ininstallation aidsPixel counter,remote zoom(3x optical),remote focus,autorotationAnalyticsAXIS ObjectAnalyticsObject classes:humans,vehicles(types:cars,buses,trucks,bikes)Trigger conditions:line crossing,object in area,time in area BETAUp to10scenariosMetadata visualized with trajectories and color-coded boundingboxesPolygon include/exclude areasPerspective configurationONVIF Motion Alarm eventMetadata Object data:Classes:humans,faces,vehicles(types:cars,buses, trucks,bikes),license platesConfidence,positionEvent data:Producer reference,scenarios,trigger conditions Applications IncludedAXIS Object AnalyticsAXIS Live Privacy Shield,AXIS Video Motion Detection,activetampering,shock detectionSupportedAXIS Perimeter Defender,AXIS Speed Monitor cSupport for AXIS Camera Application Platform enablinginstallation of third-party applications,see /acap ApprovalsProduct markings CSA,UL/cUL,BIS,UKCA,CE,KC,EACSupply chain TAA compliantEMC CISPR35,CISPR32Class A,EN55035,EN55032Class A,EN50121-4,EN61000-3-2,EN61000-3-3,EN61000-6-1,EN61000-6-2Australia/New Zealand:RCM AS/NZS CISPR32Class ACanada:ICES-3(A)/NMB-3(A)Japan:VCCI Class AKorea:KS C9835,KS C9832Class AUSA:FCC Part15Subpart B Class ARailway:IEC62236-4Safety CAN/CSA C22.2No.62368-1ed.3,IEC/EN/UL62368-1ed.3,IEC/EN62471risk group exempt,IS13252Environment IEC60068-2-1,IEC60068-2-2,IEC60068-2-6,IEC60068-2-14, IEC60068-2-27,IEC60068-2-78,IEC/EN60529IP66/IP67,IEC/EN62262IK10,NEMA250Type4X,NEMA TS2(2.2.7-2.2.9) Network NIST SP500-267CybersecurityEdge security Software:Signed firmware,brute force delay protection,digest authentication,password protection,AES-XTS-Plain64256bitSD card encryptionHardware:Secure boot,Axis Edge Vault with Axis device ID,signed video,secure keystore(CC EAL4+certified hardwareprotection of cryptographic operations and keys)Network security IEEE802.1X(EAP-TLS)b,IEEE802.1AR,HTTPS/HSTS b,TLSv1.2/v1.3b,Network Time Security(NTS),X.509Certificate PKI,IP address filteringDocumentation AXIS OS Hardening GuideAxis Vulnerability Management PolicyAxis Security Development ModelAXIS OS Software Bill of Material(SBOM)To download documents,go to /support/cybersecu-rity/resourcesTo read more about Axis cybersecurity support,go to/cybersecurityGeneralCasing IP66/IP67-,NEMA4X-,and IK10-rated casingPolycarbonate blend and aluminiumColor:white NCS S1002-BFor repainting instructions,go to the product’s supportpage.For information about the impact on warranty,go to/warranty-implication-when-repainting.Power Power over Ethernet IEEE802.3af/802.3at Type1Class3Typical:7.9W,max12.95W10–28V DC,typical7.2W,max12.95WConnectors Network:Shielded RJ4510BASE-T/100BASE-TX/1000BASE-TAudio:3.5mm mic/line inI/O:Terminal block for1alarm input and1output(12V DCoutput,max.load25mA)Power:DC inputIR illumination OptimizedIR with power-efficient,long-life850nm IR LEDsAXIS P1465-LE9mm:Range of reach40m(131ft)or more depending on the sceneAXIS P1465-LE29mm:Range of reach80m(262ft)or more depending on the scene Storage Support for microSD/microSDHC/microSDXC cardRecording to network-attached storage(NAS)For SD card and NAS recommendations see Operatingconditions-40°C to60°C(-40°F to140°F)Maximum temperature according to NEMA TS2(2.2.7):74°C(165°F)Start-up temperature:-40°CHumidity10–100%RH(condensing)Storageconditions-40°C to65°C(-40°F to149°F)Humidity5-95%RH(non-condensing)DimensionsØ132x132x280mm(Ø5.2x5.2x11.0in)Effective Projected Area(EPA):0.022m2(0.24ft2)Weight With weather shield:1.2kg(2.65lb)Box content Camera,installation guide,TORX®L-keys,terminal blockconnector,connector guard,cable gaskets,AXIS Weather ShieldL,owner authentication keyOptionalaccessoriesAXIS T94F01M J-Box/Gang Box Plate,AXIS T91A47Pole Mount,AXIS T94P01B Corner Bracket,AXIS T94F01P Conduit Back Box,AXIS Weather Shield K,Axis PoE MidspansFor more accessories,go to /products/axis-p1465-le#accessoriesSystem tools AXIS Site Designer,AXIS Device Manager,product selector,accessory selector,lens calculatorAvailable at Languages English,German,French,Spanish,Italian,Russian,SimplifiedChinese,Japanese,Korean,Portuguese,Traditional Chinese Warranty5-year warranty,see /warrantyPart numbers Available at /products/axis-p1465-le#part-numbers SustainabilitySubstancecontrolPVC free,BFR/CFR free in accordance with JEDEC/ECA StandardJS709RoHS in accordance with EU RoHS Directive2011/65/EU/andEN63000:2018REACH in accordance with(EC)No1907/2006.For SCIP UUID,see /partner.Materials Screened for conflict minerals in accordance with OECDguidelinesTo read more about sustainability at Axis,go to/about-axis/sustainabilityEnvironmentalresponsibility/environmental-responsibilityAxis Communications is a signatory of the UN Global Compact,read more at a.We recommend a maximum of3unique video streams per camera or channel,for optimized user experience,network bandwidth,and storage utilization.A unique video stream can be served to many video clients in the network using multicast or unicast transport method via built-in stream reuse functionality.b.This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.(),and cryptographic software written by Eric Young (*****************).c.It also requires AXIS D2110-VE Security Radar with firmware10.12or later.Dimension drawingKey features and technologiesBuilt-in cybersecurityAxis Edge Vault is a secure cryptographic compute module (secure module or secure element)in which the Axis device ID is securely and permanently installed and stored. Secure boot is a boot process that consists of an unbro-ken chain of cryptographically validated software,starting in immutable memory(boot ROM).Being based on signed firmware,secure boot ensures that a device can boot only with authorized firmware.Secure boot guarantees that the Axis device is completely clean from possible malware after resetting to factory default.Signed firmware is implemented by the software vendor signing the firmware image with a private key,which is se-cret.When firmware has this signature attached to it,a device will validate the firmware before accepting and in-stalling it.If the device detects that the firmware integrity is compromised,it will reject the firmware upgrade.Axis signed firmware is based on the industry-accepted RSA pub-lic-key encryption method.ZipstreamThe Axis Zipstream technology preserves all the important forensic in the video stream while lowering bandwidth and storage requirements by an average of50%.Zipstream also includes three intelligent algorithms,which ensure that rel-evant forensic information is identified,recorded,and sent in full resolution and frame rate.Forensic WDRAxis cameras with wide dynamic range(WDR)technology make the difference between seeing important forensic de-tails clearly and seeing nothing but a blur in challenging light conditions.The difference between the darkest and the brightest spots can spell trouble for image usability and clarity.Forensic WDR effectively reduces visible noise and artifacts to deliver video tuned for maximal forensic usabil-ity.LightfinderThe Axis Lightfinder technology delivers high-resolution, full-color video with a minimum of motion blur even in near darkness.Because it strips away noise,Lightfinder makes dark areas in a scene visible and captures details in very low light.Cameras with Lightfinder discern color in low light better than the human eye.In surveillance,color may be the critical factor to identify a person,an object,or a vehicle.AXIS Object AnalyticsAXIS Object Analytics adds value to your camera for free.It detects and classifies humans,vehicles,and types of vehi-cles.Thanks to AI-based algorithms and behavioral con-ditions,it analyzes the scene and their spatial behavior within—all tailored to your specific needs.Scalable and edge-based,it requires minimum effort to set up and sup-ports various scenarios running simultaneously.Two lens alternativesThe camera is available in two variants with a choice of lenses:a wide3.9-9mm lens for wide area surveillance and a tele10-29mm lens for surveillance from a distance.OptimizedIRAxis OptimizedIR provides a unique and powerful combi-nation of camera intelligence and sophisticated LED tech-nology,resulting in our most advanced camera-integrated IR solutions for complete darkness.In our pan-tilt-zoom (PTZ)cameras with OptimizedIR,the IR beam automatically adapts and becomes wider or narrower as the camera zooms in and out to make sure that the entire field of view is al-ways evenly illuminated.For more information,see /glossary©2022-2023Axis Communications AB.AXIS COMMUNICATIONS,AXIS,ARTPEC and VAPIX are registered trademarks ofAxis AB in various jurisdictions.All other trademarks are the property of their respective owners.We reserve the right tointroduce modifications without notice.T10181832/EN/M13.2/2302。

Training deep neural networks for the inverse design of nanophotonic structures

Training deep neural networks for the inverse design of nanophotonic structures

Abstract: Data inconsistency leads to a slow training process when deep neural networks are used for theonic devices, an issue that arises from the fundamental property of non-uniqueness in all inverse scattering problems. Here we show that by combining forward modeling and inverse design in a tandem architecture, one can overcome this fundamental issue, allowing deep neural networks to be effectively trained by data sets that contain non-unique electromagnetic scattering instances. This paves the way for using deep neural networks to design complex photonic structures that requires large training sets.
Training deep neural networks for the inverse design of nanophotonic structures
DIANJING LIU, YIXUAN TAN, AND ZONGFU YU*
Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706, U.S.A *zyu54@

负折射率隐身衣英文版

负折射率隐身衣英文版
Geometric optics-based multiband cloaking of large objects with the wave phase and amplitude preservation
Ran Duan,1 Elena Semouchkina,2,* and Ravi Pandey1
1Leabharlann Abstract: The geometric optics principles are used to develop a unidirectional transmission cloak for hiding objects with dimensions substantially exceeding the incident radiation wavelengths. Invisibility of both the object and the cloak is achieved without metamaterials, so that significant widths of the cloaking bands are provided. For the preservation of wave phases, the λ-multiple delays of waves passing through the cloak are realized. Suppression of reflection losses is achieved by using half-λ multiple thicknesses of optical elements. Due to periodicity of phase delay and reflection suppression conditions, the cloak demonstrates efficient multiband performance confirmed by full-wave simulations.

上海高考英语中译英真题

上海高考英语中译英真题

上海高考英语历年真题中译英2004年 Translationowing sentences into English, using the words given Directions: Translate the follin the brackets.1.小组讨论有助于更好地理解课文。

(help)2,上周因为生病我缺了一些课,但是我会努力赶上大家的。

(miss)3,这个游戏的规则太复杂,三言两语解释不清。

(too…to)4,你该就刚才的所作所为向在在场的人道歉。

(apol ogize)5,我发现很难与那些一贯固执己见的人合作。

(…it…)1, Group discussion helps (to) understand the text better. (contributes t o understanding )essons, but I2, Because of illness/ sickness / being sick last week, I missed some lwill try to catch up with others.3, The rul es of the game are too complicated t o explain/be e xplained i n a fewwords.e present for what you have just done.ogize to the peopl4, You should apol5, I find it (is) h ard to cooperate with those who always stick t o their o wnopinions.2005年 Translation1,我希望尽快收到你的照片。

(hope)2,多吃蔬菜和水果有益健康。

(good)3,今天下午我没空,我和牙医有约。

(appointment)4,你最好乘出租车去电影节的开幕式,不然就要迟到了。

Adv. Nat. Sci. Nanosci. Nanotechnol. 3 (2012) 045003 (7pp)

Adv. Nat. Sci. Nanosci. Nanotechnol. 3 (2012) 045003 (7pp)

Home Search Collections Journals About Contact us My IOPscienceDeep-ultraviolet Raman investigation of silicon oxide: thin film on silicon substrate versus bulk materialThis content has been downloaded from IOPscience. Please scroll down to see the full text.2012 Adv. Nat. Sci: Nanosci. Nanotechnol. 3 045003(/2043-6262/3/4/045003)View the table of contents for this issue, or go to the journal homepage for moreDownload details:IP Address: 222.184.232.183This content was downloaded on 12/03/2014 at 01:22Please note that terms and conditions apply.IOP P UBLISHING A DV ANCES IN N ATURAL S CIENCES:N ANOSCIENCE AND N ANOTECHNOLOGY Adv.Nat.Sci.:Nanosci.Nanotechnol.3(2012)045003(7pp)doi:10.1088/2043-6262/3/4/045003Deep-ultraviolet Raman investigation of silicon oxide:thinfilm on silicon substrate versus bulk materialPawełBorowicz1,2,Mariusz Latek1,Witold Rzodkiewicz1,AdamŁaszcz1,Andrzej Czerwinski1and Jacek Ratajczak11Institute of Electron Technology,Al.Lotnik´o w32/46,02-668Warsaw,Poland2Institute of Physical Chemistry Polish Academy of Sciences,Kasprzaka44/52,01-224Warsaw,PolandE-mail:borowicz@ite.waw.plReceived5April2012Accepted for publication11August2012Published21September2012Online at /ANSN/3/045003AbstractRaman spectroscopy is a powerful experimental technique for structural investigation ofsilicon based electronic devices such as metal–oxide–semiconductor-type structures.It iswidely used for characterization of mechanical stress distribution in silicon substrate.However,in the case of Raman measurements of oxide layer on silicon substrate visibleexcitation makes this technique almost useless.The reason for this difficulty is two-phononscattering from silicon substrate which masks the signal from oxide layer.Application ofdeep-ultraviolet(deep-UV)excitation reduces the penetration depth of the radiation intosilicon substrate about30times.As a result,the simultaneous measurement of one-phononscattering from silicon substrate and the Raman spectrum of the oxide layer become possible.This work presents the study of thin silicon oxidefilm on silicon substrate with application ofdeep-UV Raman scattering.The spectra measured for thinfilm are compared with referencespectra obtained for bulk material.Keywords:Raman scattering,MOS structure,oxidefilm,mechanical stressClassification numbers:4.10,5.011.IntroductionThe Raman spectra of silicon-based systems show relatively strong two-phonon scattering from silicon substrate[1]. This background makes Raman scattering in the standard version almost useless for structural investigation of the dielectric layer in silicon–based metal–oxide–semiconductor (MOS)-type structures[2].Raman micro-spectroscopy has so far been used for determination of mechanical stress in semiconductor substrate[3].Attempts made to calculate the stress with Stoney formula[4]did not give satisfying results.The main reasons are:non-crystalline structure of the oxide layer[5]and existence of densified domains in dielectric layer[6].The structure of thin SiO2film differs from the structure of bulk material.The main difference between the dielectric layer and bulk silica is the existence of pseudo-crystalline structures of cristobalite,tridymite or coesite[5].Domains with densified silica can be found in thinfilm whereas in amorphous bulk material they are not present[5].The structure of the SiO2film also depends on the procedure of its manufacturing(surface oxidation or deposition)and the crystallographic orientation of the substrate[5].An important factor determining electric properties of MOS structures is non-uniform distribution of the mechanical stress in MOS structures[7].However,the relation between stress and Raman spectra of silica was obtained for bulk material[6,8–10]and not for the oxidefilm.Because of structural differences between bulk silica and silicon oxide thinfilm,the conclusions driven for bulk material can be imprecise in the case of thinfilm.That is why the application of the relation between stress and Raman spectra obtained for bulk silica in the interpretation of the data obtained for thin dielectricfilm introduces a low level of confidence in the conclusions.To sum up:direct structural studies of dielectric film are necessary for understanding phenomena determining electric properties of MOS structures.The aim of this work is to present the application of deep-ultraviolet(deep-UV)Raman scattering in the study of thin oxidefilm on silicon substrate.The majority of2043-6262/12/045003+07$33.001©2012Vietnam Academy of Science&Technologystrong lines coming from crystalline forms of silica areobserved for Raman shift below520cm−1.That is whythe identification of expected pseudo-crystalline domainslike cristobalite,tridymite,coesite orα-quartz[5]requires theanalysis of Raman scattering from oxide layer in the rangeof Raman shift below the position of the silicon line.In thecase of standard excitation,which means usually with Ar+laser lines488or514nm,the range of Raman shift from∼220to∼500cm−1is dominated by two-phonon scattering from silicon substrate.The application of deep-UV light forexcitation strongly reduces the light penetration depth intosilicon substrate:from∼3µm for488nm to∼100nm for266nm(about30times).This reduction of penetration depthshould result in strong reduction of two-phonon intensity incomparison with the Raman scattering from the oxide layer.This work presents not only the study of the thin oxidefilmon the silicon substrate,but also compares the Raman spectrameasured for the silicon-oxidefilm with the data obtained forbulk material with deep-UV excitation.2.ExperimentalPrior to Raman study,dielectric layers were characterizedwith transmission electron microscopy(TEM),spectroscopicellipsometry and ultraviolet–visible–near-infrared(UV–Vis–NIR)transmission/reflection spectroscopy.Transmission electron microscopy(TEM)specimenswere prepared by the conventional cross-section method usinga low-temperature argon ion milling process.The SiO2layermicrostructure was observed by conventional TEM and highresolution TEM(HRTEM)techniques in the JEM-2100JEOLmicroscope.Variable angle spectroscopic ellipsometer(V ASE,J.A.Woollam Company Inc.,USA)was used for characterizationof thin dielectricfilms.Measurements were performedfor four incident angles:65◦,70◦,75◦and80◦(nearBrewster angle of the SiO2/Si system).The spectral range ofmeasurements started at250nm and ended at1000nm.Thedistance between two consecutive measurements was equal to5nm.The measurements were repeated three times(at threedifferent places)for each wafer:once at the middle and twicenear the edge(about15mm from the edge of the wafer).Spectroscopic ellipsometry characterizes the sample bytwo parameters:(i)ratio of amplitudes of reflected lightobserved for polarizations p and s: ;(ii)phase change ofreflected light observed for polarizations p and s: .To extract quantitative information about a sample,it isnecessary to construct the model including a suitable numberof species characterized by parameters like thicknesses andcomplex refractive index.Then the functions and arefitted to experimental data.The Cauchy dispersive modelis usually used tofit ellipsometric data for dielectrics andsemiconductors in spectral regions if the dielectric layeris transparent.Transparent means the extinction coefficientis equal to zero.This transparency reduces the complexrefractive index to its real part.The Cauchy model allowsdetermining of refractive index and thickness of dielectriclayer.The relationship between wavelength and refractiveindex is given by Cauchy’s dispersion formulan(λ)=A+Bλ2+Cλ4+···,(1)where A,B,C arefitted coefficients,andλstands forwavelength inµm.The optical model used for ellipsometric data analysisconsisted of a silicon dioxide layer as a Cauchy layer and asilicon substrate.The parameters describing silicon substratewerefixed.The values were taken from Ellipsometer datatable(/bart/book/ellipstb.htm).In theapplied model,the two parameters A and B from equation(1)and SiO2layer thickness werefitted.The third componentof equation(1)was neglected.In opposition to the approachpresented in[11–13]the interface between Si substrate andSiO2was not included in the model.For transmission and reflection measurements UV-3600UV–Vis–NIR absorption spectrometer was used(Shimadzu,Japan).The measurements were performed for threeconfigurations of the spectrometer:transmission,diffusereflectance and relative specular reflectance.Two kinds of samples were investigated with Ramanspectroscopy:three silicon wafers covered with thinsilicon-oxidefilm and silica plate.The dielectricfilm wasprepared by surface oxidation at a temperature equal to1000◦C on three silicon wafers of[111]crystallographicorientation.The diameter of the wafer was equal to76mmand its thickness equal to0.7mm.The thickness of the oxidefilm was equal to60nm.As a sample of bulk material theplane-parallel plate made from Suprasil I was used.Raman scattering was measured with a MonoVista2750i micro-Raman spectrometer based on the OlympusBX51microscope.As an ultraviolet excitation source,thelaser lineλ=266nm(FQCW266–10,CryLas GmbH,Germay)was used.Reference visible Raman spectra wereexcited with Ar+laser lineλ=488nm(543-Ap-A01,CVI-Melles-Griot,USA).UV Raman spectra werecollected with a UVB objective lens(magnification40×).Spectra were analyzed with a SectraPro2750i(PrincetonInstruments,USA)spectrograph equipped with ultravioletgrating(3600lines mm−1,blazed wavelength250nm).Measured spectra were recorded with a nitrogen-cooledCCD camera with maximum efficiency at250nm(LN/2048×512B/IUV AR,Spec-10System,PrincetonInstruments,USA).To obtain visible spectra,the sample wasilluminated through a visible objective lens(magnification100×).The grating used for analysis of visible Ramanspectra had1800lines mm−1and was blazed for visiblespectral range.The spectral CCD camera applied to recordvisible Raman spectra(LN/1340×100B EXCELON,Spec-10System,Princeton Instruments,USA)had themaximum efficiency in visible spectral range between500and700nm.Images were recorded with a TM2040GEcamera(JAI,Japan).Mathematical procedure including offset correction,smoothing,baseline correction and normalization was appliedto measured spectra prior to analysis.The mathematicaltreatment was performed with the program Grams Suite8(Thermo Scientific,USA).Since the main aim of this work was to show theutility of deep-UV Raman spectroscopy in the investigationof thin dielectricfilm on silicon substrate,results obtainedfrom TEM,ellipsometry and transmission/reflection will bepresented before the discussion of Raman spectra.2Figure1.SiO2/Si structure observed in TEM(a)and HRTEM(b),(c)images.3.Sample characterization3.1.Samples preparationSilicon oxidefilms were manufactured in the Division of Silicon Microsystem and Nanostructure Technology(Institute of Electron Technology,Warsaw,Poland).Three-inch diameter Czochralski-grown,p-type[111]-oriented silicon wafers were used as substrates.After an initial hydrogen-peroxide-based cleaning sequence,the wafers were subjected to thermal oxidation process at1000◦C in order to grow silicon-dioxide layers of thicknesses of approximately 60nm.Reference samples were prepared from Suprasil I with standard procedure used to manufacture plane-parallel optical plates.3.2.Transmission electron microscopyTEM and HRTEM cross-sections of the SiO2/Si structure are shown infigure1.The top surface of the SiO2layer(protected by an epoxy layer during the preparation of the sample for TEM(figure1(a))and the SiO2/Si interface(figure1(b))was uniform and smooth.The thickness of the SiO2layer was60nm(marked infigure1(a)).No crystallites were formed and visible within the SiO2layer,and the layer was fully amorphous(figure1(c)).3.3.Spectroscopic ellipsometryAn example of the relation between the refractive index and the irradiation wavelength is presented infigure2. The refractive index measurements on other samples show deviations from these values not larger than0.018.Measured values of refractive index were similar to the refractive indices reported for Suprasil I[14].The thickness of the oxide layer calculated from ellipsometry measurements was equal to64nm.The dispersion of the values obtained form different measurements was not larger than2nm.3.4.Transmission/reflection spectroscopyFigure3presents data obtained from transmission and reflection measurements.The black line shows the data obtained for diffuse reflectance,red for specular reflectance and green for transmission.The decrease of transmittance in the range1000–1100nm corresponds to a band gap equal to about1.1eV,which is in agreement with Si band gap[15]. Signal significantly larger for specular than for diffuse reflectance confirms the smoothness of SiO2/Si interface showed by TEM.4.Results and discussionFigure4shows the contribution of silicon line‘520cm−1’to the measured spectrum in the range of Raman shift from150 to1200cm−1.Figure4(a)presents the measured spectrum (black solid line)and the reconstruction of silicon line with single Lorentzian profile(dashed red line).It is clearly visible that the influence of the line‘520cm−1’is important within the range about±20cm−1around the maximum.Outside this range the contribution to the spectrum is negligible. Figure4compares two methods of extraction of silicon line from the spectrum.The black line represents the measured spectrum after removing the range corresponding with the line‘520cm−1’by means of zap function implemented in Grams Suite.The red line represents measured spectrum after subtraction offitted Lorentzian profile shown infigure4(a). The gray semitransparent rectangle marks the range of Raman shift dominated by silicon line.Outside this area,spectra obtained with both procedures can be treated as almost identical.Negligible differences in both spectra presented infigure4(b)show that both procedures applied to remove silicon line:zapping of spectral range with dominant intensity of silicon line and subtracting Lorentzian profilefitted to the line‘520cm−1’give the same results.Because of this the easier procedure,namely zap function,was used to remove silicon line from spectra,presented in a further part of this work.Figure5presents the contribution of two-phonon scattering from silicon substrate to the spectrum measured with UV excitation.Figure5(a)shows spectra of Si/SiO2 wafer measured with different excitation wavelengths266 and488nm.In both spectra the silicon line was removed 3Figure2.Example of the relation between the refractive index of silicon oxide layer and the irradiationwavelength.Figure3.Example of the results obtained for transmission/reflection measurements of the SiO2/Sisample.Figure4.Contribution of silicon line(‘520cm−1’)to the Raman spectrum of Si/SiO2sample.(a)Presents measured spectrum(black solid line)and Lorentzian profile(red dashed line)fitted to the silicon line.(b)Compares two methods of removing silicon line:application of zap function in Grams Suite8(black line)and subtraction offitted Lorentzian profile from measured spectrum(red line).with zap function.The range of Raman shift with the important contribution of line‘520cm−1’is marked with the semitransparent gray rectangle.This range of Raman shift is larger than infigure4because the line‘520cm−1’is much stronger in the case of visible excitation than for ultraviolet excitation light.Both spectra were normalized in order to compare their shapes.The intensities in the band placed between930and1030cm−1were assumed to be equal for visible and ultraviolet Raman spectra.This band is assigned to multi-phonon scattering coming from silicon substrate[1]and is used here as standard for comparison of Raman spectra measured with different excitation wavelengths.Let us assume that in the case of visible spectra the contribution of the scattering from the oxide layer is negligible.The spectrum obtained by subtraction of the Raman spectrum measured with visible excitation from data obtained with ultraviolet excitation should contain the signal coming from the oxide layer with negligible contribution of two-phonon scattering from Si substrate.Presented infigure5(b),the subtracted spectrum in comparison with data obtained directly from 4parison of multi-phonon Raman scattering in silicon substrate with Raman spectra measured with UV excitation.(a)Normalized in the range930–1030cm−1spectra measured with ultraviolet excitation(black line)and visible excitation(red line).(b)The spectrum obtained by subtraction of visible Raman signal from ultravioletone.parison of silicon oxide Raman spectra obtained for thinfilm on silicon substrate(black line)and bulk material(red line). The positions of maxima of the most important bands are also presented in the plot.measurement with UV excitation shows a very similar shape. The shape of the subtracted spectrum confirms the hypothesis that strong reduction of light penetration depth into silicon substrate results in negligible two-phonon scattering from the substrate.The exception is the two-phonon silicon band placed in range of Raman shift between930and1030cm−1 used here as a normalization standard for spectra measured with different excitation wavelengths.Figure6presents the comparison of the Raman spectra measured for thin silicon oxidefilm(black line)and bulk material Suprasil I(red line).The positions of the main bands (maxima)are also presented.Font colors are the same as in the case of presented spectra.The maximum of silicon line equal to519.7cm−1is indicated in the plot as well.Since the spectral resolution of MonoVista2750i in ultraviolet is equal to about1cm−1,the position of maximum of silicon line can be treated as in the case of non-stressed silicon wafer.The shape of the spectrum measured for bulk material is similar to the silica Raman spectrum from literature[16]. The differences between measured and reported spectra are observed for Raman shift below300cm−1.The so-called boson peak with maximum at about60cm−1[17]and theband with maximum at about245cm−1contributing to the main Raman band of bulk material and assigned to scissoring in tetrahedron[SiO4/2][18]cannot be found in the ultraviolet spectrum.The differences in Raman spectra obtained for the same sample with different excitation wavelengths were already observed for materials without long range order.An example of such a phenomenon is delivered by Raman spectroscopy of different forms of carbon.Depending on excitation wavelength,a pair of bands D and G[19,20]or T and G are observed[21],respectively. In the case of visible excitation vibrations of sp2-phase are excited.These vibrations are observed as D and G bands[21].D band is dispersive:the linear relationship between maximum position and excitation energy has the slope in the range43–61cm−1eV−1[19,20].In the case of hydrogenated amorphous carbon(a-C:H)and B ion implanted glassy carbon(B-ii-GC)films,D and G bands show depressive behavior for visible excitation light[22].The linear relationship between maxima positions and excitation energy is interpreted in terms ofπ−π∗resonant Raman scattering from various size sp2clusters[22].The maxima positions of T and G bands measured for nitrogenated 5tetrahedral amorphous carbon(ta-C:N)films show the lineardependence on the concentration of nitrogen used in thedeposition process[21].There are two mechanisms thatcan be responsible for dispersive behavior of G bandin UV-Raman spectrum:size-dependent resonant scatteringfrom sp2-clusters or bending of sp2bonds due to large internalstress in carbon clusters[21].The scale of the internal stressdepends on the nitrogen content.The variation of T bandmaximum position is correlated with the content of sp3phase.The content of sp3phase in carbonfilm decreases with theincrease of nitrogen content used in the deposition process.Higher nitrogen concentration results in larger sp2-phasecontent and the proportion sp3–sp2/sp2–sp2is shifted towards sp2–sp2bonds.As a result,the T band is shifted towardslarger values of Raman shift and for low concentration ofsp3phase,the position of T band is close to the position ofD band observed in visible Raman spectra[21].To sum-up: the behavior of Raman spectra of carbonic sample is an example of the relationship between excitation wavelength and the shape of observed spectra.The differences between spectra measured with visible and ultraviolet excitations are significantly large in the case of amorphous materials due to dispersed values of atomic structure parameters,mainly bond angles.The main band in the spectrum obtained for bulk materialconsists of two parts:the broad one with maximum at about434cm−1and a relatively narrow line with maximum atabout486cm−1.The maximum position of the narrow linecorresponds to D1line reported in literature[17].This lineis assigned to vibration of four-member rings—defects inthe structure of bulk silica.The asymmetric shape of thebroad part of the main band suggests its complex character.Firstly,there is observed a relatively steep increase of theintensity in the range of Raman shift280–300cm−1.In therange300–434cm−1,the changes of intensity are gentle.For values of Raman shift between434and∼520cm−1,the intensity of the main band decreases.The shape of themain band described above suggests that it should consistof at least three components.Two of them should havemaxima placed between300and400cm−1.The maximumof the third component should be placed between434and470cm−1.The main band of bulk silica was describedin literature with application of three components withfollowing maxima for Raman shift larger than300cm−1:D3≈295cm−1,D4≈380and∼465cm−1[18].Reported in literature,data were assigned to the following vibrations: D3—scissoring in extended tetrahedron[SiO4/2]–[Si4/4],D4 and∼465cm−1—bending in5+rings(five-members rings or larger)[18].The line601cm−1corresponds to the D2line reported in literature as a trace of vibrations in three-member rings[17].The position of the maximum of the next band 792cm−1and its complex shape corresponds to the band denoted in literature as‘800cm−1’[23].The last two bands recorded for bulk material:1063and1200cm−1correspond to bands1065and1200cm−1reported in literature[23].Denoted with a black line,the spectrum measured forthinfilm differs from data measured for bulk material.A small band with maximum at233cm−1can be correlatedwith a strong line of cristobalite230cm−1[24].Correlationwith the band assigned to scissoring in tetrahedron[SiO4/2]∼245cm−1[18]is much worse.The main band consists of two parts:the broad band and relatively narrow line.The maximum of the narrow line is placed at488cm−1and can be correlated with D1line observed for bulk material.Since the line is placed near the boundary of the area dominated by silicon line(‘520cm−1’),the detailed analysis of the line shape is not possible.In the broad part of the main band two maxima can be found:at∼333and∼438cm−1.In the range of Raman shift corresponding to the broad part of the main band,strong lines of expected pseudo-crystalline species are placed.There are strong lines of tridymite at320,355,403, 422,449and457cm−1[24],as well as those ofα-cristobalite andα-quartz at421and465cm−1[24],respectively.Strong lines of coesite(522cm−1)and moganite(501cm−1)[24] are placed in the range of Raman shift dominated by silicon line so they can be masked by signal coming from silicon substrate.In the next band three main components can be recognized.The maxima of components are placed at the following values of Raman shift:600,624and664cm−1. The main maximum624cm−1corresponds to the position of maximum of D2line observed for densified structure of bulk material[10].The maximum placed at600cm−1corresponds to the position of D2line observed for non-densified structure in bulk silica.The maximum placed at664cm−1has the best correlation with the weak line of coesite661cm−1[24]. Generally,the multicomponent band with main maximum at 624cm−1can be treated as shifted towards larger values of Raman shift and broadened D2line of non-densified structure in bulk material.This kind of behavior was observed for densified bulk material[23].The next band with maximum placed at815cm−1is similar to the band‘800cm−1’observed for densified structures[24].This similarity involves two aspects:the shift of the maximum towards larger values of Raman shift and the change of the shape of the band (increase of the contribution of higher frequencies in the total intensity).The band with maximum at1084cm−1can be correlated with weak lines ofα-quartz∼1080cm−1or α-cristobalite∼1070cm−1[24].The band centered around 1201cm−1shows the best correlation with weak lines of α-tridymite∼1190cm−1orα-cristobalite∼1180cm−1[24]. Correlation of bands1084and1201cm−1with bands of bulk material1065and1200cm−1should probably be excluded. Two bands mentioned above observed in bulk silica are shifted downwards for densified structures[23].5.ConclusionTo sum up:the structure of silicon oxidefilm is similar to that of densified silicon oxide bulk material.D2line and the band ‘800cm−1’show features typical for densified SiO2.There are also bands that can be correlated with pseudo-crystalline structures like cristobalite,coesite,tridymite or quartz. Detailed study of Raman spectra of silicon oxide layer, including mathematical analysis with Gaussian or Lorentzian profiles as well as measurements with application of controlled stress,should deliver detailed knowledge about the structure of the oxide layer.This knowledge should be helpful in the understanding of non-uniform distribution of electric parameters in MOS-type circuits[7].Investigation of the 6silicon oxide layer can be also treated as an introduction to the study of dielectric layers made from materials like gadolinium oxide,lanthanum-lutetium oxide or hafnium oxide. AcknowledgmentsThe authors would like to thank Mrs T Salamo´n ska and MSc D Brzezi´n ska for help with manufacturing of the samples. References[1]Temple P A and Hathaway C E1973Phys.Rev.B73685[2]Chabli A1998Microelectron.Eng.40263[3]De Wolf I,Jian Ch and van Spengen W sersEng.36213[4]Stoney G G1909The tension of metallicfilms deposited byelectrolysis Proc.R.Soc.Lon.,A82172[5]Revesz A G and Hughes H L2003J.Non-Cryst.Solids32848[6]Walrafen G E and Krishnan P N1981J.Chem.Phys.745328[7]Przewłocki H M,Kudła A,Piskorski K and Brzezi´n ska D2008Thin Solid Films5164184[8]Walrafen G E,Krishnan P N and Freiman S W1981J.Appl.Phys.522832[9]Hibino Y,Hanafusa H,Ema K and Hyodo S1985Appl.Phys.Lett.47812[10]Champagnon B,Martinet C,Boudeulle M,V ouagner D,Coussa C,Deschamps T and Grosvalet L2008J.Non-Cryst.Solids354569[11]Aspnes D E and Theetn J B1979Phys.Rev.Lett.431046[12]Herzinger C M,Johs B,McGahan W A,Woollam J A andPaulson W1988J.Appl.Phys.833323[13]Zhao C,Lefebvre P R and Irene E A1998Thin Solid Films313–314286[14]Jasny J,Borowicz P and Nickel B2004J.Opt.Soc.Am.B21729[15]Varshni Y P1967Physica34149[16]Duverger C,Nedelec J-M,Benatsou M,Bouazaoui M,CapoenB,Ferrari M and Turrell S1999J.Mol.Struct.480–481169[17]Ivanda M,Clasen R,Hornfeck M and Kiefer W2003J.Non-Cryst.Solids32246[18]Chligui M,Guimbreti`e re G,Canizar`e s A,Matzen G,Vaills Yand Simon P New Features in the Raman Spectrum of Silica:Key-points in the Improvement on Structure Knowledge(version24September2010)(http://hal.archives-ouvertes.fr/docs/00/52/08/23/PDF/chliguiSiO2.pdf)accessed2011.08.29[19]Ferrari A C2007Solid State Commun.14347[20]Maultzsch J,Reich S and Thomsen C2004Phys.Rev.B70155403[21]Shi J R,Shi X,Sun Z,Liu E,Tay B K and Lau S P2000ThinSolid Films366169[22]Yoshikawa M,Nagai N,Matsuki M,Fukuda K,Katagiri G,Ishida H,Ishitani A and Nagai I1992Phys.Rev.B467169[23]Walrafen G E,Chu Y C and Hokmabadi M S1990J.Chem.Phys.926987[24]Kingma K J and Hempley R J1994Am.Mineral.792697。

