2018年中考数学一轮基础复习试卷专题二:整式的运算(有答案
2018年全国各地中考数学真题汇编:整式(共31题)
2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B. C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B. C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【答案】C4.下列运算正确的是()A. B. C. D.【答案】A5.下列运算正确的是()。
A. B. C. D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B7.下列运算正确的是()A. B. C. D.【答案】C8.计算的结果是()A. B. C. D.【答案】B9.下列运算正确的是()A. B. C. D.【答案】C10.计算的结果是()A. B. C. D. 【答案】C11.下列计算正确的是()A. B. C. D. 【答案】D12.下列计算结果等于的是()A. B. C. D. 【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B. C. D. 【答案】D15.下列计算正确的是()。
A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。
其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【答案】C17.下列计算正确的是()A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B. C. D.【答案】B19.下列计算正确的是( )A. B. C. D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.【答案】23.已知x,y满足方程组,则x2-4y2的值为________。
2018年中考数学专题复习题及答案
2018年中考数学专题复习第一章 数与式 第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数, 722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】 三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:⎪ ⎪ ⎪⎪ ⎩⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪⎨ ⎧ 正无理数无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数(a >0)(a <0) 0 (a=0)一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)
整式与整式的加减运算例1: 因式分解:22mx my -. 例2: 已知:,2-=b ,.求代数式:24a b c +-的值. 例3: 先化简,再求值:(1+a )(1﹣a )+(a ﹣2)2,其中a=﹣3.例4: 先化简,再求值:,其中x =A 组1、指出下列各单项式的系数和次数:23223,5,,37a x y ab a bc π- 2. 判断下列各式哪些是单项式: ①2ab x ②a ③25ab -④x y +⑤0.85-⑥12x +⑦2x⑧0 3. 对于多项式2221x yz xy xz -+-- (1)最高次数项的系数是 ; (2)是 次 项式; (3)常数项是 。
3=a 21=c 2(2)(21)(21)4(1)x x x x x +++--+4.已知多项式221345xy x y --,试按下列要求将其重新排列。
(1)按字母x 作降幂排列;(2)按字母y 作升幂排列。
点拨:在按照定义的要求情况下,注意各项前的符号。
5. 把下列各式填在相应的大括号里7x -,13x ,4ab ,23a ,35x -,y ,st,13x +,77x y +,212x x ++,11m m -+,38a x ,1-。
单项式集合{ } 多项式集合{ } 整式集合 { }6、三个连续的奇数中,最小的一个是23n -,那么最大的一个是 。
7、当2x =-时,代数式-221x x +-= ,221x x -+= 。
8、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
9、如果3y -+2(24)x -=0,那么2x y -=___。
10、多项式221x x -+的各项分别是( ) A 、22,,1x x B 、22,,1x x - C 、22,,1x x -- D 、22,,1x x --- 11、计算:35_____x x -=; 12、()22______326271x x x x +--=--+13、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元。
2018年中考数学专题练习整式的混合运算(含解析)-文档资料
2019中考数学专题练习-整式的混合运算(含解析)一、单选题1.已知x+y=﹣10,xy=16,那么(x+2)(y+2)的值为()A. 30B. -4C. 0D. 102.下列算式中,正确的是()A. (a3b)2=a6b2B. a2﹣a3=﹣aC.D. ﹣(﹣a3)2=a63.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().A. (2a²+5a)cm²B. (3a+15)cm²C. (6a+9)cm²D. (6a+15)cm²4.小明同学在求1+51+52+53+54+55+56+57+58+59+510的值时,认真思考后发现,从第二个加数起每一个加数都是前一个加数的5倍,于是他想到了下面的一种解题思路.解:设S=1+51+52+53+54+55+56+57+58+59+510…①在①式的两边同时都乘以5得:5S=51+52+53+54+55+56+57+58+59+510+511…②②﹣①得:5S﹣S=511﹣1,即4S=511﹣1,∴S=,得出答案后,爱动脑筋的小明想:如果把“5”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2019的值?则求出的答案是()A. B. C.D.5.下列运算中,正确的是()A. 4x﹣x=2xB. 2x•x4=x5C. x2y÷y=x2D. (﹣3x)3=﹣9x36.下列各式计算正确的是()A. a2+2a3=3a5B. (2b2)3=6b5C. (3xy)2÷(xy)=3xyD. 2x•3x5=6x67.计算多项式2x3-6x2+3x+5除以(x-2)2后,得余式为何()A. 1B. 3C. x-1D. 3x-38.一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是()A. x﹣2yB. x+2yC. x﹣2y﹣1D. x﹣2y+19.下列运算中,计算正确的是()A. 2a•3a=6aB. (3a2)3=27a6C. a4÷a2=2aD. (a+b)2=a2+ab+b210.下列计算正确的是()A. 2a2•a=3a3B. (2a)2÷a=4aC. (﹣3a)2=3a2D. (a﹣b)2=a2﹣b211.已知2x﹣1=3,则代数式(x﹣3)2+2x(3+x)﹣7的值为()A. 5B. 12C. 14D. 20二、填空题12.已知2x+y=1,代数式(y+1)2﹣(y2﹣4x)的值为________.13.在一次数学课上,张老师说:“你们每个人在心里想好一个不是零的数,然后按下列顺序进行运算:①把这个数加上3后再平方;②然后减去9;③再除以你想好的那个数.只要你们告诉我最后的商是多少,我就能猜出你所想的数.”(1)若小明想好的那个数是5,那么最后的商是________ ;(2)若他计算的最后结果是9,那么他想好的数是________ .14.小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x3y﹣2xy2,商式必须是2xy,则小亮报一个除式是________.15.已知a+b=3,ab=2,则代数式(a﹣2)(b﹣2)的值是________16.已知a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是=________三、计算题17.先化简,再求值:(2+3x)(﹣2+3x)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.18.先化简,再求值:[(x﹣2y)2﹣(﹣x﹣2y)(﹣x+2y)]÷(﹣4y),其中x和y的取值满足+(x2+4xy+4y2)=0.19.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.20.求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.21.先化简,再求值.(1)2x2(x2﹣x+1)﹣x(2x3﹣10x2+2x),其中x=﹣.(2)x n(x n+9x﹣12)﹣3(3x n+1﹣4x n),其中x=﹣3,n=2.(3)已知m,n为正整数,且3x(x m+5)=3x6+5nx,则m+n的值是多少?四、解答题22.化简求值:3x2+(﹣x+ y2)(2x﹣y),其中x=﹣,y= .23.对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:的值.24.化简下列各式:(1)3(2﹣y)2﹣4(y+5)(2)(x+2y)(x﹣2y)﹣y(x﹣8y)五、综合题25.计算:(1)(﹣3a)2•(a2)3÷a3(2)(x﹣3)(x+2)﹣(x﹣2)2(3)先化简,再求值:(a+b)(a﹣b)﹣(4a3b﹣8a2b2)÷4ab其中a=﹣2,b=﹣1.26.化简下列各式(1)(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2(2)(b+1)2﹣(b+2)(b﹣2)答案解析部分一、单选题1.已知x+y=﹣10,xy=16,那么(x+2)(y+2)的值为()A. 30B. -4C. 0D. 10【答案】C【考点】整式的混合运算【解析】解:∵x+y=﹣10,xy=16,∴(x+2)(y+2)=xy+2(x+y)+4=16﹣20+4=0.故选C【分析】所求式子利用多项式乘多项式法则计算,整理后将x+y与xy的值代入计算即可求出值.2.下列算式中,正确的是()A. (a3b)2=a6b2B. a2﹣a3=﹣aC.D. ﹣(﹣a3)2=a6【答案】A【考点】整式的混合运算【解析】【解答】解:A、(a3b)2=a3×2b1×2=a6b2,故本选项正确;B、a2﹣a3=a2(1﹣a);故本选项错误;C、=a(2﹣1﹣1)=a0=1;故本选项错误;D、﹣(﹣a3)2=﹣(﹣1)2a3×2=﹣a6;故本选项错误.