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROLInt.J.Robust Nonlinear Control 2003;13:1035–1056(DOI:10.1002/rnc.753)Input-to-state stability with respect to inputsand their derivativesDavid Angeli 1,n ,y ,Eduardo D.Sontag 2,z and Yuan Wang 3,}1Dip.Sistemi e Informatica,Universit "adi Firenze,Via di Santa Marta 3,50139Firenze,Italy 2Department of Mathematics,Rutgers University,New Brunswick,NJ 08903,USA3Department of Mathematics,Florida Atlantic University,Boca Raton,FL 33431,USASUMMARYA new notion of input-to-state stability involving infinity norms of input derivatives up to a finite order k is introduced and characterized.An example shows that this notion of stability is indeed weaker than the usual iss .Applications to the study of global asymptotic stability of cascaded non-linear systems are discussed.Copyright #2003John Wiley &Sons,Ltd.KEY WORDS :input-to-state stability;Lyapunov methods;dissipative systems;cascaded systems1.INTRODUCTIONA central question in control theory is how to formulate,for general non-linear systems,notions of robustness and stability with respect to exogenous input disturbances.The linear case is by now very well understood,and,at least in a finite-dimensional set-up,most ‘reasonable’definitions of ‘input-to-state’or ‘input–output’stability (provided in this last case that additional reachability and observability assumptions are met)boil down to local asymptotic stability,viz.to the classical condition on the systems poles lying in the complex open left half-plane.However,for non-linear systems the range of possibilities is much broader,and the goal of coming up with an effective classification for many different behaviours that might be labeled as ‘stable’together with methods which would allow to establish relationships between such stability notions has attracted a substantial research effort within the past years.In this respect,input to state stability (iss )and integral iss ,as well as H 1theory,have proven to be powerful tools,used successfully in order to tackle problems both of robustness analysis and control synthesis,[1–5].Received 29October 2001Revised 6August 2002Published online 31March 2003Accepted 4September 2002Copyright #2003John Wiley &Sons,Ltd.y E-mail:angeli@dsi.unifi.it n Correspondence to:David Angeli,Dipartimento di Sistemi e Informatica,Universit "adi Firenze,Via di Santa Marta 3,50139Firenze,Italy.z E-mail:sontag@ }E-mail:ywang@Contract/grant sponsor:U.S.Air Force;contract/grant number:F-49620-01-0063.Contract/grant sponsor:NSF;contract/grant number:DMS-0072620In the iss -related literature,a ‘disturbance’is a locally essentially bounded measurable function.Such an extremely rich set of possible input perturbations is well suited to model Gaussian and random noises,as well as constant or periodic signals,slow parameters drifts,and so on.If,on one side,this makes the notion of iss extremely powerful,on the other it is known that iss might sometimes be too strong a requirement [6].In the output regulation literature [7],instead,the focus is on ‘deterministic’disturbances,i.e.signals that can be generated by a finite dimensional non-linear systems,(usually smooth),when the state is evolving in a neighbour-hood of a neutrally stable equilibrium position.This is an extremely interesting class of persistent disturbances for which,roughly speaking,the following is true:jj d jj 1small )jj ’djj 1and derivatives of arbitrary order are also small Under similar circumstances,for instance when cascading asymptotically stable systems,regarding the ‘forcing’system’s state as a disturbance typically yieldslim sup t !þ1j d ðt Þj ¼0)lim sup t !þ1j ’d ðt Þj ¼0Nevertheless,the classical definition of input-to-state stability completely disregards such additional information.Tracking of output references,see Reference [8],is another area where ‘derivative’knowledge is usually disregarded (the analysis is often performed only taking into account constant set-points),whereas such information could be exploited to get tighter estimates for the steady-state tracking error due to time-varying,smooth reference signals.Analogous situations arise when parameters variations are taken into account (i.e.in adaptive control)and we expect the system to have nice and stable behaviour for slow parameters drifts.The study of systems with slowly varying parameters has long been an interesting topic in the literature,see e.g.References [9,10].The analysis of such a system is usually carried out by first considering the systems corresponding to ‘frozen’parameters.If for all the frozen parameters,the corresponding frozen systems possess certain stability property uniformly,then it is reasonable to expect that the system with slowly varying parameters will possess the same property.See,for instance,Reference [10]for a result of this type.A more general question is how the magnitudes of the time derivatives of the time varying parameters affect the behaviour of the systems.The main contribution of this note is to show how,in the context of iss ,stability notions can be adjusted in order to take into account robustness with respect to disturbances and their time derivatives.The new notion of D k iss is defined through an iss -like estimate which involves the magnitudes of the inputs and their derivatives up to the k th order.We also propose several properties related to the D k iss notion.All these properties serve to formalize the idea of ‘stable’dependence upon the inputs and their time derivatives.They differ in the formulation of the decay estimates which make precise how the magnitudes of derivatives affect the system.We illustrate by means of several interesting examples how these properties differ from each other and from the well known iss property.One of our main objectives is to provide equivalent Lyapunov characterizations for these properties.Interestingly enough,one of our Lyapunov formulations already appeared in Reference [9],(see formula (5)in that reference).In this work,we provide a stability property that is equivalent to the existence of this type of Lyapunov functions.As a key step in establishing the Lyapunov formulations,we show how the D k iss property can be treated as a Copyright #2003John Wiley &Sons,Ltd.Int.J.Robust Nonlinear Control 2003;13:1035–1056D.ANGELI,E.D.SONTAG AND Y.WANG1036special case of the input–output-to-state stability property(for detailed discussions on this property,see Reference[11]).A second objective is to discuss some applications of the newly introduced notions to the analysis of cascaded non-linear systems.The well known result that cascading preserves the iss property is generalized to the D k iss property.The paper is organized as follows:Section2provides the basic definitions.Sections3–5 contain the Lyapunov characterizations of the D k iss property and some other related properties. Sections6and7are devoted to the study of cascaded systems.Sections8and9provide discussions on the relation between the newly introduced stability notions and the well established iss property.2.BASIC DEFINITIONSConsider non-linear systems of the following form:’xðtÞ¼fðxðtÞ;uðtÞÞð1Þwhere xðtÞ2R n and uðtÞ2R m for each t50:The function f:R nÂR m!R n is locally Lipschitz continuous.Thus,for any measurable,locally essentially bounded function uðtÞ:R!R m;and any initial condition x2R n;there exists a unique solution xðt;x;uÞof(1)satisfying the initialcondition xð0;x;uÞ¼x;defined on some maximal intervalðTÀx;u ;Tþx;uÞ:Recall that system(1)is input-to-state stable(iss for short)if there exist g2K1n and b2KL so that the following holds:j xðt;x;uÞj4bðj x j;tÞþgðjj u½0;tÞjj1Þð2Þfor all t50;all x2R n;and all input signals u;where for any interval I;u I denotes the restrictionof u to I;and where jj v jj denotes the usual L m1-norm(possibly infinite)of v:Usually one can thinkof u as an exogenous disturbance entering the system.Note that if(2)holds for any trajectory on any interval where the trajectory is defined,then the system is automatically forward complete. We denote by W k;1ðJÞ;for any integer k51and any interval J;the space of all functions u:J!R m for which theðkÀ1Þst derivative uðkÀ1Þexists and is locally Lipschitz.For k¼0;we define W0;1ðJÞas the set of locally essentially bounded u:J!R m:When J¼½0;þ1Þ;we omit J and write simply W k;1:(Since absolutely continuous functions have essentially bounded derivatives if and only if they are Lipschitz,the definition of W k;1ðJÞ;for positive k;amounts to asking that theðkÀ1Þst derivative uðkÀ1Þexists and is absolutely continuous,and hence,its derivative,that is,uðkÞ;is locally essentially bounded.Thus W k;1ðJÞis a standard Sobolev space, justifying our notation.)Definition2.1System(1)is said to be k th derivative input-to-state stableðD k iss)if there exist some KL-function b;and some K-functions g0;g1;...;g k such that,for every input u2W k;1;the*A function F:S!R is positive definite if FðxÞ>0;8x2S;x=0and Fð0Þ¼0:A function g:R50!R50is ofclass K if it is continuous,positive definite,and strictly increasing.It is of class K1if it is also unbounded.Finally, b:R50ÂR50!R50is of class KL if for eachfixed t50;bðÁ;tÞis of class K and for eachfixed s>0;bðs;tÞdecreases to0as t!1:An important fact concerning K1functions which will often be used in the following sections is the so-called‘weak triangular inequality’gðaþbÞ4gð2aÞþgð2bÞfor all a;b50:Copyright#2003John Wiley&Sons,Ltd.Int.J.Robust Nonlinear Control2003;13:1035–1056INPUT-TO-STATE STABILITY1037following holds:j x ðt ;x ;u Þj 4b ðj x j ;t Þþg 0ðjj u jjÞþg 1ðjj ’ujjÞþÁÁÁþg k ðjj u ðk ÞjjÞð3Þfor all t 50:As with iss ,we remark that if estimate (3)was instead only required to hold on the maximal interval of definition of the solution x ðt ;x ;u Þ;then j x ðt ;x ;u Þj is uniformly bounded on any subinterval of the maximal interval.Hence,the solution must be globally defined if u 2W k ;1;and the same definition results.We say simply that the system is D iss when it is D 1iss and,of course,iss is the same as D k iss for k ¼0:It is also clear that a system is D k iss if and only if there exist some b 2KL and some g 2K such thatj x ðt ;x ;u Þj 4b ðj x j ;t Þþg ðjj u jj ½k Þð4Þfor all t 50;where jj u jj ½k ¼max 04i 4k fjj u ði Þjjg :Lemma 2.2System (1)is D k iss if and only if property (4)holds for all smooth input functions (with the same b ;g ).ProofOne implication is trivial.To prove the non-trivial implication,assume for some b 2KL and g 2K ;estimate (4)holds for all smooth input functions.By causality,one may replace jj u jj ½k by jj u ½0;t Þjj ½k in (4).Let u 2W k ;1:Fix T >0such that x ðt ;x ;u Þis defined on ½0;T :Note that u ðk Þis essentially bounded on ½0;T :It is a routine approximation fact (reviewed in Corollary A.2in the appendix)that there exists an equibounded sequence of C 1functions f u j g such that*u j !u pointwise on ½0;T ;and *lim sup j !1jjðu j Þ½0;T Þjj ½k 4jj u ½0;T Þjj ½k :Applying (4)to the trajectories with the input function u j ;and then taking the limits,we get j x ðt ;x ;u Þj 4b ðj x j ;0Þþg ðjj u jj ½k ½0;T þx ;u ÞÞð5ÞHence,T þx ;u ¼1;that is,x ðt ;x ;u Þis defined on ½0;1Þ:Thus T can be picked arbitrarily,and (5)holds for all t 50where jj u jj ½k ½0;T þx ;uÞbecomes by jj u jj ½k :&3.A LYAPUNOV CHARACTERIZATION OF D k issFix k 51:For system (1),consider the auxiliary system’x¼f ðx ;z 0Þ;’z 0¼z 1;...;’z k À1¼v ð6ÞLet#x ðt ;x ;Z ;v Þ:¼x ðt ;x ;Z ;v Þz ðt ;Z ;v Þ!Copyright #2003John Wiley &Sons,Ltd.Int.J.Robust Nonlinear Control 2003;13:1035–1056D.ANGELI,E.D.SONTAG AND Y.WANG1038INPUT-TO-STATE STABILITY1039 denote the trajectory of(6)with the initial state xð0Þ¼x;zð0Þ¼Z;(note that the z-component of the solution is independent of the choice of x:)Observe that,if property(4)is known to hold for all inputs in W k;1;then,for the trajectories ðxðt;x;z0;vÞ;zðt;x;z0;vÞÞof the auxiliary system,the following property holds:j xðt;x;Z;vÞj4bðj x j;tÞþ*g0ðjj z jj½0;t Þþ*g1ðjj v jjÞð7Þfor all measurable,locally essentially bounded inputs v:Given the fact that j zðtÞj4jj z jj½0;tÞis always true,we getj#xðt;x;Z;vÞj4bðjðx;ZÞj;tÞþ#g0ðjj z jj½0;t Þþ#g1ðjj v jjÞfor some#g0;#g12K:This shows that if(1)is D k iss;then(6)is input–output-to-state stable,i.e., ioss,with v as input and z¼ðz0;z1;...;z kÀ1Þas outputs(cf.Reference[11]).On the other hand,if the auxiliary system(6)is ioss,then there exist some b2KL and g0;g2K such thatj#xðt;x;Z;vÞj4bðj x jþj Z j;tÞþg0ðjj z jj½0;tÞÞþgðjj v jjÞfor all locally essentially bounded inputs v:Observe thatbðj x jþj Z j;tÞ4bð2j x j;tÞþbð2j Z j;0Þ4bð2j x j;tÞþbð2jj z jj½0;tÞ;0ÞIt follows thatj#xðt;x;Z;vÞj4%bðj x j;tÞþ%g0ðjj z jj½0;tÞÞþgðjj v jjÞholds for all locally essentially bounded v;where%bðs;tÞ¼bð2s;tÞ;and%g0ðsÞ¼bð2s;0Þþg0ðsÞ:In particular,j xðt;x;Z;vÞj4%bðj x j;tÞþ%g0ðjj z jj½0;tÞÞþgðjj v jjÞThis implies that for any u2W k;1;the trajectory of system(1)with initial state x satisfies the estimate:j xðt;x;uÞj4bðj x j;tÞþg1ðjj u jj½k Þwhere g1ðsÞ¼%g0ðsÞþgðsÞ:We have therefore proved the following result that underlies the proofs of Theorems1and2to be given later.Lemma3.1Let k51:System(1)is D k iss if and only the associated auxiliary system(6)is ioss with v as input and z¼ðz0;z1;...;z kÀ1Þas output.By the main result in Reference[11],System(6)is ioss if and only if it admits an ioss-Lyapunov function,that is,a smooth function V:R nÂR km!R50such thata;%a2K1;it holds that*for some%aðjðx;zÞjÞ4Vðx;zÞ4%aðjðx;zÞjÞ8ðx;zÞ%Copyright#2003John Wiley&Sons,Ltd.Int.J.Robust Nonlinear Control2003;13:1035–1056*for some a ;r 2K 1;@V @x ðx ;z Þf ðx ;z Þþ@V @z 0ðx ;z Þz 1þÁÁÁþ@V @z k À1ðx ;z Þv 4Àa ðV ðx ;z ÞÞþr ðjðz ;v ÞjÞfor all x ;z and v :Interpreting z as the input and its derivatives for system (1),we get the following:Theorem 1Let k 51:System (1)is D k iss if and only if there exists a smooth function V :R n ÂR km !R 50such that*there exist some %a ;%a 2K 1such that for all ðx ;m ½k À1 Þ2R n ÂR km ;it holds that %a ðjðx ;m ½k À1 ÞjÞ4V ðx ;m ½k À1 Þ4%a ðjðx ;m ½k À1 ÞjÞð8Þ*there exist some a 2K 1;r 2K 1such that for all x 2R n and all m ½k 2R m ðk þ1Þwith m ½k ¼ðm 0;m 1;...;m k Þ;it holds that@V @x ðx ;m ½k À1 Þf ðx ;m 0Þþ@V @m 0ðx ;m ½k À1 Þm 1þ@V @m 1ðx ;m ½k À1 Þm 2þÁÁÁþ@V @m k À1ðx ;m ½k À1 Þm k 4Àa ðV ðx ;m ½k À1 ÞÞþr ðj m ½k jÞð9ÞRemark 3.2Note that inequality (8)implies that%a ðj x jÞ4V ðx ;m ½k À1 Þ4%a ðjðx ;m ½k À1 ÞjÞð10ÞSuppose a system (1)admits a Lyapunov function V satisfying (9)and (10).Then it can be seen that,along any trajectory x ðt Þwith u 2W k ;1as the input,(9)yieldsd d tV ðx ðt Þ;u ðt Þ;...;u ðk À1Þðt ÞÞ4Àa ðV ðx ðt Þ;u ðt Þ;...;u ðk À1Þðt ÞÞÞþr ðjj u jj ½k Þfor almost all t 50:From this it follows that for some b 2KL and g 2K ;it holds thatV ðx ðt Þ;u ðt Þ;...;u ðk À1Þðt ÞÞ4b ðj V 0j ;t Þþg ðjj u jj ½k Þ8t 50where V 0¼V ðx ð0Þ;u ð0Þ;...;u ðk À1Þð0ÞÞ:Combining this with (10),one sees that system (1)is D k iss :Hence,an equivalent Lyapunov characterization of D k iss is the existence of a smooth function Vsatisfying (9)and (10)for some %a ;%a ;a 2K 1and some r 2K :4.ASYMPTOTIC GAINSClearly,if a system is D k iss ;then it is forward complete (for u 2W k ;1)and for some g 0;g 1;...;g k 2K it holds thatlim sup t !1j x ðt ;x ;u Þj 4g 0ðjj u jjÞþg 1ðjj ’ujjÞþÁÁÁþg k ðjj u ðk ÞjjÞ:ð11ÞWe say that a forward complete system satisfies the asymptotic gain (AG)property in u ;...;u ðk Þif,for some g 0;...;g k 2K ;(11)holds for all x 2R n and all u 2W k ;1:Copyright #2003John Wiley &Sons,Ltd.Int.J.Robust Nonlinear Control 2003;13:1035–1056D.ANGELI,E.D.SONTAG AND Y.WANG 1040INPUT-TO-STATE STABILITY1041 By Lemma3.1,the system(1)is D k iss if and only if the associated auxiliary system(6)is ioss with v as input and z¼ðz0;z1;...;z kÀ1Þas output.Applying the main result in Reference[12] about asymptotic gains for the ioss property to the auxiliary system(6),one can prove the following:Theorem2For a forward complete system as in(1),the following are equivalent:1.it is D k iss;2.it satisfies the AG property in u;...;uðkÞ;and the corresponding zero-input system’x¼fðx;0Þis(neutrally)stable.5.RELATED NOTIONSIn this section,we consider two properties related to D iss:We focus specifically on D iss(rather than D k iss)as it seems to be the most relevant in applications.As a matter of fact,the authors were not able tofind any example of a D2iss system not being D iss and it is therefore an open question whether or not D k iss(k51)is equivalent to D iss:We say that system(1)is iss in’u if,for some b2KL and some g2K;the following estimate holds for all trajectories with inputs in W1;1:j xðt;x;uÞj4bðj x j;tÞþgðjj’u jjÞ8t50ð12ÞWe say that system(1)is iss in constant inputs if,for some b2KL and g2K;the following estimate holds for all trajectories corresponding to constant inputs u:j xðt;x;uÞj4bðj x j;tÞþgðjj u jjÞ8t50:ð13ÞIt is obvious that if a system is iss in’u;then it is gas uniformly in all constant inputs,that is, for some b2KL;the following holds for all trajectories with constant inputs:j xðt;x;uÞj4bðj x j;tÞ8t50Also note thatðiss in’uÞ)ðD issÞ:The converse is in general false.This can be seen through the following argument.Suppose D iss implies iss in’u:Then we would haveðissÞ)ðD issÞ)ðiss in’uÞand hence,ðissÞ)ðiss in’uÞ:But this is false,as one can see that the linear system’x¼Àxþu is iss but not iss in’u:It is also clear that,for any k50;ðD k issÞ)ðiss in constant uÞAgain,the converse implication is in general false as shown by examples in ing similar arguments as in the proof of Lemma3.1,we get the following:*System(1)is iss in’u if and only if the auxiliary system’x¼fðx;zÞ;’z¼vð14ÞCopyright#2003John Wiley&Sons,Ltd.Int.J.Robust Nonlinear Control2003;13:1035–1056is state-independent-input-to-output stable,i.e.siios (see Reference [13])with v as inputs and x as outputs;and *System (1)is iss in constant inputs if and only if the auxiliary system’x ¼f ðx ;z Þ;’z ¼0ð15Þis output-to-state-stable,i.e.oss (see Reference [11])with z as outputs.Applying Theorem 1.2of Reference [14]in conjunction with Remark 4.1in Reference [14]to the siios property for system (14),we get the following:Proposition 5.1System (1)is iss in ’uif and only if there exists a smooth Lyapunov function V :R n ÂR m !R 50satisfying the following:*for some %a ;%a 2K 1;%a ðj x jÞ4V ðx ;m 0Þ4%a ðj x jÞ8x 2R n ;8m 02R m ð16Þ*for some w 2K 1and some continuous,positive definite function a ;V ðx ;m 0Þ5w ðj m 1jÞ)@V @x ðx ;m 0Þf ðx ;m 0Þþ@V @m 0ðx ;m 0Þm 14Àa ðV ðx ;m 0ÞÞð17Þfor all x 2R n and all m 0;m 12R m :Observe that if one restricts the set where the input functions take values to be a bounded set U (as in the case of Reference [9]),then the Lyapunov characterization in Proposition 5.1isequivalent to the existence of a smooth Lyapunov function V satisfying (16)for some %a ;%a 2K 1such that for some a 2K 1and s 2K ;@V @x ðx ;m 0Þf ðx ;m 0Þþ@V @m 0ðx ;m 0Þm 14Àa ðV ðx ;m 0ÞÞþs ðj m 1jÞfor all x 2R n ;all m 02U ;and all m 12R m :Such a Lyapunov estimate was used in [9]to analyze the asymptotic behaviour of systems with slowly varying parameters.Applying Theorem 2of Reference [11]to the oss property for system (15),we have the following:Proposition 5.2System (1)is iss with respect to constant inputs if and only if it admits a smooth Lyapunov function V :R n ÂR m !R 50such that*for some %a ;%a 2K 1;%a ðjðx ;m ÞjÞ4V ðx ;m Þ4%a ðj V ðx ;m ÞjÞ8x 2R n ;8m 2R m ð18Þ*for some a 2K 1;s 2K ;@V @xðx ;m Þf ðx ;m Þ4Àa ðV ðx ;m ÞÞþs ðj m jÞð19Þfor all x 2R n ;m 2R m :Copyright #2003John Wiley &Sons,Ltd.Int.J.Robust Nonlinear Control 2003;13:1035–1056D.ANGELI,E.D.SONTAG AND Y.WANG1042Remark5.3It may also be interesting to consider the D iss property with different indexes on different components of the inputs.For instance,for a system’x¼fðx;u;vÞð20Þwithðu;vÞas inputs,one may consider the property that for some b2KL;g u2K and g v2K; it holds thatj xðt;x;u;vÞj4bðj x j;tÞþg uðjj u jjÞþg vðjj v jjÞþg vðjj’v jjÞð21ÞOne can also get a Lyapunov characterization for such a property by using the same argument as in the proof of Theorem1with the ioss results.For instance,a system as in(20)satisfies property(21)if and only if there exists a smooth Lyapunov function V such that*for some%a;%a2K1;%aðjðx;n0ÞjÞ4Vðx;n0Þ4%aðjðx;n0ÞjÞ*for some a2K1;some r u;r v2K;it holds that@V @x ðx;n0Þfðx;m0;n0Þþ@V@n0ðx;n0Þn14ÀaðVðx;n0ÞÞþr uðj m0jÞþr vðj n0jÞþr vðj n1jÞfor all x;m0;n0and n1:6.APPLICATION OF D iss TO THE ANALYSIS OF CASCADE SYSTEMSAn interesting feature of iss,which makes it particularly useful in feedback design,is that the property is preserved under cascades,(see Reference[15]).Unfortunately,this is not the case for the weaker notion of integral iss,as remarked in Reference[1](but,see Reference[16]for related work).Interestingly,however,although D iss is also a weaker property than iss,it is preserved under cascades,as shown in this section.For a system’x¼fðx;v;uÞwithðv;uÞas inputs,we say that the system is D k iss in v and D l iss in u if there exist b2KL and g2K such that the following holds along any trajectory xðt;x;v;uÞwith initial state x;any input ðv;uÞfor which v2W k;1and u2W l;1:j xðt;x;v;uÞj4bðj x j;tÞþgðjj v jj½k Þþgðjj u jj½l Þ8t50Lemma6.1Consider a cascade system’x¼fðx;z;uÞ’z¼gðz;uÞð22Þwhere xðÁÞand zðÁÞevolve on R n1and R n2;respectively,the input u takes values in R m;and where f is locally Lipschitz and g is smooth.Let k50:Suppose that the z-subsystem is D k iss with u as input,and that the x-subsystem D kþ1iss in z and D k iss in u:Then the cascade system(22)is D k iss:Copyright#2003John Wiley&Sons,Ltd.Int.J.Robust Nonlinear Control2003;13:1035–1056INPUT-TO-STATE STABILITY1043ProofBy assumption,there exist b z 2KL and g z 2K such that,along any trajectory z ðt Þof the z -subsystem with input u ;it holds thatj z ðt Þj 4b z ðj z ð0Þj ;t Þþg z ðjj u jj ½k Þ8t 50ð23Þand there exist some b x 2KL and g x 2K such that,for any trajectory x ðt ;v ;u Þof the system ’x¼f ðx ;v ;u Þ;j x ðt ;x ;v ;u Þj 4b x ðj x ð0Þj ;t Þþg x ðjj v jj ½k þ1 Þþg x ðjj u jj ½k Þ8t 50ð24ÞTo prove Lemma 6.1,we need to find a suitable estimate for the x -component of solutions of(22).For this purpose,we define by induction for 14i 4k þ1:g i ða ;b 0;b 1;...;b i À1Þ¼@g i À1@a g ða ;b 0ÞþX i À2j ¼0@g i À1@b j b j þ1where g 1ða ;b 0Þ¼g ða ;b 0Þ:It can be seen that g i ð0;0;...;0Þ¼0for all 04i 4k ;hence,there exists some s i 2K such thatg i ða ;b 0;...;b i À1Þ4s i ðj a jÞþs i ðj b ½i À1 jÞAgain,by induction,one can show that,along any trajectory z ðt Þof the z -subsystem of (22)with an input u 2W k ;1;it holds thatd i d tz ðt Þ¼g i ðZ ðt Þ;d ðt Þ;’d ðt Þ;...;d ði À1Þðt ÞÞfor all 14i 4k þ1:It then follows thatjj z ½k þ1 jj 4s ðjj z jjÞþs ðjj u ½k jjÞð25Þfor some s 2K :It then follows from (24)and (25)that,for some r 2K ;it holds that along any trajectory ðx ðt Þ;z ðt ÞÞof (22),j x ðt Þj 4b x ðj x ð0Þj ;t Þþr ðjj z jjÞþr ðjj u jj ½k Þ8t 50ð26ÞApplying a standard argument to (26)and (23)as in the proof of the result that a cascade of iss systems is again iss ,one can show that system (22)is D k iss :To be more precise,(26)implies that j x ðt Þj 4b x j x ðt =2Þj ;t 2þr ðjj z jj ½t =2;t ÞÞþr ðjj u jj ½k ½t =2;t ÞÞ8t 50ð27Þalong any trajectory of (22).Fix an input u and pick any trajectory ðx ðt Þ;z ðt ÞÞof (22)with the input u :Let x 1¼x ðt =2Þ:We also have j x 1j 4b x j x j ;t 2þr ðjj z jj ½0;t =2ÞÞþr ðjj u jj ½k ½0;t =2ÞÞ8t 50Hence,there exist some *b x ;*b z and some *r 2K (which depend only on b x ;r )such that b x j x 1j ;t 24*b x ðj x j ;t Þþ*b z ðjj z jj ½0;t =2Þ;t Þþ*r ðjj u jj ½k ½0;t =2ÞÞð28Þfor all t 50:By (23),j z ðt Þj 4b z ðj z ð0Þj ;0Þþg z ðjj u jj ½k Þfor all t50;hence,*b z ðjj z jj ½0;t =2Þ;t Þ4%b z ðj z ð0Þj ;t Þþ%g z ðjj u jj ½k Þ8t 50ð29ÞCopyright #2003John Wiley &Sons,Ltd.Int.J.Robust Nonlinear Control 2003;13:1035–1056D.ANGELI,E.D.SONTAG AND Y.WANG1044。