故选A.【分析】积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.同底数幂的除法,法则为:底数不变,指数相减.a﹣p=任何不等于0的数的0次幂都等于1.3.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().A. (2a²+5a)cm²B. (3a+15)cm²C. (6a+9)cm²D. (6a+15)cm²【答案】D【考点】整式的混合运算【解析】【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】(a+4)2-(a+1)2=(a2+8a+16)-(a2+2a+1)=a2+8a+16-a2-2a-1=6a+15.故选:D.【点评】此题主要考查了完全平方公式的计算,熟记公式是解题的关键4.小明同学在求1+51+52+53+54+55+56+57+58+59+510的值时,认真思考后发现,从第二个加数起每一个加数都是前一个加数的5倍,于是他想到了下面的一种解题思路.解:设S=1+51+52+53+54+55+56+57+58+59+510…①在①式的两边同时都乘以5得:5S=51+52+53+54+55+56+57+58+59+510+511…②②﹣①得:5S﹣S=511﹣1,即4S=511﹣1,∴S=,得出答案后,爱动脑筋的小明想:如果把“5”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2019的值?则求出的答案是()A. B. C.D.【答案】C【考点】整式的混合运算【解析】解:设S=1+a+a2+a3+a4+…+a2019①,在①式的两边同时都乘以a得:aS=a+a2+a3+a4+…+a2019+a2019②,②﹣①得:(a﹣1)S=a2019﹣1,S=,即1+a+a2+a3+a4+…+a2019=,故选C.【分析】设S=1+a+a2+a3+a4+…+a2019①,在①式的两边同时都乘以a得:aS=a+a2+a3+a4+…+a2019+a2019②,两式相减即可得出答案.5.下列运算中,正确的是()A. 4x﹣x=2xB. 2x•x4=x5C. x2y÷y=x2D. (﹣3x)3=﹣9x3【答案】C【考点】整式的混合运算【解析】【解答】解:A、原式=3x,不符合题意;B、原式=2x5,不符合题意;C、原式=x2,符合题意;D、原式=﹣27x3,不符合题意,故选C【分析】各项计算得到结果,即可作出判断.6.下列各式计算正确的是()A. a2+2a3=3a5B. (2b2)3=6b5C. (3xy)2÷(xy)=3xyD. 2x•3x5=6x6【答案】D【考点】整式的混合运算【解析】【解答】解:A、a2与2a3不是同类项的不能合并,故本选项错误;B、应为(2b2)3=8b6,故本选项错误;C、应为(3xy)2÷(xy)=9xy,故本选项错误;D、2x•3x5=6x6,正确;故选D.【分析】根据积的乘方的性质、单项式除法和单项式乘法运算法则利用排除法求解.7.计算多项式2x3-6x2+3x+5除以(x-2)2后,得余式为何()A. 1B. 3C. x-1D. 3x-3【答案】D【考点】整式的混合运算【解析】【分析】此题只需令2x3-6x2+3x+5除以(x-2)2后,根据能否整除判断所得结果的商式和余式.【解答】由于(2x3-6x2+3x+5)÷(x-2)2=(2x+2)…(3x-3);因此得余式为3x-3.则2x3-6x2+3x+5-(3x-3)=2(x+1)(x-2)2.故选D.【点评】本题主要考查了多项式除以单项式的法则,弄清被除式、除式、商、余式四者之间的关系是解题的关键.8.一个长方形的面积为x2﹣2xy+x,长是x,则这个长方形的宽是()A. x﹣2yB. x+2yC. x﹣2y﹣1D. x﹣2y+1 【答案】D【考点】整式的混合运算【解析】【解答】解:(x2﹣2xy+x)÷x=x2÷x﹣2xy÷x+x÷x=x﹣2y+1.故选:D.【分析】由长方形面积公式知,求长方形的宽,则由面积除以它的长即得.9.下列运算中,计算正确的是()A. 2a•3a=6aB. (3a2)3=27a6C. a4÷a2=2aD. (a+b)2=a2+ab+b2【答案】B【考点】整式的混合运算【解析】【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.10.下列计算正确的是()A. 2a2•a=3a3B. (2a)2÷a=4aC. (﹣3a)2=3a2D. (a﹣b)2=a2﹣b2【答案】B【考点】整式的混合运算【解析】【解答】解:A、结果是2a3,故本选项不符合题意;B、结果是4a,故本选项符合题意;C、结果是9a2,故本选项不符合题意;D、结果是a2﹣2ab+b2,故本选项不符合题意;故选B.【分析】根据单项式乘以单项式法则、积的乘方和幂的乘方、完全平方公式分别求出每个式子的值,再判断即可.11.已知2x﹣1=3,则代数式(x﹣3)2+2x(3+x)﹣7的值为()A. 5B. 12C. 14D. 20【答案】C【考点】整式的混合运算【解析】【解答】原式=x2﹣6x+9+6x+2x2﹣7=3x2+2,∵2x﹣1=3,即:x=2,∴原式=12+2=14.故选:C【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.二、填空题12.已知2x+y=1,代数式(y+1)2﹣(y2﹣4x)的值为________.【答案】3【考点】整式的混合运算【解析】【解答】解:∵2x+y=1,∴(y+1)2﹣(y2﹣4x)=y2+2y+1﹣y2+4x=2y+4x+1=2(2x+y)+1=2×1+1=2+1=3.故答案为:3.【分析】先利用完全平方公式进行计算,再合并同类项,最后把2x+y=1代入即可.13.在一次数学课上,张老师说:“你们每个人在心里想好一个不是零的数,然后按下列顺序进行运算:①把这个数加上3后再平方;②然后减去9;③再除以你想好的那个数.只要你们告诉我最后的商是多少,我就能猜出你所想的数.”(1)若小明想好的那个数是5,那么最后的商是________ ;(2)若他计算的最后结果是9,那么他想好的数是________ .【答案】11;3【考点】整式的混合运算【解析】解:(1)根据题意得:[(5+3)2﹣9]÷5=(64﹣9)÷5=11;(2)设他想好的数为x,根据题意得:[(x+3)2﹣9]÷x=9,即x2﹣3x=0,解得:x=0(不合题意,舍去)或x=3,则他想好的数是3,故答案为:(1)11;(2)3【分析】(1)把5代入已知运算过程中计算即可得到结果;(2)设他想好的数为x,根据结果为9列出方程,求出方程的解即可得到结果.14.小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x3y﹣2xy2,商式必须是2xy,则小亮报一个除式是________.【答案】x2﹣y【考点】整式的混合运算【解析】【解答】解:(x3y﹣2xy2)÷2xy= x2﹣y.故答案是:x2﹣y【分析】利用被除式除以商即可求得除式.15.已知a+b=3,ab=2,则代数式(a﹣2)(b﹣2)的值是________【答案】0【考点】整式的混合运算【解析】解:原式=ab﹣2a﹣2b+4=ab﹣2(a+b)+4,当a+b=3,ab=2时,原式=2﹣6+4=0.故答案为:0【分析】原式利用多项式乘以多项式法则计算,将已知等式代入计算即可求出值.16.已知a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是=________【答案】﹣2m【考点】整式的混合运算【解析】解:原式=ab﹣2(a+b)+4,∵a+b=m,ab=﹣4,∴原式=﹣4﹣2m+4=﹣2m.故答案为:﹣2m.【分析】先利用整式的乘法公式展开,得到ab﹣2(a+b)+4,然后把a+b=m,ab=﹣4整体代入计算即可.三、计算题17.先化简,再求值:(2+3x)(﹣2+3x)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【答案】解:(2+3x)(﹣2+3x)﹣5x(x﹣1)﹣(2x﹣1)2,=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当x=﹣时,原式=9×(﹣)﹣5=﹣8【考点】整式的混合运算【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.18.先化简,再求值:[(x﹣2y)2﹣(﹣x﹣2y)(﹣x+2y)]÷(﹣4y),其中x和y的取值满足+(x2+4xy+4y2)=0.【答案】解:原式=(x2﹣4xy+4y2﹣x2+4y2)÷4y=(﹣4xy+8y2)÷4y=﹣x+2y∵+(x2+4xy+4y2)=0,即|x﹣1|+(x+2y)2=0,∴x﹣1=0,x+2y=0,∴x=1,y=﹣,则原式=﹣1+2×(﹣)=﹣1﹣1=﹣2【考点】整式的混合运算【解析】【分析】先化简,然后根据非负数的性质得出x、y的值,将x与y的值求出代入.19.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.【答案】解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,当ab=﹣时,原式=4+1=5.【考点】整式的混合运算【解析】【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项先计算乘方运算,再计算除法运算,合并得到最简结果,把ab的值代入计算即可求出值.20.求值:x2(x﹣1)﹣x(x2+x﹣1),其中x=.【答案】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x,将x=代入得:原式=0.故答案为:0.【考点】整式的混合运算【解析】【分析】先去括号,然后合并同类项,在将x的值代入即可得出答案.21.先化简,再求值.(1)2x2(x2﹣x+1)﹣x(2x3﹣10x2+2x),其中x=﹣.(2)x n(x n+9x﹣12)﹣3(3x n+1﹣4x n),其中x=﹣3,n=2.(3)已知m,n为正整数,且3x(x m+5)=3x6+5nx,则m+n的值是多少?【答案】(1)解;2x2(x2﹣x+1)﹣x(2x3﹣10x2+2x),=2x4﹣2x3+2x2﹣(2x4﹣10x3+2x2),=8x3,把x=﹣代入原式得:原式=8x3=8×(﹣)3=﹣1(2)解;x n(x n+9x﹣12)﹣3(3x n+1﹣4x n),=x2n+9x n+1﹣12x n﹣9x n+1+12x n,=x2n;把x=﹣3,n=2代入得出:原式=x2n=(﹣3)2×2=81(3)解;∵3x(x m+5)=3x6+5nx,∴3x m+1+15x=3x6+5nx,∴m+1=6,15=5n,解得:m=5,n=3,则m+n的值是:5+3=8【考点】整式的混合运算【解析】【分析】(1)先利用单项式乘以多项式去括号,再合并同类项,最后把x的值代入计算即可;(2)先利用单项式乘以多项式去括号,再合并同类项,最后把x,n的值代入计算即可;(3)先利用单项式乘以多项式去括号,进而得出m+1=6,5n=15,求出即可.四、解答题22.化简求值:3x2+(﹣x+ y2)(2x﹣y),其中x=﹣,y= .【答案】解:原式=3x2﹣3x2+xy+ xy2﹣y3=xy+ xy2﹣y3当x=﹣,y= 时,原式=﹣+ ×(﹣)× ﹣×=﹣﹣﹣=﹣【考点】整式的混合运算【解析】【分析】根据多项式的乘法法则进行化简整式,再代入数值进行计算即可.23.对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:的值.【答案】解:=5×8﹣6×7=﹣2【考点】整式的混合运算【解析】【分析】按照规定符号按部就班,很容计算;24.化简下列各式:(1)3(2﹣y)2﹣4(y+5)(2)(x+2y)(x﹣2y)﹣y(x﹣8y)【答案】解:(1)3(2﹣y)2﹣4(y+5)=3×(y2﹣4y+4)﹣4y﹣20=3y2﹣12y+12﹣4y﹣20=3y2﹣16y﹣8(2)(x+2y)(x﹣2y)﹣y(x﹣8y)=x2﹣4y2﹣=【考点】整式的混合运算【解析】【分析】(1)根据整式的混合运算顺序,首先计算乘方和乘法,然后计算减法,求出算式的值是多少即可.(2)根据整式的混合运算顺序,首先计算乘法,然后计算减法,求出算式的值是多少即可.五、综合题25.计算:(1)(﹣3a)2•(a2)3÷a3(2)(x﹣3)(x+2)﹣(x﹣2)2(3)先化简,再求值:(a+b)(a﹣b)﹣(4a3b﹣8a2b2)÷4ab其中a=﹣2,b=﹣1.【答案】(1)解:(﹣3a)2•(a2)3÷a3=9a2•a6÷a3=9 a5(2)解:(x﹣3)(x+2)﹣(x﹣2)2=x2﹣x﹣6﹣(x2﹣4x+4)=3x﹣10(3)解:(a+b)(a﹣b)﹣(4a3b﹣8a2b2)÷4ab =a2﹣b2﹣(a2﹣2ab)=2ab﹣b2,把a=﹣2,b=﹣1代入上式可得:原式=2×(﹣2)(﹣1)﹣(﹣1)2=3【考点】整式的混合运算【解析】【分析】(1)直接利用积的乘方运算以及结合同底数幂的乘除运算法则化简求出答案;(2)直接利用多项式乘以多项式运算法则求出答案;(3)直接利用多项式乘以多项式运算法则以及多项式除以单项式运算法则化简,进而代入已知数据求出答案.26.化简下列各式(1)(a2b﹣2ab2﹣b3)÷b﹣(a﹣b)2(2)(b+1)2﹣(b+2)(b﹣2)【答案】(1)解:原式=a2﹣2ab﹣b2﹣(a2﹣2ab+b2)=a2﹣2ab﹣b2﹣a2+2ab﹣b2=﹣2b2(2)解:原式=b2+2b+1﹣(b2﹣4)=2b+5【考点】整式的混合运算【解析】【分析】(1)先依据多项式除以单项式法则进行计算,然后再依据完全平方公式进行计算,接下来,再去括号,合并同类项即可;(2)先依据完全平方公式和平方差公式进行化简,然后再去括号,合并同类项即可.。
中考数学一轮复习题型分类同步练习卷:整式及其运算(含答案)
整式及其运算考点一整式的有关概念例1.(2019•巴彦淖尔模拟)若单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,则m,n的值分别为()A.3,5 B.2,3 C.2,5 D.3,﹣2【变式训练】1.(2018•铜仁市模拟)单项式2πr3的系数是()A.3 B.πC.2 D.2π2.(2019•大城县一模)下列赋予4m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力D.若4和m分别表示一个两位数中的十位数字和个位数字,则4m表示这个两位数考点二幂的运算例2.(2019•长安区三模)下列是摘录某学生的一次作业:①(a2)3=a6;②(﹣x)3÷(﹣x)=x2;③3a+2b=5ab;④(x﹣2y)2=x2﹣2xy+4y2其中结果错误的是()A.①②B.②③C.③④D.①④【变式训练】1.(2019•景泰县校级一模)下列计算正确的是()A.a•a3=a4B.a4+a3=a7C.(a2)5=a7 D.(a﹣b)2=a2 +b22.(2019•长春四模)计算:(﹣m)3•m4=.3.(2019•石家庄一模)已知3x=5,3y=2,则3x+y的值是.考点三列代数式例3.(2019•杨浦区三模)某大型超市从生产基地以每千克a元的价格购进一种水果m千克,运输过程中重量损失了10%,超市在进价的基础上増加了30%作为售价,假定不计超市其他费用,那么售完这种水果,超市获得的利润是元(用含m、a的代数式表示)【变式训练】1.(2019•延边州二模)2019年国内航空公司规定:旅客乘机时,免费携带行李箱的重量不超过20kg.若超过20kg,则超出的重量每千克要按飞机票原价的1.5%购买行李票小明的爸爸从长春飞到北京,机票原价是m元,他带了40kg行李,小明的爸爸应付的行李票是(用含m的代数式表示).2.(2019•吉林二模)某微商平台有一商品,标价为a元,按标价5折再降价30元销售,则该商品售价为元.3.(2019•江西模拟)中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若实数a用代数式表示为,实数b用代数式表示为,则a﹣b的值为.考点四整式的运算例4(2018•藁城区模拟)对于任何实数,我们规定符号:ad﹣bc,如1×5﹣2×3=﹣1.(1)按这个规定计算:;(2)如果0,求x的取值范围,并在如图的数轴上表示.【变式训练】1.(2019•汉阳区模拟)计算:4x4•x2﹣(﹣2x2)3﹣3x8÷x22.(2019•汉阳区校级模拟)计算,3x3•x2y﹣8x7y÷x2+4(x2)2•xy3.(2018•海南模拟)计算(1)2sin45°+()0﹣||(2)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)考点五整式的化简求值例5.(2019•东城区二模)如果x﹣y,那么代数式(x+2)2﹣4x+y(y﹣2x)的值是.【变式训练】1.(2019•顺义区二模)已知a2+2a=﹣2,则2a(2a+1)+(a+4)2的值为.2.(2019•周口二模)先化简,再求值:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷4y,其中x=﹣4,y=﹣6.考点六代数式的变化规律例6.(2019•都江堰市模拟)设a1、a2、a3…是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数),已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2019等于.【变式训练】1.(2019•云南模拟)一列数a1,a2,a3,…,a n,其中a1,a2,a3,…a n,则a2019=.2.(2019•邹平县模拟)观察下列关于自然数的等式:12﹣4×02=1 ①32﹣4×12=5 ②52﹣4×22=9 ③根据上述规律解决下列问题:猜想第n个等式(用含n的式子表示).3.(2019•娄底模拟)记S n=a1,+a2+…a n,令T n,则称T n为a1,a2,…,a n这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为.考点七整式的综合应用例7.(2017•胶州市一模)问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题【变式训练】1.(2019•越城区一模)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,再将剩下的三块拼成一个新矩形.(1)求拼成新矩形的周长(用含m或n的代数式表示);(2)当m=7,n=3时,求拼成新矩形的面积.2.(2018•衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:3.(2018•贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.参考答案考点一整式的有关概念例1.(2019•巴彦淖尔模拟)若单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,则m,n的值分别为()A.3,5 B.2,3 C.2,5 D.3,﹣2【分析】直接利用同类项的定义分析得出答案.【解析】∵单项式3x2m﹣1y5与单项式﹣5x3y n是同类项,∴2m﹣1=3,n=5,解得:m=2,故m,n的值分别为:2,5.故选:C.点评:此题主要考查了同类项,正确把握同类项的定义是解题关键.【变式训练】1.(2018•铜仁市模拟)单项式2πr3的系数是()A.3 B.πC.2 D.2π【答案】D.【解析】单项式2πr3的系数是2π,故选:D.点评:此题主要考查了单项式的系数,熟练掌握单项式系数的确定方法即可得出结论.2.(2019•大城县一模)下列赋予4m实际意义的叙述中不正确的是()A.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额B.若m表示一个正方形的边长,则4m表示这个正方形的周长C.将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力D.若4和m分别表示一个两位数中的十位数字和个位数字,则4m表示这个两位数【答案】D【解析】A、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,正确;B、若m表示一个正方形的边长,则4m表示这个正方形的周长,正确;C、将一个小木块放在水平桌面上,若4表示小木块与桌面的接触面积,m表示桌面受到的压强,则4m表示小木块对桌面的压力,正确;D、若4和m分别表示一个两位数中的十位数字和个位数字,则(4×10+m)表示这个两位数,则此选项错误;故选:D.点评:本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.考点二幂的运算例2.(2019•长安区三模)下列是摘录某学生的一次作业:①(a2)3=a6;②(﹣x)3÷(﹣x)=x2;③3a+2b=5ab;④(x﹣2y)2=x2﹣2xy+4y2其中结果错误的是()A.①②B.②③C.③④D.①④【分析】根据幂的乘方,同底数幂的除法,合并同类项法则,完全平方公式分别求出每个式子的值,再判断即可.【解析】(a2)3=a6,故①错误;②(﹣x)3÷(﹣x)=(﹣x)2=x2,故②错误;3a和2b不能合并,故③正确;(x﹣2y)2=x2﹣4xy+4y2,故④正确;即结果错误的有③④,故选:C.点评:本题考查了幂的乘方,同底数幂的除法,合并同类项法则,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.