已完成基因组测序的物种

已完成基因组测序的物种

植物[编辑]物种基因组大小和开放阅读框文献Sesamum indicum L. Sesame 芝麻(2n = 26)293.7 Mb, 10,656 orfs 1 Oryza brachyantha短药野生稻261 Mb, 32,038 orfs 2Chondrus crispus Red seaweed爱尔兰海藻105 Mb, 9,606 orfs 3Pyropia yezoensis susabi-nori海苔43 Mb, 10,327 orfs 4Prunus persica Peach 桃226.6 of 265 Mb 27,852 orfs 5Aegilops tauschii 山羊草(DD)4.23 Gb (97% of the 4.36), 43,150 orfs 6 Triticum urartu 乌拉尔图小麦(AA)4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7 moso bamboo (Phyllostachys heterocycla) 毛竹2.05 Gb (95%) 31,987 orfs 8 Cicer arietinum Chickpea鹰嘴豆~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10Prunus mume 梅280 Mb, 31,390 orfs 11Gossypium hirsutum L.陆地棉2.425 Gb 12Gossypium hirsutum L. 雷蒙德氏棉761.8 Mb 13Citrus sinensis 甜橙87.3% of ~367 Mb, 29,445 orfs 14甜橙367 Mb 15Citrullus lanatus watermelon 西瓜353.5 of ~425 Mb (83.2%) 23,440 orfs 16 Betula nana dwarf birch,矮桦450 Mb 17Nannochloropsis oceanica CCMP1779微绿球藻(产油藻类之一)28.7 Mb,11,973 orfs 18Triticum aestivum bread wheat普通小麦17 Gb, 94,000 and 96,000 orfs 19 Hordeum vulgare L. barley 大麦1.13 Gb of 5.1 Gb,26,159 high confidence orfs,53,000 low confidence orfs 20Gossypium raimondii cotton 雷蒙德氏棉D subgenome,88% of 880 Mb 40,976 orfs 21Linum usitatissimum flax 亚麻302 mb (81%), 43,384 orfs 22Musa acuminata banana 香蕉472.2 of 523 Mb, 36,542 orfs 23Cucumis melo L. melon 甜瓜375 Mb(83.3%)27,427 orfs 24Pyrus bretschneideri Rehd. cv. Dangshansuli 梨(砀山酥梨)512.0 Mb (97.1%), 42,812 orfs 25,26Solanum lycopersicum 番茄760/900 Mb,34727 orfs 27S. pimpinellifolium LA1589野生番茄739 MbSetaria 狗尾草属(谷子、青狗尾草)400 Mb,25000-29000 orfs 28,29Cajanus cajan pigeonpea木豆833 Mb,48,680 orfs 30Nannochloropis gaditana 一种海藻~29 Mb, 9,052 orfs 31Medicago truncatula蒺藜苜蓿350.2 Mb, 62,388 orfs 32Brassica rapa 白菜485 Mb 33Solanum tuberosum 马铃薯0.73 Mb,39031 orfs 34Thellungiella parvula条叶蓝芥13.08 Mb 29,338 orfs 35Arabidopsis lyrata lyrata 玉山筷子芥? 183.7 Mb, 32670 orfs 36Fragaria vesca 野草莓240 Mb,34,809 orfs 37Theobroma cacao 可可76% of 430 Mb, 28,798 orfs 38Aureococcus anophagefferens褐潮藻32 Mb, 11501 orfs 39Selaginella moellendorfii江南卷柏208.5 Mb, 34782 orfs 40Jatropha curcas Palawan麻疯树285.9 Mb, 40929 orfs 41Oryza glaberrima 光稃稻(非洲栽培稻)206.3 Mb (0.6x), 10 080 orfs (>70% coverage) 42Phoenix dactylifera 棕枣380 Mb of 658 Mb, 25,059 orfs 43Chlorella sp. NC64A小球藻属40000 Kb, 9791 orfs 44Ricinus communis蓖麻325 Mb, 31,237 orfs 45Malus domestica (Malus x domestica) 苹果742.3 Mb 46Volvox carteri f. nagariensis 69-1b一种团藻120 Mb, 14437 orfs 47Brachypodium distachyon 短柄草272 Mb,25,532 orfs 48Glycine max cultivar Williams 82栽培大豆1.1 Gb, 46430 orfs 49Zea mays ssp. Mays Zea mays ssp. Parviglumis Zea mays ssp. Mexicana Tripsacum dactyloides var. meridionale 无法下载附表50Zea mays mays cv. B73玉米2.06 Gb, 106046 orfs 51Cucumis sativus 9930 黄瓜243.5 Mb, 63312 orfs 52Micromonas pusilla金藻21.7 Mb, 10248 orfs 53Sorghum bicolor 高粱697.6 Mb, 32886 orfs 54Phaeodactylum tricornutum 三角褐指藻24.6 Mb, 9479 orfs 55Carica papaya L. papaya 番木瓜271 Mb (75%), 28,629 orfs 56Physcomitrella patens patens小立碗藓454 Mb, 35805 orfs 57Vitis vinifera L. Pinot Noir, clone ENTAV 115葡萄504.6 Mb, 29585 orfs 58Vitis vinifera PN40024葡萄475 Mb 59Ostreococcus lucimarinus绿色鞭毛藻13.2 Mb, 7640 orfs 60Chlamydomonas reinhardtii 莱茵衣藻100 Mb, 15256 orfs 61Populus trichocarpa黑三角叶杨550 Mb, 45000 orfs 62Ostreococcus tauri 绿藻12.6 Mb, 7892 orfs 63Oryza sativa ssp. japonica 粳稻360.8 Mb, 37544 orfs 64Thalassiosira pseudonana 硅藻25 Mb, 11242 orfs 65Cyanidioschyzon merolae 10D红藻16.5 Mb, 5331 orfs 66Oryza sativa ssp. japonica 粳稻420 Mb, 50000 orfs 67Oryza sativa L. ssp. Indica籼稻420 Mb, 59855 orfs 68Guillardia theta -蓝隐藻,551 Kb, 553 orfs 69Arabidopsis thaliana Columbia拟南芥119.7 Mb, 31392 orfs 70参考文献1 Zhang, H. et al. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biology 14, 401 (2013).2 Chen, J. et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 1595 (2013).3 Collén, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences 110, 5247-5252 (2013).4 Nakamura, Y. et al. The first symbiont-free genome sequence of marine red alga, susabi-nori Pyropia yezoensis. PLoS ONE 8, e57122 (2013).5 Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics advance online publication (2013).6 Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91-95 (2013).7 Ling, H.-Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90 (2013).8 Peng, Z. et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45, 456-461 (2013).9 Jain, M. et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, DOI: 10.1111/tpj.12173 (2013).10 Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotech 31, 240-246 (2013).11 Zhang, Q. et al. The genome of Prunus mume. Nat Commun 3, 1318 (2012).12 Lee, M.-K. et al. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genomics 14, 208 (2013).13 Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427 (2012).14 Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet 45, 59–66 (2013).15 Belknap, W. R. et al. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 54, 1005-1015 (2011).16 Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45, 51–58 (2013).17 Wang, N. et al. Genome sequence of dwarf birch (Betula nana) andcross-species RAD markers. Mol Ecol Article first published online: 21 NOV 2012 DOI: 10.1111/mec.12131 (2012).18 Vieler, A. et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8, e1003064 (2012).19 Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710 (2012).20 Consortium, T. I. B. G. S. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).21 Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics 44, 1098–1103 (2012).22 Wang, Z. et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. The Plant Journal 72, 461-473 (2012).23 D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).24 Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). PNAS 109, 11872-11877 (2012).25 reporter, A. G. s. Consortium releases pear genome data. GenomeWeb Daily News (2012).26 Wu, J. et al. The genome of pear (Pyrus bretschneideri Rehd.). Genome Res.Published in Advance November 13, 2012, doi:10.1101/gr.144311.112 (2012).27 Consortium, T. T. G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).28 Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat Biotech 30, 555-561 (2012).29 Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30, 549-554 (2012).30 Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30, 83-89 (2012).31 Radakovits, R. et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3, 686 (2012).32 Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).33 Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039 (2011).34 Consortium, T. P. G. S. Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195 (2011).35 Dassanayake, M. et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 43, 913-918 (2011).36 Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481 (2011).37 Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116 (2011).38 Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101-108 (2011).39 Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. PNAS 108, 4352-4357 (2011).40 Banks, J. A. et al. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960-963 (2011).41 Sato, S. et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 18, 65-76 (2011).42 Sakai, H. et al. Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant Journal 66, 796-805 (2011).43 Al-Dous, E. K. et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29, 521-527 (2011).44 Blanc, G. et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22,2943-2955 (2010).45 Chan, A. P. et al. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28(951-956 (2010).46 Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833-839 (2010).47 Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329, 223-226 (2010).48 Initiative, T. I. B. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763-768 (2010).49 Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183 (2010).50 Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808-811 (2012).51 Wei, F. et al. The physical and genetic framework of the maize B73 genome. PLoS Genet 5, e1000715 (2009).52 Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275-1281 (2009).53 Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324, 268-272 (2009).54 Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).55 Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244 (2008).56 Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991-996 (2008).57 Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69 (2008).58 Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2, e1326 (2007).59 Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467 (2007).60 Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705-7710 (2007).61 Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007).62 Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604 (2006).63 Derelle, E. et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103, 11647-11652 (2006).64 Project, I. R. G. S. The map-based sequence of the rice genome. Nature 436, 793-800 (2005).65 Armbrust, E. V. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79-86 (2004).66 Matsuzaki, M. et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657 (2004).67 Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100 (2002).68 Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 (2002).69 Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096 (2001).70 Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).动物[编辑]•Anopheles gambiae - 疟蚊•Apis mellifera - 蜜蜂•Bos taurus cattle - 牛•Caenorhabditis briggsae - 一种线虫•Caenorhabditis elegans - 秀丽隐杆线虫,模式生物•Canis lupus familiaris dog- 狗•Ciona intestinalis - 一种海鞘•Ciona savignyi - 一种海鞘•Drosophila melanogaster - 黑腹果蝇,模式生物•Fugu rubripes - 河豚•Gallus gallus - 鸡•Homo sapiens - 人•Mus musculus - 小鼠, 模式生物•Pan troglodytes - 黑猩猩•Rattus norvegicus - 大鼠•Schistosoma haematobium - 埃及血吸虫•Anabaena spec. - Fadenblaualge•Gloeobacter violaceus - primitive Blaualge •Synechococcus spec. - Meeres-Blaualge•Synechocystis spec. - Meeres-Blaualge•Thermosynechococcus elongatus - Thermophile Blaualge。

一种视觉显著性引导的模糊聚类图像分割方法

一种视觉显著性引导的模糊聚类图像分割方法

㊀第54卷第2期郑州大学学报(理学版)Vol.54No.2㊀2022年3月J.Zhengzhou Univ.(Nat.Sci.Ed.)Mar.2022收稿日期:2021-05-26基金项目:国家自然科学基金项目(61703252,62076154);国际科技合作计划项目(201903D421050);中央引导地方科技创新项目(YDZX20201400001224)㊂第一作者:白雪飞(1980 ),女,副教授,主要从事图像处理㊁机器学习研究,E-mail:baixuefei@㊂通信作者:王文剑(1968 ),女,教授,主要从事机器学习㊁计算智能㊁图像处理研究,E-mail:wjwang@㊂一种视觉显著性引导的模糊聚类图像分割方法白雪飞1,㊀韩晓静1,㊀王文剑1,2(1.山西大学计算机与信息技术学院㊀山西太原030006;2.山西大学计算智能与中文信息处理教育部重点实验室㊀山西太原030006)摘要:传统的模糊C 均值聚类算法利用图像的灰度㊁颜色㊁纹理㊁强度等底层特征进行聚类,实现图像的分割,它容易受到噪声的影响,且计算量大,不能提供理想的彩色图像分割结果㊂针对这些问题,提出一种视觉显著性引导的模糊聚类图像分割方法㊂首先使用显著性检测对图像进行初始化分割,得到带有区域级标注信息的引导图,然后将引导图作为指导信息,引导模糊聚类算法对图像进行细分割㊂在公共数据集上的实验结果表明,本文方法与其他改进的FCM 算法和深度网络分割模型相比,可以取得较好的分割效果,有效减少了分割时间㊂关键词:模糊C 均值聚类;显著性检测;彩色图像分割;聚类分割中图分类号:TP391.4㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀文章编号:1671-6841(2022)02-0001-07DOI :10.13705/j.issn.1671-6841.2021213Visual Saliency-guided Fuzzy Clustering Method forImage SegmentationBAI Xuefei 1,HAN Xiaojing 1,WANG Wenjian 1,2(1.School of Computer and Information Technology ,Shanxi University ,Taiyuan 030006,China ;2.Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry ofEducation ,Shanxi University ,Taiyuan 030006,China )Abstract :The traditional fuzzy C -means clustering algorithm uses the low-level features of image,such as grayscale,color,texture and intensity,to achieve image segmentation.These methods are susceptible to noise and has a large amount of calculation,so they can not provide ideal color image segmentation results.To solve these two problems,a visual saliency-guided fuzzy clustering imagesegmentation method was proposed.Firstly,the image was initialized and segmented by saliency de-tection,and the guide graph with region-level labeling information was obtained.Then,the guide graph was used to guide the fuzzy clustering algorithm to segment the image.Experimental on the three common data sets showed that,compared with other improved FCM algorithm and deep networksegmentation model,the proposed method could achieve better segmentation results and reduce the segmentation time effectively.Key words :fuzzy C -means clustering;saliency detection;color image segmentation;cluster segmentation0㊀引言彩色图像分割是图像处理中的一项重要技术,在实际应用过程中,面对不同的分割任务需求,需要灵活地采用不同的图像分割方法㊂图像分割方法主要分为基于边缘㊁阈值㊁聚类和特定理论[1-4]等分割方法㊂模糊聚类算法由于其快速有效的分割特点,郑州大学学报(理学版)第54卷已经被成功应用于智能交通㊁医学影像等领域㊂在众多的模糊聚类方法中,模糊C均值算法(fuzzy C-means,FCM)已成为图像分割领域最主要的方法之一㊂但FCM算法也存在一些不足之处:首先,FCM 算法忽略了图像的空间信息,对噪声和分布不均匀的像素较为敏感;其次,FCM算法在进行图像分割时,需要遍历所有像素,图像分辨率越高,算法的时间复杂度越高㊂针对FCM算法忽略图像空间信息,对噪声较为敏感等问题,Krinidis等[5]提出了基于模糊局部信息C均值聚类算法(fuzzy local information C-means, FLICM),通过引入空间模糊因子,将像素的局部空间信息与灰度信息相结合,提升了算法的鲁棒性,但该算法的时间复杂度较高㊂针对FCM算法分割时间取决于图像分辨率大小的问题,学者们提出利用直方图信息对原始图像分类,可大大降低算法的时间复杂度㊂Cai等[6]提出了快速广义的模糊聚类算法(fast generalized fuzzy C-means,FGFCM),该算法的时间复杂度取决于图像的灰度级数量,且通过融合局部空间信息和灰度信息,提高了算法对噪声的鲁棒性,又保留了图像的边缘细节,但是在对给定彩色图像进行分割时,需要进行特殊的预处理㊂Lei 等[7]提出了快速鲁棒性的模糊聚类算法(fast and robust fuzzy C-means,FRFCM),该算法首先利用形态学运算去除图像噪声,然后利用形态学重建弥补图像细节,使得FRFCM获得了更为理想的分割效果,但是该算法在彩色图像分割中,仍需要大量的执行时间㊂上述改进的FCM算法在提高图像分割效果的同时,也增加了计算量;尤其是在彩色图像分割中,传统FCM算法及其改进的算法,只利用了像素的灰度㊁颜色㊁纹理等底层特征来进行图像聚类,未考虑图像的高层语义信息㊂针对这些问题,本文提出一种视觉显著性引导的模糊聚类图像分割方法(sali-ency-guided fuzzy C-means,SGFCM),将显著图作为先验信息,引导模糊聚类对彩色图像进行分割;同时将像素的显著值度量引入FCM的目标函数中,来提高算法的分割精度㊂本文工作的主要贡献为:1)使用显著性检测方法对图像进行预分割,分割结果具有高层语义信息,符合人眼视觉特征,利用高层语义信息引导模糊聚类方法进行图像分割; 2)在模糊聚类算法的目标函数中,引入显著性度量,在前景和背景颜色相似的图像分割任务中,能够有效地将前景与背景进行分离㊂1㊀模糊C均值(FCM)聚类算法FCM算法是众多模糊聚类技术中应用最广泛的算法之一㊂Dunn最先提出了FCM算法[8],首次将模糊理论引入聚类算法中,而后Bezdek对其进行了改进与推广[9]㊂FCM算法主要是通过不断的迭代运算,得到更新的隶属度矩阵和聚类中心,最终求得目标函数值㊂将FCM算法应用于图像分割中,是将一幅图像中包含的所有像素点看作一个需要归类的样本数据集合,以各像素点的特征作为样本的特征向量,通过欧氏距离度量像素点之间的相似性,从而将图像分割转变为求解FCM算法的最优解问题,其目标函数为Jm=ðc k=1ðn i=1u m ki d2ki(x i,v k),(1)其中:c为聚类类别数;n为图像中像素的总数;u ki 为隶属度函数,表示第i个样本属于第k个类中心的概率;m为模糊指数,决定了划分结果的模糊性,一般情况下m=2;d ki表示样本x i到聚类中心v k的欧氏距离,用于衡量相似性大小㊂式(1)的约束条件为ukiɪ[0,1],1ɤiɤn,1ɤkɤc, 0<ðc k=1u ki<n,1ɤkɤc㊂ìîíïïïï(2) 2㊀本文算法针对传统FCM及改进算法未考虑图像高层语义信息的问题,本文提出SGFCM方法,图1为算法的过程图㊂算法分为两个分支:第一个分支通过显著性检测和阈值处理生成具有区域级标注的引导图,作为先验信息;第二个分支通过多元形态学重建对待分割图像进行去噪㊂将两个分支产生的结果图用于模糊聚类算法中,实现彩色图像分割㊂本文提出的SGFCM方法,有效地将高层语义信息和底层颜色信息相结合,使用视觉显著性引导模糊聚类对图像进行分割,分割效果与人类感知更符合㊂2.1㊀引导图生成人类的视觉注意力机制可以很容易地在复杂的背景中判断图像中的显著区域,优先分配图像分析所需要的计算资源㊂视觉显著性是模仿人类视觉注意力机制选择场景中某个子集的能力,由此产生的显著图像对视觉处理的后续任务有着重大的意义㊂本文利用显著性检测对图像的显著区域和背景区域2㊀第2期白雪飞,等:一种视觉显著性引导的模糊聚类图像分割方法㊀㊀图1㊀算法过程图Figure 1㊀Algorithm process diagram进行标记,生成引导图,在两部分区域分别执行模糊聚类算法,能有效提高计算效率,缩短算法的执行时间㊂图2为实现引导图的整个流程㊂图2㊀引导图实现过程Figure 2㊀Guide map realization process首先输入待分割图像I ,通过显著性检测得到显著图,如图2(b)所示,区域越亮,表示该区域的显著值越高,越容易引起观察者的注意㊂得到显著图后,利用阈值分割和形态学处理对显著图进一步处理,本文选取OSTU 算法来得到阈值图,如图2(c)所示㊂由图2(c)可知,经过阈值分割的图像中存在一些较小的独立的像素块,为了去除显著区域周围较小的干扰像素块,采用形态学处理的方式改善阈值分割后的结果,如图2(d)所示㊂白色框外的部分为确定的背景区域,记为F B ;框内包含部分背景和目标,为不确定区域,记为F U ㊂2.2㊀预处理图像在传输和存储的过程中容易产生噪声,而传统的FCM 算法对含噪声的图像不具有鲁棒性,针对这个问题,学者们提出对灰度图像进行形态学重建[10],不仅能平滑图像,保留图像的边缘细节,同时能在事先不确定噪声类型的情况下对图像去噪,有利于提高后续分割算法的准确率㊂但彩色图像不同于灰度图像,它拥有R㊁G㊁B 三个通道的信息,所以彩色图像中每一个像素都是一个矢量,需要将矢量进行排序后,才能对图像进行形态学重建处理㊂本文采用文献[11]提出的一种偏序方法,将RGB 空间中的矢量变换到YUV 空间,排序之后再进行多元形态学重建操作㊂原图像经过多元形态学重建处理后,能够去除大部分噪声和孤立点,同时保留图像细节信息,使后续模糊聚类算法结果更加准确㊂结合2.1小节中所生成的引导图F U ㊁F B 和经过预处理的图像I M 以及公式(3),能够得到具有标记信息的待分割图像I S ㊂I U 表示具有标记信息的前景区域,I B 表示具有标记信息的背景区域㊂I S =I B +I U ,I U =I M ɘF U ,I B =I M ɘF B ㊂ìîíïïïï(3)2.3㊀一种结合视觉显著性的FCM 算法在彩色图像分割中,FCM 算法以及改进算法都是通过像素与聚类中心的颜色相似度来计算目标函数值,未考虑像素的显著性㊂本文提出将像素的显著值加到FCM 的目标函数中,计算像素点与中心像素的颜色距离和显著值距离㊂本文提出的SGFCM 算法的目标函数定义为J m =ðc k =1ðni =1umki[d 2ki (x i ,v k )+s 2ki (x i ,v k )],(4)其中:c 为聚类中心总数;n 为像素总数;x i 表示第i 个像素;v k 表示第k 类的中心;u ki 为隶属度函数,表示把像素x i 划分到第k 个类中心的概率;m 为模糊指数;s 2ki (x i ,v k )表示x i 到第k 个聚类中心的显著值距离,用于衡量像素与聚类中心显著性的相似性,使用x is ㊁v ks 分别代表第i 个像素和第k 个类中心的显著性值,s 2ki 的计算公式为s 2ki=(x is -v ks )2㊂3郑州大学学报(理学版)第54卷㊀㊀本文在CIE-Lab空间下完成图像分割,所以像素点与聚类中心的距离公式为d ki =(xil-vkl)2+(x ia-v ka)2+(x ib-v kb)2㊂2.4㊀算法流程SGFCM算法的具体步骤描述如下㊂输入:待分割RGB图像I㊂输出:分割结果图M㊂步骤1㊀对待分割图像进行形态学重构,消除噪声影响,对图像进行显著性检测,得到图像的显著性图,根据OSTU算法和形态学处理得到标记图,作为模糊聚类算法的引导图;步骤2㊀在I U区域和I B区域分别进行聚类,更新隶属度和聚类中心;步骤3㊀如果算法迭代次数大于T,或聚类中心变化小于阈值,则算法结束,输出分割结果;否则执行步骤2;步骤4㊀根据公式(3),合并最终结果图㊂3㊀实验结果与分析为了验证本文提出的SGFCM算法对彩色图像的分割效果,同时评估本文算法的有效性和效率,实验选取了FCM㊁FGFCM㊁FLICM㊁FRFCM以及深度分割网络PSP-Net[12]作为对比算法进行分析比较㊂实验硬件配置为CPU:Intel i7-10700K@3.8GHz; RAM:DDR416GB㊁3200MHz;GPU:NVIDIA GTX 1080Ti㊁11GB㊂编程环境为MATLAB2019b和Py-thon3.7㊂3.1㊀参数设置本文算法和其他4种模糊聚类对比算法都是基于目标函数优化的聚类算法,因此在目标函数迭代之前,需要设置3个参数:模糊指数㊁收敛条件和最大迭代次数㊂本文实验中这3个参数分别设置为2㊁10-5和50㊂对于需要采用固定大小邻域窗口的算法,统一采用3ˑ3的邻域窗口㊂FGFCM算法的空间尺度因子为λs=3,FRFCM算法中用于多元重构的SE大小和用于隶属度滤波的窗口大小都设置为3ˑ3㊂对于深度分割网络PSP-Net,训练阶段设置batchsize=16,初始学习率为0.01,在梯度下降求解神经网络参数时,使用Momentum优化方法来加快收敛速度,设置Momentum中的参数β=0.9,权重衰减为0.0001㊂显著性检测算法采用文献[13]中提出的基于直方图对比度的方法,颜色量化在RGB 颜色空间中进行,在Lab空间测量颜色的距离㊂3.2㊀分割效果对比实验为了验证本文算法的有效性,使用公共数据集BSDS500[14]㊁MSRC[15]和PASCAL VOC2012[16]进行实验㊂BSDS500数据集包含500张大小为481ˑ321或321ˑ481的自然图像㊂MSRC数据集包含591张大小为320ˑ213或213ˑ320的自然图像㊂PASCAL VOC2012数据集包含20个目标类别,其中训练集㊁验证集和测试集的图像数量分别为10582张㊁1449张㊁1456张㊂本文算法与模糊聚类算法的对比实验选取MSRC和BSDS500作为测试数据集,图3展示了5种算法对自然图像的分割对比图,1)~3)行的分割图像来自BSDS500数据集,4)~6)行的分割图像来自MSRC数据集㊂图3的1)~5)行图像中,显著目标较小或图像的背景较为复杂,对比算法FCM㊁FGFCM㊁FLICM的分割结果中包含了大量的小区域块,有时甚至无法准确将目标聚类,FRFCM算法因为使用多元形态重构和隶属度滤波,得到了较好的分割结果㊂本文算法能够较好地将目标分割出来,且背景较为干净㊂第6)行图像中前景目标有明显的光线明暗变化所带来的噪声,其他4种对比算法的分割结果都被这种噪声所影响,导致分割结果不连续,本文算法能较为完整地将前景分割出来,有效地避免了噪声的干扰㊂本文算法与深度分割网络PSP-Net的对比实验选取PASCAL VOC2012为测试数据集㊂图4展示了图像的分割结果对比图,PSP-Net的分割结果具有语义信息,但部分图像的分割结果不完整㊂本文算法的分割结果虽然不含语义信息,但无论在背景简单或者纹理复杂的图像中,都能够将图像中的前景物体较为完整地分割出来㊂总体来看,在处理前景与背景颜色相似或差异较大的图像时,本文算法都能得到较好的分割结果㊂本文所提出的SGFCM 算法利用视觉显著性来表达目标和背景之间的空间分布信息,引导聚类进行分割,替代以往改进算法利用像素邻域信息来表示空间信息,能够使算法准确识别显著目标的位置,从而进行有效分割㊂3.3㊀定量分析为了评估算法的分割性能,实验使用5种评价指标对分割结果进行测试:概率边缘指数[17](PRI)㊁重叠比率[14](CV)㊁变化信息[14](VI)㊁全局一致性误差[18](GCE)㊁边界位移误差[19](BDE)㊂由于深度分割网络的评价指标与模糊聚类算法有较大差异,本文只对模糊聚类算法进行定量分析㊂PRI是一种相似度度量,用于分割后的图像M4㊀第2期白雪飞,等:一种视觉显著性引导的模糊聚类图像分割方法㊀㊀图3㊀五种算法在BSDS500和MSRC 数据集的结果对比Figure 3㊀Comparison of the results of five algorithms on BSDS500and MSRCdataset图4㊀SGFCM 算法与PSP-Net 在PASCAL VOC2012数据集的结果对比Figure 4㊀Comparison of the results of SGFCM and PSP-Net on PASCAL VOC2012dataset与对应的真值图(GT )中相同的像素对进行计数,p ij 是分割后图像M 的第i 个聚类中心与GT 中的第j 个聚类中心的像素数;N 是图像中像素的总数㊂PRI (M ,GT )=1-(ði(ðjp ij )2-2ðj(ðjp ij )2+2ððp ij 2)/N ㊂㊀㊀CV 是一种重叠度度量,可以用来评价分割效果,其中,O (R ,Rᶄ)=R ɘRᶄ/R ɣRᶄ表示分割后的图像M 和GT 中,两个区域R 与Rᶄ的重叠度,CV (M ңGT )=(ðRESR ㊃max RᶄɪIᶄO (R ,Rᶄ))/N ㊂㊀㊀VI 是一种相似度度量,根据它们的平均条件熵来度量2个分割结果之间的距离,H 和I 分别代表2个分割结果之间的熵和相互信息,VI (M ,GT )=H (M )+H (GT )-2I (M ,GT )㊂㊀㊀GCE 是两个分割相互一致的全局误差,GCE =1n min ðp i{E (M ,GT ,p i )E (M ,GT ,p i )},E (GT ,M ,p i )=R (GT ,p i )\R (M ,p i )/R (GT ,p i )㊂㊀㊀BDE 是一种度量误差,用于测量M 与GT 之间的边界像素的平均误差,其中:N 1和N 2分别表示M和GT 边界中的总像素;d 是GT 中的一个像素p i 与M 中最接近的边界像素p 之间的距离㊂BDE (M ,GT )=ðN iid (p i,M )/N1+2ðN 2id (p i ,GT )/N 2,d (p i ,M )=min p ɪMp i -p ㊂㊀㊀PRI 和CV 的数值越大,分割越理想,VI ㊁GCE 和BDE 的数值越小,表明分割结果越好,利用上述指标测试相关算法在BSDS500和MSRC 两个数据集上的平均分割效果㊂对BSDS500数据集的图像,聚类个数设置为2~6;对MSRC 数据集的图像,聚类个数设置为2~4,其中每个指标下的最优值用黑体进行标记㊂表1和表2分别展示了5种算法在BSDS500数据集和MSRC 数据集上的平均性能㊂分析表1和表2中的数据可知,FCM㊁FGFCM㊁FLICM 3种算法的PRI ㊁CV ㊁VI ㊁GCE 值相似,FRFCM 算法的5郑州大学学报(理学版)第54卷PRI值和BDE值明显优于其他算法㊂本文提出的SGFCM算法在PRI㊁CV㊁VI㊁GCE上的平均性能都优于对比算法,其BDE值与最优值相差在0.04以内㊂表1㊀五种算法在BSDS500数据集上的平均性能Table1㊀The average performance of the fivealgorithms on the BSDS500data set算法PRI CV VI GCE BDE FCM0.740.43 2.880.4013.48 FGFCM0.750.44 2.810.3913.28 FLICM0.740.43 2.830.4013.38 FRFCM0.760.45 2.670.3712.35 SGFCM0.770.47 2.360.3212.39表2㊀五种算法在MSRC数据集上的平均性能Table2㊀The average performance of the fivealgorithms on the MSRC data set算法PRI CV VI GCE BDE FCM0.700.55 1.930.3212.67 FGFCM0.700.56 1.850.3112.39 FLICM0.720.59 1.730.2812.29 FRFCM0.710.58 1.790.3012.23 SGFCM0.720.60 1.620.2612.26 3.4㊀执行时间比较执行时间是衡量算法性能的一个重要指标,本文实验分别计算了5种算法在BSDS500和MSRC 两个数据集上的平均执行时间,如表3所示,每个数据集下效率最高的算法使用黑体标记㊂表3㊀五种算法的执行时间比较Table3㊀Comparison of execution time of five algorithms单位:s数据集FCM FGFCM FLICM FRFCM SGFCM BSDS500 1.15 4.67195.53 1.870.76 MSRC0.22 1.5937.760.530.24㊀㊀从表3可以看出,除SGFCM算法外,FCM算法比其他算法要快,因为FCM算法没有计算额外邻域信息㊂FGFCM比FLICM所用时间少的原因是FGF-CM提前计算了邻域信息,而FLICM在每次迭代中反复计算邻域信息,导致计算复杂度较高㊂FRFCM 具有较快的速度是因为该算法的多元形态重构和隶属度滤波只需要计算一次㊂本文算法较快的主要原因是利用显著性检测对图像进行初始化分割,经过阈值处理和形态学处理得到的引导图具有区域级标记信息,能够表达图像的高层语义信息㊂使用图像的高层语义信息引导模糊聚类对图像进行分割,在背景区域和不确定区域分别使用模糊聚类算法对像素进行聚类,无须在每次迭代计算邻域信息,有效减少了聚类算法的迭代时间,提升了算法的效率㊂4㊀总结本文提出一种视觉显著性引导的模糊聚类图像分割算法(SGFCM),利用视觉显著性的高层语义信息引导模糊聚类算法对图像进行分割㊂本文算法使用显著性检测对图像的显著区域和背景区域进行初始化分割,经过阈值处理和形态学处理,得到具有区域级标注的引导图,引导模糊聚类算法在不同的区域分别进行聚类,能够大大减少聚类算法的迭代时间;同时将像素的显著性值作为一个衡量相似性因子,引入模糊聚类算法的目标函数中来提升算法的分割准确率㊂经过大量实验表明,本文算法在复杂背景的图像中进行分割时,能有效去除背景干扰,在较短时间内完成图像分割任务㊂但本文算法存在一定的局限性,聚类中心个数需要事先设定,未来将对此进行算法的完善㊂参考文献:[1]㊀LYU H R,FU H Y,HU X J,et al.Esnet:edge-basedsegmentation network for real-time semantic segmentationin traffic scenes[C]ʊ2019IEEE International Conferenceon Image Processing.Piscataway:IEEE Press,2019:1855-1859.[2]㊀辛娇娇,陈本豪,郭元术,等.基于改进暗通道先验的图像去雾算法[J].郑州大学学报(理学版),2020,52(1):72-78.XIN J J,CHEN B H,GUO Y S,et al.Image defoggingalgorithm based on improved dark channel prior[J].Journal of Zhengzhou university(natural science edi-tion),2020,52(1):72-78.[3]㊀LU L Z,WANG C,YIN X.Incorporating texture intoSLIC super-pixels method for high spatial resolution re-mote sensing image segmentation[C]ʊThe8th Interna-tional Conference on Agro-geoinformatics.Piscataway:IEEE Press,2019:1-5.[4]㊀刘国奇,邓铭,李晨静.融合RGB颜色空间的植物图像分割模型[J].郑州大学学报(理学版),2019,51(1):18-23.LIU G Q,DENG M,LI C J.Plant image segmentationmodel based on RGB color space[J].Journal of Zheng-zhou university(natural science edition),2019,51(1):18-23.[5]㊀KRINIDIS S,CHATZIS V.A robust fuzzy local informa-tion C-means clustering algorithm[J].IEEE transactionson image processing,2010,19(5):1328-1337. [6]㊀CAI W L,CHEN S C,ZHANG D Q.Fast and robust6㊀第2期白雪飞,等:一种视觉显著性引导的模糊聚类图像分割方法fuzzy C-means clustering algorithms incorporating local in-formation for image segmentation[J].Pattern recogni-tion,2007,40(3):825-838.[7]㊀LEI T,JIA X H,ZHANG Y N,et al.Significantly fastand robust fuzzy C-means clustering algorithm based onmorphological reconstruction and membership filtering[J].IEEE transactions on fuzzy systems,2018,26(5):3027-3041.[8]㊀DUNN J C.A fuzzy relative of the ISODATA process andits use in detecting compact well-separated clusters[J].Journal of cybernetics,1973,3(3):32-57. [9]㊀BEZDEK J C.Pattern recognition with fuzzy objectivefunction algorithms[M].Berlin:Springer Press,1981.[10]WU Y P,PENG X Q,RUAN K,et al.Improved imagesegmentation method based on morphological reconstruc-tion[J].Multimedia tools and applications,2017,76(19):19781-19793.[11]LEI T,ZHANG Y N,WANG Y,et al.A conditionallyinvariant mathematical morphological framework for colorimages[J].Information sciences,2017,387:34-52.[12]ZHAO H S,SHI J P,QI X J,et al.Pyramid scene par-sing network[C]ʊIEEE Conference on Computer Visionand Pattern Recognition.Piscataway,IEEE Press,2017:6230-6239.[13]CHENG M M,MITRA N J,HUANG X L,et al.Globalcontrast based salient region detection[J].IEEE transac-tions on pattern analysis and machine intelligence,2015,37(3):569-582.[14]ARBELÁEZ P,MAIRE M,FOWLKES C,et al.Contourdetection and hierarchical image segmentation[J].IEEEtransactions on pattern analysis and machine intelligence,2011,33(5):898-916.[15]SHOTTON J,WINN J,ROTHER C,et al.Textonboost:joint appearance,shape and context modeling for multi-class object recognition and segmentation[C]ʊEuropeanConference on Computer Vision.Berlin:Springer Press,2006:1-15.[16]EVERINGHAM M,GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC)challenge[J].International journal of computer vision,2010,88(2):303-338.[17]UNNIKRISHNAN R,PANTOFARU C,HEBERT M.To-ward objective evaluation of image segmentation algo-rithms[J].IEEE transactions on pattern analysis and ma-chine intelligence,2007,29(6):929-944. [18]MARTIN D,FOWLKES C,TAL D,et al.A database ofhuman segmented natural images and its application toevaluating segmentation algorithms and measuring ecologi-cal statistics[C]ʊIEEE International Conference on Com-puter Vision.Piscataway:IEEE Press,2001:416-423.[19]WANG X F,TANG Y X,MASNOU S,et al.A global/local affinity graph for image segmentation[J].IEEEtransactions on image processing,2015,24(4):1399-1411.7。

miRNA动物实验技术手册 说明书

miRNA动物实验技术手册 说明书

miRNA动物实验技术手册— agomir & antagomir 应用案例集锦GUANGZHOU RIBO BIOTECHNOLOGY CO., L TD.经过几年的实践检验,锐博生物推出的micr ON TM agomir 和micr OFF TM antagomir 被证明具有良好的动物实验效果,已经应用于脑,鼻窦,骨,附睾,脾脏,肝脏,心脏等各种动物模型的miRNA 动物实验。