【变式训练】1.(2019•景泰县校级一模)下列计算正确的是()A.a•a3=a4B.a4+a3=a7C.(a2)5=a7 D.(a﹣b)2=a2 +b2【答案】A【解析】a•a3=a4,故选项A符合题意;a4与a3不是同类项,故不能合并,故选项B不合题意;(a2)5=a10,故选项C不合题意;(a﹣b)2=a2 +2ab+b2,故选项D不合题意.故选:A.2.(2019•长春四模)计算:(﹣m)3•m4=.【答案】﹣m7.【解析】(﹣m)3•m4=﹣m7,故答案为:﹣m7点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.3.(2019•石家庄一模)已知3x=5,3y=2,则3x+y的值是.【答案】10【解析】∵3x=5,3y=2,∴原式=3x•3y=10,故答案为:10点评:此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.考点三列代数式例3.(2019•杨浦区三模)某大型超市从生产基地以每千克a元的价格购进一种水果m千克,运输过程中重量损失了10%,超市在进价的基础上増加了30%作为售价,假定不计超市其他费用,那么售完这种水果,超市获得的利润是元(用含m、a的代数式表示)【答案】0.17am.【解析】由题意可得,超市获得的利润是:a(1+30%)×[m(1﹣10%)]﹣am=0.17am(元),故答案为:0.17am.点评:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.【变式训练】1.(2019•延边州二模)2019年国内航空公司规定:旅客乘机时,免费携带行李箱的重量不超过20kg.若超过20kg,则超出的重量每千克要按飞机票原价的1.5%购买行李票小明的爸爸从长春飞到北京,机票原价是m元,他带了40kg行李,小明的爸爸应付的行李票是(用含m的代数式表示).【答案】0.3m元.【解析】由题意可得,小明的爸爸应付的行李票是:(40﹣20)m×1.5%=0.3m(元),故答案为:0.3m元.2.(2019•吉林二模)某微商平台有一商品,标价为a元,按标价5折再降价30元销售,则该商品售价为元.【答案】(0.5a﹣30)【解析】由题意可得,该商品的售价为:a×0.5﹣30=(0.5a﹣30)元,故答案为:(0.5a﹣30).3.(2019•江西模拟)中国清代学者华衡芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,说明了所谓“代数”,就是用符号来代表数的一种方法.若实数a用代数式表示为,实数b用代数式表示为,则a﹣b的值为.【解析】∵实数a用代数式表示为,实数b用代数式表示为,∴a﹣b(),故答案为:.考点四整式的运算例4.(2018•藁城区模拟)对于任何实数,我们规定符号:ad﹣bc,如1×5﹣2×3=﹣1.(1)按这个规定计算:;(2)如果0,求x的取值范围,并在如图的数轴上表示.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知不等式利用题中的新定义化简,求出x的范围,表示在数轴上即可.【解析】(1)根据题中的新定义得:原式(﹣6)﹣(﹣2)3×2=﹣3+16=13;(2)根据已知的不等式变形得:(x+1)(x﹣1)﹣(x﹣1)2=2x﹣2,由2x﹣2≤0,得x≤1,点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.【变式训练】1.(2019•汉阳区模拟)计算:4x4•x2﹣(﹣2x2)3﹣3x8÷x2【解析】原式=4x6+8x6﹣3x6=9x6.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.(2019•汉阳区校级模拟)计算,3x3•x2y﹣8x7y÷x2+4(x2)2•xy【解析】原式=3x5y﹣8x5y+4x4•xy=3x5y﹣8x5y+4x5y=﹣x5y.点评:本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序和运算法则.3.(2018•海南模拟)计算(1)2sin45°+()0﹣||(2)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)【解析】(1)原式=21 31 3=4;(2)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy.考点五整式的化简求值例5.(2019•东城区二模)如果x﹣y,那么代数式(x+2)2﹣4x+y(y﹣2x)的值是.【分析】根据x﹣y,可以求得所求式子的值,本题得以解决.【解析】∵x﹣y,∴(x+2)2﹣4x+y(y﹣2x)=x2+4x+4﹣4x+y2﹣2xy=x2﹣2xy+y2+4=(x﹣y)2+4=()2+4=2+4=6,故答案为:6.点评:本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.【变式训练】1.(2019•顺义区二模)已知a2+2a=﹣2,则2a(2a+1)+(a+4)2的值为6.【分析】原式利用单项式乘以多项式,完全平方公式化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解析】原式=4a2+2a+a2+8a+16=5a2+10a+16=5(a2+2a)+16,∵a2+2a=﹣2,∴原式=﹣10+16=6,故答案为:62.(2019•周口二模)先化简,再求值:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷4y,其中x=﹣4,y=﹣6.【分析】根据整式的运算法则即可求出答案.【解析】原式=(x2+y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(4xy﹣2y2)÷4y=x y,当x=﹣4,y=﹣6时,原式=﹣4+3=﹣1.考点六代数式的变化规律例6.(2019•都江堰市模拟)设a1、a2、a3…是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数),已知a1=1,4a n=(a n+1﹣1)2﹣(a n﹣1)2,则a2019等于.【分析】由4a n=(a n+1﹣1)2﹣(a n﹣1)2,可得(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n﹣1,即可求出a2018=4035【解析】∵4a n=(a n+1﹣1)2﹣(a n﹣1)2,∴(a n+1﹣1)2=(a n﹣1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1﹣1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n﹣1,∴a2019=4037.故答案为4037.【变式训练】1.(2019•云南模拟)一列数a1,a2,a3,…,a n,其中a1,a2,a3,…a n,则a2019=5.【分析】观察数据可知,a1,a2,a35,a4,…,从第一项开始3个一循环,再用2019除以3得出余数即可求解.【解析】观察数据可知,a1,a2,a35,a4,…,从第一项开始3个一循环,2019÷3=673,故a2019=5.故答案为:5.2.(2019•邹平县模拟)观察下列关于自然数的等式:12﹣4×02=1 ①32﹣4×12=5 ②52﹣4×22=9 ③根据上述规律解决下列问题:猜想第n个等式(用含n的式子表示).【分析】根据题目中的式子的特点,可以写出第n个等式,本题得以解决.【解析】∵12﹣4×02=1=4×1﹣3①32﹣4×12=5=4×2﹣3②52﹣4×22=9=4×3﹣3③……∴第n个等式(用含n的式子表示)是(2n﹣1)2﹣4(n﹣1)2=4n﹣3,故答案为:(2n﹣1)2﹣4(n﹣1)2=4n﹣33.(2019•娄底模拟)记S n=a1,+a2+…a n,令T n,则称T n为a1,a2,…,a n这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为2001.【分析】先根据已知求出T500的值,再设出新的凯森和T x,列出式子,把得数代入,即可求出结果.【解析】∵Tn,∴T500=2004,设新的“凯森和”为Tx,501×Tx=1×501+500×T500,Tx=(1×501+500×T500)÷501=(1×501+500×2004)÷501=1+500×4=2001.故答案为:2001.考点七整式的综合应用例7.(2017•胶州市一模)问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题过程)【分析】(1)尝试解决:如图:边长为a,b的两个正方形,边保持平行,从大正方形中剪去小正方形,剩下的图形可以分割成2个长方形并拼成一个大长方形.根据第一个图形的阴影部分的面积是a2﹣b2,第二个图形的阴影部分的面积是(a+b)(a﹣b),可以验证平方差公式;(2)尝试解决:如图,A表示一个1×1的正方形,B、C、D表示2个2×2的正方形,E、F、G表示3个3×3的正方形,而A、B、C、D、E、F、G恰好可以拼成一个边长为(1+2+3)的大正方形,根据大正方形面积的两种表示方法,可以得出13+23+33=62;(3)问题拓广:由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,进一步化简即可.【解析】(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案为:62;(3)由上面表示几何图形的面积探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案为:[n(n+1)]2.【变式训练】1.(2019•越城区一模)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,再将剩下的三块拼成一个新矩形.(1)求拼成新矩形的周长(用含m或n的代数式表示);(2)当m=7,n=3时,求拼成新矩形的面积.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=3代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解析】(1)新矩形的长为:m+n,新矩形的宽为:m﹣n,新矩形的周长=2[(m+n)+(m﹣n)]=4m.(2)新矩形的面积为:(m+n)(m﹣n),把m=7,n=3代入(m+n)(m﹣n)=10×4=40,即拼成新矩形的面积是40.点评:此题考查列代数式问题,关键是根据题意和矩形的性质列出代数式解答.2.(2018•衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解析】由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2a2+2ab+b2=(a+b)2.点评:本题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.3.(2018•贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【分析】(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可.【解析】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:4m;(2)矩形的面积为(m+n)(m﹣n),把m=7,n=4代入(m+n)(m﹣n)=11×3=33.。