这些采用miRNA agomir 和antagomir miRNA 动物实验中,大多数采用局部注射给药方式或尾静脉给药方式,给药周期需依据实验内容而定。

BrainOncogene. 2011Spinal cordJ. Neurotrauma. 2013DermisAm. J. Pathol. 2012Subcutaneous Tumor Hepatology. 2010J. Hepatol. 2013Cancer Cell. 2011Oncogene. 2011BoneJ. Clin. Invest. 2009Nat. Med. 2013Cauda Epididymidis PLoS One. 2011Spleen Tumor J. Hepatol. 2013Liver Tumor Cancer Cell. 2011Breast Tumor J. Cancer 2013HeartCirculation 2010Nasal SinusesAm. J. Respir. Crit. Med. 2011图1. micr ON TM agomir 和 micr OFF TM antagomir 已经应用于各种动物模型的动物实验应用实例:各种组织及器官Silencing of microRNAs in vivo with 'antagomirs'.Krützfeldt J, et al. Nature. 2005来自哈尔滨医科大学的研究人员使用风湿性心脏病房颤患者的心房标本及利用快速起博诱导房颤的实验犬心房标本,通过miRNA表达谱芯片及定量PCR分析,发现miR-223、miR-328及miR-664在房颤标本中表达上调而miR-101、miR-320及峭miR-449则表达下调。

疏枝和刻伤对山莓果实产量和品质的影响

疏枝和刻伤对山莓果实产量和品质的影响

第52卷 第4期2024年4月西北农林科技大学学报(自然科学版)J o u r n a l o f N o r t h w e s t A&F U n i v e r s i t y(N a t .S c i .E d .)V o l .52N o .4A pr .2024网络出版时间:2023-09-18 12:08 D O I :10.13207/j .c n k i .jn w a f u .2024.04.013网络出版地址:h t t ps ://l i n k .c n k i .n e t /u r l i d /61.1390.S .20230914.1645.003疏枝和刻伤对山莓果实产量和品质的影响[收稿日期] 2023-02-06[基金项目] 重庆市技术创新与应用示范专项社会民生类重点研发项目(c s t c 2018js c x -m s z d X 0080);国家自然科学基金面上项目(32171753) [作者简介] 李 杰(1997-),女,青海海东人,硕士,主要从事生态经济型植物的筛选与高效培育研究㊂E -m a i l :yi z h i m a o 1023@163.c o m [通信作者] 辜夕容(1973-),女,四川邻水人,教授,博士,博士生导师,主要从事生态经济型植物的筛选与高效培育㊁林产品加工利用研究㊂E -m a i l :gx r 0956@163.c o m 李 杰,辜夕容,崔 瑶,胡 佳,王小河(西南大学资源环境学院,重庆北碚400716)[摘 要] ʌ目的ɔ探讨疏枝和刻伤对山莓果实产量和品质的影响,寻找适宜的整形修剪方式,为山莓的树体管理提供参考㊂ʌ方法ɔ以野生山莓2年生枝为试验对象,设置3种疏枝水平(不疏枝㊁疏除一级侧枝总数的1/5(轻度疏枝)和1/3(重度疏枝))和3种刻伤水平(不刻伤㊁对1/2(轻度刻伤)和全部(重度刻伤)一级侧枝基部进行刻伤)的二因素三水平交叉分组试验,共9个处理,每个处理15株㊂在果熟期采集成熟果实,测定不同处理的单株产量㊁单果质量和果实有效成分含量,并采用隶属函数法评价疏枝和刻伤的综合效应㊂ʌ结果ɔ与不疏枝㊁不刻伤的对照相比,山莓单果质量和单株产量在除轻度疏枝结合重度刻伤外的其余处理下均显著增加;可溶性糖㊁可滴定酸和V c 含量在除轻度刻伤外的其余处理下均显著增加;S O D 活性在除重度刻伤外的其余处理下均显著增加;总黄酮含量在各处理下均显著增加;鞣花酸含量仅在重度刻伤处理下显著增加,在其余处理下均显著降低;可溶性固形物含量仅在轻度疏枝结合轻度刻伤处理下显著增加,在其余处理下无显著改变;糖酸比和固酸比仅在轻度刻伤时显著增加,在其余处理下均显著降低;单果质量㊁单株产量和可溶性糖㊁可滴定酸㊁V c ㊁总黄酮含量以及S O D 活性在疏枝和刻伤后的最大增幅分别达到36.3%,36.4%,24.5%,66.3%,29.6%,30.4%和40.5%㊂相比于对照,疏枝和刻伤的8种组合均显著提高了山莓果实的综合品质,其中以重度疏枝结合轻度刻伤后得到的果实综合品质最优,其总隶属函数值是对照的3.06倍㊂ʌ结论ɔ疏枝和刻伤技术均能提高山莓果实的产量和品质,其中疏除2年生枝上一级侧枝总数的1/3,同时对1/2一级侧枝基部上方进行刻伤后获得的果实综合品质最优,可推荐使用于山莓栽培实践㊂[关键词] 果树修剪;刻伤;果实品质;果实产量;山莓栽培;隶属函数[中图分类号] S 663.205+.1[文献标志码] A[文章编号] 1671-9387(2024)04-0117-10E f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g on f r u i t y i e l d a n d q u a l i t y of R u b u s c o r c h o r i f o l i u s L I J i e ,G U X i r o n g,C U I Y a o ,HU J i a ,WA N G X i a o h e (C o l l e g e o f N a t u r a l R e s o u r c e s a n d E n v i r o n m e n t ,S o u t h w e s t U n i v e r s i t y ,B e i b e i ,C h o n g q i n g 400716,C h i n a )A b s t r a c t :ʌO b j e c t i v e ɔT h i s s t u d y i n v e s t i g a t e d t h e e f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g o n f r u i t yi e l d a n d q u a l i t y o f r a s p b e r r y a n d e x p l o r e d t h e s u i t a b l e s h a p i n g a n d p r u n i n g mo d e t o p r o v i d e r e f e r e n c e f o r t r e e b o d y m a n a g e m e n t o f R u b u s c o r c h o r i fo l i u s .ʌM e t h o d ɔA c r o s s g r o u p i n g e x p e r i m e n t u s i n g t w o f a c t o r s o f b r a n c h t h i n n i n g a n d n o t c h i n g w i t h t h r e e l e v e l s w a s p e r f o r m e d o n 2-y e a r o l d b r a n c h e s o f w i l d r a s p b e r r yp l a n t s .T h e t h r e e l e v e l s o f b r a n c h t h i n n i n g w e r e n o n e ,l i g h t a n d h i g h t h i n n i n g b y r e m o v i n g 0,1/5a n d 1/3o f t o t a l n u m b e r o f p r i m a r y l a t e r a l b r a n c h e s ,r e s p e c t i v e l y .T h e t h r e e l e v e l s o f b r a n c h n o t c h i n g w e r e n o n e ,l i g h t a n d h i g h n o t c h i n g b y c a r v i n g 0,1/2a n d a l l o f b a s e p a r t s o f p r i m a r y l a t e r a l b r a n c h e s ,r e s p e c t i v e l y.T h e r e w e r e a t o t a l o f9t r e a t m e n t s a n d15p l a n t s p e r t r e a t m e n t.F r u i t y i e l d p e r p l a n t,f r u i t w e i g h t a n d c o n-t e n t s o f e f f e c t i v e c o m p o n e n t s o f r i p e f r u i t s w e r e m e a s u r e d a t r a s p b e r r y r i p e n i n g s t a g e.T h e c o m p r e h e n s i v e e f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g w e r e e v a l u a t e d u s i n g m e m b e r s h i p f u n c t i o n m e t h o d.ʌR e s u l tɔC o m-p a r e d w i t h t h e c o n t r o l w i t h o u t b r a n c h t h i n n i n g a n d n o t c h i n g,t h e r a s p b e r r y f r u i t y i e l d p e r p l a n t a n d f r u i t w e i g h t w e r e s i g n i f i c a n t l y i n c r e a s e d b y b r a n c h i n g t h i n n i n g a n d n o t c h i n g,e x c e p t f o r t h e t r e a t m e n t o f l i g h t t h i n n i n g a n d h i g h n o t c h i n g.C o n t e n t s o f s o l u b l e s u g a r,t i t r a t a b l e a c i d a n d V c i n r a s p b e r r y f r u i t w e r e s i g n i f i-c a n t l y i n c r e a s e d b y b r a n c h t h i n n i n g a n d n o t c h i n g,e x c e p t f o r t h e t r e a t m e n t o f l i g h t b r a n c h n o t c h i n g.T h e t o t a l f l a v o n o i d s c o n t e n t w a s i n c r e a s e d s i g n i f i c a n t l y u n d e r a l l t r e a t m e n t s.T h e s o l u b l e s o l i d c o n t e n t w a s i n-c r e a s e d s i g n i f i c a n t l y o n l y i n t h e t r e a t m e n t o f l i g h t t h i n n i n g a n d l i g h t n o t c h i n g,w h e r e i t w a s n o t a f f e c t e d s i g n i f i c a n t l y u n d e r o t h e r t r e a t m e n t s.B o t h r a t i o s o f s o l u b l e s u g a r t o t i t r a t a b l e a c i d c o n t e n t a n d s o l u b l e s o l i d t o t i t r a t a b l e a c i d c o n t e n t w e r e i n c r e a s e d b y l i g h t b r a n c h n o t c h i n g,w h e r e t h e y w e r e d e c r e a s e d s i g n i f i c a n t l y i n o t h e r t r e a t m e n t s.T h e l a r g e s t i n c r e a s e s i n f r u i t w e i g h t,y i e l d p e r p l a n t,c o n t e n t s o f s o l u b l e s u g a r,t i t r a-t a b l e a c i d,V c,t o t a l f l a v o n o i d a n d S O D a c t i v i t y w e r e36.3%,36.4%,24.5%,66.3%,29.6%,30.4%a n d40.5%,r e s p e c t i v e l y.C o m p a r e d w i t h t h e c o n t r o l,a l l t r e a t m e n t s w i t h b r a n c h t h i n n i n g a n d n o t c h i n g s i g n i f i-c a n t l y i m p r o v ed t he c o m p r e h e n s i v e q u a l i t y of r a s p b e r r y f r u i t s.T h e t r e a t m e n t o f h igh b r a n c h t hi n n i n g a n d l i g h t b r a n c h n o t c h i n g w a s t h e b e s t a n d i m p r o v e d t h e t o t a l m e m b e r s h i p v a l u e b y3.06t i m e s i n c o m p a r i s o n t o t h e c o n t r o l.ʌC o n c l u s i o nɔB o t h b r a n c h t h i n n i n g a n d n o t c h i n g i m p r o v e d f r u i t y i e l d a n d q u a l i t y o f r a s p b e r-r y.T h e t r e a t m e n t o f r e m o v i n g1/3t o t a l n u m b e r a n d c a r v i n g1/2b a s e p a r t o f p r i m a r y l a t e r a l b r a n c h e s o n t h e2-y e a r o l d b r a n c h e s w i t h b e s t c o m p r e h e n s i v e q u a l i t y w a s r e c o mm e n d e d.K e y w o r d s:t r e e p r u n i n g;n o t c h i n g;f r u i t q u a l i t y;f r u i t y i e l d;R u b u s c o r c h o r i f o l i u s c u l t i v a t i o n;m e m b e r-s h i p f u n c t i o n山莓(R u b u s c o r c h o r i f o l i u s L.f.)是树莓的一种,为蔷薇科(R o s a e a e)悬钩子属(R u b u s)多年生直立落叶灌木,又名悬钩子㊁山泡儿㊁刺泡儿㊁三月泡㊁牛奶泡㊁双叶悬钩子等,其成熟果实柔嫩多汁㊁酸甜可口,富含多种维生素㊁氨基酸㊁花色苷㊁覆盆子酮㊁鞣花酸㊁水杨酸㊁S O D等,有抗癌㊁抗氧化㊁补肾固精㊁补肝明目㊁抑菌㊁减肥㊁美白等功效[1],既可鲜食,也可加工成果酱㊁果酒㊁果汁㊁糕点等产品[2],是人们喜食乐采的野生小水果[3];其根和叶均可入药,有抗氧化㊁降血脂㊁祛痰㊁消肿㊁抗腹泻㊁抗炎等功效[4]㊂山莓自然分布于我国除东北各省㊁甘肃㊁青海㊁新疆外的其余各地,在西南地区资源储量尤为丰富,在海拔300~2000m的向阳山坡㊁溪边㊁山谷㊁荒地和灌丛中均有分布,在荒坡或烧山后生长尤为旺盛[5],是国土绿化和生态修复的生态经济型先锋树种,具有巨大的开发利用价值和潜力㊂作为 第3代水果 之一,树莓因其鲜食可口㊁营养丰富,特别是鞣花酸和S O D等抗衰老㊁抗癌物质含量明显高于其他野生或栽培水果[5]而受到越来越多的关注㊂除引种欧美等国的优良品种外,我国也开展了树莓乡土优良种质资源的筛选㊁繁育和栽培研究,获得双季红树莓等许多优良品系,并发现疏剪[6-7]㊁短截[8-11]㊁土壤改良[12]㊁施肥和温度控制[13]等方式,能显著提高费尔杜德(F e r t o d i)㊁海尔特兹(H e r i t a g e)㊁波鲁德(P r e l u d e)㊁秋莱斯(A u t u m n B l i s s)等品种的果实产量㊁单果质量及可溶性固形物含量㊁糖酸比等果实品质㊂在福建㊁贵州㊁四川等地的调查研究发现,山莓的生物学特征和生态适应性等与目前种植较广的夏果型和秋果型树莓差异较大,为单株直立生长,花期1-3月份,果期4-5月份,在南方㊁西南方的山地和丘陵地带分布较为集中,耐旱性㊁耐热性㊁耐瘠薄能力㊁抗病虫能力等均较强,对土壤要求不严,具有较高的食用㊁保健价值和较强的生态环境保护功能[14-17],是值得开发利用的一类乡土优良树种[18]㊂为提高山莓的产量和品质,有研究对山莓的繁殖方法㊁整地方式㊁密度设置等驯化栽培技术进行了初步探索[19-20],但对山莓的树体管理等关键栽培技术鲜有文献涉及㊂为此,本试验以山莓为研究对象,以疏枝和刻伤这两种能促进开花结实㊁提高产量[21]的修剪方法为试验因素,设置二因素三水平交叉分组试验,之后采摘成熟果实测定产量和品质,并运用隶属函数法进行综合评价,以期为山莓的整形修剪技术提供理论依据和实践参考㊂811西北农林科技大学学报(自然科学版)第52卷1 材料与方法1.1 样地概况研究区域位于重庆市北碚区东阳街道磨心坡村的道明寺附近(E 106ʎ28'20ᵡ,N 29ʎ50'45ᵡ,海拔525m ),属典型的亚热带季风气候,年均温13.6ħ,最热月(8月)平均气温24.3ħ,最冷月(1月)平均气温3.1ħ,极端最高温36.2ħ,极端最低温-4.6ħ,年均降水量1783.8mm ㊂区域内土壤为冷砂黄壤,p H 值3.87,有机质㊁全氮㊁全磷㊁全钾含量分别为87.8,2.77,0.37和28.5g /k g,碱解氮㊁有效磷和速效钾含量分别为179,15.0,98.5m g /k g㊂自然植被为针阔混交林,主要植物种类有马尾松(P i n u sm a s s o n i a n a )㊁木荷(S c h i m a s u pe r b a )㊁木姜子(L i t -s e a p u n ge n s H e m s l .)㊁白栎(Q u e r c u sf a b r i H a n c e )㊁铁芒萁(D i c r a n o pt e r i s l i n e a r i s (B u r m.)U n d e r w.)㊁菝葜(S m i l a x c h i n a )㊁山莓(R u b u s c o r -c h o r i fo l i u s L .f .)