教育最新K122018年中考数学专题复习卷 整式(含解析)
整式一、选择题1.下列运算中,正确的是()A.x3+x3=x6B.x3·x9=x27C.(x2)3=x5D.x x2=x-12.计算结果正确的是()A. B.C.D.3.下列各式能用平方差公式计算的是()A. B.C. D.4.计算(a-3)2的结果是()A. a2+9B. a2+6a+9C. a2-6a+9D. a2-95.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是()A.B.C.D.6.下列四个式子:①4x2y5÷ xy=xy4;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x2y=3x6y;④(12m3+8m2-4m)÷(-2m)=-6m2+4m-2.其中正确的有( )A.0个B.1个C.2个D.3个7.下列等式成立的是()A. 2﹣1=﹣2B. (a2)3=a5 C. a6÷a3=a2 D.﹣2(x﹣1)=﹣2x+28.计算(x+1)(x+2)的结果为()A. x2+2B. x2+3x+2C. x2+3x+3D. x2+2x+29.若3×9m×27m=321,则m的值是( )A. 3B. 4C. 5D. 610.下列各式中,结果为x3-2x2y+xy2的是( )A.x(x+y)(x-y)B.x(x2+2xy+y2)C.x(x+y)2D.x(x-y)211.一个长方体的长、宽、高分别为5x-3,4x和2x,则它的体积等于( )A.(5x-3)·4x·2x=20x3-12x2B.·4x·2x=4x2C.(5x-3)·4x·2x=40x3-24x2D.(5x-3)·4x=20x2-12x12.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab= .做对一题得2分,则他共得到()A. 2分B. 4分C. 6分 D. 8分二、填空题13.计算:=________.14.计算: =________15.已知,,则的值是________16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为________17.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为________.18.若把代数式化为的形式,其中、为常数,则________19.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为________20.已知a﹣=3,那么a2+ =________.21.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为________.22.若4x2+mx+1是一个完全平方式,则常数m的值是________.三、解答题23. (1)计算(x-2)2-x(x+1)(2)先化简:,再求出当m=-2时原式的值。
最新中考数学一轮复习2: 整式(含详解))
中考数学一轮复习第二章:整式知识点1:整式及其加减例1:判断下列代数式是否是单项式,如果不是,请简要说明理由;如果是,请指出它的系数与次数:23x y -, -mn , 3abc 5 33xy z π- x 1解析:23x y -不是单项式,因为22333x y x y-=-,原代数式中包含减法运算; -mn 是单项式,系数是-1,次数是2; 3abc 5是单项式,系数是3,次数是7;33xy zπ-是单项式,系数是3π-,次数是5.x1不是单项式例2:下列各题中的两项是不是同类项?为什么?(1)0.2x 2y 与0.2xy 2; (2)4abc 与4ac (3)mn 与-mn (4)-124与12 (5)0.25st 与5ts (6)2x 2与2x 3.思路点拨:本题考查的是同类项概念的知识.同类项的形式特征是:字母相同,且相同字母的次数也分别相同,判断同类项无须考虑系数.所有的常数项都是同类项.解:(1)不是同类项,虽然这两项中都含有x 和y ,但是第一项中的字母x 的次数是2,而第二项中的x 的次数是1;第一项中的字母y 的次数是1,而第二项中的字母y 的次数是2,不符合同类项的概念.(2)不是同类项,因为这两项中所含的字母不完全相同.(3)是同类项.因为这两项中相同字母的次数相同,且含有的字母也相同. (4)是同类项.所有常数项都是同类项.(5)是同类项.虽然这两项中的字母的顺序不相同,但是这两项中都含有字母s 和t ,且第一项中的字母s 的次数与第二项中的字母s 的次数相同,都是1. 第一项中的字母t 的次数与第二项中的字母t 的次数相同,都是1.所以符合同类项的概念.(6)不是同类项.因为虽然这两项中都含有字母x ,但是第一项的字母x 的指数是二,而第二个单项式的次数是3,所以不是同类项.例3:先去括号,再合并同类项:23223335531(4)5522242ab a a b ab a a ⎡⎤⎛⎫+-+++++ ⎪⎢⎥⎝⎭⎣⎦思路点拨:本题考查了去括号、合并同类项的知识.观察到本题即有小括号,又有中括号,所以要先去小括号,再去中括号.去完括号后,再合并同类项.合并同类项时,要在去完括号23251624ab a a b =----练习:1.下列说法中正确的是( )。
2018年全国各省市 中考真题分类训练2 整式(含因式分解)
2018年全国各省市 中考真题分类训练2 整式(含因式分解)命题点6 整式的运算1. 计算3x 2-x 2的结果是( )A.2B.2x 2C.2xD.4x 22. 计算a 6·a 2的结果是( )A. a 3B.a 4C.a 8D.a 123. 计算(-a )3÷a 结果正确的是( )A. a 2B.-a 2C.-a 3D.-a 44. 计算(a 2)3-5a 3·a 3的结果是( )A. a 5-5a 6B.a 6-5a 9C.-4a 6D.4a 65. 计算22ab·a -)(的结果为( ) A. b B.-b C.ab D.ab 6. 计算(a-2)(a+3)的结果是( )A. a 2-6B.a 2+a-6C.a 2+6D.a 2-a+67. 下面是一位同学做的四道题:①(a+b )2=a 2+b 2 ②(-2a 2)2=-4a 4 ③a 5÷a 3=a 2 ④a 3·a 4=a 12其中做对的一道题的序号是( )A. ①B.②C.③D.④8. 计算:a (a+2b )-(a+b )(a-b )9. 计算:(x+1)2-(x 2-x )命题点7 因式分解1.多项式4a-a3分解因式的结果是()A.a(4-a2)B.a(2-a)(2+a)C.a(a-2)(a+2)D.a(a-2)22.下列分解因式正确的是()A.-x2+4x=-x(x+4)B.X2+xy+x=x(x+y)C.X(x-y)+y(y-x)=(x-y)2D.X2-4x+4=(x+2)(x-2)3.分解因式:a2-5a=4.分解因式:x2-2x+1=5.分解因式:2a3b-4a2b2+2ab3=6.因式分解:(x+2)x-x-2=7.若x2+2(m-3)x+16是关于x的完全平方式,则m=8.分解因式:3x3-27x命题点8 列代数式及代数式求值1. 按如图所示的运算程序,能使输出的结果为12的是( )A. X=3 ,y=3B. x=-4,y=-2C.x=2,y=4D.x=4,y=22.如图,数轴上点A 表示的数为a ,化简4a 4-a a 2++=3.若a ,b 互为相反数,则a 2-b 2=4.已知a m =3,a n =2,则a 2m-n 的值为5.已知x+y=0.2,x+3y=1,则代数式x 2+4xy+4y 2的值为6.如图是一个运算程序示意图,若第一次输入k 的值为125,则第2018次输出的结果是7. 先化简,再求值:x (x+1)+(2+x )(2-x ),其中x=6-48. 先化简,再求值:(a+b )2+b (a-b )-4ab ,其中a=2,b=21-9. 先化简,再求值:(x+y )(x-y )+y (x+2y )-(x-y )2,其中x=2+3,y=2-310. 嘉琪准备完成题目:化简:(□x 2+6x+8)-(6x+5x 2+2)。
中考数学专题复习《整式的运算》测试卷-附带答案
中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
2018版中考数学真题汇编:1.2 整式及其运算(含答案)
§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3·x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3·2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析属于单项式乘单项式,结果为:6x5,故B项正确.答案 B6.(2015·福建福州,6,3分)计算a·a-1的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3·a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B 组 2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a2b2,故本选项正确;D.(a2)3=a6,故本选项错误.故选C.答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是() A.a2·a4=a8B.(x-2)(x+3)=x2-6C.(x-2)2=x2-4 D.2a+3a=5a解析A中,a2·a4=a6,∴A错误;B中,(x-2)(x+3)=x2+x-6,∴B错误;C中,(x-2)2=x2-4x+4,∴C错误;D中,2a+3a=(2+3)a=5a,∴D正确.故选D.答案 D二、填空题6.(2013·浙江台州,11,5分)计算:x5÷x3=________.解析根据同底数幂除法法则,∴x5÷x3=x5-3=x2.答案x27.(2013·浙江义乌,12,4分)计算:3a·a2+a3=________.解析3a·a2+a3=3a3+a3=4a3.答案4a38.(2013·福建福州,14,4分)已知实数a、b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是________.解析法一∵a+b=2,a-b=5,∴原式=23×53=103=1 000.法二原式=[(a+b)(a-b)]3=103=1 000.答案 1 000三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.∵x >0,∴正方形边长为 3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2×(-2)2-1=8-1=7.。