等㊂1.2 样地设置与植株选取在研究区域内选取人为干扰较少㊁郁闭度为0.5左右㊁山莓分布较为集中的样地3个㊂在样地内选取自然生长良好,株高㊁地径㊁分枝数等基本一致且无病虫危害的2年生山莓健壮植株㊂试验开始前,清除供试植株周围4m 直径范围内的杂灌及上方枝叶等遮挡物,挂牌标记㊂1.3 试验设计在山莓开花前15d 左右(约12月底),对供试植株进行疏枝和刻伤的二因素三水平交叉分组试验,共9个处理,其中的不疏枝和不刻伤处理为对照(表1)㊂疏枝为从基部疏除2年生枝上的一级侧枝,按疏除一级侧枝总数的0,1/5,1/3设为无疏枝㊁轻度疏枝和重度疏枝3个水平,主要疏除交叉枝㊁平行枝㊁内向枝㊁细弱枝等,留存的枝条需相互错开分布在主枝上,以保证树形通风透光良好;刻伤为用小钢锯条在2年生枝上的一级侧枝基部上方0.5c m处横刻至木质部,伤口长度为主枝周长的1/3,按基部刻伤的一级侧枝数占一级侧枝总数的0,1/2,全部设为无刻伤㊁轻度刻伤和重度刻伤3个水平㊂在轻度刻伤处理中,基部有刻伤的一级侧枝呈螺旋式上升排列以相互错开㊂每个样地中均随机选取5株山莓作为一个处理,每个样地内每个处理作为一个重复,重复内各处理随机排列,试验共有山莓135株(5株山莓ˑ9个处理ˑ3个重复)㊂表1 疏枝和刻伤对山莓果实产量和品质影响的试验设计T a b l e 1 E x p e r i m e n t a l d e s i g n f o r u n d e r s t a n d i n g e f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g on f r u i t y i e l d a n d q u a l i t i e s i n R u b u s c o r c h o r i fo l i u s 试验因素F a c t o r 处理编号T r e a t m e n t n u m b e r1(对照C o n t r o l)23456789疏枝T h i n n i n g无N o n e 无N o n e无N o n e轻度L i g h t 轻度L i g h t 轻度L i g h t 重度H i g h 重度H i gh 重度H i g h 刻伤N o t c h i n g 无N o n e轻度L i gh t 重度H i gh 无N o n e轻度L i gh t 重度H i gh 无N o n e轻度L i gh t 重度H i gh 注:疏枝的无㊁轻度和重度分别为疏除2年生枝上一级侧枝总数的0,1/5和1/3;刻伤的无㊁轻度和重度分别为刻伤2年生枝上一级侧枝基部的枝数占一级侧枝总数的0,1/2和全部㊂N o t e :N o n e ,l i g h t a n d h i g h o f t h i n n i n g w e r e t o r e m o v e 0,1/5a n d 1/3o f t o t a l n u m b e r o f p r i m a r y l a t e r a l b r a n c h e s o n t h e 2-ye a r o l d b r a n c h ,r e s p e c t i v e l y .N o n e ,l i g h t a n d h i g h of n o t c h i ng w e r e t o c a r v e 0,1/2a n d a l l o f th e b a s e p a r t o f p ri m a r y l a t e r a l b r a n c h e s o n t h e 2-ye a r o l d b r a n c h ,r e s p e c t i v e l y.1.4 测定项目与方法于山莓果实成熟期(4月底至5月初),分别从每株山莓的东㊁南㊁西㊁北4个方向采集果实,将每个重复的果实混合后分装于保鲜盒内带回实验室,置于-80ħ冰箱内贮存备用㊂每个重复内随机选取山莓成熟果实30颗,电子天平称量单果质量,阿贝折射仪测定可溶性固形物含量㊂果实中的可溶性糖㊁可滴定酸㊁抗坏血酸(V c)㊁黄酮和鞣花酸含量分别用蒽酮比色法㊁氢氧化钠滴定法㊁钼蓝比色法㊁分光光度计法㊁高效液相色谱(H P L C )法测定,超氧化物歧化酶(S O D )活性用氮蓝四唑(N B T )光还原法测定[22]㊂单株产量为每株山莓所有成熟果实的质量总和,固酸比为可溶性固形物与可滴定酸含量之比,糖酸比为可溶性糖与可滴定酸含量之比㊂采用隶属函数值评价疏枝和刻伤对山莓果实产量和品质影响的综合效应,隶属函数值越大,表明果实综合品质越好[23-24]㊂隶属函数值R (X )=(X -X m i n )/(X m a x -X m i n ),其中X ㊁X m i n ㊁X m a x 分别为各指标的平均值㊁最小值和最大值㊂1.5 数据处理试验所得数据用M i c r o s o f t O f f i c e E x c e l 2016911第4期李 杰,等:疏枝和刻伤对山莓果实产量和品质的影响进行基本运算㊁处理和制表,用S P S S23.0软件包进行疏枝和刻伤对山莓果实产量和品质的二元方差分析,采用D u n c a n新复极差法对方差分析差异显著的处理进行水平间的多重比较,采用G r a p h P a d P r i s m8.0制图㊂图和表中所有数据均为3次重复的 平均值ʃ标准差 ,显著性水平设为Pɤ0.05㊂2结果与分析2.1疏枝和刻伤对山莓单果质量和单株产量的影响与处理1(对照)相比,除轻度疏枝结合重度刻伤对山莓单果质量无显著影响外,其余处理均显著提高了山莓单果质量(图1-A)㊂疏枝或刻伤单独运用时山莓单果质量均显著高于对照,且疏枝或刻伤均在轻度作用时的增加程度(约35.2%)显著高于重度作用时的增加程度(约18.4%)㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,单果质量随刻伤程度加重而显著降低;重度疏枝时,单果质量在刻伤程度间无显著差异;轻度刻伤时,轻度或重度疏枝的单果质量显著低于不疏枝;重度刻伤时,轻度疏枝后单果质量显著低于不疏枝和重度疏枝,而重度疏枝与不疏枝间的单果质量无显著差异㊂与对照相比,除轻度疏枝结合重度刻伤对山莓单株产量无显著影响外,其余处理均显著提高山莓单株产量,且疏枝对单株产量的增加幅度(约31.5%)显著高于刻伤(约13.6%)(图1-B)㊂疏枝或刻伤单独运用时山莓单株产量均显著高于对照,且重度疏枝后单株产量的增加幅度(36.4%)显著高于轻度疏枝(26.6%),轻度和重度刻伤间单株产量无显著差异㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,单株产量随刻伤程度加重而显著降低;重度疏枝时,单株产量在刻伤程度间无显著差异;轻度刻伤时,重度疏枝后单株产量显著高于不疏枝和轻度疏枝,轻度疏枝与不疏枝间单株产量无显著差异;重度刻伤时,轻度疏枝后单株产量显著低于不疏枝,而重度疏枝后单株产量显著高于不疏枝㊂图柱上标不同小写字母表示处理间差异显著(P<0.05),下图同D i f f e r e n t l o w e r c a s e l e t t e r s o n i n d i c a t e s i g n i f i c a n t d i f f e r e n c e s b e t w e e n t r e a t m e n t s(P<0.05),t h e s a m e b e l o w图1疏枝和刻伤对山莓单果质量和单株产量的影响F i g.1 E f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g o n f r u i t m a s s a n d y i e l d p e r p l a n t i n R u b u s c o r c h o r i f o l i u s2.2疏枝和刻伤对山莓果实可溶性固形物㊁可溶性糖和可滴定酸含量的影响与对照相比,仅轻度疏枝结合轻度刻伤显著提高山莓果实可溶性固形物含量9.55%,其余处理显著降低或不影响山莓果实可溶性固形物含量,且疏枝对可溶性固形物含量的作用强度显著大于刻伤(图2-A)㊂疏枝和刻伤单独运用时山莓果实可溶性固形物含量均低于对照,且疏枝和刻伤均在重度作用时的降低幅度大于轻度作用时㊂疏枝和刻伤同时运用时交互作用显著:轻度或重度疏枝时,可溶性固形物含量在轻度刻伤后显著高于不刻伤,重度刻伤与不刻伤间无显著差异;轻度刻伤时,可溶性固形物含量在轻度疏枝后显著高于不疏枝,重度疏枝与不疏枝间无显著差异;重度刻伤时,可溶性固形物含量在重度疏枝后显著低于不疏枝,轻度疏枝与不疏枝间无显著差异㊂与对照相比,除轻度刻伤显著降低山莓果实可溶性糖含量外,其余处理均显著增加可溶性糖含量,且疏枝对可溶性糖含量的增加幅度显著大于刻伤(图2-B)㊂疏枝和刻伤单独运用时,山莓果实可溶021西北农林科技大学学报(自然科学版)第52卷性糖含量仅在轻度刻伤后显著低于对照,在重度刻伤㊁轻度和重度疏枝后的可溶性糖含量分别比对照显著增加3.87%,9.44%和13.4%㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,可溶性糖含量在轻度和重度刻伤后均显著低于不刻伤;重度疏枝时,可溶性糖含量在轻度和重度刻伤后分别比不刻伤显著增加3.71%和9.85%;轻度或重度刻伤时,可溶性糖含量在轻度和重度疏枝后均显著高于不疏枝㊂所有处理中,以重度疏枝结合重度刻伤后的山莓果实可溶性糖含量最高,显著高出对照24.5%㊂与对照相比,除轻度刻伤显著降低山莓果实可滴定酸含量外,其余处理均显著增加可滴定酸含量,且疏枝对可滴定酸含量的增加程度显著大于刻伤(图2-C )㊂疏枝和刻伤单独运用时山莓可滴定酸含量仅在轻度刻伤后显著低于对照,在重度刻伤㊁轻度和重度疏枝后分别显著高于对照14.4%,27.6%和66.3%㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,可滴定酸含量在轻度或重度刻伤后均显著高于不刻伤;重度疏枝时,可滴定酸含量在轻度或重度刻伤后均显著低于不刻伤;轻度或重度刻伤时,可滴定酸含量随疏枝程度加重而显著增加㊂图2 疏枝和刻伤对山莓果实可溶性固形物㊁可溶性糖㊁可滴定酸含量和固酸比㊁糖酸比的影响F i g .2 E f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g o n f r u i t s o l u b l e s o l i d c o n t e n t ,s o l u b l e s u ga r c o n t e n t ,t i t r a t ab l e ac id c o n te n t ,s o l i d i t y -a c i d r a t i o a n d s u g a r -a c i d r a t i o i n R u b u s c o r c h o r i fo l i u s 与对照相比,除轻度刻伤显著增加山莓果实固酸比外,其余处理均显著降低山莓果实固酸比,且疏121第4期李 杰,等:疏枝和刻伤对山莓果实产量和品质的影响枝对固酸比的作用强度显著大于刻伤(图2-D )㊂疏枝和刻伤单独运用时,山莓果实固酸比仅在轻度刻伤后显著高于对照7.28%,在重度刻伤㊁轻度和重度疏枝后分别显著低于对照23.7%,32.3%和57.2%㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,固酸比在刻伤程度间无显著差异;重度疏枝时,固酸比在轻度刻伤后显著高于不刻伤,而重度刻伤与不刻伤间无显著差异;轻度刻伤时,固酸比随疏枝程度加重而显著降低;重度刻伤时,固酸比在轻度疏枝与不疏枝间无显著差异,在重度疏枝后显著低于不疏枝㊂与对照相比,除轻度刻伤显著增加山莓果实糖酸比外,其余处理均显著降低糖酸比,且疏枝对山莓果实糖酸比的作用强度显著大于刻伤(图2-E )㊂疏枝和刻伤单独运用时,仅轻度刻伤后糖酸比比对照显著增加15.7%,重度刻伤㊁轻度和重度疏枝后糖酸比均分别显著低于对照9.17%,14.2%和31.8%㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,轻度或重度刻伤均使糖酸比显著低于不刻伤;重度疏枝时,轻度或重度刻伤均使糖酸比显著高于不刻伤;轻度或重度刻伤时,轻度或重度疏枝均使糖酸比显著低于不疏枝㊂2.3 疏枝和刻伤对山莓果实S O D 活性及V c㊁总黄酮和鞣花酸含量的影响与对照相比,除重度刻伤显著降低山莓果实S O D 活性外,其余处理均显著增加S O D 活性,且疏枝对S O D 活性的作用强度显著大于刻伤(图3-A )㊂疏枝和刻伤单独运用时,S O D 活性仅在重度刻伤后显著低于对照,在轻度刻伤㊁轻度和重度疏枝后分别比对照显著高出2.72%,9.37%和27.2%㊂疏枝和刻伤同时运用时交互作用显著:轻度或重度疏枝时,S O D 活性随刻伤程度加重而显著增加;轻度或重度刻伤时,S O D 活性随疏枝程度加重而显著增加㊂所有处理中,重度疏枝结合重度刻伤后S O D 活性达到最大,比对照显著增加40.5%㊂图3 疏枝和刻伤对山莓果实S O D 活性及V c㊁总黄酮和鞣花酸含量的影响F i g .3 E f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g o n f r u i t S O D a c t i v i t y,v i t a m i n C c o n t e n t ,t o t a l f l a v o n o i d c o n t e n t a n d e l l a g i c a c i d c o n t e n t i n R u b u s c o r c h o r i fo l i u s 与对照相比,仅轻度刻伤显著降低山莓果实V c含量,其余处理均显著增加V c 含量,且疏枝对V c含量的作用强度显著大于刻伤(图3-B )㊂疏枝和刻伤单独运用时,V c 含量仅在轻度刻伤时显著低于对221西北农林科技大学学报(自然科学版)第52卷照,在重度刻伤㊁轻度和重度疏枝后分别比对照显著高出2.19%,2.14%和22.2%㊂疏枝和刻伤同时运用时交互作用显著:轻度或重度疏枝时,轻度和重度刻伤均使V c 含量显著高于不刻伤;轻度或重度刻伤时,轻度和重度疏枝均使V c 含量显著高于不疏枝㊂所有处理中,重度疏枝结合轻度刻伤后V c 含量达到最高,比对照显著增加29.6%㊂与对照相比,疏枝和刻伤的所有处理均显著提高山莓果实总黄酮含量,且疏枝的作用强度显著大于刻伤(图3-C )㊂疏枝和刻伤单独运用时总黄酮含量均显著高于对照,轻度㊁重度刻伤和轻度㊁重度疏枝使总黄酮含量分别比对照显著高出20.0%,17.6%和12.2%,23.1%㊂疏枝和刻伤同时运用时交互作用显著:轻度疏枝时,轻度或重度刻伤均使总黄酮含量显著高于不刻伤;重度疏枝时,总黄酮含量在轻度刻伤后显著低于不刻伤,重度刻伤后显著高于不刻伤;轻度刻伤时,总黄酮含量在轻度疏枝后显著高于不疏枝,重度疏枝后显著低于不疏枝;重度刻伤时,总黄酮含量随疏枝程度增加而显著增加㊂所有处理中,轻度疏枝结合轻度刻伤或重度疏枝结合重度刻伤后总黄酮含量达到最高,比对照显著增加30.4%㊂与对照相比,仅重度刻伤显著增加山莓果实鞣花酸含量,其余处理均显著降低鞣花酸含量,且疏枝的作用强度显著大于刻伤(图3-D )㊂疏枝和刻伤单独运用时,鞣花酸含量仅在重度刻伤后显著高于对照18.9%,在轻度刻伤㊁轻度和重度疏枝后均显著低于对照㊂疏枝和刻伤同时运用时交互作用显著:轻度或重度疏枝时,轻度或重度刻伤后鞣花酸含量均显著高于不刻伤;轻度刻伤时,鞣花酸含量随疏枝强度增大而显著增加;重度刻伤时,轻度或重度疏枝后鞣花酸含量均显著低于不疏枝㊂2.4 疏枝和刻伤对山莓果实产量和品质影响的综合评价与处理1(对照)相比,疏枝和刻伤的各个组合均能提高山莓果实的综合品质,其中排名居前的依次是处理8(重度疏枝+轻度刻伤)㊁处理9(重度疏枝+重度刻伤)㊁处理7(重度疏枝)和处理5(轻度疏枝+轻度刻伤),它们的总隶属函数值分别是对照(不疏枝+不刻伤)的3.06,2.96,2.56和2.51倍(表2)㊂表2 疏枝和刻伤对山莓果实产量和品质影响的隶属函数值T a b l e 2 M e m b e r s h i p v a l u e s f o r e f f e c t s o f b r a n c h t h i n n i n g a n d n o t c h i n g on f r u i t y i e l d a n d q u a l i t y c h a r a c t e r i s t i c s i n R u b u s c o r c h o r i fo l i u s 处理T r e a t m e n t单果质量F r u i t m a s s单株产量F r u i t y i e l d pe r p l a n t 可溶性固形物含量S o l u b l e s o l i d c o n t e n t可溶性糖含量S o l u b l e s u ga r c o n t e n t可滴定酸含量T i t r a t a b l ea c i dc o n t e n tS O D 活性S O D a c t i v i t yV c 含量V i t a m i n C c o n t e n t总黄酮含量T o t a l f l a v o n o i d c o n t e n t鞣花酸含量E l l a g i c a c i d c o n t e n t总隶属函数值T o t a l M e m b e r s h i p v a l u e排名R a n k 10.190.100.710.070.190.050.180.040.672.19ʃ0.05f920.920.450.530.020.010.120.010.640.082.77ʃ0.05e 830.570.380.450.220.360.000.240.570.913.70ʃ0.21d 740.970.720.430.430.520.270.240.400.154.12ʃ0.22c650.490.410.910.330.780.590.550.960.465.49ʃ0.12b 460.160.060.670.390.620.630.530.770.344.16ʃ0.13c570.590.940.110.580.990.680.790.740.205.61ʃ0.20b 380.670.930.600.740.800.920.990.500.566.71ʃ0.06a 190.460.840.131.000.880.980.850.950.396.48ʃ0.15a2注:同列数据后标不同小写字母表示处理间差异显著(P <0.05)㊂N o t e :D i f f e r e n t l o w e r c a s e l e t t e r s a f t e r t h e d a t a i n t h e s a m e c o l u m n i n d i c a t e s i gn i f i c a n t d i f f e r e n c e s b e t w e e n t r e a t m e n t s a t P <0.05.3 讨 论整形修剪是提高果实产量和品质的常用栽培技术,包括短剪㊁疏剪㊁缩剪㊁刻伤㊁摘心㊁抹芽㊁剪梢㊁环剥㊁环割㊁捋枝等,需因树种(或品种)㊁树龄㊁树势㊁栽植方式㊁修剪反应等合理采用[21,25]㊂疏枝(疏剪㊁疏删㊁疏除)常运用于柑橘[21]㊁藤椒[23]㊁葡萄[26]等树种的栽培,具有提升果实产量和品质的作用㊂夏果型费尔杜德 和秋果型 海尔特兹 树莓经疏枝后单果质量和产量均增加,单果质量随疏枝量增加而增大,但产量却随疏枝量增加而减少[6]㊂本研究中,山莓在疏枝后单果质量和单株产量均显著增加,与上述2个树莓品种不同的是,单果质量在疏枝量较少(疏除1/5)时大于疏枝量较多时(疏除1/3),而单株产量则随疏枝量加大而显著增加,这与藤椒产量在疏枝后显著增加,且全部疏除后的产量显著高于部分321第4期李 杰,等:疏枝和刻伤对山莓果实产量和品质的影响疏除的结果[23]相似㊂可见适当疏枝能增加单果质量和单株产量,但增加量的多少与树种和疏除量有关㊂对树木整体而言,疏枝有缓和树势的作用,能改善树体通风透光条件㊁增加光合面积㊁提高光合效率,从而减小无效养分消耗,降低营养枝与结果枝之间的养分竞争[25],使光合产物和养分向结果部位集中[26],不仅能提高单果质量和单株产量,还有利于果实营养成分的积累,改善果实品质[26-27]㊂本研究中,山莓果实的可溶性糖㊁可滴定酸㊁V c㊁总黄酮含量和S O D活性及综合品质均在疏枝后显著提高,不仅证实了疏枝有提升果实品质的作用,还表明疏枝有利于糖类㊁有机酸类㊁黄酮类物质的合成及其在果实中的积累[28],而且疏枝还激发了树体的自我保护功能,通过增加V c含量和S O D活性以降低或避免因疏除造成的伤害[29-30]㊂本研究还发现,山莓果实的可溶性固形物含量㊁固酸比㊁糖酸比和鞣花酸含量在疏枝后显著降低㊂结合巨峰葡萄的可溶性蛋白含量在叶果比降低后也有显著减少的现象[29],推测疏枝可能使山莓果实中的可溶性蛋白等其他可溶性固形物含量降低幅度较大,从而导致总的可溶性固形物含量显著降低,但该推测还有待进一步证实㊂疏枝后可滴定酸含量增加幅度(轻度㊁重度疏枝分别为27.6%和66.3%)明显高于可溶性糖含量(轻度㊁重度疏枝分别为9.44%和13.4%),应是疏枝后固酸比和糖酸比显著降低的主要原因㊂此外,钱灿等[31]㊁钭凌娟等[32]发现,覆盆子鞣花酸含量与果实部位㊁果实大小㊁采收时期㊁海拔高度㊁光照条件等有关,果实被茸毛㊁果实小㊁采收时期早㊁海拔高㊁适当遮荫(50%)时鞣花酸含量较高㊂因此,山莓果实在疏枝后的受光面积和单果质量增大可能是导致鞣花酸含量降低的原因㊂刻伤(刻芽㊁目伤)具有促进枝条萌发㊁改变枝类组成和提高成花率的作用,广泛应用于苹果㊁梨㊁山楂㊁核桃㊁板栗㊁大樱桃㊁枣等果树的整形修剪[33]㊂本研究结果显示,刻伤显著提高山莓果实的单株产量㊁单果质量和总黄酮含量,且轻度刻伤时增加幅度高于重度刻伤;果实其他品质受到的影响因刻伤量而异:可溶性糖㊁可滴定酸㊁V c㊁鞣花酸含量在轻度刻伤时显著下降,重度刻伤时显著增加;固酸比㊁糖酸比㊁S O D活性则相反,在轻度刻伤时显著增加,重度刻伤时显著降低;可溶性固形物含量随刻伤量增加而降低㊂刻伤能截留上行输送的有机养分供给侧枝上叶芽成枝和花芽开放,成枝率和成花率均提高[34-35]㊂不仅如此,刻伤的数量和部位会影响其效应,只有适宜的刻伤量才可以打破原有内源激素平衡,调节营养枝和结果枝比例,提高产量和品质[36-37]㊂对山莓而言,全部刻伤对果实品质的提升效应高于半数刻伤㊂在果树树体管理过程中,往往同时使用多种修剪方式[21],它们之间可能存在正向或负向的交互效应㊂如红富士苹果的成枝率㊁成花数和单株产量在经过刻芽㊁扭枝和去顶梢的综合处理后,均成倍高于刻芽或拉枝(对照)处理,而在刻芽㊁刻芽+去顶梢和拉枝(对照)处理间却无显著差异[38]㊂本研究中,当疏枝和刻伤同时作用于山莓2年生主枝时,二者之间存在显著的交互效应,且果实品质指标不同,疏枝量与刻伤量间存在的交互效应为正向或负向㊂对果实综合品质而言,重度疏枝与轻度刻伤间相互促进㊂4结论疏枝和刻伤可显著提高山莓果实的单果质量㊁单株产量及可溶性糖㊁可滴定酸㊁V c㊁总黄酮含量和S O D活性,降低可溶性固形物㊁鞣花酸含量和固酸比㊁糖酸比,且疏枝对上述指标的作用强度大于刻伤㊂因此,研究所用的疏枝和刻伤技术均能提高山莓果实的产量和品质,其中以重度疏枝结合轻度刻伤的效果最好,即疏除2年生枝上一级侧枝总数的1/3,同时对1/2一级侧枝基部上方进行刻伤后获得的果实综合品质最优,其总隶属函数值是对照(不疏枝不刻伤)的3.06倍,可推荐使用于山莓的栽培实践㊂[参考文献][1]S h a m N,Q i n C L,Z h u Z W,e t a l.R a s p b e r r y e x t r a c t w i t h p o-t e n t i a l a n t i t u m o r a c t i v i t y a g a i n s t c e r v i c a l c a n c e r[J].A n t i c a n-c e r R e s e a r c h,2021,41(7):3343-3348.[2]Sán c h e z-V e láz q u e z O A,C u e v a s-R o d ríg u e z E O,R e y e s-M o r e n oC,e t a l.P r o f i l i n g m o d i f i c a t i o n s i n p h y s i c o c h e m i c a l,c h e m i c a la n d a n t i o x i d a n t p r o p e r t i e s o f w i l db l ac k b e r r y(R u b u s s p.)d u-r i n g f e r m e n t a t i o n w i t h E C1118y e a s t[J].J o u r n a l o f F o o d S c i-e n c e a n d T e c h n o l o g y,2021,58(12):4654-4665.[3] Z h a n g H P,L i u J R,L i G D,e t a l.F r e s h r e d r a s p b e r r y p h y t o-c h e m i c a l s s u p p r e s s t h e g r o w t h o f h e p a t o c e l l u l a r c a r c i n o m ac e l l s b y P T E N/A K T p a t h w a y[J].T h e I n t e r n a t i o n a l J o u r n a lo f B i o c h e m i s t r y&C e l l B i o l o g y,2018,104:55-65.[4]Çe k içÇ,Öz g e n M.C o m p a r i s o n o f a n t i o x i d a n t c a p a c i t y a n d p h y t o-c h e m i c a l p r o p e r t i e s o f w i ld a n d c u l t i v a te d r e d r a s p b e r r i e s(R u-b u s i d a e u s L.)[J].J o u r n a l o f F o o d C o m p o s i t i o n a n d A n a l y s i s,2010,23(6):540-544.[5]吴德涛,杨选辉,杨胜伟,等.遵义野生树莓的特征特性及驯化421西北农林科技大学学报(自然科学版)第52卷。

A data-driven method to describe the personalized dynamic thermal

A data-driven method to describe the personalized dynamic thermal

A data-driven method to describe the personalized dynamic thermal comfort in ordinary of fice environment:From model to applicationQianchuan Zhao a ,Yin Zhao a ,*,Fulin Wang b ,Jinlong Wang a ,Yi Jiang c ,Fan Zhang caDepartment of Automation and TNList,Tsinghua University,Beijing 100084,China bDepartment of Building Science,Tsinghua University,Beijing 100084,China cUnited Technologies Research Center (China)Ltd.,Shanghai 200120,Chinaa r t i c l e i n f oArticle history:Received 18July 2013Received in revised form 9October 2013Accepted 10November 2013Keywords:Data-driven modeling Personal thermal comfort Least squares estimation PMVPersonal energy saving potentialsa b s t r a c tRecent advances of information technology and the low cost of computing devices make it possible to collect end users ’true thermal sensations at the building operation stage.This enables us to build personalized thermal comfort model from a new aspect.This paper proposes a data-driven method to describe the personalized thermal comfort in ordinary of fice environment.The model structure shows the condition of heat balance of human body,with four personalized coef ficients estimated by on-line voting data.The adjustable coef ficients provide the freedom to capture the personal differences in thermal comfort requirement.In contrast,the well-known PMV model is only an average model,which cannot re flect such differences.The model performance is evaluated by a field experiment study.A personal energy saving potential analysis is also presented as one of the applications.Both the experi-ment results and simulation results demonstrate the high accuracy of the data-driven model and the feasibility of the application in investigating personal energy saving potentials.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionWith the rapid development of information technology,infor-mation acquisition system can be widely deployed in buildings.The low cost of sensing and computing devices makes it possible to measure almost everything we want in buildings and carry out learning and calculating on line.This will bring us a large amount of opportunities to make the building environment more comfort and ef ficient.This paper focuses on describing the personalized thermal comfort using information technology.Although currently there are many researches in modeling hu-man comfort,most of them actually focus on the average thermal comfort model.The well-known work,Predicted Mean Vote-Predicted Percent Dissatis fied (PMV-PPD)model [1,2]is based on a large data set.It establishes an average mapping from the envi-ronmental factors (air temperature,radiant temperature,relative humidity,air velocity)and personal factors (clothing level,meta-bolic rate and activity level)to the 7-level comfort value scale.The following validation,modi fication and extension of the PMV-PPD model by Humphreys MA [3]use the ASHRAE (American Societyof Heating,Refrigerating and Air Conditioning Engineers)database for large groups of persons.They do not deal with the personal comfort.Besides the researches mentioned above,other related researches have similar limitations.Examples might be the models which are based on the human body physiology,such as Gagge AP ’s two-node (core and skin)model [4,5].This model represents the body as two concentric cylinders,with the thermoregulatory and blood flow considered.However,it is based on the general physi-ology of human body without personal factors.The commonly used ET*and SET*[6]are based on it.Similar work includes the Stolwijk JAJ [7]multi-segment mathematical model of human body,which divides the human body into finer parts,and Zhang et al.[8]’s sensation and comfort model for human segments and the whole-body.de Dear RJ and Brager GS [9],Humphreys MA [10],etc.pro-posed adaptive models of comfort,which give a relationship be-tween the indoor comfort temperature and the outdoor mean temperature and reveal the adaptivity of human comfort.They are still based on a large amount of field studies and statistics.Many of those works have been written in the ASHRAE standard and play important roles in building construction design,HVAC system ca-pacity design and operation management.However,in practice,the individual differences in thermal preference often incur dissatisfactions,especially in the operational stage.This indicates that the average model,such as PMV,may have*Corresponding author.Tel.:þ861062792491;fax:þ861062796115.E-mail address:zhaoyin09@ (Y.Zhao).Contents lists available at ScienceDirectBuilding and Environmentjournal homepage:www.elsev /locate/buildenv0360-1323/$e see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.buildenv.2013.11.008Building and Environment 72(2014)309e 318bias in predicting the thermal comfort for a small number of people. The PMV-PPD itself also points out this by stating that even the environment satisfies PMV¼0,there is still5%users who do not feel acceptable.Even if in Comfort category C of ISO7730[11], where comfort requirement extends to[À0.7,0.7],there is almost 16%dissatisfied percentage.When PMV¼1the dissatisfied per-centage is up to30%.Although individual differences in thermal comfort have been noted,such as differences in young women[12] and between genders[13],little modeling work has been done on it.The challenge of building personalized comfort model is how to determine the model structure in a clear way so that it can capture the thermal preferences for individuals.The aim of this work is to provide a rationale and structural model as well as the learning method to describe the personalized comfort in ordinary office environment.In this paper,we develop a data-driven learning method for the personalized thermal comfort using the feedback data from information acquisition system in real office environment.Different from the traditional chamber research,field study and statistics analysis for large groups,we derive a rationale structure based on body heat balance,leaving the personalized co-efficients to be estimated using the measured personalized voting data.Even when the thermal sensation changes with time,the up-date scheme could assure the tractability of the model.It avoids the detailed specification of the personal factors,such as clothing level, activity level,etc.,which are usually needed in existing comfort model but hard to determine in practical application.The current work is restricted to the personalized thermal preference and could be afirst step for many following researches related to the person-alized comfort,such as the personalized energy consumption and comfort tradeoff,the personalized comfort control algorithm and even the multi-person office comfort control,etc.We only present the analysis method of individualized trade-off between energy consumption and comfort as an illustrative example of the applica-tions.The method is based on the proposed personalized comfort model with interchangeable energy models.The rest of the paper is organized as follows.After the intro-duction,the proposed learning model is introduced in Section2. Then we present an application of the model e personalized energy saving potentials analysis in Section3.Experimental results and case study result of personal energy-saving analysis are in Section4 to demonstrate the methods.We conclude our paper in Section5.2.Personalized dynamic thermal comfortWefirst derive the parameterized structure of the personalized thermal comfort model.Then the coefficients estimation method is given.The model is a data-driven gray-box model,whose structure is based on human body heat balance equation,with the person-alized coefficients to be identified using the personalized feedback voting data.2.1.Heat balance of human bodyThe key factors of the heat balance of a human body are the rate of metabolic heat production M(W),the rate of mechanical work W(W), convective sensible heat loss from skin C(W/m2),radiant sensible heat loss from skin R(W/m2)and the rate of evaporative heat loss from skin and respiration E(W/m2).Fanger[1]proposed that if a human body is in a thermal steady state,the human body keeps a thermal balance state by the thermoregulatory system as shown in Equation(1),MÀWÀRÀCÀE¼0(1) where the heat loss equates the heat production.In the PMV framework,assuming the skin temperature is around its neutral level,the thermal L load of human body is defined as the difference between heat production and heat loss as shown in Equation(2). L¼ðMÀWÞÀðRþCþEÞ¼ðMÀWÞÀ3:96Â10À8f clðt clþ273Þ4Àt rþ2734!þf cl h cðt clÀt aÞþ3:05½5:73À0:007ðMÀWÞÀP aþ0:42½ðMÀWÞÀ58:15 þ0:0173Mð5:87ÀP aÞþ0:0014Mð34Àt aÞ(2) where f cl is the clothing area factor,i.e.the ratio of clothing surface area to the surface area of nude human body,t cl is the clothing surface temperature( C).Note that the calculation of t cl needs to solve the equations C¼f cl h c(t clÀt a),t cl¼t skÀI cl(RþC)and R¼3:96Â10À8f cl½ðt clþ273Þ4Àðt rþ273Þ4 .If we substitute R and C into t cl¼t skÀI cl(RþC),than we get a nonlinear equation of t cl given t sk and I cl.Thus it can be solved using numerical method. More details can be found in Ref.[6]t r represents the average radiant temperature( C),t a is the room air temperature( C),h c is the convective heat transfer coefficient(W/(m2K))and P a is the water vapor pressure(kPa).The mean response of a large group of people corresponding to the ASHRAE thermal sensation scale of [À3,3],i.e.the Predicted Mean Vote(PMV),can be described using the thermal load L using the following Equation(3).PMV¼½0:303expðÀ0:036MÞþ0:028 L(3) 2.2.Model structureEveryone has different metrics to the environment in their minds.Those differences might result from many factors,such as their living areas,ages,genders and living habits.In addition,the psychological factors indeed have influences on human expressions of their thermal perceptions.However,the most important factor that determines the sensation is the thermal balance of human body.Thus the personal model structure is based on it.The inputs of PMV can be categorized into two types:the environmental fac-tors,i.e.air temperature,mean radiant temperature,vapor pres-sure,etc.,and the personal factors such as the clothing level, metabolic rate,mechanical work,etc.To describe the personalized thermal comfort,we keep the environmental factors(t a;t r;h;v) unchanged and aggregate the personal factors together as the personalized coefficients to be identified.Then a parameterized equation in the form of the environmental factors can be obtained after some mathematical manipulations.We name it personalized thermal vote(PTV)and write it asPTV¼m0þm1P aþm2t aÀm3ðRþCÞ(4) where m i,i¼0,1,2,3are personalized coefficients to be identified, P a is dependent on t a and h,the relative humidity and RþC de-pends on t a;t r;v.Several issues should be noted.First,Equation(4)is essentially a direct derivation of PMV Equation(3).That means if we sub-stitute m0¼(0.303eÀ0.036Mþ0.028)(0.4523MÀ0.6014Wþ6.95), m1¼(3.05þ0.0173M)(0.303eÀ0.036Mþ0.028),m2¼0.0014M(0.303eÀ0.036Mþ0.028)and m3¼(0.303eÀ0.036Mþ0.028) into Equation(4),Equation(4)is the same with Equation(3),i.e.the PMV model.Second,some simplifications are carried out in term m3(RþC).As we know,RþC is decided by the air temperature, radiant temperature,clothing level and the air velocity.They areQ.Zhao et al./Building and Environment72(2014)309e318 310highly coupled through nonlinear equations and unable to be decoupled into personal factors and environmental factors.Here, we calculate RþC with the clothing level as constant(1.0clo)as a base line.Then RþC only depends on the environmental factors, i.e.the air temperature,mean radiant temperature and air velocity. The coefficient m3is a modification term considering the possible variations of RþC caused by the personal factors,such as the clothing level.We further assumes v0.1m/s because the air velocity in office environment is generally in a low and constant level.Then RþC is dependent on t a;t r.Third,the coefficients to be identified in our model are based on the personal voting data.This is rational because those coefficients only depend on the personal factors in the framework of the heat balance of human body.When human thermal sensation changes,user will have different thermal sensation votes.Receiving the new data,the coefficients will be updated to capture these changes.We do not exploit the reasons of the sensation changes because they are related to many factors uncontrollable.The proposed model actually concludes all those possible reasons to the coefficients to be estimated.Fourth,human sensation might also have some relationships with the location relative to the supply diffuser or windows.However,we consider a relative steady environment,i.e.subject’s position is relatively fixed.The differences between different subjects might be caused partly by the position,but for one person,if the influence is expressed through the user’s vote,the parameters will be update to capture it.Besides those above,the application of the model is restricted to the steady state comfort because the basic principle behind the derivations is the steady heat balance of human body.By introducing the time index in Equation(4),wefinally obtain the Personalized Dynamic Thermal Comfort(PDTC)model PDTCðkÞ¼m0ðkÞþm1ðkÞP a;kþm2ðkÞt a;kÀm3ðkÞðRþCÞk(5) where m i(k),i¼0,1,2,3are on-line tuned at each time step k when the occupant votes his/her thermal sensation.The time step could be one hour or an even longer interval because the model is only applicable for the change of thermal sensation in steady state. Transient thermal sensation might involve more detailed physio-logical analysis and is beyond the scope of this paper.2.3.Coefficient estimationGiven the structure in Equation(4),(5)and the personalized thermal sensation voting data,the coefficients of the PDTC can be estimated.For different usages,different estimation schemes could be utilized.One of the estimation schemes is to estimate the co-efficients using the data of one certain period to analyze the personalized thermal comfort preference in it.In this scheme,each period should have relatively constant personal factors so that the difference of the coefficients between different periods could reflect the thermal perception variations.The coefficients can be estimated using the commonly used least squares method as below:min m0;m1;m2;m3X Ni¼1ð~yðiÞÀPDTCðiÞÞ2(6)where~yðiÞis the actual vote and it is in the range(À3,3)same with PMV,and N is the total number of votes for one subject in the period.Another estimation scheme is the weighted least squares esti-mation considering the dynamic property of the human thermal perception.It is especially applicable for the online learning and control.The coefficients at time k for a certain subject are calculated using the following optimization:min mðkÞ;m1ðkÞ;m2ðkÞ;m3ðkÞX ki¼1gðiÞð~yðiÞÀPDTCðiÞÞ2(7)where g(i)˛(0,1)is the weighting factor at time i.Generally,the weighting factor is chosen as l kÀiþ1for dynamic system,where l is the forgetting factor,i.e.putting more weights on the recent data and forgetting the historical data gradually.Optimal selection of the forgetting factor has been derived in Ref.[14].It needs the statistics of measurement noise and process noise,which are unknown in our case.Because the model is to capture the possible changes of thermal sensation in a relative long term,the forgetting factor is recommended to be close bining the interval of the votes and the forgetting factor,one could know how the his-torical data is weighted.For online implementation,the solution of Equation(7)can be implemented in a recursive way,i.e. Recursive Least Squares algorithm[14].It sequentially estimates the coefficients as the data sequentially available.The initial co-efficients can be estimated using the least squares estimation in an initial period(such as one week’s data).Theflowchart of the al-gorithm and the related equations are shown in Fig.1and more details can be found in Ref.[14].3.Personal trade-off between energy and comfort by the modelHaving developed the data-driven personalized comfort model, we present one of the applications,using the proposed model to analyze the personalized trade-off between energy and comfort. The energy consumption of buildings takes up to40%of the whole energy consumption[15].Many attentions have been paid on how to achieve the energy saving while maintaining comfort.However, due to the lack of personalized comfort model,the analysis of en-ergy consumption based on the comfort model is only for the average model,generally PMV.Typical work involves the model predictive control using the linear combination of comfort and energy cost as objective function[16]and the multi-objective optimization using thermal comfort and air quality as the comfort index and heat/cooling load of the HVAC as the energy index[17]. Zhong K et al.[18]analyzed the energy saving potentials in different buildings in different climate areas in China.The comfort model was the adaptive comfort model[9].In this section,we present a framework to analyze the personal trade-off between energy and comfort using PDTC.The analysis is essentially a further review of the PDTC model in personal difference,i.e.the personalized com-fort margin to compromise.The general idea for this analysis is minimizing the energy consumption under the condition that the personal thermal sensation should be acceptable.It is an extension of the method in Ref.[18]with the proposed personal comfort model incorporated and the energy model interchangeable.3.1.Energy consumption estimationTo analyze the personalized energy consumption and comfort, an energy consumption model will be needed.Similar to Ref.[18], the key bridge between the proposed personalized comfort model and the energy consumption is the set-points of the thermal environment of the room,i.e.air temperature,relative humidity, etc.The heating/cooling load under certain environment could be used to study the energy performance.Given a certain room with its location,climate information,and the occupancy information, the heating/cooling load would be a function of air temperature,Q.Zhao et al./Building and Environment72(2014)309e318311relative humidity.Without loss of generality,we denote the heat-ing/cooling load as Q all (t a ,h a ).Q all (t a ,h a )could be of any form,such as the steady transfer estimation,software simulation estimation (such as DeST [19],EnergyPlus [20]or DOE2[21]),or a more advanced energy model for speci fic HVAC systems.Note that here we only use the thermal load as the representation of the energy consumption.For the detailed energy consumption,one should consider the detailed types of devices and equipment.Different devices with different ef ficiencies will have variable energy con-sumptions under the same heating/cooling load.We do not consider the device-dependent energy consumption in this paper.3.2.Set-point optimizationThe optimal set-point is obtained using a constraint optimiza-tion formulation.The objective function is the heating/cooling load Q all (t a ,h a )mentioned above,which is the function of the temper-ature and relative humidity of the room.One of the constraints is the human comfort.For the personalized comfort,it should keep the PDTC in the range of (Àthreshold ,threshold ).That is the absolute value of PDTC is inside an interval around 0,e.g.(À0.5,0.5).This assumes the symmetry of PDTC in cold and hot,which is similar to PMV.Also,some more restricted constraints in air temperature and relative humidity (t down ,t up ),(h down ,h up )should be given to assure they are in a reasonable range (h down ,h up are the lower bound and upper bound of the relative humidity,and t down ,t up are those of temperature).Thus,the optimal temperature and relative humidity at time k of the room are determined asMin f t a ;k ;h a ;k g Q all Àt a ;k ;h a ;kÁs :t :m 0ðk Þþm 1ðk ÞP a ;k ;þm 2ðk Þt a ;k Àm 3ðk ÞðR þC Þk threshodh a ;k ˛Àh down ;h up Á;t a ;k ˛Àt down ;t upÁ(8)In our estimation,Q all (t a ,k ,h a ,k )considers both heating and cooling load together.For winter case,the heating load is positive and the minimization means choosing the set-points that lead to the minimal heating requirement in the room.For summer case,the cooling load is positive and the minimization means choosing the set-points that lead to minimal cooling requirement in the room (in our following case study in Section 4,we take winter case as an example).Considering that the optimal temperature set-point variations are very small,the dynamic in fluence to heating/cooling load of temperature set-point change is ignored.While the thermal dynamics of room air heat gain are considered by using cooling load factor method to calculate heating/cooling load.If consideringmore detailed historical dependence and dynamics,the optimal temperature and relative humidity at time k are highly dependent on the dynamics of the thermal load.The optimization formulation for dynamic system might be needed.Different orders of dynamics will need different optimization techniques and simpli fication methods and those are beyond the scope of this paper.If Q all (t a ,k ,h a ,k )has an analytical formula,the problem falls into the field of nonlinear optimization,where the local optima can be obtained using mature optimization methods,such as the gradient-based method or the interior-point method.Note that the solution might be local-optimal,thus several random initial solutions need to be tried to avoid getting trapped in a local minimum.For a simulation model,where Q all (t a ,k ,h a ,k )is evaluated using simula-tion,simulation based optimization techniques can be used to solve it.Readers could referred to Ref.[22]for more information.3.3.Personalized energy saving metricsWe present two energy saving potential metrics to analyze the personalized tradeoff between the energy saving and comfort.These metrics are based on the results of optimization stated above.A baseline is first introduced,which is the optimization result of Equation (8)with PMV model as comfort constraint shown in Equation (9).Min f t a ;k ;h a ;k g Q all Àt a ;k ;h a ;kÁs :t :j PMV j threshod h a ;k ˛Àh down ;h up Á;t a ;k ˛Àt down ;t upÁ(9)It is the average result and then the personalized results could be compared with it.The first metric is the personal energy savings relative to the PMV results,i.e.RPE ¼Q *PDTC ðt a ;h a ÞÀQ *PMV ðt a ;h a Þ.Q *PMV ðt a ;h a ÞÂ100%(10)where Q *PDTC ðt a ;h a Þis the optimal objective function of problem (8)when the comfort constraint is PDTC,and Q *PMV ðt a ;h a Þis that ofPMV for problem (9).Here we omit the time index k .Both Q *PDTC ðt a ;h a Þand Q *PMV ðt a ;h a Þcan be the results at certain timek or in certain period.This metric is an intuitive result presenting whether and how much the user consumes the energy relative to the average level,which is similar to the metric de fined in Ref.[18].The second metric is the personalized sensitivity analysis of the energy consumption versus thermal comfort.The personalized energy saving sensitivity is de fined asfollowsFig.1.Flow chart of the Recursive Least Squares Estimation and the related equations.Q.Zhao et al./Building and Environment 72(2014)309e 318312S PDTC;D¼Q*PDTC;thresholdÀQ*PDTC;thresholdþD=Q*PDTC;thresholdÂ100%(11)It is the relative heating/cooling load decrease when the comfort constraint relaxes from threshold to thresholdþD.The sensitivity indicates how much the energy saving can be achieved when the user compromises in the comfort requirement.The above two metrics could be used to characterize the per-sonal energy-saving potentials.The relative decrease of energy consumption gives the baseline of the energy saving for the person and the sensitivity gives the margin of further energy savings by a little compromise in thermal comfort.When one obtains the personalized coefficients of PDTC model,the energy saving po-tentials for the user can be analyzed using the above method with a proper energy model.4.Experiment and resultsIn this section,we present the experiment results of the above methods and the tradeoff analysis results in a case study.Theseresults demonstrate the effectiveness and applicability of the pro-posed model and its application in personalized energy saving analysis.4.1.Coefficient estimation using on-line survey data4.1.1.Experiment setupTo demonstrate the feasibility and performance of the proposed data-driven model,a simple experiment e an online voting survey, was carried out.The experiment lasted from November2009to January2010,i.e.the fall and winter season in Beijing,with the monthly average outdoor temperature changing from11 C to0 C. The experiment office is5Â12m2,with5graduate students and4 professors and researchers working in it as subjects.They were dispersed so that they did not influence each other’s perception (Fig.2).There were5sets of sensors(air temperature sensor,mean radiant sensor,air speed sensor,humidity sensor)distributed in the office to assure there was at least one set of sensors nearby for each subject to measure the environment around them.The HVAC sys-tem in the office is Fan Coil Unit,located at two diagonal corners. They were controlled by the users as normal and the environment of the office varied in a reasonable range.The advantage of this setting is that the experiment is nearly the same to the real office condition and subjects’behavior will not be influenced by the “experiment”.The histogram of the mean air temperature of the office during the experiment is illustrated in Fig.3.The air speeds around subjects were less than0.1m/s.The room was mechanical ventilating(at least30m3for each person per hour)to guarantee the air quality.Occupants in the room were asked to keep sedentary and to do normal office work.Additionally,they voted in their computers through the dedicated software that popped up every one hour during their office time.The thermal sensation vote panel was designed as a scrollbar,withfive sensation marks,which were hot, warm,neutral,cool and cold.The neutral perception is associated with0,warm with1.5and hot with3and users can vote continu-ously betweenÀers can vote continuously fromÀ3to3. We only use thefive marks to guide the user’s vote because it is easier to understand than a set of more complicated labels. Choosing the range(À3,3)is also the same as PMV scalar,which makes it comparable to PMV results.The subjects had been trained to be familiar with the voting interface before experiment.In order to avoid the less concentration on the vote,we only required the subjects to vote on thermal sensation every one hour.There are 2679votes collected,averagely around300votes for each subject and only7e8times in one day.So the voting is expected not to interrupt the subject too much.Fig.4gives an overview of each subject’s vote values,including the mean value and standard de-viation.Generally,the mean values of each subject’s votes are different.Since they experienced similar environment,the differ-ence of the overall statistic indicates their difference inthermal Fig.2.The deployment of the sensor boxes and subjects in the office.Fig.3.Histogram of the mean air temperature during theexperiment.Fig.4.Overview of each subject’vote during the experiment,the bars show the meanvalue and the intervals show the standard deviation of the votes.Q.Zhao et al./Building and Environment72(2014)309e318313。

dPCR的发展历史、原理及其应用(3) 2021

dPCR的发展历史、原理及其应用(3) 2021

3.5转基因成分检测。

传统得qPCR方法可以对食品中得转基因成分进行测定[32,33],由于该方法需要建立标准曲线,加上食品与作物等复杂样品中抑制剂对PCR扩增效率得影响,使qPCR对于低丰度得转基因成分得检测有很大得局限[34].有研究利用dPCR定量转基因MON810与参考基因hmg基因拷贝数得比值,定量结果与qPCR相同[35].2013年,Morisset等[36]利用微滴式dPCR双重检测转基因MON810和参考基因hmg拷贝数比值,微滴式dPCR检测hmg和MON810得线性范围分别为:5~118 000拷贝/反应和6~4 340拷贝/反应,检测得线性范围较宽,能满足常规转基因成分检测得要求。

有研究报道dPCR检测转基因成分得灵敏度为0.1%,低于欧盟规定转基因成分得检出限0.9%[37].研究表明dPCR可以作为常规得检测技术应用于转基因成分鉴定。

---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上得灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己得风格,不太建议完全照抄照搬哦。

BiVO4复合材料的制备及应用进展

BiVO4复合材料的制备及应用进展

BiVO4复合材料的制备及应用进展胡佳凯; 罗晓祝; 陈维科; 黄昱; 刘泽华; 陶廷锴; 王雅楠; 张艳; 陈萍华【期刊名称】《《天津化工》》【年(卷),期】2019(033)006【总页数】3页(P1-3)【关键词】BiVO4; 复合材料; 制备; 应用; 进展【作者】胡佳凯; 罗晓祝; 陈维科; 黄昱; 刘泽华; 陶廷锴; 王雅楠; 张艳; 陈萍华【作者单位】南昌航空大学环境与化学工程学院江西南昌330063【正文语种】中文【中图分类】TB3311 引言环境污染和能源危机是一直以来可持续发展必须要解决的两大问题[1,2],其中很重要的一种解决办法就是寻求最佳的半导体光催化材料。

由于TiO2 只能在紫外光波段发生响应,而BiVO4 在可见光波段可以发生响应[3],BiVO4 的禁带宽度约为2.4eV,其对光的利用率远大于TiO2[4]。

虽然BiVO4优点很多,但是纯的BiVO4 的光生电子和空穴电子很容易发生复合[5]并且导电性能差会抑制其光催化效率,因此需要修饰BiVO4 的化学组成和结构,对其进行改性修饰[6~10]。

本文综述了BiVO4 复合材料的制备方法及一些改性研究进展。

2 钒酸铋复合材料的制备方法一般复合材料的制备方法主要有化学方法和物理方法,化学方法主要包括了沉淀法、共沉淀法、溶胶-凝胶法等,而物理的方法主要有球磨法等。

国内外有许多学者致力于BiVO4 复合材料的制备如:水热合成法是利用水溶液中物质的化学反应来制备材料的常用方法,其晶粒按结晶习性生长,制备的产物纯度高、分散性好、粒度可控。

高晓明等 [11] 在不同pH 的BiVO4 前提下加入Ag-NO3,置于不锈钢水热反应釜用水热合成法在180℃反应6h 制备得Ag/BiVO4,结果表明pH=7时,催化剂Ag/BiVO4 的单斜晶相晶型最好,并得到禁带宽度为2.17eV,较纯BiVO4 的禁带宽度(2.40eV)窄,光催化性能良好,模拟汽油的脱硫率高达95%。

不同黄秋葵花中总黄酮的提取和含量测定

不同黄秋葵花中总黄酮的提取和含量测定

不同黄秋葵花中总黄酮的提取和含量测定胡帅;张骋;李强;王萍;袁聪颖;万捷;常洪平;王育;陆秀涛【摘要】通过对超声波法、水浴法、水浴超声波法、水浴微波法四种不同方式辅助提取黄秋葵花中总黄酮的方法进行比较,确定以水浴超声波法辅助提取测定黄秋葵花中总黄酮效果较好.采用紫外可见分光光度法,以芦丁为标准品,样品总黄酮在0.00 ~0.067 mg/mL范围内线性良好,其回归方程为y=12.046x-0.0015,R2=0.9993.采用水浴超声波法辅助提取、硝酸铝显色法测定11个湘葵品系的样品花中总黄酮含量,结果表明:在11种黄秋葵花样品中,湘葵3号的花中总黄酮含量最高,为5.29%,湘葵8号的花中总黄酮含量最低,为1.70%.上述研究结果为黄秋葵的质量评价及今后的产业化研究提供新思路.【期刊名称】《激光生物学报》【年(卷),期】2013(022)004【总页数】4页(P375-378)【关键词】黄秋葵;总黄酮;紫外可见分光光度法【作者】胡帅;张骋;李强;王萍;袁聪颖;万捷;常洪平;王育;陆秀涛【作者单位】湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;江西武功山农业开发有限公司,江西芦溪337200;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082;湖南大学生物学院,植物功能基因组学与发育调控湖南省重点实验室,湖南长沙410082【正文语种】中文【中图分类】R284.2生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