2018届中考数学一轮专题练习卷:整式含答案
是同类项的是( )
A.
B.
【答案】 C
16.已知
,
C.
D.
,则
的值为(
)
A. 9 B.
C. 12 D.
【答案】 C 17.单项式 2amb1﹣ 2n 与 a3b9 的和是单项式,则( m+n ) 2017=( ) A. 1 B. ﹣1 C. 0 D. 0 或 1 【答案】 B
18.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第
一样,这是怎么回事儿呢? 【答案】结果一样 23.( 12 分)甲、乙两家商场以同样的价格出售同样的电器, 但各自推出的优惠方案不同. 甲商场规定: 凡超过 1000 元的电器,超出的金额按 90%收取;乙商场规定:凡超过 500 元的电器,超出的金额按 95%收取.某顾客购买的电
器价格是 x 元.
( 1)
;
…… ,请根据上述的规律写出
的尾数为 ( )
,其中
,
.
()
,其中
,
.
【答案】( 1)
;
;( 2)
; 5.
22.( 6 分)数学老师在黑板上抄写了一道题目:
Байду номын сангаас
“当 a=2, b=﹣ 2 时,求多项式 3a3 b3﹣ a2b+b﹣( 4a3b3﹣ a2b﹣
b2)+( a3b3+ a2b)﹣ 2b2+3 的值 ”,甲同学做题时把 a=2 抄错成 a=﹣ 2,乙同学没抄错题,但他们得出的结果恰好
( 1)当 x=850 时,该顾客应选择在
商场购买比较合算;
( 2)当 x> 1000 时,分别用代数式表示在两家商场购买电器所需付的费用;
最新通用版年中考数学一轮基础复习试卷专题二:整式的运算(有详解
中考数学一轮基础复习:专题二整式的运算一、单选题(共15题;共30分)1.(2017•云南)下列计算正确的是()A. 2a×3a=5aB. (﹣2a)3=﹣6a3C. 6a÷2a=3aD. (﹣a3)2=a62.(2016•包头)下列计算结果正确的是()A. 2+ √3=2√3B. √8÷√2=2C. (﹣2a2)3=﹣6a6D. (a+1)2=a2+13.(2017•台湾)一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()A. 20B. 12C. ﹣12D. ﹣204.(2017•乐山)已知x+ 1x =3,则下列三个等式:①x2+ 1x2=7,②x﹣1x=√5,③2x2﹣6x=﹣2中,正确的个数有()A. 0个B. 1个C. 2个D. 3个5.(2017•长春)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A. 3a+2bB. 3a+4bC. 6a+2bD. 6a+4b6.(2017•青岛)计算6m6÷(﹣2m2)3的结果为()A. ﹣mB. ﹣1C. 34D. ﹣347.(2017•宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A. (a﹣b)2=a2﹣2ab+b2B. a(a﹣b)=a2﹣abC. (a﹣b)2=a2﹣b2D. a2﹣b2=(a+b)(a﹣b)8.(2017•孝感)下列计算正确的是()A. b3•b3=2b3B. (a+2)(a﹣2)=a2﹣4C. (ab2)3=ab6D. (8a﹣7b)﹣(4a﹣5b)=4a﹣12b9.(2017•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A. 2017B. 2016C. 191D. 19010.(2017•眉山)下列运算结果正确的是()A. √8﹣√18=﹣√2B. (﹣0.1)﹣2=0.01C. (2ab )2÷ b2a= 2abD. (﹣m)3•m2=﹣m611.(2017·台州)下列计算正确的是()A. (a+2)(a−2)=a2−2B. (a+1)(a−2)=a2+a−2C. (a+b)2=a2+b2D. (a−b)2=a2−2ab+b212.(2016•曲靖)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A. 3B. 6C. 8D. 913.(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A. ②③④B. ①③④C. ①②④D. ①②③14.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A. 7.1×10﹣6B. 7.1×10﹣7C. 1.4×106D. 1.4×10715.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. ﹣2xy2B. 3x2C. 2xy3D. 2x3二、填空题(共6题;共6分)16.(2017•通辽)若关于x的二次三项式x2+ax+ 14是完全平方式,则a的值是________.17.(2017•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为________.18.(2017•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则S1S2可化简为________.19.(2017•六盘水)计算:2017×1983=________.20.(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=−1,那么(1+i)·(1−i)=________.21.(2016•南充)如果x2+mx+1=(x+n)2,且m>0,则n的值是________.三、计算题(共2题;共10分)22.(2017•长春)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.23.(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x= √2+1,y= √2﹣1.四、综合题(共2题;共16分)24.(2017•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.25.(2017•河北)发现任意五个连续整数的平方和是5的倍数.(1)验证①(﹣1)2+02+12+22+32的结果是5的几倍?②设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.(2)延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】A4.【答案】C5.【答案】A6.【答案】D7.【答案】D8.【答案】B9.【答案】D10.【答案】A11.【答案】D12.【答案】D13.【答案】C14.【答案】B15.【答案】D二、填空题16.【答案】±117.【答案】818.【答案】a+1a−119.【答案】399971120.【答案】221.【答案】1三、计算题22.【答案】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.23.【答案】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x= √2+1,y= √2﹣1时,原式=9(√2+1)(√2﹣1)=9×(2﹣1)=9×1=9四、综合题24.【答案】(1)一(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.25.【答案】(1)解:①(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍②解:设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;(2)设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2。
2018年中考数学一轮复习:整式
整式一、选择题(每题3分,共30分)1.下列关于单项式−3πxy2的说法中,正确的是()A. 系数是-3,次数是4B. 系数是−3π,次数是3C. 系数是−3,次数是3D. 系数是−3π,次数是2【答案】B2.下列各式正确的是()A. B. 3x+3y=6xyC. D. 2x-5x=-3x【答案】D3.若的值为()A. 5B. 9C. 19D. 条件不足,无法确定【答案】A4.笔记本每本元,圆珠笔每支元,买本笔记本和支圆珠笔共需()A. 元B. 元C. 元D. 元【答案】A5.下列选项中的单项式,与是同类项的是()A. B. C. D.【答案】C6.已知,,则的值为()A. 9B.C. 12D.【答案】C7.单项式2a m b1﹣2n与a3b9的和是单项式,则(m+n)2017=()A. 1B. ﹣1C. 0D. 0或1【答案】B8.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第①个图形有个小圆,第②个图形有个小圆,第③个图形有个小圆,,按此规律排列,则第个图形中小圆的个数为().A. B. C. D.【答案】C9.多项式合并同类项后不含xy项,则k的值是()A. B. C. D. 0【答案】C10.观察:;;;……,请根据上述的规律写出的尾数为()A. 1 B. 3 C. 7 D. 9【答案】D二、填空题(每题3分,共30分)11.用代数式表示“的2倍与的差”:______.【答案】2a b12.计算(2m2n2)2•3m2n3的结果是.【答案】12m6n713.若,,则=_____________.【答案】±1.14.某种商品原价每件b元,第一次降价打八折,第二次降价每件又减10元,第二次降价后的售价是__________元.【答案】15.若10m=5,10n=3,则102m+3n=.【答案】675.16.若是关于的四次二项式,则=____________.【答案】—217.如果单项式与多项式的和为单项式,那么__________.【答案】或18.若x2+x=2,则(x2+2x)﹣(x+1)值是.【答案】119.按如图所示的程序计算,若开始输入的x的值为12,我们发现第一次得到的结果为6,第2次得到的结果为3,…,请你探索第2017次得到的结果为_________.【答案】620.用同样规格的黑白两种颜色的正方形瓷砖,按图的方式铺地板,则第2017个图形中需要黑色瓷砖__________块.【答案】6052三、解答题(共40分)21.(12分)先化简,再求值:(1),其中,.(),其中,.【答案】(1);;(2);5.22.(6分)数学老师在黑板上抄写了一道题目:“当a=2,b=﹣2时,求多项式3a3b3﹣a2b+b﹣(4a3b3﹣a2b﹣b2)+(a3b3+a2b)﹣2b2+3的值”,甲同学做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢?【答案】结果一样23.(12分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.【答案】(1)乙商场买合算;(2)甲:0.9x+100;乙:0.95x+25;(3)选择甲商场合算.24.(10分)(1)填空:(a-b)(a+b)=________;(a-b)(a2+ab+b2)=________;(a-b)(a3+a2b+ab2+b3)=________;(2)猜想:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=________(其中n为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1;②210-29+28-…-23+22-2.【答案】(1)a2-b2;a3-b3;a4-b4;(2)a n-b n;(3)①1023;②682.。
【推荐】2018年全国各地中考数学真题汇编:整式(共31题)
2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B.C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B.C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B.② C.③ D. ④【答案】C4.下列运算正确的是()A. B.C. D.【答案】A5.下列运算正确的是()。
A. B.C.D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B7.下列运算正确的是()A. B.C. D.【答案】C8.计算的结果是()A. B.C.D.【答案】B9.下列运算正确的是()A. B.C. D.【答案】C10.计算的结果是()A. B.C.D.【答案】C11.下列计算正确的是()A. B. C.D.【答案】D12.下列计算结果等于的是()A. B.C.D.【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B.C. D.【答案】D15.下列计算正确的是()。
A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。
其中做对的一道题的序号是()A. ①B.② C.③ D. ④【答案】C17.下列计算正确的是()A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B.C.D.【答案】B19.下列计算正确的是( )A. B. C.D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.【答案】23.已知x,y满足方程组,则x2-4y2的值为________。
2018年中考数学专题复习卷:整式(含解析)
整式一、选择题1.下列运算中,正确的是()A.x3+x3=x6B.x3·x9=x27C.(x2)3=x5D.x x2=x-12.计算结果正确的是()A. B.C.D.3.下列各式能用平方差公式计算的是()A. B.C. D.4.计算(a-3)2的结果是()A. a2+9B. a2+6a+9C. a2-6a+9D. a2-95.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是()A.B.C.D.6.下列四个式子:①4x2y5÷ xy=xy4;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x2y=3x6y;④(12m3+8m2-4m)÷(-2m)=-6m2+4m-2.其中正确的有( )A.0个B.1个C.2个D.3个7.下列等式成立的是()A. 2﹣1=﹣2B. (a2)3=a5 C. a6÷a3=a2 D.﹣2(x﹣1)=﹣2x+28.计算(x+1)(x+2)的结果为()A. x2+2B. x2+3x+2C. x2+3x+3D. x2+2x+29.若3×9m×27m=321,则m的值是( )A. 3B. 4C. 5D. 610.下列各式中,结果为x3-2x2y+xy2的是( )A.x(x+y)(x-y)B.x(x2+2xy+y2)C.x(x+y)2D.x(x-y)211.一个长方体的长、宽、高分别为5x-3,4x和2x,则它的体积等于( )A.(5x-3)·4x·2x=20x3-12x2B.·4x·2x=4x2C.(5x-3)·4x·2x=40x3-24x2D.(5x-3)·4x=20x2-12x12.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab= .做对一题得2分,则他共得到()A. 2分B. 4分C. 6分 D. 8分二、填空题13.计算:=________.14.计算: =________15.已知,,则的值是________16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为________17.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为________.18.若把代数式化为的形式,其中、为常数,则________19.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为________20.已知a﹣=3,那么a2+ =________.21.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为________.22.若4x2+mx+1是一个完全平方式,则常数m的值是________.三、解答题23. (1)计算(x-2)2-x(x+1)(2)先化简:,再求出当m=-2时原式的值。
2018届中考数学一轮复习讲义 第2讲整式的加减
2018届中考数学一轮复习讲义第2讲整式的加减【知识巩固】一.单项式1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
二、多项式1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
【典例解析】典例一、单项式(2017湖北荆州)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n的算术平方根是4.【考点】22:算术平方根;34:同类项;98:解二元一次方程组.【分析】根据同类项定义可以得到关于m、n的二元一次方程,即可求得m、n的值即可解题.【解答】解:∵单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,∴4=m﹣n,2m+n=2,解得:m=2,n=﹣2,∴m﹣7n=16,∴m﹣7n的算术平方根==4,故答案为4.【变式训练】单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.9【考点】合并同类项;单项式.【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选D.典例二、多项式下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y) D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)【考点】去括号与添括号.【分析】根据去括号和添括号法则选择.【解答】解:A、x﹣(y﹣z)=x﹣y+z,错误;B、﹣(x﹣y+z)=﹣x+y﹣z,括号前是“﹣”,去括号后,括号里的各项都改变符号,错误;C、x+2y﹣2z=x﹣2(z﹣y),添括号后,括号前是“﹣”,括号里的各项都改变符号,错误;D、正确.故选D.【变式训练】设有理数a,b,c在数轴上的对应点如图所示,|a|<|c|,化简|b﹣a|+|a+c|+|c﹣b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴可得c<b<0<a,然后根据绝对值的性质化简求解.【解答】解:由图可得,c<b<0<a,∵|a|<|c|,∴|b﹣a|+|a+c|+|c﹣b|=a﹣b﹣a﹣c﹣c+b=﹣2c.典例三、多项式加减法多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2 B.﹣2 C.2或﹣2 D.3【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以|n|=2,且﹣(n+2)≠0,根据以上两点可以确定n的值.【解答】解:∵多项式是关于x的二次三项式,∴|n|=2,∴n=±2,又∵﹣(n+2)≠0,∴n≠﹣2,综上所述,n=2.故选A.【变式训练】计算:2(m2+2n2)﹣3(3m2﹣n2)【考点】整式的加减;【分析】结合整式加减法的运算法则进行求解即可.【解答】解:原式=2m2+4n2﹣9m2+3n2=7n2﹣7m2.典例四、代数式求值(2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【变式训练】定义一种新运算:,那么4⊗(﹣1)=2.【考点】代数式求值.【分析】根据题意可知,该运算是a的与b的差.【解答】解:根据新运算,4*(﹣1)=×4﹣(﹣1)=2.故答案为:2.典例五、整式综合运算某人买了50元的乘车月票卡,如果此人乘车的次数用m表示,则记录他每次乘车后的余额n元,如下表:(1)写出此人乘车的次数m表示余额n的公式;(2)利用上述公式,计算:乘了13次车还剩多少元?(3)此人最多能乘几次车?【考点】列代数式;代数式求值.【分析】①根据表中的数据可知余额n等于50减去0.8乘以乘车的次数用m;②把m=13代入即可求值;③用总钱数除以0.8所得的最大整数即为最多能乘的次数车.【解答】解:①n=50﹣0.8m;②当m=13时,n=50﹣0.8×13=39.6(元);③当n=0时,50﹣0.8m=0.解出,m=62.5∵m为正整数∴最多可乘62次.【变式训练】先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.【考点】整式的加减—化简求值.【分析】去小括号,去中括号,合并同类项,最后代入求出即可.