266 | VOL.9 NO.3 | MARCH 2012 | NATURE METHODSand a dimerization domain. Removal of the dimerization domain to create Gal4(65), which contains Gal4 residues 1–65, virtually eliminates binding to its consensus cognate DNA sequence, the upstream activating sequence of Gal (UASG )12. Vivid (VVD), the smallest light-oxygen-voltage (LOV) domain–containing protein, forms a rapidly exchanging dimer upon blue-light activation 13–15. We reasoned that the DNA-binding property of a Gal4(65)-VVD fusion protein would be light-switchable, as light should induce dimerization of the fusion protein, enhance binding to the UASG sequence and activate transcription and removing the light should result in gradual dissociation of the dimers, DNA dissociation and inactivation (Fig. 1a ). Indeed, an electrophoretic mobility shift assay showed that Gal4(65)-VVD dimerized upon 15 W m −2 constant blue-light illumination and bound the UASG sequence (Fig. 1b ).Purified Gal4(65)-VVD had similar spectra to VVD 13 in dark orlight states (Supplementary Fig. 1). These data suggested that the VVD domain in the fusion protein was correctly folded and was bound by flavin adenine dinucleotide (FAD) and that light illumination induced Gal4 dimerization and binding to UASG .To create a system capable of driving light-activated transcrip-tion, we fused different transactivation domains to the C terminus of Gal4(65)-VVD (Fig. 1a and Supplementary Fig. 2). We tested their light-dependent impact on transcriptional activity of a firefly luciferase (Fluc ) reporter driven by Gal4 binding sites upstream of a TATA box after transient transfection in HEK293 cells, illumina-tion with 0.84 W m −2 460 nm peak light from an LED lamp for 22 h and measurement of expression. Transactivators containing the p65 activation domain (GAVP) or the VP16 activation domain (GAVV) both showed marked light-induced reporter gene transcription, but the GAVP transactivator resulted in much greater gene expression under light exposure conditions (Fig. 1c and Supplementary Fig. 3). Mutation of Cys108 in VVD to serine blocked light-inducible geneexpression as expected 13 (Fig. 1c and Supplementary Fig. 3).Mutation of Cys71 to valine in VVD is known to enhance the sta-bility of the light-induced VVD dimer 14, and based on the crystal structure of VVD 13 we hypothesized that mutating Gln56 of VVD to lysine would form a salt bridge with Asp68 of the other VVD protein and additionaly stabilize the dimer. Both dimer-enhancing mutations, C71V and N56K, in the VVD domain decreased reporter gene expression in the dark, whereas the N56K,C71Vd ouble mutant (optimized GAVP (GAVPO)) additionally decreased the background gene expression to a minimal level (Fig. 1c and Supplementary Note ). We used GAVPO in all subsequent studies, and we referred to the gene promoter system based on GAVPO as the light-on (LightOn) system.We compared the LightOn system to human cytomegalovirus immediate early promoter (CMV )-based induction of reporterSpatiotemporal control of gene expression by a light-switchable transgene systemXue Wang, Xianjun Chen & Yi YangWe developed a light-switchable transgene system based on a synthetic, genetically encoded light-switchable transactivator. The transactivator binds promoters upon blue-light exposure and rapidly initiates transcription of target transgenes in mammalian cells and in mice. This transgene system provides a robust and convenient way to spatiotemporally control gene expression and can be used to manipulate many biological processes in living systems with minimal perturbation.Regulated transgene systems are indispensable tools in biomedical research and biotechnology. During the past decade, chemically regulated gene expression systems 1,2 have been widely used for the temporal control of gene expression. However, as these small molecular inducers diffuse freely and are hard to remove, it is not possible to precisely switch on and off gene expression at an exact location and time. In contrast to chemicals, light is an ideal inducer of gene expression because it is easy to obtain, highly tunable, non-toxic and, most importantly, has high spatiotemporal resolution. A light-switchable gene expression system could be the most prom-ising tool for precisely controlling spatiotemporal gene expression in multicellular organisms. There have been several efforts to con-trol gene expression using light. Caged transactivator or chemi-cal inducers that are activated by UV light have been developed, allowing study of gene function in developing embryos 3–5. Infrared laser light was used to induce heat shock–mediated expression of transgenes 6. Recently, synthetic approaches have been developed to regulate gene expression by light illumination using genetically encoded light sensors 7–11.Uptake of these methodologies by biolo-gists has been minimal, however, probably because of technical complexities or limitations. We sought to develop a simple robust transgene system that is directly regulated by a single genetically encoded, photosensitive transactivator.To create a light-switchable gene promoter system, it is necessary to first design a DNA-binding domain that is activated by light. The well-characterized DNA-binding domain comprising Gal4 residues 1–147, Gal4(147), consists of a DNA-recognition elementSynthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China. Correspondence should be addressed to Y.Y. (yiyang@).RECEIVED 19 JULY 2011; ACCEPTED 28 DECEMBER 2011; PUBLISHED ONLINE 12 FEBRUARY 2012; DOI:10.1038/NMETH.1892n p g© 2012 N a t u r e A m e r i c a , I n c . A l l r i g h t s r e s e r v e d .NATURE METHODS | VOL.9 NO.3 | MARCH 2012 | 267BRIEF COMMUNICATIONSvectors driving Fluc , Gaussia princeps luciferase (Gluc), humanized recombinant GFP (hrGFP) or monomeric (m)Cherry protein expression by transient transfection of vectors encoding all components into HEK293 cells and light exposure as described above (Fig. 1d and Supplementary Figs. 4 and 5). We con-firmed that light-mediated activation required all components by western blots of Gluc (Fig. 1e ). We routinely observed 200–300-fold induction of Fluc and Gluc in our experiments and a similarly high on/off ratio of gene expression and induction efficiency of LightOn system in other cells lines (Fig. 1f ). The blue-light irradiation had little effect on expression of proteins whose tran-scription was driven by CMV promoter (Fig. 1d ), suggesting that the LightOn system has minimal interference with or toxicity to normal cellular function.We investigated the time course of light-induced Gluc tran-scription using quantitative real-time PCR. Cellular Gluc mRNA amounts increased 13-fold and 81-fold after 0.5 h and 1 h of light induction, with respect to samples not exposed to light (Fig. 2a ) followed by an increase in secreted Gluc protein ~1 h later (Fig. 2b ). Removal of light resulted in a slow decay in the amount of Gluc mRNA and a plateau in the amount of protein when we did not change the medium (Fig. 2a ,b ). Gluc expression depended on the duration of illumination, but a 30-min illumination was suf-ficient for ~25-fold induction of Gluc protein above background expression 10 h after initial illumination (Supplementary Fig. 6). Off expression kinetics of Gluc mRNA suggested that GAVPO was kept in the activated state with a half life of 2 h (Supplementary Fig. 7), which is similar to that of VVD (half life of ~18,000 s)16.GAVP VVD domain mutantsaW i l t y p e C 108N 56C 71N56K ,C7152383831171027652GAVPOGlucActinpGAVPO Light pU5-Gluc Size (kDa) e R e l a t i v e e x p r e s s i o n (%)f +++++––––––––––++++++MC F -7H e pG2MDA -MB -231P C -3dR e l a t i v e e x p r e s s i o n (%)Figure 1 | LightOn gene expression system. (a ) Schematic representation of the LightOn system. After light activation, GAVP homodimerizes, interactswith UASG elements (5xUASG) and initiates expression of the gene of interest. (b ) Electrophoretic mobility shift assay of binding between Gal4(65)-VVD (at indicated concentrations) and UASG DNA probe (125 nM)in the dark (left) or under 15 W m −2 constant blue light (right). (c ) Light- dependent activation of Fluc reporters based on GAVP with different mutations to enhance dimerization. (d ) Comparison of induction various reporters betweenthe LightOn system with GAVPO-driven genes and conventional vectors with CMV -driven genes. Fluc activity, hrGFP fluorescence and mCherry fluorescence in cell lysate were measured by chemiluminescence and fluorescence assay,respectively. Gluc activity in cell culture medium was measured by a chemiluminescence assay. The data in c and d were normalized to the expression levels of the same reporter protein expressed from vectors with CMV promotersin the dark. (e ) Western blot of the Gluc expression in HEK293 cells transiently transfected with pGAVPO and pU5-Gluc under light or dark conditions. (f ) Light-switchable Gluc expression from pGAVPO in different cell lines. The data were normalized to the expression of the same reporter protein expressed from the CMV promoter under light-on conditions. (c ,d ,f ) Error bars, mean o s.e.m. (n = 4 samples) from the same experiment. Six (c ) or ten (d –f ) hours after transfection, cells were illuminated by 0.84 W m −2 blue light or remained in the dark for 22 h before measurements.Time (h)G l u c m R N A f o l d o f i n d u c t i o naTime (h)5.0 × 1071.0 × 1081.5 × 108bG l u c a c t i v i t y (R L U )Number of pulsesG l u c a c t i v i t y (R L U )4.0 × 108.0 × 101.2 × 101.6 × 10cG l u c a c t i v i t y (R L U )Pulse length (s)2 × 104 × 106 × 10dFigure 2 | Time course of light-switchable gene expression using LightOn in HEK293 cells transiently transfected with pGAVPO and pU5-Gluc. (a ) Cellular Gluc mRNA level measured at indicated times in the dark, after illumination under continuous 0.84 W m −2 blue light or after illumination under 0.84 W m −2 blue light for 2 h and then in the dark (light-dark). (b ) Expression kinetics of the Gluc reporter in cell culture medium measured at indicated times in the dark, after illumination under continuous 0.84 W m −2 blue light or after illumination under blue light for 15 h and then in the dark (light-dark).Insets, kinetics of Gluc mRNA (a ) or protein activity (b ) during the 4 h or 3 h after the initial light exposure, respectively. (c ,d ) Gluc activity in medium, measured 4 h after the initial light exposure to blue-light pulses (c ; 10 s pulses, 22 W m −2, 8 min apart) or to a single blue-light pulse of varying duration (22 W m −2). RLU, relative luciferase units. Error bars, mean o s.e.m. (n = 4 samples) from the same experiment.© 2012 N a t u r e A m e r i c a , I n c . A l l r i g h t s r e s e r v e d .268 | VOL.9 NO.3 | MARCH 2012 | NATURE METHODSBRIEF COMMUNICATIONSThis led to continued mRNA synthesis during the first few hours after turning the light off (Fig. 2a ). The estimated half life of Gluc mRNA was 10 h (Supplementary Fig. 7), which explained the continuous increase in the amount of Gluc in the medium after light was turned off for another 20 h (Fig. 2b ). To increase the off rate of the system we modified the 3` untranslated region of the Gluc reporter gene by inserting the conserved AU-rich element (ARE) from the gene encoding GM-CSF, which medi-ates selective degradation of mRNA 17. Expression of Gluc-ARE stopped much earlier than did expression of the original Gluc gene (Supplementary Fig. 8). We also investigated the capacity to activate the LightOn system by short pulses of light and observed a strong dose dependence on the number of pulses and the dura-tion of a single pulse, showing that continuous illumination is unnecessary (Fig. 2c ,d ).We next tested the ability of the LightOn system to induce graded protein expression in cells by controlling the irradiance (Fig. 3 and Supplementary Figs. 9 and 10). To spatially control gene expression in cultured cells, we illuminated in a specific pat-tern HEK293 cells transfected with mCherry reporter and GA VPO . The mCherry fluorescence image of the cells had the pattern of the original image used as the mask (Supplementary Fig. 11).These data indicate that the LightOn system can be robustly used to quantitatively, spatially and temporally control gene expression in mammalian cells.Finally, we validated the LightOn system in vivo . We transferred GA VPO and mCherry reporter vector into the livers of mice using a hydrodynamic procedure. Exposure of the mice to blue light from below resulted in the appearance of marked fluorescence from mCherry protein in their livers (Fig. 4a ). Light-dependent transgene expression was limited to the anterior side and poste-rior lining of liver that received sufficient blue light irradiance, in contrast to controls transfected with pcDNA3.1 vector containing the mCherry gene driven by a CMV promoter that resulted in homogenous expression (Fig. 4a ). Light-induced expression of the mCherry gene in the liver was limited to 1 mm or less from the surface (Fig. 4b ). Spatial control of gene expression in the liver was possible with localized illumination using optical fibers (Supplementary Fig. 12).We then used the LightOn system for Cre recombinase–m ediated LacZ activation in Gt(ROSA)26Sor (ROSA26)-LacZ mice transfected with pGAVPO and pU5-Cre vectors. We observed LacZ expression in the liver after illumination with90 mW cm −2 blue light for 22 h and 48 h in the dark but not incontrol mice kept only in the dark (Fig. 4c ). This suggests that light-mediated, tissue-specific expression should be possible. As a very preliminary proof-of-principle demonstration of the poten-tial of our system for regulated gene or cell therapy, we transfected type I diabetic mice with pGAVPO and pU5-insulin vectors and observed that blue-light illumination caused a large drop of blood glucose compared to mice transfected with the vector encoding the nonfunctional GAVPO mutant (Fig. 4d ).An ideal regulated gene expression system should have low background expression, low toxicity, low interference with endogenous proteins or genes and the capacity for temporal and spatial control, and should be easy to manipulate. Most existing systems 3,5–11, however, do not simultaneously satisfy all of these above requirements (Supplementary Table 1). Approaches involv-ing caged activators 3,5 or heating effects 6 are hard to implementLight irradiance (W m –2)0.020.110.210.430.83Figure 3 | Graded response of mCherry expression under different blue-light irradiances. Ten hours after transfection of mCherry reporter andGAVPO vectors, cells were illuminated by blue light of indicated irradiances adjusted by neutral density filters for 22 h before determination.Fluorescence images are shown. Scale bar, 0.5 cm.aAnterior viewpcDNA3.1-mCherry; darkpU5-mCherry and pGAVPO; darkNo vector;darkpU5-mCherry and pGAVPO;blue lightFluorescenceFluorescencePosterior view bWhite lightcB l o o d g l u c o s e (m M )dAnterior viewPosterior viewDark LightWhite lightpcDNA3.1-mCherry;darkpU5-mCherry and pGAVPO;blue lightFluorescenceLightFigure 4 | Light-switchable transgene expression in mice. (a ,b ) Light induced mCherry transgene expression inwhole livers or kidneys (a ) or in cryosections (b ). Mice were transfected with no vector, pU5-mCherry andpGAVPO or pcDNA3.1-mCherry; then illuminated with 90 mW cm −2 blue light for 22 h or remained in the dark. Mice were then killed, and their livers and kidneys were dissected for mCherry fluorescence imaging. Scale bar, 1 cm (a ) and 0.5 mm (b ). (c ) Images of whole-mount X-gal staining of the lacZ expression in livers of ROSA26-LacZ reporter mice transfected with pGAVPO and pU5-Cre. Mice were illuminated with 90 mW cm −2 blue light for 22 h and then kept in the dark for another 48 h before measurements. Control mice receivedno light. Scale bar, 0.5 cm. (d ) Diabetic mice induced by streptozotocin were transfected with pU5-insulin together with pGAVPO or pGAVPO(C108S), which encodes the nonfunctional mutant. Mice were illuminatedwith 90 mW cm −2 blue light or kept in dark for 8 h. Glucose levels were measured after the mice rested in the dark for another 4 h with sufficient food. Error bars, s.e.m. (n = 8–10) from two independent experiments; statistics by two-tailed t test. *P < 0.04 versus ‘dark’ control; **P < 0.0002 versus ‘dark’ control.© 2012 N a t u r e A m e r i c a , I n c . A l l r i g h t s r e s e r v e d .NATURE METHODS | VOL.9 NO.3 | MARCH 2012 | 269BRIEF COMMUNICATIONSand manipulate, and are associated with potential problems of cell injury or side effects resulting from the UV-light irradiance or heat shock used to activate gene expression. The LightOn system reported here is based on a genetically encoded light sensor that uses FAD as a photon acceptor 13 and offers obvious advantages compared to the above techniques. As FAD naturally exists in cells, it is unnecessary to treat cells with extraneous ligands that are required by phytochrome 7 or caged activators 3,5. The single- chain 56-kDa genetically encoded light-switchable transactivator in the LightOn system, which operated through homodimeriza-tion, additionally reduced the complexity of the multicomponent gene expression methodologies based on two-hybrid technologies previously reported for yeast 7,10 or mammalian cells 9. Recently, a well-designed synthetic light-regulated circuit has been reported to regulate gene expression in transgenic cells and blood-glucose homeostasis in mice 11. However, as this technique is based on coupling an exogenously expressed blue light–induced melan-opsin receptor to major existing cellular signaling players such as phospholipase, phosphokinase and calcium, it suffers from low on/off ratio of gene expression and mutual interference with endogenous signaling events that may limit its usage. In contrast, the LightOn system is orthogonal to mammalian cellular signal-ing, which should allow tighter control with minimal perturba-tion of, or from, existing signaling pathways.There are many other advantages of the LightOn gene expres-sion system reported here. LightOn has low background and allows high induction with reasonably fast kinetics and revers-ibility. We showed that continuous illumination was not necessary to activate LightOn, and single brief pulses of light were sufficient. This was possible owing to the high induction level and low back-ground we observed. Because of the unusually stable photoacti-vated state of VVD 16, the LightOn system is extremely sensitive to light, thus minimizing any potential toxicity of blue-light irradi-ance on cells. We observed a fourfold increase in Fluc expression when we irradiated cells with blue light five orders of magnitude lower than the sun’s irradiance. These characteristics provide the capability for gene activation with good spatial, temporal and quantitative control in an easy-to-use and robust system. LightOn should be a powerful yet convenient tool for life science research, allowing spatial and temporal control of gene expression.In the past three years, optogenetics has become a booming field by using genetically encoded light-sensitive proteins to control the behavior of living cells and organisms 18,19. Most of these tools are based on light-gated ion channels, light-switchable enzymes or protein interactions. The LightOn system provides another general way to control biological processes using light-switchable gene expression, thus avoiding the need for case-by-case protein engineering to create light-regulated protein modules. In addi-tion to its use in mammals, the LightOn gene expression system could be used to control gene expression spatiotemporally in other model eukaryotes such as Danio rerio and Drosophilam elanogaster , in which Gal-UAS systems are already widely used to control cell type–specific gene expression. We anticipate thatthe LightOn system will be widely used in many fields of life sci-ence research and biotechnology that have great demand for high- resolution spatial and temporal control of gene expression.METHODSMethods and any associated references are available in the online version of the paper at /naturemethods/.Note: Supplementary information is available on the Nature Methods website.ACKNOWLEDGMENTSWe thank Z.H. Yu and J.Z. Chen for their suggestions, and Z.M. Du, Z.C. Ma, J.H. Wang, W.T. Zhu, X.Y. Feng and Y.Z. Zhao for technical assistance. This work was supported by the National Natural Science Foundation of China (grants 31170815, 31071260 and 90713026), the 863 Program (grant no. 2006AA02Z160), the Fok Ying Tung Education Foundation (grant 111022), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Dawn Program of Shanghai EducationCommission (grant 11SG31), Doctoral Fund of Ministry of Education of China (grant 20100074110010), the Fundamental Research Funds for the Central Universities and the 111 Project (grant B07023).AUTHOR CONTRIBUTIONSY.Y. conceived of the concept; Y.Y., X.W. and X.C. designed the experiments and analysed the data; X.W. preformed the molecular cloning, proteincharacterization and cell culture experiments; X.C. preformed animal studies; and Y.Y. wrote the manuscript.COMPETING FINANCIAL INTERESTSThe authors declare no competing financial interests.Published online at /naturemethods/. Reprints and permissions information is available online at /reprints/index.html.1. Braselmann, S., Graninger, P. & Busslinger, M. Proc. Natl. Acad. Sci. USA 90,1657–1661 (1993).2. Gossen, M. et al. Science 268, 1766–1769 (1995).3. Cambridge, S.B., Davis, R.L. & Minden, J.S. Science 277, 825–828(1997).4. Minden, J., Namba, R., Mergliano, J. & Cambridge, S. Sci. STKE 2000, l1(2000).5. Cambridge, S.B. et al. Nat. Methods 6, 527–531 (2009).6. Kamei, Y. et al. Nat. Methods 6, 79–81 (2009).7. Shimizu-Sato, S., Huq, E., Tepperman, J.M. & Quail, P.H. Nat. Biotechnol. 20,1041–1044 (2002).8. Levskaya, A. et al. Nature 438, 441–442 (2005).9. Yazawa, M., Sadaghiani, A.M., Hsueh, B. & Dolmetsch, R.E. Nat. Biotechnol. 27,941–945 (2009).10. Kennedy, M.J. et al. Nat. Methods 7, 973–975 (2010).11. Ye, H., Daoud-El Baba, M., Peng, R.W. & Fussenegger, M. Science 332,1565–1568 (2011).12. Hong, M. et al. Structure 16, 1019–1026 (2008).13. Zoltowski, B.D. et al. Science 316, 1054–1057 (2007).14. Zoltowski, B.D. & Crane, B.R. Biochemistry 47, 7012–7019 (2008).15. Lamb, J.S., Zoltowski, B.D., Pabit, S.A., Crane, B.R. & Pollack, L.J. Am. Chem. Soc. 130, 12226–12227 (2008).16. Zoltowski, B.D., Vaccaro, B. & Crane, B.R. Nat. Chem. Biol. 5, 827–834 (2009).17. Shaw, G. & Kamen, R. Cell 46, 659–667 (1986).18. Deisseroth, K. Nat. Methods 8, 26–29 (2011).19. Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412(2011).© 2012 N a t u r e A m e r i c a , I n c . A l l r i g h t s r e s e r v e d .NATURE METHODSdoi:10.1038/nmeth.1892ONLINE METHODSDNA cloning. Full length VVD gene was isolated from Neurospora crassa (gift of B. Chen, Guangxi Normal University) genomic DNA with both introns and exons. Introns were removed by reverse PCR. Sequences encoding the Gal4(1–65), and VP16 acti-vation domain was amplified from pBIND and pACT (Promega), respectively. Chimeric fusion construct pGAVV consisting of sequences encoding Gal4(1–65), VVD (37–186) and VP16 acti-vation domain was generated using overlapping PCR and inserted into Eco47III and BsrGI sites in pEGFP-N1 vector. To generate chimeric fusion construct pGAVP , sequence encoding VP16 acti-vation domain of pGAVV was replaced with sequence encoding p65 activation domain residues 286–550, which was isolated from HEK293 cDNA by EcoRI and BsrGI. Site-directed mutagenesis, to generate sequences encoding VVD proteins with mutations C71V , N56K and C108S, was performed on sequence encoding the VVD domain according to the MutanBEST protocol (Takara). The reporter vector pU5-Gluc was generated by overlapping poly(A)–5×UASG -TATA sequence from pG5luc (Promega) and secreted Gluc sequence from pGLuc-basic (NEB), and subsequent ligation into NruI and BamHI sites of pcDNA3.1/Hygro(+) using CloneEZ PCR Cloning kit (Genescript), thereby replacing CMV promoter in pcDNA3.1/Hygro(+) (Invitrogen). The 2×Flag tag was added to C-terminal end of Gluc (added into the gene using BamHI and XbaI) for convenient immunoassay detection. Other reporter vectors including pU5-hrGFP , pU5-Fluc, pU5-mCherry and pU5-Insulin were generated by substituting Gluc with genes encoding humanized recombinant (hr)GFP , Fluc, mCherry and a minimal human proinsulin, respectively. Plasmid pU5-Gluc-ARE was constructed by inserting the ARE of the sequence encoding GM-CSF into 3` untranslated region of Gluc . A furin consensus cleavage sequence was introduced to the minimal human proin-sulin gene, allowing the translational product to be constitutively processed and secreted in liver cells 20. Genes encoding hrGFP , Fluc, mCherry and insulin were introduced into HindIII and BamHI site of pcDNA3.1/Hygro(+) and Gluc was cloned into pcDNA3.1/V5-His-TOPO (Invitrogen) to obtain CMV promoter–driven genes in expression vectors. To obtain the pU5-Cre vector, the multiple cloning site of pU5-Gluc was replaced, and Cre was introduced into HindIII-Eco47III site of the new vector by sub-stituting Gluc . To construct Escherichia coli expression vector, sequence encoding Gal4(65)-VVD was amplified from pGAVP and inserted into pET-28a(+) using CloneEZ PCR Cloning kit.Protein expression and purification. Gal4(65)-VVD was expressed in E. coli strain JM109 at 18 °C for 24 h under con-stant light in the presence of 0.4 mM IPTG, 10 M M ZnCl 2 and 5 M M FAD. The cell pellet was collected by centrifugation and sonicated in buffer A containing 20 mM Hepes, 0.5 M NaCl, 10 M M ZnCl 2, 20 mM imidazole, 10 mM B -mercaptoethanol and 10% glycerol, pH 7.5. The soluble cell lysate was fractionated by centrifugation. The supernatant was passed over a HisTrap FF column (GE Healthcare) and then washed thoroughly in buffer B containing 20 mM Hepes, 0.5 M NaCl, 50 M M ZnCl 2, 300 mM imidazole, 10 mM B -mercaptoethanol and 10% glycerol, pH 7.5. Proteins were desalted in 20 mM Hepes, 0.15 M NaCl, 20 M M ZnCl 2 and 10% glycerol, pH 7.5, using a HisTrap desalting column (GE Healthcare). After purification, Gal4(65)-VVD was stored at 4 °C and protected from light for recovery in the dark.Electrophoretic mobility shift assay. The probes used were as follows: 5`-TCTTCGGAGGGCTGTCACCCGAATATA-3` and 5`-ACCGGAGGACAGTCCTCCGG-3`12. All samples containing VVD-derived proteins were prepared under red LED safe light. The DNA was annealed and diluted in 20 mM Hepes and 50 mM NaCl, pH 7.5 (renaturation buffer), to a final reaction DNA duplex concentration of 125 nM. Protein was diluted in renaturation buffer containing 100 M g ml −1 BSA (Jackson ImmunoResearch) by twofold serial dilution from 5.6 M M to 0.34 M M protein in dim red light. Protein and DNA were equilibrated at room tempera-ture (20–25 °C) for 30 min in reaction buffer with an additional5% (w/v) Ficoll either in the dark or with 15 W m −2 constant bluelight. After incubation, the dark and light irradiated samples were separately loaded onto different 6% native polyacrylamide gels in 0.5× Tris-borate buffer and were run at 100 V at 4 °C in the dark or with 15 W m −2 blue-light irradiance, respectively. After electrophoresis, the gel was stained with GelRed nucleic acid gel stain (Biotium) before fluorescence imaging using the In-Vivo Multispectral System FX (Kodak) with 530 nm excitation and 600 nmemission filters. Images of full-length gels from Figure 1b areavailable in Supplementary Figure 14.Cell culture and blue light irradiation. HEK293, HepG2, MDA-MB-231, MCF7 and PC-3 cells were maintained in high-glucose DMEM (HyClone) supplemented with 10% FBS, penicillin and streptomycin (Invitrogen). Cells were plated in phenol red–free, antibiotic-free high glucose DMEM supplemented with 10% FBS 16 h before transfection. We typically used equal amounts (0.4 M g each) of the light-switchable transactivator and reporter constructs with 2.4 M l Lipofectamine 2000 (Invitrogen) for each well of a 12-well plate according to the manufacturer’s protocol. To estimate the transcription efficiency of the LightOn system, equal amounts of CMV promoter–driven reporter constructs were used to trans-fect the cells as a control. Unless indicated, the transfected cells were kept in the dark for 10 h, and then they were illuminated by0.84 W m –2 (average irradiance) blue light from an LED lamp(460 nm peak) from below or remained in the dark for 22 h before characterization. The LED lamps were controlled with a timer to adjust the overall dose of blue light illumination during the speci-fied period (Supplementary Fig. 13a ). Neutral density filters were used to adjust the light irradiance. To spatially control gene expres-sion in cultured mammalian cells, single layers of HEK293 cells cultured on glass bottom dishes were transiently transfected with an mCherry reporter and the GA VPO transactivator, and then, the cells were illuminated with a spatial pattern using a photomask printed with a specific image for 24 h. LightOn system is sensi-tive to ambient light. One minute exposure to 0.16 W m −2 white fluorescent lamp light lead to substantial induction of gene expres-sion, whereas there was minimal gene induction when cells were illuminated with 630 nm red LED light. In this study, experiment procedures after cell transfection were carried out under red LED light, and cells were cultured inside dedicated CO 2 incubators.Animal experiments. All procedures involving animals were approved by the Institutional Animal Care and Use Committee of Shanghai and were conducted in accordance with the National Research Council Guide for Care and Use of Laboratory Animals. Unless otherwise mentioned, 10 M g of pGAVPO and 300 M g of pU5 vector carrying target gene were transferred into mice by© 2012 N a t u r e A m e r i c a , I n c . A l l r i g h t s r e s e r v e d .。

相关文档
最新文档