【解答】解:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy]=3x2y﹣[2x2y﹣6xy+3x2y﹣xy]=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy当x=﹣,y=2时,原式=﹣2×(﹣)2×2+7×(﹣)×2=﹣8.【能力检测】1.单项式的系数是()A.B.πC.2 D.【考点】单项式.【分析】直接利用单项式中的数字因数叫做单项式的系数,进而得出答案.【解答】解:单项式的系数是:.故选:D.2.(2017贵州安顺)下了各式运算正确的是()A.2(a﹣1)=2a﹣1 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.a2+a2=2a2【考点】35:合并同类项;36:去括号与添括号.【分析】直接利用合并同类项法则判断得出答案.【解答】解:A、2(a﹣1)=2a﹣2,故此选项错误;B、a2b﹣ab2,无法合并,故此选项错误;C、2a3﹣3a3=﹣a3,故此选项错误;D、a2+a2=2a2,正确.故选:D.3.下列代数式中与2a2b2c3是同类项的是()A.3a2bc3B.5c3a2b2C.a2b3c D.﹣3a2b2【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由同类项的定义,得2a2b2c3是同类项的是5c3a2b2,故选:B.4.已知:a﹣3b=2,则6﹣2a+6b的值为()A.2 B.﹣2 C.4 D.﹣4【考点】代数式求值.【分析】首先根据a﹣3b=2,求出﹣2a+6b的值是多少;然后用6加上﹣2a+6b的值,求出算式6﹣2a+6b的值为多少即可.【解答】解:∵a﹣3b=2,∴6﹣2a+6b=6﹣2(a﹣3b)=6﹣2×2=6﹣4=2.故选:A.5.若a﹣b=1,则代数式2a﹣2b﹣3的值是()A.1 B.﹣1 C.﹣3 D.﹣2【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.6.若代数式xy2与﹣3x m﹣1y2n的和是﹣2xy2,则2m+n的值是()A.3 B.4 C.5 D.6【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:由题意,得xy2与﹣3x m﹣1y2n是同类项,m﹣1=1,2n=2,解得m=2,n=1,2m+n=2×2=1=5,故选:C.7.已知一个关于y的二次三项式,它的二次项系数为2,一次项系数为﹣2,常数项为,则这个二次三项式为2y2﹣2y+.【考点】多项式;单项式.【分析】直接利用多项式次数与项数确定方法分析得出答案.【解答】解:∵关于y的二次三项式,它的二次项系数为2,一次项系数为﹣2,常数项为,∴这个二次三项式为:2y2﹣2y+.故答案为:2y2﹣2y+.8.(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【分析】先去括号,然后合并同类项,最后再将x和y的值代入即可求解.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2,=﹣x2+y2,将x=﹣1,y=2代入可得:﹣x2+y2=3.9.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学一轮基础复习:专题二整式的运算
一、单选题(共15题;共30分)
1.(2017•云南)下列计算正确的是()
A. 2a×3a=5a
B. (﹣2a)3=﹣6a3
C. 6a÷2a=3a
D. (﹣a3)2=a6
2.(2016•包头)下列计算结果正确的是()
A. 2+ =2
B.
C. (﹣2a2)3=﹣6a6
D. (a+1)2=a2+1
3.(2017•台湾)一元二次方程式x2﹣8x=48可表示成(x﹣a)2=48+b的形式,其中a、b为整数,求a+b之值为何()
A. 20
B. 12
C. ﹣12
D. ﹣20
4.(2017•乐山)已知x+ =3,则下列三个等式:①x2+ =7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()
A. 0个
B. 1个
C. 2个
D. 3个
5.(2017•长春)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()
A. 3a+2b
B. 3a+4b
C. 6a+2b
D. 6a+4b
6.(2017•青岛)计算6m6÷(﹣2m2)3的结果为()
A. ﹣m
B. ﹣1
C.
D. ﹣
7.(2017•宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()
A. (a﹣b)2=a2﹣2ab+b2
B. a(a﹣b)=a2﹣ab
C. (a﹣b)2=a2﹣b2
D. a2﹣b2=(a+b)(a﹣b)
8.(2017•孝感)下列计算正确的是()
A. b3•b3=2b3
B. (a+2)(a﹣2)=a2﹣4
C. (ab2)3=ab6
D. (8a﹣7b)﹣(4a﹣5b)=4a﹣12b
9.(2017•黔东南州)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨
辉三角”.
根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()
A. 2017
B. 2016
C. 191
D. 190
10.(2017•眉山)下列运算结果正确的是()
A. ﹣=﹣
B. (﹣0.1)﹣2=0.01
C. ()2÷ =
D. (﹣m)3•m2=﹣m6
11.(2017·台州)下列计算正确的是()
A. B.
C. D.
12.(2016•曲靖)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()
A. 3
B. 6
C. 8
D. 9
13.(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:
①若a@b=0,则a=0或b=0
②a@(b+c)=a@b+a@c
③不存在实数a,b,满足a@b=a2+5b2
④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.
其中正确的是()
A. ②③④
B. ①③④
C. ①②④
D. ①②③
14.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()
A. 7.1×10﹣6
B. 7.1×10﹣7
C. 1.4×106
D. 1.4×107
15.(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()
A. ﹣2xy2
B. 3x2
C. 2xy3
D. 2x3
二、填空题(共6题;共6分)
16.(2017•通辽)若关于x的二次三项式x2+ax+ 是完全平方式,则a的值是________.
17.(2017•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为________.
18.(2017•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为
________.
19.(2017•六盘水)计算:2017×1983=________.
20.(2017•深圳)阅读理解:引入新数,新数满足分配律,结合律,交换律,已知,那么
________.
21.(2016•南充)如果x2+mx+1=(x+n)2,且m>0,则n的值是________.
三、计算题(共2题;共10分)
22.(2017•长春)先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.
23.(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),
其中x= +1,y= ﹣1.
四、综合题(共2题;共16分)
24.(2017•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x
=x2+2xy﹣x2+2x+1+2x 第一步
=2xy+4x+1 第二步
(1)小颖的化简过程从第________步开始出现错误;
(2)对此整式进行化简.
25.(2017•河北)发现任意五个连续整数的平方和是5的倍数.
(1)验证
①(﹣1)2+02+12+22+32的结果是5的几倍?
②设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.(2)延伸
任意三个连续整数的平方和被3除的余数是几呢?请写出理由.
答案解析部分
一、单选题
1.【答案】D
2.【答案】B
3.【答案】A
4.【答案】C
5.【答案】A
6.【答案】D
7.【答案】D
8.【答案】B
9.【答案】D
10.【答案】A
11.【答案】D
12.【答案】D
13.【答案】C
14.【答案】B
15.【答案】D
二、填空题
16.【答案】±1
17.【答案】8
18.【答案】
19.【答案】3999711
20.【答案】2
21.【答案】1
三、计算题
22.【答案】解:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.
23.【答案】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)
=4x2+4xy+y2+x2﹣y2﹣5x2+5xy
=9xy
当x= +1,y= ﹣1时,
原式=9(+1)(﹣1)
=9×(2﹣1)
=9×1
=9
四、综合题
24.【答案】(1)一
(2)解:x(x+2y)﹣(x+1)2+2x
=x2+2xy﹣x2﹣2x﹣1+2x
=2xy﹣1.
25.【答案】(1)解:①(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,
即(﹣1)2+02+12+22+32的结果是5的3倍
②解:设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2
=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4
=5n2+10,
∵5n2+10=5(n2+2),
又n是整数,
∴n2+2是整数,
∴五个连续整数的平方和是5的倍数;
(2)设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,
它们的平方和为:(n﹣1)2+n2+(n+1)2
=n2﹣2n+1+n2+n2+2n+1
=3n2+2,
∵n是整数,
∴n2是整数,
∴任意三个连续整数的平方和被3除的余数是2。